Algorithmentheorie

„Priority Queues"

Stefan Edelkamp

Datenstruktur Priority Queue

Abstrakter Datentyp mit den Operationen

- Insert,
- DeleteMin, and
- DecreaseKey.

Wir unterscheiden Ganzzahl und allgemeine Gewichte

- Für Ganzzahlen nehmen wir an dass der Unterschied zwischen dem größten und kleinstem Schlüssel kleiner-gleich C ist
Für Dijkstra entspricht das w(e) $=\{1, \ldots, \mathrm{C}\}$

Anwendungen

 "Vorrangwarteschlange"- Sortieren (wie in Heapsort)
- Kürzeste Wege Suche (Single Source Shortest Path) mit Dijkstra‘s Algorithmus oder A*
- DeleteMin entnimmt zu expandierenden Knoten
- DecreaseKey aktualisiert gemäß Relaxierungsoperation
- Insert fügt ein, falls Knoten neu
- Minimaler Spannbaum via Kruskal's Algorithmus. (Algorithmus von Prim nutzt Union/Find Struktur)

Übersicht

- 1-Level Buckets
- 2-Level Buckets
- Radix Heaps
- Ende-Boas
- Balancierte Suchbäume (z.B. AVL)
- Heaps \& Weak-Heaps
- Binomial Queues \& Fibonacci-Heaps
- Run-Relaxed Weak-Queues

1-Level Buckets

- The i-th bucket contains all elements with a f-value equal to i.
- With the array we now associate three numbers minVal, minPos and n :
- - minVal denotes the smallest f value in the queue,
- - n the number of elements and
- - minPos fixes the index of the bucket with the smallest key.
- The i-th bucket $b[i]$ contains all elements v with
- $f(v)=\operatorname{minVal+(i-minPos)~mod~C.~}$

Beispiel

$$
C=9
$$

$$
\operatorname{minValue}=16
$$

$$
\operatorname{minPos}=6
$$

$$
n=6
$$

2-Level Buckets

- Goal: Reduce worst case complexity $\mathrm{O}(\mathrm{C})$ for DeleteMin to O(sqrt(C))
- Top level and bottom level both of length ceil(sqrt(C +1)+1).
- The bottom level refines the smallest bucket of the minPosTop in the top level.
- Lower level buckets created only when the current bucket at MinPosTop becomes empty
- Refinements include an involved k-level bucket architecture.

Beispiel


```
Procedure Initialize
Input: 1-LEVEL BUCKET array b[0..C] (implicit constant C)
Side Effect: Updated 1-LEVEL BucKET b[0..C]
```


Pseudo Code

;; No element in so far ;; Default value for current minimum

Algorithm 4.1: Initializing an 1-Level Bucket.

```
Procedure Insert
Input: 1-LEVEL BUCKET b[0..C], element }x\mathrm{ with key }
Side Effect: Updated 1-LEVEL BuCKET b[0..C]
```

$n \leftarrow n+1 \quad$;; Increase number of elements
if $(k<$ minValue $) \quad ;$ Element with smallest key
$\operatorname{minPos} \leftarrow k \bmod (C+1) \quad ;$ Update location of minimum
minValue $\leftarrow k \quad$;; Update current minimum
Insert x in $b[k \bmod (C+1)] \quad ;$ Insert into list

Algorithm 4.2: Inserting an element into an 1-LEVEL Bucket.

```
Procedure DeleteMin
Input: 1-LEVEL BUCKET \(b[0 . . C]\)
Output: Element \(x\) with key minPos
Side Effect: Updated 1-LEVEL Bucket b[0..C]
Remove \(x\) in \(b\) [minPos] from doubly-ended list
\(n \leftarrow n-1\)
if \((n>0)\)
    while \((b[\mathrm{minPos}]=\emptyset)\)
        \(\operatorname{minPos} \leftarrow(\operatorname{minPos}+1) \bmod (C+1)\)
    minValue \(\leftarrow \operatorname{Key}(x), x \in b[\) minPos \(]\)
else minValue \(\leftarrow \infty\)
return \(x\)
```

;; Eliminate element ;; Decrease number of elements
;; Structure non-empty
;; Bridge possible gaps
;; Update location of pointer
;; Update current minimum
;; Structure empty
;; Feedback result

Algorithm 4.3: Deleting the minimum element in an 1-Level Bucket.

Procedure DecreaseKey

Input: 1-LEVEL BUCKET $b[0 . . C]$, element x, key k
Side Effect: Updated 1-LEVEL BUCKET $b[0 . . C]$ with x moved

Remove x from doubly-ended list
$n \leftarrow n-1$
Insert x with key k in b
;; Eliminate element
;; Decrease number of elements
;; Re-insert element

Algorithm 4.4: Updating the key in an 1-Level Bucket.

Amortisierte Analyse

Amortized complexity analysis disinguishes between:

- t_{l}, the real cost for operation l,
- Φ_{l}, the potential after execution operation l, and
- a_{l}, the amortized costs for operation l

We have $a_{l}=t_{l}+\Phi_{l}-\Phi_{l-1}$, so that

$$
\sum_{l=1}^{m} a_{l}=\sum_{l=1}^{m} t_{l}+\Phi_{l}-\Phi_{l-1}=\sum_{l=1}^{m} t_{l}-\Phi_{0}+\Phi_{m}
$$

and

$$
\sum_{l=1}^{m} t_{l}=\sum_{l=1}^{m} a_{l}+\Phi_{0}-\Phi_{m} \leq \sum_{l=1}^{m} a_{l}
$$

Hier

Let Φ_{l} be the number of elements in the top level bucket for the l-th operation, then

- DeleteMin uses $O\left(\sqrt{C}+m_{l}\right)$ time in the worst-case, where m_{l} is the number of elements that move from top to bottom

By amortization we have $O\left(\sqrt{C}+m_{l}+\left(\Phi_{l}-\Phi_{l-1}\right)\right)=O(\sqrt{C})$ operations.

- Both operations Insert and DecreaseKey run in $O(1)$.
\Rightarrow Dijkstra/A* results in $O(e+n \sqrt{C})$ worst-case run time

Radix Heaps

Radix-heaps maintain a list of $\lceil\log (C+1)\rceil+1$ buckets of sizes $1,1,2,4,8,16$, etc.

We maintain buckets $b[0 . . B]$ and bounds $u[0 . . B+1]$ with $B=\lceil\log (C+1)\rceil+1$ and $u[B+1]=\infty$

Bucket number $\phi(x)$ denotes the index of the actual bucket for x.
Invariants:
i) all keys in $b[i]$ are in $[u[i], u[i+1]]$,
ii) $u[1]=u[0]+1$, and
iii) for all $i \in\{1, \ldots, B-1\}$ we have $0 \leq u[i+1]-u[i] \leq 2^{i-1}$.

0 6,7 $\cdots \cdots$

Beispiel

6,7							$\ldots \ldots$.
6	7	8	8	8	16	32	

- Given radix heap (written as [u[i]]: b[i]):
- [0]: \{0\}, [1] : \{\} [2]: \{\} [4]: \{6, 7\}, [8]: \{\}, [16]:\{\}.
- Extracting key 0 from bucket 1 yields [6] : \{6, 7\}, [7] : \{\}, [8] : \{\}, [8] : \{\}, [8] : \{\},[16] : \{\}.
- Now, key 6 and 7 are distributed.
- - if $b[i]<>\{ \}$ then the interval size is at most $2^{\wedge}\{i-1\}$.
- - for b[i] we have i-1 buckets available.
- Since all keys in b[i] are in $\left[k, \min \left\{k+2^{\wedge}\{i-1\}-1, u[i+1]-1\right\}\right]$ all elements fit into $b[0], \ldots, b[i-1]$.

Operationen

- - Initialize generates empty buckets and bounds:
for i in $\{2, \ldots, B\}$ set $u[i]$ to $u[i-1]+2^{\wedge}\{i-2\}$.
- - Insert(x) performs linear scan for bucket i, starting from i = B. Then the new element x with key k is inserted into $\mathrm{b}[\mathrm{i}]$, with $\mathrm{i}=\max \{j \mid \mathrm{k}<=\mathrm{u}[j]\}$
- - For DecreaseKey, bucket i for element x is searched linearly from the actual bucket i for x.
- - For DeleteMin we first search for the first non-empty bucket $i=\min \{j \mid b[j]<>\{ \}\}$ and identify the element with minimum key k therein.

DeleteMin (cont.)

- If the smallest bucket contains more than an element, it is returned
- If the smallest bucket contains no element
- $-u[0]$ is set to $k, u[1]$ is set to $k+1$ and for $j>2$ bound $u[j]$ is set to $\min \left\{u[j-2]+2^{\wedge}\{j-2\}, u[i+1]\right\}$.
- - The elements of $\mathrm{b}[\mathrm{i}]$ are distributed to buckets $\mathrm{b}[0], \mathrm{b}[1], \ldots$.,$b[i-1]$ and the minimum element is extracted from the non-empty smallest bucket.

Pseudo Code

Procedure Initialize

Input: Array $b[0 . . B]$ of lists and array $u[0 . . B]$ of bounds
Side Efect: Initialized RADIX HEAP with arrays b and u
for each i in $\{0, \ldots, B\} b[i] \leftarrow \emptyset \quad$; Initialize buckets
$u[0] \leftarrow 0 ; u[1] \leftarrow 1$
;; Initialize bounds
for each i in $\{2, \ldots, B\} u[i] \leftarrow u[i-1]+2^{i-2}$
;; Initialize bounds

Algorithm 4.5: Creating a Radix Heap.

Procedure Insert

Input: RADIX HEAP with array $b[0 . . B+1]$ of lists and array $u[0 . . B+1]$, key k Side Effect: Updated RADIX HEAP

```
\(i \leftarrow B \quad\); Initialize index
```

while $(u[i]>k) i \leftarrow i-1 \quad$;; Decrease index
Insert k in $b[i]$
;; Insert element in list

Algorithm 4.6: Inserting an element into a Radix Heap.

Pseudo Code

Procedure DecreaseKey
Input: RADIX HEAP with array $b[0 . . B+1]$ of lists and array $u[0 . . B+1]$
Index i in which old key k is stored, new key k^{\prime}
Side Effect: Updated RadIX HEAP
while $\left(u[i]>k^{\prime}\right) i \leftarrow i-1$
Insert k^{\prime} in $b[i]$
;; Decrease index ;; Insert element in list

Procedure DecreaseMin
 Input: RADIX HEAP with array $b[0 . . B+1]$ of lists and array $u[0 . . B+1]$
 Output: Minimum element
 Side Effect: Updated RADIX HEAP

```
\(i \leftarrow 0\)
;; Start with first bucket
```

$r \leftarrow \operatorname{Select}(b[i])$
$b[i] \leftarrow b[i] \backslash\{r\}$
;; Select (any) minimum key
;; Eliminate minimum key
while $(b[i]=\emptyset) i \leftarrow i+1 \quad$;; Search for first non-empty bucked
if $(i>0)$
;; First bucket empty
$k \leftarrow \min b[i]$
$u[0] \leftarrow k, u[1] \leftarrow k+1$
for each j in $\{2, \ldots, i\}$
$u[j] \leftarrow \min \left\{u[j-1]+2^{j-2}, u[i+1]\right\}$
$j \leftarrow 0$
for each k in $b[i]$
while $(k>u[j+1]) j \leftarrow j+1$
$b[j] \leftarrow b[j] \cup\{k\}$
return r
;; Select miniumum key
;; Update bounds
;; Loop on array indices
;; Update bounds
;; Initialize index
;; Keys to distribute
;; Increase index
;; Distribute
;; Output minimum element

Amortisierte Analyse

Potential $\Phi_{l}=\sum_{x \in \text { Radix-Heap }} \phi_{l}(x)$ for operation l.

- Initialize and Insert run in $O(B)$.
- DecreaseKey has an amortized time complexity in
$O\left(\phi_{l}(x)-\phi_{l-1}(x)\right)+1+\left(\Phi_{l}-\Phi_{l-1}\right)=$
$O\left(\left(\phi_{l}(x)-\phi_{l-1}(x)\right)-\left(\phi_{l}(x)-\phi_{l-1}(x)\right)+1\right)=O(1)$, and
- DeleteMin runs in time
$O\left(B+\left(\sum_{x \in b[i]} \phi_{l}(x)-\sum_{x \in b[i]} \phi_{l-1}(x)\right)+\left(\Phi_{l}+\Phi_{l-1}\right)\right)=O(1)$ amortized.
$\Rightarrow O(m \log C+l)$ for m Insert and l DecreaseKey and ExtractMin operations.
\Rightarrow Dijkstra/A* runs in time $O(e+n \log C)$.

Van-Emde-Boas

- Assumes a universe $U=\{0, \ldots, N-1\}$ of keys for S
- All priority queue operations reduce to the successor calculation which runs in $\mathrm{O}(\log \log \mathrm{N})$ time.
- The space requirements are $\mathrm{O}(\mathrm{N} \log \log \mathrm{N})$.

k-Struktur T besteht aus

1. a number $\mathrm{m}=|\mathrm{S}|$,
2. a doubly-connected list, which contains all elements of S in increasing order,
3. a bit vector $b\left[0 . .2^{\wedge} k-1\right]$, with $b[i]=$ true if and only if i in S,
4. a pointer array p, with $p[i]$ pointing to key i in the linked list if $b[i]=$ true,
5. a $\mathrm{k}^{\prime}=$ ceil(k/2)-structure top and a field bottom[0..2^k'-1].

- If $\mathrm{m}=1$, then top and bottom are not needed;
- for $m>1$ top is a k^{\prime}-structure with the prefix bit elements ceil $\left(x / 2^{\wedge} k^{\prime \prime}\right)$ for x in S and $\mathrm{k}^{\prime \prime}=$ ceil(k/2), and each bottom[x], is a $\mathrm{k}^{\prime \prime}$-structure containing the matching suffix bit elements x mod $2^{\wedge} k$ " for x in S.

Beispiel

- For the example $k=4, S=\{2,3,7,10,13\}$ and $m=5$
- - top is a 2 -structure on $\{0,1,2,3\}$ and
- - bottom is a vector of 2-structures with
- bottom[0] $=\{2,3\}$, bottom[1] $=\{3\}$,
- bottom[2] $=\{2\}$, and bottom[3] $=\{1\}$,
- since $2=00|10,3=00| 11,7=01|11,10=10| 10$, and $13=$ 11|01.

Operation Succ

- $\operatorname{succ}(x)$ finds min\{y in $S \mid y>x\}$ in the k-structure T.
- If the top-bit at position $x^{\prime}=\operatorname{ceil}\left(x / 2^{\wedge} k^{\prime \prime}\right)$ is set
$\rightarrow \rightarrow$ return ($\mathrm{x}^{\prime} \cdot 2^{\wedge} \mathrm{k}^{\prime \prime}$)+bottom[x].
- Otherwise let $z^{\prime}=\operatorname{succ}\left(x^{\prime}\right.$, top $)$
- \rightarrow return $z^{\prime} \cdot 2^{\wedge} \mathrm{k}^{\prime \prime}+\min \left\{b o t t o m\left[z^{\prime}\right]\right\}$.
- By the recursion we have $T(k)<=c+T(\operatorname{ceil}(k / 2))=O(\log k)$, so that we can determine the sucessor in $\mathrm{O}(\log \log \mathrm{N})$ time.

Operationen Insert und Delete

- Insertion for x in T determines the successor $\operatorname{succ}(x)$ of x, computes $x^{\prime}=\operatorname{ceil}\left(x / 2^{\wedge} k^{\prime \prime}\right)$ and $x^{\prime \prime}=\bmod 2^{\wedge} k^{\prime \prime}$
- It divides into the calls insert(x^{\prime}, top) and insert(x",bottom[x"]).
- Integration the computation in a recursive scheme leads a running time of $\mathrm{O}(\log \log \mathrm{N})$.
- Deletion used the doubly-linked structure and the successor relation and also runs in $\mathrm{O}(\log \operatorname{logN})$ time.

Platzbedarf einer k-Struktur

For $s(k)$ we have $s(1)=c$, and $s(k) \leq c 2^{k}+s(k / 2)+2^{k / 2} s(k / 2)$.
We inductively assume $s(k) \leq c^{\prime} 2^{k} \log k$. For $k=1$ there is nothing to show.

$$
\begin{aligned}
s(k) & \leq c 2^{k}+c^{\prime} 2^{k / 2}(\log k-1)+2^{k / 2} c^{\prime} 2^{k / 2}(\log k-1) \\
& =c 2^{k}+c^{\prime} 2^{k / 2}\left(1+2^{k / 2}\right)(\log k-1) \\
& =c 2^{k}+c^{\prime} 2^{k / 2}\left(2^{k / 2} \log k-2^{k / 2}+\log k-1\right) \\
& \leq c 2^{k}+c^{\prime} 2^{k / 2}\left(2^{k / 2} \log k-2^{k / 2}+\log k\right) \\
& \leq c^{\prime} 2^{k} \log k .
\end{aligned}
$$

if $\left.c 2^{k}+c^{\prime} 2^{k / 2}\left(2^{k / 2} \log k-2^{k / 2}\right)+\log k\right) \leq c^{\prime} 2^{k} \log k$. This is equivalent with $c^{\prime} 2^{k / 2} \log k \leq\left(c^{\prime}-c\right) 2^{k}$ and $\left(c^{\prime}-c\right) / c \geq \log k / 2^{k}$, which is true for large c^{\prime}.

Bitvektor und Heap

- Dijkstra's original implementation: reduces to a bitvector indicating if elements are currently open or not.
- The minimum is found by a complete scan yielding $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ time.
- Heap implementation with in array implementation with A[i] > $A[i / 2]$ for all $i>1$ leads to an $\mathrm{O}((\mathrm{e}+\mathrm{n}) \log \mathrm{n})$ shortest path algorithm
- - DeleteMin implemented as in Heapsort,
- - Insert at the end of the array, followed by a sift-up
- Dynamics: growing and shrinking heaps base on dynamic tables/arrays.

Pairing Heaps

- A pairing heap is a heap-ordered (not necessarily binary) self-adjusting tree.
- The basic operation on a pairing heap is pairing, which combines two pairing heaps by attaching the root with the larger key to the other root as its leftmost child.
- More precisely, for two pairing heaps with respective root values k1 and k2, pairing inserts the first as the leftmost subtree of second if k1 > k2, and otherwise inserts the second into the first as its leftmost subtree. Pairing takes constant time and the minimum is found at the root.

„Multiple-Child" Implementierung

In a heap-ordered multi-way tree representation realizing the priority queue operations is simple.

- Insertion pairs the new node with the root of heap.
- DecreaseKey splits the node and its subtree from the heap (if the node is not the root), decreases the key, and then pairs it with the root of the heap.
- Delete splits the node to be deleted and its subtree, performs a DeleteMin on the subtree, and pairs the resulting tree with the root of the heap.
- DeleteMin removes and returns the root, and then, in pairs, pairs the remaining trees. Then, the remaining trees from right to left are incrementally paired.

"Child-Sibling" Implementierung

- Since the multiple child representation is difficult to maintain, the child-sibling binary tree representation for pairing heaps is often used, in which siblings are connected as follows.
- The left link of a node accesses its first child, and the right link of a node accesses its next sibling, so that the value of a node is less than or equal to all the values of nodes in its left subtree.
- It has been shown that in this representation insert takes $\mathrm{O}(1)$ and delete-min takes $\mathrm{O}(\log \mathrm{n})$ amortized, while decrease-key takes at least Omega(log log n) steps.

Fibonacci Heaps

- Fibonacci-heaps are lazy-meld versions on of binomial queues that base on binomial trees.
- A binomial tree $B n$ is a tree of height n with $2^{\wedge} n$ nodes in total and (n choose i) nodes in depth i.
- The structure of Bn is given by unifying two structure $\mathrm{Bn}-1$, where one is added as an additional successor to
- In Fibonacci-Heaps
- - DecreaseKey runs in O(1) amortized
- - DeleteMin runs in $O(\log n)$ amortized

Binomial Queues

- Binomial-queues are a union of heap-ordered binomial trees.
- Tree Bi is represented in queue Q if the ith bit in the binary representation of n is set.
- The partition of structure Q into trees Bi is unique.
- - Min takes $O(\log n)$ time, since the minimum is always located at the root of one Bi ,
- - Binomial queues Q1 and Q2 of sizes n 1 and n 2 are meld by simulating binary addition of n 1 and n 2 in their dual representation.
- This corresponds to a parallel scan of the root lists of Q1 and Q2. If $\mathrm{n} \sim \mathrm{n} 1+\mathrm{n} 2$ then the meld can be performed in time $\mathrm{O}(\log \mathrm{n})$ time.

Andere Operationen

- - Operations Insert and DeleteMin both use procedure meld as a subroutine.
- The former creates a tree B_0 with one element, while the latter extracts tree $\mathrm{B}_{\mathrm{i}} \mathrm{i}$ containing the minimal element and splits it into its subtrees B_0, . . , B_\{i-1\}.
- In both cases the resulting trees are merged with the remaining queue to perform the update.
- - DecreseKey for element v updates the heap-ordered tree Bi in which v is located by sifting the element.
- All operations run in $\mathrm{O}(\log \mathrm{n})$ time.

Fibonacci-Heaps

- Collection of heap-ordered binomial trees, maintained in form a circular doubly-connected unordered list of root nodes.
- In difference to binomial queues, more than one binomial tree of rang i may be represented.
- However, after performing a consolidate operation that traverses the linear list and merges trees of the same rang, each rang will become unique.
- For this purpose an additional array of size at most $2 \log n$ is devised that supports finding the trees of same rang in the root list.

Operationen

- - Min is accessible in O(1) time
 through a pointer in the root list.
- - Insert performs a meld operation with a singleton tree.
- - DeleteMin extracts the minimum and includes all subtrees into the root list. In this case, consolidation is mandatory.
- - DecreaseKey performs the update on the element in the heap-ordered tree. It removes the updated node from the child list of its parent and inserts it into the root list, while updating the minimum.
- To assert amortized constant run time, selected nodes are marked to perform cascading cuts, where a cascading cut is a cut operation propagated to the parent node.

WeakHeaps

- - DeleteMin: Similar to Weak-Heapsort
- - Insert: Climb up the grandparents until the definition is fulfilled.
- On the average the path length of grandparents from a leaf node to a root is approximately half the depth of the tree.
- - DecreaseKey: start at the node x that has changed its value.

Pseudo Code

Procedure DeleteMin

```
Input: WEAK HEAP of size \(n\)
Output: Minimum element
Side Effect: Updated WEAK HEAP of size \(n-1\)
```

$\operatorname{Swap}(A[0], A[n-1])$
Merge-Forest(0)
$n \leftarrow n-1$
return $A[n] \quad$;; Return minimum element

Algorithm 4.18: Extracting the minimum element from a Weak Heap.

Pseudo Code

```
Procedure Insert
Input: Key }k\mathrm{ , WEAK HEAP of size n
Side Effect: Updated WEAK HEAP of size n+1
A[n]\leftarrowk;x\leftarrown ;; Place element at empty place at end of array
Reverse[x]}\leftarrow
while (x\not=0) and (A[Grandparent(x)]>A[x]) ;; Unless finished or root node found
    Swap(Grandparent(x),x)
    Reverse[x]}\leftarrow\neg\mathrm{ Reverse [x]
    x\leftarrowGrandparent(x)
n\leftarrown+1
                                    ;; Initialize bit
;; Unless finished or root node found
                                    ;; Exchange keys
                                    ;; Rotate subtree rooted at }
                                    ;; Climb up structure
                                    ;; Increase size
```

Algorithm 4.19: Inserting an element into a Weak Heap.

```
Procedure DecreaseKey
Input: WEAK HEAP, index }x\mathrm{ of element that has improved to }
Side Effect: Updated WEAK HEAP
```

```
\(A[x] \leftarrow k\)
;; Update key value
```

while $(x \neq 0)$ and $(A[\operatorname{Grandparent}(x)]>A[x]) \quad ;$ Unless finished or root node found
Swap(Grandparent(x), x)
;; Exchange keys
Reverse $[x] \leftarrow \neg$ Reverse $[x] \quad$;; Rotate subtree rooted at x
$x \leftarrow$ Grandparent (x)

Algorithm 4.20: Decreasing the key of an element in a Weak Heap.

Run-Relaxed Weak Queues

\rightarrow Originalfolien von Elmasry et al. (2008)

Procedure λ-Reduce

Side Effect: RELAXED WEAK QUEUE structure modified
if (chairmen $\neq \emptyset$)
first \leftarrow chairmen.first; firstparent \leftarrow parent(first)
if (firstparent.left = first and marked(firstparent.right) or firstparent.left \neq first and marked(firstparent.left) siblingtrans(firstparent); return
;; Fellow pair on some level ;; 1st item and its parent ;; Two children .
;; . . . marked already
;; Case c) suffices
second \leftarrow chairmen.second; secondparent \leftarrow parent(second) ;; 2nd item and its parent
if (secondparent.left = second and marked(secondparent.right) or ;; Two children . secondparent.left \neq second and marked(secondparent.left) $\quad ;$. . . . marked already siblingtrans(secondparent); return
if (firstparent.left $=$ first $)$ cleaningtrans $($ firstparent $)$
;; Case c) suffices
if (secondparent.left = second) cleaningtrans(secondparent)
if (marked(firstparent) or root(firstparent)) parenttrans(firstparent); return
if (marked(secondparent) or root(secondparent)) parenttrans(secondparent); return pairtrans(firstparent, secondparent)
else if (leaders $\neq \emptyset$)
leader \leftarrow leaders.first ; leaderparent \leftarrow parent $($ leader $)$
if $($ leader $=$ leaderparent.right $)$
parenttrans(leaderparent)
if $(\neg$ marked(leaderparent $) \wedge \operatorname{marked}($ leader $))$ if (marked(leaderparent.left) siblingtrans(leaderparent); return ;; Case c) suffices) parenttrans(leaderparent) ;; ;; Case b) applies first time
if (marked(leaderparent,right)) parenttrans(leader) else
sibling \leftarrow leaderparent.right
if (marked(sibling)) siblingtrans(leaderparent); return cleaningtrans(leaderparent) ;; Toggle marking of leader's children if (marked(sibling.right)) siblingtrans(sibling); return
;; Case c) suffices cleaningtrans(sibling) ;; Toggle marking of sibling's children
parenttrans(sibling)
;; Case b) applies
if (marked(leaderparent.left)) siblingtrans(leaderparent)
;; Case c) suffices

Engineering

	$n=25^{\prime} 000^{\prime} 000$			$n=50^{\prime} 000^{\prime} 000$		
	Insert	Dec.Key	Del.Min	Insert	Dec.Key	Del.Min
RELAXED WEAK QUEUES	0.048	0.223	4.38	0.049	0.223	5.09
WEAK HEAPS	0.047	0.047	1.30	0.047	0.047	1.85
PAIRING HEAPS	0.010	0.020	6.71	0.009	0.020	8.01
FIBONACCI HEAPS	0.062	0.116	6.98	-	-	-
HEAPS	0.090	0.064	5.22	0.082	0.065	6.37

Table 4.1: Performance of priority queue data structures on n integers.

	$n=5^{\prime} 000^{\prime} 000$			$n=20^{\prime} 000^{\prime} 000$		
	Insert	Dec.Key	Del.Min	Insert	Dec.Key	Del.Min
RELAXED WEAK QUEUES	0.334	1.910	7.50	0.390	1.986	9.92
WEAK HEAPS	0.692	1.288	6.70	0.779	1.372	8.49
PAIRING HEAP	0.262	1.002	8.99	0.302	1.043	12.51
FIBONACCI HEAP	0.388	1.042	12.12	0.439	1.097	16.24
HEAPS	0.698	1.388	10.81	0.809	1.435	14.21

Table 4.2: Performance of priority queue data structures on n strings.

