
Securing Linux Systems
with AppArmor

Crispin Cowan, PhD
Director of Software Engineering
Security Architect, SUSE Linux

AppArmor:
Easy-to-use Security for Ubuntu Linux

Crispin Cowan, PhD
Security Architect, SUSE

What Is This 'AppArmor' Thing
and Why Should I Care?

© Novell Inc. All rights reserved

3

Agenda

Overview

A Closer Look at AppArmor

Deployment Scenarios

Demonstration of AppArmor

Competitive Positioning

AppArmor Futures

© Novell Inc. All rights reserved

4

Software Security Problem

Problem: Imperfect software :-)
– Reliable software does what it is supposed to do

– Secure software does what it is supposed to do, and nothing
else

Solution: only use perfect software

... slight supply problem :-)

© Novell Inc. All rights reserved

5

AppArmor Solution

Enforce that applications only get to do what they are
supposed to do

What means “do”?
– At ultimate detail, this is the code itself

– But we clearly can't get that right :-)
– Need something simpler, more abstract

Resources:
– Restrict the application to only access the OS resources it

should need

© Novell Inc. All rights reserved

6

What Would You Do With That?

Make a server network secure:
– Confine all programs with open network ports

– If all open ports lead to confined processes, then you have
completely defined policy for what a network user or attacker
can do

– Yet far from having created policy for thw whole system

© Novell Inc. All rights reserved

7

Is that really secure?

Hard to say

Security is semi-decidable
– You can only tell when something is insecure

– Hence all the Defcon talks on breaking something, and few on securing
something

So lets put it to a practical test
– Put it in competition at Defcon and let people beat on it

© Novell Inc. All rights reserved

8

Defcon CtF 2002-5 a la Ghettohackers

Some real-world red teaming

Play an Immunix server in the Defcon
Capture the Flag (CtF) games

Almost no holds barred:
– No flooding
– No physical attacks

New gaming rig designed by the
Ghettohackers

© Novell Inc. All rights reserved

9

Basic Defcon CtF Rules

Player Nodes

© Novell Inc. All rights reserved

10

Basic Defcon CtF Rules

Player Nodes

Score’bot
Polls player nodes,
Looking for req. services

If all services found ...

© Novell Inc. All rights reserved

11

Basic Defcon CtF Rules

Player Nodes

Score’bot
Polls player nodes,
Looking for req. services

If all services found,
Score one point for the
Flag currently on that
node

© Novell Inc. All rights reserved

12

Basic Defcon CtF Rules

Player Nodes

Score’bot
Polls player nodes,
Looking for req. services

If all services found,
Score one point for the
Flag currently on that
node

… while each team
tries to replace others’ flags

AppArmor
A Closer Look

© Novell Inc. All rights reserved

14

Linux 2.6 Kernel

AppArmor Architecture

Linux OS
Component

Desktop
Application

Server
Application

YaST
 Console

Reporting
& Alerting

user interfaces

AppArmor

AppArmor
Module

LSM Interface

Reporting
& Alerting

Application
Profiles

© Novell Inc. All rights reserved

15

Critical Issue #1: Complete Mediation

Must not be possible to bypass HIPS system

• Must be in the kernel

AppArmor uses LSM interface in 2.6 kernel

• LSM (Linux Security Module) provides in-kernel mediation without
having to maintain a patched kernel

• Provides an open standard API for access control module

• Precise information on application behavior, accuracy, performance

• Provides highest quality non-bypassable mediation

© Novell Inc. All rights reserved

16

Critical Issue #2: Security Model

Misuse prevention vs. anomaly prevention
• Misuse prevention easier to manage
• Anomaly prevention much more secure,

traditionally hard to use

AppArmor is easy anomaly prevention for
application security

• Focus on application security
• Name-based access control for ease of

understanding policy
• Hybrid white list/black list

• White list within an application profile

• Black list system-wide

AppArmor
Per - Application
Security

DNS

Print

Web

CGI

Mail

File

© Novell Inc. All rights reserved

17

AppArmor Security Profile

Whenever a protected
program runs regardless
of UID, AppArmor
controls:

– The POSIX capabilities
it can have (even if it is
running as root)

– The directories/files it
can read/write/execute

/usr/sbin/ntpd {

 #include <abstractions/base>

 #include <abstractions/nameservice>

 capability ipc_lock,

 capability net_bind_service,

 capability sys_time,

 capability sys_chroot,

 capability setuid,

 /etc/ntp.conf r,

 /etc/ntp/drift* rwl,

 /etc/ntp/keys r,

 /etc/ntp/step-tickers r,

 /tmp/ntp* rwl,

 /usr/sbin/ntpd rix,

 /var/log/ntp w,

 /var/log/ntp.log w,

 /var/run/ntpd.pid w,

 /var/lib/ntp/drift rwl,

 /var/lib/ntp/drift.TEMP rwl,

 /var/lib/ntp/var/run/ntp/ntpd.pid w,

 /var/lib/ntp/drift/ntp.drift r,

 /drift/ntp.drift.TEMP rwl,

 /drift/ntp.drift rwl,

}

Example security
profile for ntpd

© Novell Inc. All rights reserved

18

Automated Workflow

/usr/sbin/ntpd {

 #include <abstractions/base>

 #include <abstractions/nameservice>

 capability ipc_lock,

 capability net_bind_service,

 capability sys_time,

 capability sys_chroot,

 capability setuid,

 /etc/ntp.conf r,

 /etc/ntp/drift* rwl,

 /etc/ntp/keys r,

 /etc/ntp/step-tickers r,

 /tmp/ntp* rwl,

 /usr/sbin/ntpd rix,

 /var/log/ntp w,

 /var/log/ntp.log w,

 /var/run/ntpd.pid w,

© Novell Inc. All rights reserved

19

Native Unix Syntax, Semantics

AppArmor access controls reflect classic Unix
permission patterns

> Complements Unix permissions rather than overlaying a new paradigm

Regular expressions in AppArmor rules

> /dev/{,u}random matches /dev/random and
/dev/urandom

> /lib/ld-*.so* matches most of the libraries in /lib

> /home/*/.plan matches everyone’s .plan file

> /home/*/public_html/** matches everyone’s public
HTML directory tree

© Novell Inc. All rights reserved

20

Profile Building Blocks
A set of “foundation class” rules that can be #include'd in

your profiles
– base: needed by nearly all programs

– authentication: program will authenticate users

– console: program interacts with TTY consoles

– kerberos: uses Kerberos cryptography

– nameservice: program needs to look up domain names

– wutmp: program updates user login logs

© Novell Inc. All rights reserved

21

Includes Default Set of Policies

/etc/apparmor.d
(default loaded)

– netstat
– ping
– klogd
– syslog
– ldd

– squid

– traceroute

– identd

– mdnsd

– named

– nscd

– ntpd

/etc/apparmor/extras
(not loaded, but available)

– firefox
– opera
– evolution
– gaim
– realplay

– postfix

– acroread

– mysqld

– ethereal

– postfix

– sendmail

– many more...

AppArmor Demo

© Novell Inc. All rights reserved

23

Apache Profiling

1. Local Apache web server running vulnerable PHF script

2. Exploit PHF vulnerability; deface web page

3. Develop profiles for Apache and PHF app

4. Try hack again; hack fails

© Novell Inc. All rights reserved

24

The Setup
1. open a terminal

window for
commands and type
“demoreset.sh” to
reset the demo.

2. open a second
terminal window and
type the “tail”
command shown to
view the syslog3. open a browser and

click on the “Digital
Airlines” bookmark to
bring up the demo
homepage

4. open YaST and click
on the AppArmor
icon to bring up the
AppArmor control
center

© Novell Inc. All rights reserved

25

The Hack
1. click the “PHF”

bookmark to pull up
the vulnerable PHF
application

2. click the “Hack”
bookmark to run the
hack that defaces
the homepage.

3. now click the “Digital
Airlines” bookmark to
show that the
homepage has been
defaced!

4. click the “Unhack”
bookmark to reset
the homepage, then
click on the Digital
Airlines bookmark.

© Novell Inc. All rights reserved

26

Choosing the Application

1. in YaST, click the
Add Profile Wizard to
select the app to be
profiled

2. type the path to
apache as shown (or
browse to it)

3. the wizard tells you
to start the target
app and exercise its
functionality

© Novell Inc. All rights reserved

27

Exercising Apache

1. at the command line,
restart apache as
shown

2. visit the homepage...

3. ... and visit the PHF
application. Now we
have a syslog full of
apache events.

4. back in YaST, click
on the “Scan” button
to start developing
policy

© Novell Inc. All rights reserved

28

Creating AppArmor Policy

1. the Wizard asks us if
the PHF app should
have its own profile...
we say “yes” by
clicking on the
“Profile” radio button,
then “Allow”

2. now the Wizard
notices apache
needs a few POSIX
capabilities. We
“Allow” all of them.

© Novell Inc. All rights reserved

29

Creating AppArmor Policy 2

1. the Wizard asks about a file
accessed by apache. We click the
“Glob” button twice to allow read
access to all files in the apache2
directory, then “Allow”

2. the Wizard notices apache needs
access to /etc/group and suggests
we “include” the nameservice
abstraction.

© Novell Inc. All rights reserved

30

Creating Apache Policy 3

1. apache accesses several libraries.
We click on “Glob w/Ext” to give
apache read access to all libraries in
this directory.

2. after several more questions, we're
finished. We click on “Finish” and
answer “Yes” to exit.

© Novell Inc. All rights reserved

31

Blocking the Attack

1. back at our website, we pull up the
homepage, try the hack and see that
the home page remains intact!

2. looking at the syslog, we see a
“REJECT” entry telling us an
attempted attack via the phf
application was blocked by the
newly created AppArmor profiles.

© Novell Inc. All rights reserved

32

Reviewing our Apache Policy

1. at the YaST control center, click on
“Edit Profile” to bring up a list of
profiles on the box, scroll down and
highlight the apache profile and
click “Next”

2. the apache profile that we just
created is shown here.

© Novell Inc. All rights reserved

33

What Else Can I Do?

Enable/Disable AppArmor
and configure reporting
and alerting

View a report showing
AppArmor events and filter
by program name, date,
time, etc.

Update loaded profiles
based on syslogged
activity since last update

© Novell Inc. All rights reserved

34

Sub-process Confinement

Apache mod_perl and mod_php scripts
– Apache mod_apparmor applies new protection before

interpreting scripts

– If a specific profile for that scrpt exists, it is used

– If no specific profile exists, then a default script profile is used

– Impact: don't need to run all CGIs with the full privilege of
Apache just to get mod_perl efficiency

– The only known way to defend PHP code

Login Authentication
– Add a similar module to PAM: pam_armor

– Pre-authentication, sshd and logind are in a restrictive profile

– Post-authentication, can transition to per-user profile

© Novell Inc. All rights reserved

35

YaST Integration

© Novell Inc. All rights reserved

36

Command-line Interface

There is also a command-line interface

• for those of us allergic to mice :-)

© Novell Inc. All rights reserved

37

GAIM Profile
Console Tools

• Create the profile template
– cd /opt/gnome/bin

– genprof gaim

• Exercise GAIM
– start, chat, stop

• Create profile entries
– [S]can log for profile entries

– [F]inish (GAIM profile is loaded)

• View profile
– vim opt.gnome.bin.gaim

– syntax on

– set syntax=subdomain

Makes it safe to
talk to strangers

© Novell Inc. All rights reserved

38

Network-secure a System

© Novell Inc. All rights reserved

39

Network-secure a System

1.Pick an unconfined service from the list

2.Confine it the way we confined Apache and GAIM

3.Continue until all open ports lead to AppArmor profiles

Result:

– There is no way onto the machine except through an
AppArmor profile

– AppArmor policy completely controls network access to the
machine

– Nowhere near having profiled all software on the machine

Best Uses For AppArmor

© Novell Inc. All rights reserved

41

Best Targets for AppArmor

Any Company whose networked servers are
running mission critical applications

Any organization with a high cost associated with
compromised data

Any organization faced with regulatory
compliance
...

Any Linux application is exposed to attack and that
matters :-)

© Novell Inc. All rights reserved

42

Best Targets for AppArmor

● Isolate all programs interacting
with outside world

● Auto-scan tool finds applications
that should be profiled

● Profiles represent your total
exposure – auditable policy

Networked Servers

● Complex, not easily auditable for
security

● May be closed source

● Prevents attacks on one
component from spreading to
other components or systems

Business Applications

● Profiles for desktop applications
that process external data

● Separates these programs from
other applications/data on the
system

● Protects high-risk programs

Corporate Desktop

● Isolate all programs interacting
with outside world

● Comprehensive profile set defined
for specific uses

● Limits misuse of machines

● AppArmor profiles for user
session and executable apps

POS Terminals, Kiosks

© Novell Inc. All rights reserved

43

So What Happened at CtF?

2002
– Target was Red Hat, easy to port to Immunix

– Too focused on Immunix, not enough on the game

– Delayed launching any server until we had it running on
Immunix

– Placed 2nd not bad for first try

2003: Target OpenBSD
– Target was OpenBSD, took longer to port

– SQL injection attacks, AppArmor does not stop them

– Placed 3rd hmmm ...

© Novell Inc. All rights reserved

44

So What Happened at CtF?

2004:
– Target Windows

– A weekend is not enough time to port 5 applications from
Windows to Linux under fire :-)

– Placed 4th this trend does not look good

2005:
– Kenshoto takes over game from Ghettohackers

– Target is now under Kenshoto's control, so no more OS
defensive techniques

– CtF game now focused on binary code reverse engineering

... 2007 0tB/OtB brings focus back to OS

Comparisons

© Novell Inc. All rights reserved

46

Application Least Privilege for Linux

SELinux

Type Enforcement
– Assign users or programs

to Domains

– Label files with Types

– Write policy in terms of
which Domains can access
which Types

AppArmor

Pathnames
– Name a program by path

– When it runs, it can only
access the files specified by
pathname

– Generalize pathnames with
shell syntax wild cards

© Novell Inc. All rights reserved

47

Label Splitting: SELinux

Think of SELinux as Post-it NoteTM security
– Label files & programs with colored stickers

– Policy decides which colors can play together

A single label in SELinux is an equivalence class
– All files with that label are treated identically by security policy

A human has to decide which files should have the
same label, and which files need a different label

When you get it wrong, must split the label
– Relabel all affected files

– Revise all polices that reference that label

© Novell Inc. All rights reserved

48

AppArmor

AppArmor uses explicit pathnames and regular
expressions to achieve the same thing

A profile rule of '/srv/www/htdoc/**.html r' is an
equivalence class, with 2 differences

– The class is evaluated at access time: new files are checked
against policy

– The class is local to a single profile: don't need to re-label the
world to be able to distinguish 2 files that some other profile
treats as the same

© Novell Inc. All rights reserved

49

Network Storage

SELinux can only do all/nothing access control for NFS-
mounted volumes

- SELinux depends on labels, which are stored in extended
attributes, which are not supported in NFS2 or NFS3

- Applies a single label to the mount point

- Policies either grant or deny access to the entire NFS volume

AppArmor does not use extended attributes
- Can write fine-grained profiles that grant access to individual

files that reside on NFS volumes

© Novell Inc. All rights reserved

50

AppArmor vs. SELinux:
Creating Policy

SELinux audit2allow
1. Create a file at $SELINUX_SRC/domains/program/foo.te.

2. Put the daemon domain macro call in the file.

3. Create the file contexts file.

4. Put the first list of file contexts in file.fc.

5. Load the new policy with make load.

6. Label the foo files.

7. Start the daemon, service foo start.

8. Examine your audit log for denial messages.

9. Familiarize yourself with the errors the daemon is generating.

10. Use audit2allow to start the first round of policy rules

11. Look to see if the foo_t domain tries to create a network
socket

12. Continue to iterate through the basic steps to generate all the
rules you need.

13. If the domain tries to access port_t, which relates to
tclass=tcp_socket or tclass=udp_socket in the AVC
log message, you need to determine what port number foo
needs to use.

14. Iterate through the remaining AVC denials. When they are
resolved with new policy, you can configure the unique port
requirements for the foo_t domain.

15. With the daemon started, determine which port foo is using.

16. Remove the generic port_t rule, replacing it with a specific rule
for a new port type based on the foo_t domain.

AppArmor
1. Open YaST Control Center
2. Run Server Analyzer to determine

which programs to profile
3. Run the Profile Wizard to generate a

profile template
4. Run the application through normal

operation
5. Run the interactive optimizer to

synthesize log events into a profile

© Novell Inc. All rights reserved

51

AppArmor vs. SELinux:
Compare Resulting Policy

AppArmor profile
for the same
program is about
4x smaller

 SELinux
#################################

#

Rules for the ftpd_t domain

#

type ftp_port_t, port_type;

type ftp_data_port_t, port_type;

daemon_domain(ftpd, `, auth_chkpwd')

type etc_ftpd_t, file_type, sysadmfile;

can_network(ftpd_t)

can_ypbind(ftpd_t)

allow ftpd_t self:unix_dgram_socket create_socket_perms;

allow ftpd_t self:unix_stream_socket create_socket_perms;

allow ftpd_t self:process {getcap setcap};

allow ftpd_t self:fifo_file rw_file_perms;

allow ftpd_t bin_t:dir search;

can_exec(ftpd_t, bin_t)

allow ftpd_t { sysctl_t sysctl_kernel_t }:dir search;

allow ftpd_t sysctl_kernel_t:file { getattr read };

allow ftpd_t urandom_device_t:chr_file { getattr read };

ifdef(`crond.te', `

system_crond_entry(ftpd_exec_t, ftpd_t)

can_exec(ftpd_t, { sbin_t shell_exec_t })

')

allow ftpd_t ftp_data_port_t:tcp_socket name_bind;

ifdef(`ftpd_daemon', `

define(`ftpd_is_daemon', `')

') dnl end ftpd_daemon

ifdef(`ftpd_is_daemon', `

rw_dir_create_file(ftpd_t, var_lock_t)

allow ftpd_t ftp_port_t:tcp_socket name_bind;

allow ftpd_t self:unix_dgram_socket { sendto };

can_tcp_connect(userdomain, ftpd_t)

', `

ifdef(`inetd.te', `

domain_auto_trans(inetd_t, ftpd_exec_t, ftpd_t)

ifdef(`tcpd.te', `domain_auto_trans(tcpd_t, ftpd_exec_t, ftpd_t)')

Use sockets inherited from inetd.

allow ftpd_t inetd_t:fd use;

allow ftpd_t inetd_t:tcp_socket rw_stream_socket_perms;

Send SIGCHLD to inetd on death.

allow ftpd_t inetd_t:process sigchld;

') dnl end inetd.te

')dnl end (else) ftp_is_daemon

ifdef(`ftp_shm', `

allow ftpd_t tmpfs_t:file { read write };

allow ftpd_t { tmpfs_t initrc_t }:shm { read write unix_read unix_write associate };

')

Use capabilities.

allow ftpd_t ftpd_t:capability { net_bind_service setuid setgid fowner fsetid chown sys_resource sys_chroot };

Append to /var/log/wtmp.

allow ftpd_t wtmp_t:file { getattr append };

allow access to /home

allow ftpd_t home_root_t:dir { getattr search };

Create and modify /var/log/xferlog.

type xferlog_t, file_type, sysadmfile, logfile;

file_type_auto_trans(ftpd_t, var_log_t, xferlog_t, file)

Execute /bin/ls (can comment this out for proftpd)

also may need rules to allow tar etc...

can_exec(ftpd_t, ls_exec_t)

allow { ftpd_t initrc_t } etc_ftpd_t:file r_file_perms;

allow ftpd_t { etc_t resolv_conf_t etc_runtime_t }:file { getattr read };

allow ftpd_t proc_t:file { getattr read };

')dnl end if ftp_home_dir

 AppArmor
/usr/sbin/in.ftpd {

 #include <immunix-standard/base>

 #include <immunix-standard/nameservice>

 #include <immunix-standard/authentication>

 #include <user-custom/ftpd>

 / r,

 /dev/urandom r,

 /etc/fstab r,

 /etc/ftpaccess r,

 /etc/ftpconversions r,

 /etc/ftphosts r,

 /etc/ftpusers r,

 /etc/shells r,

 /usr/sbin/in.ftpd r,

 /usr/share/ssl/certs/ca-bundle.crt r,

 /usr/share/ssl/certs/ftpd-rsa.pem r,

 /usr/share/ssl/private/ftpd-rsa-key.pem r,

 /usr/share/ssl/.rnd w,

 /var/log/xferlog w,

 /var/run wr,

 /var/run/ftp.{pids,rips}-all wr,

}

© Novell Inc. All rights reserved

52

AppArmor vs. SELinux:
Compare Resulting Policy

AppArmor profile
for the same
program is about
4x smaller

 SELinux
#################################

#

Rules for the ftpd_t domain

#

type ftp_port_t, port_type;

type ftp_data_port_t, port_type;

daemon_domain(ftpd, `, auth_chkpwd')

type etc_ftpd_t, file_type, sysadmfile;

can_network(ftpd_t)

can_ypbind(ftpd_t)

allow ftpd_t self:unix_dgram_socket create_socket_perms;

allow ftpd_t self:unix_stream_socket create_socket_perms;

allow ftpd_t self:process {getcap setcap};

allow ftpd_t self:fifo_file rw_file_perms;

allow ftpd_t bin_t:dir search;

can_exec(ftpd_t, bin_t)

allow ftpd_t { sysctl_t sysctl_kernel_t }:dir search;

allow ftpd_t sysctl_kernel_t:file { getattr read };

allow ftpd_t urandom_device_t:chr_file { getattr read };

ifdef(`crond.te', `

system_crond_entry(ftpd_exec_t, ftpd_t)

can_exec(ftpd_t, { sbin_t shell_exec_t })

')

allow ftpd_t ftp_data_port_t:tcp_socket name_bind;

ifdef(`ftpd_daemon', `

define(`ftpd_is_daemon', `')

') dnl end ftpd_daemon

ifdef(`ftpd_is_daemon', `

rw_dir_create_file(ftpd_t, var_lock_t)

allow ftpd_t ftp_port_t:tcp_socket name_bind;

allow ftpd_t self:unix_dgram_socket { sendto };

can_tcp_connect(userdomain, ftpd_t)

', `

ifdef(`inetd.te', `

domain_auto_trans(inetd_t, ftpd_exec_t, ftpd_t)

ifdef(`tcpd.te', `domain_auto_trans(tcpd_t, ftpd_exec_t, ftpd_t)')

Use sockets inherited from inetd.

allow ftpd_t inetd_t:fd use;

allow ftpd_t inetd_t:tcp_socket rw_stream_socket_perms;

Send SIGCHLD to inetd on death.

allow ftpd_t inetd_t:process sigchld;

') dnl end inetd.te

')dnl end (else) ftp_is_daemon

ifdef(`ftp_shm', `

allow ftpd_t tmpfs_t:file { read write };

allow ftpd_t { tmpfs_t initrc_t }:shm { read write unix_read unix_write associate };

')

Use capabilities.

allow ftpd_t ftpd_t:capability { net_bind_service setuid setgid fowner fsetid chown sys_resource sys_chroot };

Append to /var/log/wtmp.

allow ftpd_t wtmp_t:file { getattr append };

allow access to /home

allow ftpd_t home_root_t:dir { getattr search };

Create and modify /var/log/xferlog.

type xferlog_t, file_type, sysadmfile, logfile;

file_type_auto_trans(ftpd_t, var_log_t, xferlog_t, file)

Execute /bin/ls (can comment this out for proftpd)

also may need rules to allow tar etc...

can_exec(ftpd_t, ls_exec_t)

allow { ftpd_t initrc_t } etc_ftpd_t:file r_file_perms;

allow ftpd_t { etc_t resolv_conf_t etc_runtime_t }:file { getattr read };

allow ftpd_t proc_t:file { getattr read };

')dnl end if ftp_home_dir

SELinux uses a custom programming
language to specify hard-to-manage
rules

.
ifdef(`ftpd_daemon', `
define(`ftpd_is_daemon', `')
') dnl end ftpd_daemon
ifdef(`ftpd_is_daemon', `
rw_dir_create_file(ftpd_t, var_lock_t)
allow ftpd_t ftp_port_t:tcp_socket name_bind;
allow ftpd_t self:unix_dgram_socket { sendto };
can_tcp_connect(userdomain, ftpd_t)
', `
ifdef(`inetd.te', `
domain_auto_trans(inetd_t, ftpd_exec_t, ftpd_t)
ifdef(`tcpd.te', `domain_auto_trans(tcpd_t,

ftpd_exec_t, ftpd_t)')

Use sockets inherited from inetd.
allow ftpd_t inetd_t:fd use;
allow ftpd_t inetd_t:tcp_socket

rw_stream_socket_perms;

Send SIGCHLD to inetd on death.
allow ftpd_t inetd_t:process sigchld;
') dnl end inetd.te
')dnl end (else) ftp_is_daemon
ifdef(`ftp_shm', `
allow ftpd_t tmpfs_t:file { read write };
allow ftpd_t { tmpfs_t initrc_t }:shm { read

write unix_read unix_write associate };
')
.
.

 AppArmor
/usr/sbin/in.ftpd {

 #include <immunix-standard/base>

 #include <immunix-standard/nameservice>

 #include <immunix-standard/authentication>

 #include <user-custom/ftpd>

 / r,

 /dev/urandom r,

 /etc/fstab r,

 /etc/ftpaccess r,

 /etc/ftpconversions r,

 /etc/ftphosts r,

 /etc/ftpusers r,

 /etc/shells r,

 /usr/sbin/in.ftpd r,

 /usr/share/ssl/certs/ca-bundle.crt r,

 /usr/share/ssl/certs/ftpd-rsa.pem r,

 /usr/share/ssl/private/ftpd-rsa-key.pem r,

 /usr/share/ssl/.rnd w,

 /var/log/xferlog w,

 /var/run wr,

 /var/run/ftp.{pids,rips}-all wr,

}

Classical Linux syntax with
read/write/execute permissions:
No new jargon

/usr/sbin/in.ftpd {

 #include <immunix-standard/base>

 #include <immunix-standard/nameservice>

 #include <immunix-standard/authentication>

 #include <user-custom/ftpd>

 / r,

 /dev/urandom r,

 /etc/fstab r,

 /etc/ftpaccess r,

 /etc/ftpconversions r,

 /etc/ftphosts r,

 /etc/ftpusers r,

 /etc/shells r,

 /usr/sbin/in.ftpd r,

 /usr/share/ssl/certs/ca-bundle.crt r,

 /usr/share/ssl/certs/ftpd-rsa.pem r,

 /usr/share/ssl/private/ftpd-rsa-key.pem r,

 /usr/share/ssl/.rnd w,

 /var/log/xferlog w,

 /var/run wr,

 /var/run/ftp.{pids,rips}-all wr,

}

© Novell Inc. All rights reserved

53

SELinux New GUI Tools

Advanced GUIs for enabling and disabling chunks of pre-
written policies

– No help for authoring new policies

Works great for software that someone else has already
profiled for you

– Problematic for your in-house and 3rd party software

AppArmor:
– It's not the GUI, it is the fundamental model

AppArmor Roadmap

© Novell Inc. All rights reserved

55

AppArmor Near Term Development

Network Access Control – TCP/UDP based network access control per
process

Profile Merge Tool – allows two profiles to be merged into a single profile
consisting of union set of both

Profile Sharing – tools and portal for community sharing of AppArmor profiles

Tomcat Support – AppArmor containment for Java servlets

PAM change_hat – strengthens security of AppArmor's role-based shell
functionality for applications that use PAM (e.g., sshd, gdm, ftp)

CIM Providers – Standards based CIM instrumentation for Reporting, Alerting,
Profile State

© Novell Inc. All rights reserved

56

AppArmor Future Development

DB Armor – access controls for database tables and files

Default Policy – system level list of resources that can only be accesses
through an AppArmor profile

DBUS Event Advertising – report security events via DBUS

DBUS / HAL Event Mediation – containment for hardware abstraction layer

IPC Mediation – mediate inter-process communication

Enterprise Management – integration with Novell enterprise management
system

Profile Lint – tool for analyzing profiles for dangerous rules

Resource Limits Mediation

Centralized Profile Development

© Novell Inc. All rights reserved

57

Availability

AppArmor bundled with:
– SLES10

– SLED10

– openSUSE 10.1, 10.2 ...

AppArmor is open source: GPL
– http://opensuse.org/AppArmor

– Mailing lists: apparmor-announce, apparmor-general,
apparmor-dev

– IRC irc.oftc.net/#apparmor

http://opensuse.org/AppArmor

© Novell Inc. All rights reserved

58

AppArmor for Ubuntu

AppArmor ported to Ubuntu by Magnus Runesson

– http://www.linuxalert.org/ubuntu/apparmor/

AppArmor in Universe for Feisty Fawn

AppArmor going into Main for Gutsy Gibbon

User feedback on profiles is very helpful

http://www.linuxalert.org/ubuntu/apparmor/

© Novell Inc. All rights reserved

59

AppArmor for Everyone

Ported to Gentoo by Mathew Snelham:

– http://sigalrm.com/apparmor/apparmor-ebuilds_20061013.tar.gz

Debian:

– Should be easy to generate from Ubuntu port

– Need a maintainer
– AppArmor's ease of use makes it a good idea for a de facto

Linux security standard

http://sigalrm.com/apparmor/apparmor-ebuilds_20061013.tar.gz

© Novell Inc. All rights reserved

60

AppArmor for Debian

AppArmor has already been ported to Ubuntu by
Magnus Runesson

– http://www.linuxalert.org/ubuntu/apparmor/

– In discussion for mainstream inclusion in future
Ubuntu releases

and to Gentoo by Mathew Snelham

– http://sigalrm.com/apparmor/apparmor-ebuilds_20061013.tar.gz

Debian:

– Should be easy to generate from Ubuntu port

– Need a maintainer

http://www.linuxalert.org/ubuntu/apparmor/
http://sigalrm.com/apparmor/apparmor-ebuilds_20061013.tar.gz

© Novell Inc. All rights reserved

61

AppArmor for Red Hat

AppArmor has been ported to RH variants multiple times
– But the people doing the work didn't want to be public

maintainers, so no public repository

Steve Beattie @ SUSE ported to RHEL5
– http://developer.novell.com/wiki/index.php/Special:Downloads/

apparmor/Development_-_RHEL5_beta_2_packages/

– http://software.opensuse.org/download/home:/steve-
beattie/Fedora_Extras_6/

Seeking a RH/Fedora user to maintain the package

