
Algorithmentheorie

„Priority Queues“

Stefan Edelkamp

Datenstruktur Priority Queue

Abstrakter Datentyp mit den Operationen
 Insert,
 DeleteMin, and
 DecreaseKey.

Wir unterscheiden Ganzzahl und allgemeine Gewichte
 Für Ganzzahlen nehmen wir an dass der Unterschied zwischen

dem größten und kleinstem Schlüssel kleiner-gleich C ist
Für Dijkstra entspricht das w(e) = {1,…,C}

Anwendungen
„Vorrangwarteschlange“
 Sortieren (wie in Heapsort)
 Kürzeste Wege Suche (Single Source Shortest Path) mit

Dijkstra‘s Algorithmus oder A*
 DeleteMin entnimmt zu expandierenden Knoten
 DecreaseKey aktualisiert gemäß Relaxierungsoperation
 Insert fügt ein, falls Knoten neu

 Minimaler Spannbaum via Kruskal‘s Algorithmus.
(Algorithmus von Prim nutzt Union/Find Struktur)

 …

Übersicht

 1-Level Buckets
 2-Level Buckets
 Radix Heaps
 Ende-Boas
 Balancierte Suchbäume (z.B. AVL)
 Heaps & Weak-Heaps
 Binomial Queues & Fibonacci-Heaps
 Run-Relaxed Weak-Queues

1-Level Buckets

 The i-th bucket contains all elements with a f-value equal to i.
 With the array we now associate three numbers minVal,

minPos and n:
 - minVal denotes the smallest f value in the queue,
 - n the number of elements and
 - minPos fixes the index of the bucket with the smallest key.
 The i-th bucket b[i] contains all elements v with
 f(v) = minVal+(i − minPos) mod C.

Beispiel

2-Level Buckets

 Goal: Reduce worst case complexity O(C) for DeleteMin to
O(sqrt(C))

 Top level and bottom level both of length ceil(sqrt(C +1)+1).
 The bottom level refines the smallest bucket of the

minPosTop in the top level.
 Lower level buckets created only when the current bucket

at MinPosTop becomes empty
 Refinements include an involved k-level bucket

architecture.

Beispiel

Pseudo
Code

Pseudo
Code

Amortisierte Analyse

Hier

Radix Heaps

Beispiel

 Given radix heap (written as [u[i]] : b[i]):
 [0] : {0}, [1] : {} [2] : {} [4] : {6, 7}, [8] : {}, [16] : {}.
 Extracting key 0 from bucket 1 yields [6] : {6, 7}, [7] : {}, [8] :

{}, [8] : {}, [8] : {},[16] : {}.
 Now, key 6 and 7 are distributed.
 - if b[i] <> {} then the interval size is at most 2^{i−1}.
 - for b[i] we have i − 1 buckets available.
 Since all keys in b[i] are in [k, min{k +2^{i−1} − 1, u[i+1] − 1}]

all elements fit into b[0], . . . , b[i − 1].

Operationen

 - Initialize generates empty buckets and bounds:
for i in {2, . . . ,B} set u[i] to u[i − 1]+2^{i−2}.

 - Insert(x) performs linear scan for bucket i, starting from i =
B. Then the new element x with key k is inserted into b[i],
with i = max{j | k <= u[j]}

 - For DecreaseKey, bucket i for element x is searched
linearly from the actual bucket i for x.

 - For DeleteMin we first search for the first non-empty
bucket i = min{j | b[j] <> {}} and identify the element with
minimum key k therein.

DeleteMin (cont.)

 If the smallest bucket contains more than an element, it is
returned

 If the smallest bucket contains no element
 - u[0] is set to k, u[1] is set to k +1 and for j > 2 bound u[j] is

set to min{u[j − 2]+2^{j−2}, u[i+1]}.
 - The elements of b[i] are distributed to buckets b[0], b[1], . .

. , b[i − 1] and the minimum element is extracted from the
non-empty smallest bucket.

Pseudo
Code

Pseudo
Code

Amortisierte Analyse

Van-Emde-Boas

 Assumes a universe U = {0, . . . ,N − 1} of keys for S
 All priority queue operations reduce to the successor

calculation which runs in O(log log N) time.
 The space requirements are O(N log log N).

k-Struktur T besteht aus

1. a number m = |S|,
2. a doubly-connected list, which contains all elements of S in increasing

order,
3. a bit vector b[0..2^k − 1], with b[i] = true if and only if i in S,
4. a pointer array p, with p[i] pointing to key i in the linked list if b[i] = true,
5. a k’ = ceil(k/2)-structure top and a field bottom[0..2^k’−1].
 If m = 1, then top and bottom are not needed;
 for m > 1 top is a k’-structure with the prefix bit elements ceil(x/2^k’’) for

x in S and k’’ = ceil(k/2), and each bottom[x], is a k’’-structure containing
the matching suffix bit elements x mod 2^k’’ for x in S.

Beispiel

 For the example k = 4, S = {2, 3, 7, 10, 13} and m = 5
 - top is a 2-structure on {0, 1, 2, 3} and
 - bottom is a vector of 2-structures with
 bottom[0] = {2, 3}, bottom[1] = {3},
 bottom[2] = {2}, and bottom[3] = {1},
 since 2 = 00|10, 3 = 00|11, 7 = 01|11, 10 = 10|10, and 13 =

11|01.

Operation Succ

 succ(x) finds min{y in S | y > x} in the k-structure T.
 If the top-bit at position x’ = ceil(x/2^k’’) is set
 return (x‘ · 2^k‘‘)+bottom[x].
 Otherwise let z’ = succ(x’, top)
 return z‘ · 2^k‘‘ +min{bottom[z‘]}.
 By the recursion we have T(k) <= c+T(ceil(k/2)) = O(log k),

so that we can determine the sucessor in O(log log N) time.

Operationen Insert und Delete

- Insertion for x in T determines the successor succ(x) of x,
computes x‘ = ceil(x/2^k‘‘) and x’’ = mod 2^k’’

 It divides into the calls insert(x’, top) and
insert(x’’,bottom[x’’]).

 Integration the computation in a recursive scheme leads a
running time of O(log log N).

- Deletion used the doubly-linked structure and the successor
relation and also runs in O(log logN) time.

Platzbedarf einer k-Struktur

Bitvektor und Heap

 Dijkstra’s original implementation: reduces to a bitvector
indicating if elements are currently open or not.

 The minimum is found by a complete scan yielding O(n^2) time.
 Heap implementation with in array implementation with A[i] >

A[i/2] for all i > 1 leads to an O((e+n) log n) shortest path
algorithm

 - DeleteMin implemented as in Heapsort,
 - Insert at the end of the array, followed by a sift-up
 Dynamics: growing and shrinking heaps base on dynamic

tables/arrays.

Pairing Heaps

 A pairing heap is a heap-ordered (not necessarily binary)
self-adjusting tree.

 The basic operation on a pairing heap is pairing, which
combines two pairing heaps by attaching the root with the
larger key to the other root as its leftmost child.

 More precisely, for two pairing heaps with respective root
values k1 and k2, pairing inserts the first as the leftmost
subtree of second if k1 > k2, and otherwise inserts the
second into the first as its leftmost subtree. Pairing takes
constant time and the minimum is found at the root.

„Multiple-Child“ Implementierung
In a heap-ordered multi-way tree representation realizing the

priority queue operations is simple.
 Insertion pairs the new node with the root of heap.
 DecreaseKey splits the node and its subtree from the heap (if

the node is not the root), decreases the key, and then pairs it
with the root of the heap.

 Delete splits the node to be deleted and its subtree, performs a
DeleteMin on the subtree, and pairs the resulting tree with the
root of the heap.

 DeleteMin removes and returns the root, and then, in pairs,
pairs the remaining trees. Then, the remaining trees from right
to left are incrementally paired.

„Child-Sibling“ Implementierung

 Since the multiple child representation is difficult to
maintain, the child-sibling binary tree representation for
pairing heaps is often used, in which siblings are connected
as follows.

 The left link of a node accesses its first child, and the right
link of a node accesses its next sibling, so that the value of
a node is less than or equal to all the values of nodes in its
left subtree.

 It has been shown that in this representation insert takes
O(1) and delete-min takes O(log n) amortized, while
decrease-key takes at least Omega(log log n) steps.

Fibonacci Heaps

 Fibonacci-heaps are lazy-meld versions on of binomial
queues that base on binomial trees.

 A binomial tree Bn is a tree of height n with 2^n nodes in
total and (n choose i) nodes in depth i.

 The structure of Bn is given by unifying two structure Bn−1,
where one is added as an additional successor to

 In Fibonacci-Heaps
 - DecreaseKey runs in O(1) amortized
 - DeleteMin runs in O(log n) amortized

Binomial
Queues
 Binomial-queues are a union of heap-ordered binomial trees.
 Tree Bi is represented in queue Q if the ith bit in the binary

representation of n is set.
 The partition of structure Q into trees Bi is unique.
 - Min takes O(log n) time, since the minimum is always

located at the root of one Bi,
 - Binomial queues Q1 and Q2 of sizes n1 and n2 are meld by

simulating binary addition of n1 and n2 in their dual
representation.

 This corresponds to a parallel scan of the root lists of Q1 and
Q2. If n ~ n1 +n2 then the meld can be performed in time
O(log n) time.

Andere Operationen
 - Operations Insert and DeleteMin both use procedure meld

as a subroutine.
 The former creates a tree B_0 with one element, while the

latter extracts tree B_i containing the minimal element and
splits it into its subtrees B_0, . . . ,B_{i−1}.

 In both cases the resulting trees are merged with the
remaining queue to perform the update.

 - DecreseKey for element v updates the heap-ordered tree
Bi in which v is located by sifting the element.

 All operations run in O(log n) time.

Fibonacci-Heaps
 Collection of heap-ordered binomial trees, maintained in form

a circular doubly-connected unordered list of root nodes.
 In difference to binomial queues, more than one binomial tree

of rang i may be represented.
 However, after performing a consolidate operation that

traverses the linear list and merges trees of the same rang,
each rang will become unique.

 For this purpose an additional array of size at most 2 log n is
devised that supports finding the trees of same rang in the root
list.

Operationen
 - Min is accessible in O(1) time
through a pointer in the root list.
 - Insert performs a meld operation with a singleton tree.
 - DeleteMin extracts the minimum and includes all subtrees

into the root list. In this case, consolidation is mandatory.
 - DecreaseKey performs the update on the element in the

heap-ordered tree. It removes the updated node from the
child list of its parent and inserts it into the root list, while
updating the minimum.

 To assert amortized constant run time, selected nodes are
marked to perform cascading cuts, where a cascading cut is
a cut operation propagated to the parent node.

Weak-
Heaps

 - DeleteMin: Similar to Weak-Heapsort
 - Insert: Climb up the grandparents until the definition is

fulfilled.
 On the average the path length of grandparents from a leaf

node to a root is approximately half the depth of the tree.
 - DecreaseKey: start at the node x that has changed its

value.

Pseudo Code

Pseudo
Code

Run-Relaxed
Weak Queues

 Originalfolien
von Elmasry et al. (2008)

Engineering

	Algorithmentheorie ��„Priority Queues“
	Datenstruktur Priority Queue
	Anwendungen „Vorrangwarteschlange“
	Übersicht
	1-Level Buckets
	Beispiel
	2-Level Buckets
	Beispiel
	Pseudo�Code
	Pseudo�Code
	Amortisierte Analyse
	Hier
	Radix Heaps
	Beispiel
	Operationen
	DeleteMin (cont.)
	Pseudo�Code
	Pseudo�Code
	Amortisierte Analyse
	Van-Emde-Boas
	k-Struktur T besteht aus
	Beispiel
	Operation Succ
	Operationen Insert und Delete
	Platzbedarf einer k-Struktur
	Bitvektor und Heap
	Pairing Heaps
	„Multiple-Child“ Implementierung
	„Child-Sibling“ Implementierung
	Fibonacci Heaps
	Binomial �Queues
	Andere Operationen
	Fibonacci-Heaps
	Operationen
	Weak-�Heaps
	Pseudo Code
	Pseudo �Code
	Run-Relaxed �Weak Queues�� Originalfolien�von Elmasry et al. (2008)
	Engineering

