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Introduction

S COLE stands for the "Spacecraft Control Laboratory

Experiment". The objective of the SCOLE Program is to

provide an example configuration and control objectives
which enables direct comparison of different techniques in

modeling, systems identification and control. The "SCOLE

Design Challenge" was formulated in 1983 by L. W. Taylor and
A. V. Balakrishnan. The details of this challenge are reprinted

at the end of this document.

Annual SCOLE Workshops have been held for specialists

to share and compare their research results. This proceedings

is a compilation of the material presented at the 5th

Workshop held at Hilton Lodge at Lake Arrowhead, California
on October 31, 1988.
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DYNAMIC ANALYSIS OF THE JOINT

DOMINATED BEAM (TRUSS BEAM)

by

Elias G. Abu-Saba

Raymond C. Montgomery

William M. McGinley



INTRODUCTION

Construction in Outer Space of:

- Platforms for Space Stations

- Antenna Systems for Space Explorations

- Support Structures for Solar Panels

- Housing for Space Workers

(2)



ABSTRACT

Method Presents

- Theoretical Analysis of the Vibrational
Modes of the Joint Dominated Beam

- Cantilever Truss Beam is Used for the
Analysis

- Chord Members Contribute Most
Deformations. Web Members are
Ignored

- Lumped Mass System is Used for
Analysis

(3)



- Algorithms _are Developed to determine
Flexibility of the System

- System is Analysed With and Without
Joint Contribution

- A Set of Joint Flexibility is Used

-Computer Programs are Developed to
Obtain Numerical Results: Frequencies
and Mode Shapes

- Conclusions and Recommendations are
Provided

(4)



D Y N AMICS

EQUATION OF MOTION OF SYSTEM
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JOINT PARTICIPATION

Assumptions

- Behavior of the Joint is Linear

- Damping of the Joint is Not Included

- Free Play is Not Considered

- Forces in Members are Axial

(6)



MODIFIED FLEXIBILITY MATRIX

3 2

ANj = Aij + 1 , s (i)
24EI

(2j-l)

i=l,...,N
j= I,...,N

S ---- 12Elk
2

h 1

k - Flexibility of the Joint

(7)
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CONCLUSIONS

A Practical and Simple Approach for
Predicting Frequency Response of
Structures

- Computational Cost, Time and Storage
Requirements Provide a Clear

Advantage over Finite Element Method

(9)



EXPERIMENTAL PROGRAM

STAGE 1 Static Loading

1. Determine the flexibility of the
joint assembly.

2. Determine the combined flexibilty of
the truss and joint assembly for
increasing numbers of truss panels.

3. Under the action of static loading
measure the stress distribution in the

truss panels.

(I0)



EXPERIMENTAL PROGRAM

Stage 2 Dynamic Response

1. Measure the deflection and the
truss cord stress variations for a single
truss panel and joint assembly.

2. Measure the dynamic response
(deflections and stresses) of an
increasing number of truss panel
and joint assemblies. Frequency
response will be determined from
these measurements.

(11)
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ABSTRACT

Mathematical models have been developed to predict the

dynamic response of the joint dominated beam. Various

assumptions of the force interaction between the beam

elements and the joints have been studied using these models.

However, the validity of these models have not been

adequately determined. In any dynamic analysis of

assemblies, the effects of joint imperfections must be also

included. To accomplish these tasks, a combined analytical

and experimental investigation will be conducted to evaluate

the significance of the various joint behaviours with respect

to the overall stiffness of the beam. Results of the

experimental analysis will be incorporated in the dynamic

analysis of the beam.

Models of the truss-beam will be constructed at North

Carolina A&T State University and tested to determine the

validity of the analytical method. Test data will be

obtained for a particular joint type with negligible free

play. Using the measured material properties of the joints

and truss model, the equation of motion will then be used to

predict the dynamic behaviour of the truss-beam. A

comparison of predicted and observed behaviour will be made



and the adequacy of the analytical methods evaluated.

Modifications of the analytical procedures will be made as

required by the comparison study. This approach of the

dynamic study of the truss-beam system can be used in the

dynamic analysis of the scole.



INTRODUCTION

Manned space stations are on the drawing board, and

structures to house astronauts and support personnel will be

erected in outer space. These stations will be used lot

communication, power generation, docking, and launching space

vehicles in the future. Since all structural components have

to be fabricated and preassembled on earth and packaged for

shipment via the space shuttle, weight and volume become a

determining factor in the design. Light weight materials as

epoxy graphites are used in the members, and interlocking

joints are provided to facilitate deployment.

As the exploration of outer space is increased, the need

for more reliable structures which perlorm various tasks in

orbit becomes essential. Since these structures are

deployable, large, and highly flexible, their dynamic

analysis and control using established methods yields results

that differ from those obtained on board testing. Hence

further modifications of the mathematical model will be

necessary to increase convergence between theoretical and

experimental results.

DYNAMICEQUATION

The general equation of motion lot a linear structural

system is expressed as

{ Y } =
2

w [ A ] [ M ] [ Y } ....... (i)

16



where

{ Y }

E A ]

[ M 3

%4

: Displacement vector

= Flexibility matrix oZ the structure

= Mass matrix of the structure

= Natural frequency of the system

rad/sec

'IRe dynamic study of the truss-beam is seen to depend on

its flexiblitity.

FLEXIBILITY OF THE TRUSS BEAM

Consider that the truss-beam behaves as a cantilever as

shown in Figure (I). For a slender truss the transverse

nodal displacements will be mainly attributed to the axial

I, L .N!

FIG. |_'TI_.U_& 5E. AM

strain in the chords. Thus the contribution from the web

members can be neglected with very little error. If the joint

response were to be excluded innitially, the ilexibility

matrix [ A 3 for the structure can be readily obtained from

the following algorithms:

17



3
1 3

A = ( 2i - 1 ) , i = I, N

ii 24EI

3
1 2

R .......... 3( 2i - 1 ) , i = I, N

i 24EI

(2)

A = A + R , j = i + i, N

ij ij-i i

A _ A

ij ji

When the bays are identical, the nodal masses will be

equal throughout the structure. Letting m represent the mass

of one bay, the mass matrix can be expressed by:

[ M 3 = m [ 1 3 (3)

Substituting Equaion 3 into Equation 1 and simplifying

the result yields

[ B ] { Y ] = 0 (4)

where

[ B 3 =
[ A 3 - A[ 1 ]]

C5)



24EI

2 3

m w 1

Given the material property E, the cross sectional area

of the members of the truss-beam, the depth of the bay h, and

the length i, the number of bays N and the density ol the

material used in the structure, a computer program has been

written to provide the natural frequencies o_ the system.

FLEXIBILITY OF THE TRUSS BEAM WITH JOINT RESPONSE

To simplify the response of the joint, it is assumed that

the joint displacements are caused by the strain in the chord

members. Another assumption which is used in the study is

that the displacement in the joint is due to axial i orces in

the chords acting on the connecting pin as a spring. 'lq%e

joint is thus replaced by a flexibility k. No other lactors

that contribute to joint imperfections are included at this

stage.

Introducing the joint flexibility k, the modified

flexibility matrix is given by

3

s i 2

A = A + i ( 2j - 1 ) (7)

ij ij 24EI

i = l, N; j = i, N

19



where A is given by Equation 2 and s is obtained from

ij
the following expression:

12 E1 k

s = (8)

2

h i

APPLICATION TO THE METHOD

An example is used with a typical panel of 20" in length

and 20" _n depth. The cross sectional area of the chord is

0.25 sq. in. The values of E and the density are 3_+7 psi and

0.282 pci, respectively. The finite element method is

applied to the same example for comparison. Since the finite

element method does not include joint imperfections, the

value of k is taken as zero. The results of this comparison

are shown in table 1 and Figure 2 for N varying from 3 to 80.

EXPPLRIMENTAL PROGRAM

To confirm the accuracy of the theoretical procedure, an

experimental approach has been proposed to be performed at

North Carolina Agricultural and Technical State University.

7_e proposal has been suOmitted to NASA at Langley Research

Center for funding.

Since the accuracy of the analysis is highly dependent on

the mass and flexibility of the truss panels, in addition to

the flexibility of the joint, these quantities must De

accurately measured before a reliable evaluation of the

analytical procedure can be made.



0
O0

Z

u_

0 u_ _0

o _ _

0 _ _ ("4

0 0 .-4

,,-4 O0 _ ",-I" _ 0

0 ...4 I_,
•-_ _ 0

<:

0

U
Z

.-4 u'_ -,,1"
_ 0 oo

,,-4

--7

('3 ('3 l'_ _ l_- -_" _ ("I It3 (3_

tJ
QJ

"G
c-

O"
_J
$..
n_

Z

I

_ _) _ _ l'_ O_ 0 _ ",.I" '-_

0 o_I (',4 _'_ _'_ r_ oo O_ ,.--4

U
Z

[._

0

II
Z

f_

II
Z

_q

0

0 ,-'4
.,-4

.--0 .--q

u3

.-_ I_. ,_
0 _ "4

0 oq ,-_

0 Cx8
•-4 ('4

O4 0 0

0 I_ 0 .-_ _ oo

,-_ _ r_ _ u_ _ l_ oo 0

_J

oO

o_

v

b_

0
II
,._

_ 0

r. 0

.,..I
Z 0

fl
0

Z Z

21



FREOUENCT CORRELRT ION

400.0 -

C_3
DJ
tO

0
(:Z

C3
Z
DJ

C3
0-]
rr"
r,

c_J

¢Y

I,

350.0

300.0

250.0

50.0

20.0 40.0

PRNCLS (N)

o - Mode 1

o - Mode 2

- Mode 3

x - Mode

o - Mode 5

60.0 80.0



C:_ r,

o_c_ _o _

Jlf Z_J

0

_--_

t-_

c-
.,..¢

0

°_.._

E

f-.

L.

0_
U.

2_



0nly one type of joint will be evaluated during the

experimental phase. Furthermore, the joints will be

fabricated so that free play in the joint is negligible

and can be ignored. Once the accuracy ot the analytical

procedure have been confirmed for this type of joint,

subsequent investigations can determine the effects ot

varying joint flexibility and free play.

TESTING APPARATUS

Truss joint specimen will be tested using a Forney

Material Testing machine located in the Structures Laboratory

at the North Carolina Agricultural and Technical State

University in Greensboro, North Carolina.

In an effort to reduce cost, the same apparatus will be

used to test the truss panels and truss panel assemblies. A

schematic of the proposed testing apparatus is shown in

Figure 3. It consists of a truss support frame, air cushion

table, actuator, and an adjustable actuator support and

"hold-down". The apparatus will also include devices to

measure the deformation and chord strains at various

positions on the specimen, in conjunction with a high speed

data acquisition system and a micro-computer.



REMARKSAND CONCLUSIONS

'l_e approximation of a large space truss by a beam model

provides a practical approach for predicting the frequency

response of the structure. The computational cost, time and

storage requirements may render discrete finite element

analysis impractical, particularly in the conceptual and

design phases when parameter studies and alternate designs

are being evaluated.

_e proposed beam method offers a structural model with

significantly fewer elements (N) and degrees of freedom (N),

compared to a finite element model with (4N+I) degrees of

freedom, where N is the number of panels in the actual

structure. Frequencies for the first five modes obtained by

the beam model are found in good agreement with those

obtained by the finite element, especially as N gets large.

The proposed algorithm saves significant programming effort

as well as results in considerable economy of computational

time, cost and storage.





Nonlinear Damping Model: Response to
Random Excitation

Weijian Zhang*

Electrical Engineering Department

6731 Boelter Hall

UCLA

Los Angeles, CA 90024

November 10, 1988

Abstract

The objective of this study is to investigate stationary Fokker-Planck equa-

tion corresponding to nonlinear random vibration problem. A method of en-

ergy approximation (MEA) is proposed to obtain a modified model as an ap-

proximation of the exact model. The closed form solution of the stationary

Fokker-Planck equation corresponding to the modified model is obtained, and

so are the various moments of the stationary response. Comparisons are made

between MEA and MEL (method of equivalent linearization) to illustrate the

advantage of MEA over MEL. The MEA also overcomes the shortcoming of

non-Gaussian closure method in which the density might have negative value

caused by truncation.

*Research supported in pzu-t under AFOSR grant No. 83-0318. Presented at the 5th Annual

NASA SCOLE Workshop, Lake Arrowhead, California. Nov., 1988.
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1 Introduction

Experimental evidence in SCOLE [1] seems to support the need for nonlinear

models-the decrement is much smaller than predicted by linear models. Nonlin-

ear damping model under random excitation becomes a random vibration problem

which has received significant attention in recent years in both civil and mechanical

engineering. When the excitation is a white noise process, the response is Marko-

vian. The transition probability density function, which together with an initial

distribution completely describes the response, satisfies the Fokker-Planck equa-

tion which is a linear but degenerate parabolic type partial differential equation.

A variety of approximate methods have been proposed to solve the Fokker-Planck

equation corresponding to broad-band excitation of a nonlinear dynamic system.

All of the methods investigated so far appear to involve prodigious amounts of

labor.

In this paper, a Method of Energy Approximation (MEA) is proposed to find

the approximate solution of the stationary Fokker-Planck equation corresponding

to one-dimensional nonlinear damping model under white noise excitation.

2 Energy Approximation Model

Let us first consider a concrete model due to Balakrishnan and Taylor [2]:

+ 2_o_: + _[_l_:_"+_l_l _ + _o_X= _(t) (1)

where 0 < (_,fl < 1, _, "/> 0, and m,n are nonnegative integers, n(t) is a Gaussian

white noise process.



Notations:

We observe the following:

E = w°2x2 + y2
2

y = k

q = re+n+-
2

w2rn+a

_ "/ (2Z_y2)m+_(2Z_w_x2),_+_y
W2rn+a

We consider the following replacement of the above:

Here #o is chosen such that

#0_(2E)qY

f0 2_

[I-L_-0_ sin ¢1_+_ lv_ cos¢1="÷__ cos¢ - #0 (2E) qv/-2E cos ¢12 d_b

is minimized.

In the above minimization, we consider E as a constant because in situations

where the response has reached stationarity and where the damping is small, the

energy dissipated through damping and the energy input through the excitation

during one cycle, will, on average, be small fractions of the total energy level in

that cycle.



Computation gives:

/A0 _- _4 f_/2 sin 2'_+° ¢ cos 2"+2+_ ¢d¢
_'JO

2 r(m + -_)r(_ + 1+ e__+_)
r(q+2)

Then, we obtained the following energy approximation model:

_/#o

+ 2_Wo_ + Wo,,.+-----Z(,Oo'X_+ _)q_ + Wo_X= on(t) (2)

When there is no random noise excitation, computer simulation shows the

Krylov-Bogoliubov approximation of (1) is a very good approximation when "_

is small. It happens that (1) and (2) have exactly the same Krylov-Bogoliubov

approximation, which is an evidence to support the validity of the energy approxi-

mation model. Of course, this fact only referrs to no noise models.

Proposition 1 Both the exact model (1) and the modified model (2) have the same

Krylov-Bogoliubov approximation given by

d_(t)
m

dt

de(t)
- 0

dt

_0 ,2n+fl_2q+l_oa(t) - --,_o ,_ (t) (3)
2

Proof: Straightforward computation based upon Krylov-Bogoliubov approximation

[5]:

da(t)
dt

de(t)

dt

1 fo2'_D(asin¢,awocos¢) cosCd¢2rw0

1 fo2"_D(asin¢,awocos¢)sinCd¢2rwoa



3 Stationary Fokker-Planck Equation

In this section, we solve the stationary Fokker-Planck equation corresponding to

the energy approximation model. The technique is used in [3].

The stationary Fokker-Planck equation is

o - oz (yp)+ (_o_p)
0 "/#o 02 02p

+ _yy[(2_w0y + _._+----_(2E)qy)p] + ----w o 2 (gy 2

O.OEp)._ + O___(OEp)0
ax ( dy ay ax,

o ,, op1
+ _[(2e_oy + _.,+----z(2E)_y);+wo 20y'

"t#o q a2 0P l
0 = y[(e_wo + _(2E) )p+

wo 20E'

In the above, we used the following fact

0,aE , -_p)=0p(x,y) = p(E) _ _ = Y-_E
Y

Therefore, the stationary density is given by

p(_,y) = _oexpt----gv(2E) - ql(2E) q+1]

= Coexp[__(_x_ + y2)_ _1(_02x_+ y2)q+l]
u _

where

"/#o
")'1 -----

O_W_"+_(q+ 1/

/?1 _ 7r e_2___p__oq+ldp._
C 0 (,do

7["

- ,___ F(so)



4

_0 °°
F(s) = e-*te-tq+*dt

2gWo
'SO -- -i-'-

a2-y_ +'

Moments of Stationary Response

Exky I = 0 if either k or l is odd. If both k and l are even, then

Exky l = 4E(030x) ky z
030

k+l /+1COr(T)r(T)
-- 030k+1 k+l(_)'

Xf0co k__ , 2_w0p _ exp[-_p- _lpq+l]dp

k+l l+lr(-r-)r(T) (-1)-_ FC_(_o)
,k{k+l_T k+l

,_o_TJ. ,_+_ F(_o)

5 Comparison with MEL

Linearization)

(Mehtod of Equivalent

Consider _ < 0 case of (1). The Krylov-Bogoliubov approximation of (1) is given

by (3), which can be solved as

a(t) = a(O)el¢l_°t (4)

[1 -4-a2q(O) "_"°'_"+_-' (e2l"l_°qt - 1)]_21el

We have

lilz1 a(t) : [ 21_[ ]_ dej _,

t-*co ,7/200_02n+_- 1

for any a(0) # 0. This fact implies that the exact model (1) has a stable limit cycle

with radius between a and w0a (approximately).



Actually, the modified model (2) does have a limit cycle

x°(t) = _sinwoty°(t) = WoaCOSWot (5)

._E_ 2
or, on phase plane (_)2 + (w0a) = 1.

Proposition 2 The limit cycle (5) of the energy approximation model (2) is asymp-

totically stable.

Proof: To prove the asympotic stability of the limit cycle (5), we consider the

corresponding linear variational equation

dz

-_=y
d_ OY(xOrt_ O_"(xO(t), yO(t))y (6)= _, , ,,f(t))x+

Y(_,y) = -2¢_0_ _0 (_2 + y2)qy_ _0_
W_ mTa

where

The linear system (6) with periodic coefficients always has a non-trivial 2__
tMO

periodic solution which is given by (_°(t), _)°(t)). Therefore pl = I is a characteristic

multiplier. By Theorem 2.1 of [4, page 217], it is sufficient to show the other

characteristic multiplier p2 < 1.

Since

bY zo(t
P2=Pl"P2 =exp[fo_° -_y ( ),y°(t))dt]

it is sufficient to show

_o_O OY (x0(t),y0(t))d t < 0

In fact, by noticing the definition of a we have

OY
ff/_owo _ t_ + 2qcos 2 wot)

= -2_wo- 2[_[Wo(1 + 2qcos 2 wot)

= -4q]_]WoCOS 2wot



and hence

fo°° -4ql_l_oCOs__otdt = -4_ql_l < 0

which establishes the asymptotic stability of (5). []

What is more interesting is that the stationary solution of the corresponding

Fokker-Planck equation given by

pCx, Y) = Coexp[21_iw-----_°(w0_x_ + Y_) - _lCw_ x_ + y_)_+l] (7)
{7 2

achieves maximum on the ellipse (limit cycle).

(x)' + (_o_)2 = 1

and achieves local minimum at the origin.

The following Van-der-Pol self-excited oscillator

+ (_ - _)_+ x = onCt) (8)

is a particular case of the above discussion with _ = -r//2 (r/ > 0), m --- 1, n =

a :/_--0, wo=l.

One can easily find #o = 1/4, a = 2_-_ and the energy approximation model

is given by

+ [_/4(_2+ _) - _]_+ • = onCt)

with the corresponding stationary density

pCx, y) = Coexp[_Cx 2 + y_) - _jCx_ + y_)_]

where

Co

= _-]'_foe-'_/2dt¢(x) d_f



6 Generalization

The MEA described above can be easily generalized to nonlinear random vibration

problem in the following general form

+ D(x, 5;) + w_ox = an(t) (9)

Our conclusion is that the exact model (9) can be approximated by the following

modified model

+ _(w_x _ + y2
2 )_ +w_x=an(t) (10)

where #(E) minimizes

and is given by

sin _b, v_Ecos ¢) - #(E)_cos ¢]_d¢

#(E) -- sin ¢, _ cos ¢) cos Cd_b (11)

Proposition 3 If D(x, y) is even with respect x and odd with respect to y, then both

the exact model (9) and the modified model (10) have the same grylov-Bogoliubov

approximation.

Proof: For the exact model (9),

da__((t)_ 1 L2"D(asin¢,awocos¢)cosCdg2
dt 2tWo

By the assumption on D(x, y),

de(t) _ 1 r2*D(asin¢,awocOS¢)sinCd¢]odt 21rwoa

D( a cos ¢, awo sin ¢ ) cos Cd¢
J_._

7r°Joa 2

= 0

(12)



For the modified model (10), the Krylov-Bogoliubov approximation is given by

da(t) 1 2_ • 2a2

de(t)
dt

a . w 2 a 2 .

_.(-V-)

1 fo2'_D(asindd,woacos¢) cos_bd¢21rw0

-- l fo"_#(_)woacosCsinCd_b
2rwoa

= 0

Therefore, (9) and (10) have the same Krylov-Bogoliubov approximation. []

The solution of the stationary Fokker-Planck equation corresponding to (10) is

given by

where

2 _ "_-+_

v(x,y) = cexp[-_ f0 _ _(z)dz]

/0 expr1 _ 2_ - '.'z'ez'Otjj
C Wo

Example: Consider the following saturation type active damping model

(13)

(14)

+ 2_w0:/: + )_ tan-l(bk) + ¢o0_x= an(t) (15)

By the identity

f'_/2tan-l(bcosx) c°sxdx= _ -
J0

one can compute

bE_ 1

.(E)

_ 4_ .f_
_v_-_ Jo [2_o_-_cos¢

= 2_wo + _ v_l + 2b_E- 1
bE

+ ,_ tan-1 (b_/2Ecos ¢)1 cos ¢d¢

(16)



And consequently, one has

2 foE#(z)dz
(7 2

2_w0 (2E) 4_ %/1
a2 - a2 b + 2b_E

4)_ ln[1 + %/1 + 2b2E] + const.

The solution of the stationary Fokker-Planck equation:

where

p(x,y) = C[1 + %/1 + b2(w_x 2 + y2)] _-_b

4_

×exp[- (4x 2+ - + +

C

_ , 2ewo _VXJ4"_dzx f_ (1+ vT)o_,_pt---grb_ _- °56

It is easy to realize that p(x, y) achieves maximum at the origin.

7 Concluding Remarks

A Method of Energy Approximation(MEA) is proposed for the investigation of

nonlinear damping problem under random excitation. Closed form steady state

density is obtained for the energy approximation model. It is shown through an

example that MEA gives better accuracy than MEL and MEA reflects the nonlin-

ear nature in the damping. This problem is pending further research. Problems

such as spectral density of the nonlinear damping model, the absolute difference

between the exact steady state density and the density obtained by MEA are under

investigation by the author.
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Abstract

A new, explicit representation of damping operators for strictly proportional damping

for the torsion mode of a finite beam with end mass is presented. The damping operator is

the square root of the stiffness operator (enhanced to include the boundary) and is calcu-

lated using the Balakrishnan formula. It is nonlocal, and turns out to be a finite-limit

version of the Hilbert transform for the clamped-clamped case. If strict proportionality is

required, the operator is more general and involves boundary terms which, however, tend to

zero as mode frequency increases.



1. Introduction

In the design of active controllers for stability agumentation of flexible structures it is

naturally important to have a model for the inherent passive damping already present. Often

it is assumed that the damping in each mode is strictly proportional to the mode frequency.

If, as in [1], we formulate the problem in the abstract wave equation form as:

MYc(t) + Ax(t) + 2_DJc(t) + Buc(t ) = O,

for strictly proportional damping we will need to have

where

o =

Usually M commutes with A so that

In any event we are left with the problem of calculating "_. In this, the first part of a

two-part paper we calculate the square root for the case of a beam torsion model -- or the

familiar "string" equation. When the controls are on the boundary -- as in current large

space structure control design [2] -- the square root introduces terms on the boundary.

This should certainly be considered much more unnatural than the fact that the damping

operators are nonlocal (not differential operators). Asymptotically however the modes do

approach those of the clamped-clamped (or fixed-ends for the string case) beam. In

particular for the clamped case the square root has the form of a "finite-limit" Hilbert

transform. Our point of departure is the fractional-power formulas due to the author [3].



, Beam Torsion Model

We begin with the torsional mode of vibration of a uniform Bernoulli beam of finite

length, with one end fixed and the other end with control force. Thus we have:

pa _2u--_ - GIv _ = 0 O<t; -£<s<g
bt z bs _ ,

u(t,-g) = O, O < t (2._)

G1_u'(t,£) + I4/i(t,£) + Uc(t) = 0

where for our purposes we need only note that pa, GI v and 14 are given positive constants.

The primes denote derivative with respect to s, and the superdots derivative with respect to t.

The abstract formulation is obtained by taking

= /-a[-_,£] x R 1 .

Let us use the following notation for elements in _:

u(') Iw _ _" w =
' b

u(')_ /-a[-£,£], b_ R 1 .

We shall shorten /-a[-£, g] to L2 in the sequel. Define the operator A with the domain in

given by:

E [u 'l l_(A) = w= u(_) , u"(')e L.2, u(-g)= 0

(where primes denote derivatives with respect to the space variable), and

Aw:lu,,I
u '(_)

mapping _(A) into _.

Then it is readily verified that A is closed, self-adjoint and, [, ] denoting inner-product

in _:

[Aw, wl = f -u"(s) u(s) ds + u(g)u'(g) = J u'(s) 2 ds.

_?. -_



Hence A is nonnegative definite. Also A has a compact (Hilbert-Schmidt) resolvent and zero is

in the resolvent set. As in [1] we may reformulate (2.1) as an abstract wave-equation in _:

where B maps R 1

nu =

MYc(t) + Ax(t) + Buc(t ) = 0

into _ by

JOll(pa/Gl_ )u(')w = ; mw ffi

u/Gl v (14/GIv )b

(2.2)

(2.3)

Our first objective is to calculate the (positive) square root of A denoted qA-. For this

purpose it is helpful to use the notation

R(X,-A) = (M+A)-!

so that we can write the Balakrishnan formula [3] for the square root:

"lAw = -_1f _-1/2(XI + A)-1Aw d_, for w in _(A). (2.4)
0

It is convenient now to introduce the operator a o with domain in /,2 with

_(ao) = [u(.) I u"(-) _ za, u(-_) = 0 = u(_)]

and

O.o U = --U"

Then cto is closed, self-adjoint and nonnegative definite and hence we may proceed to define

"_, by

aq--_ou = If _-l,2(k/+cto)-lCZoU d'L (2.5)
0

Our first result is:

Theorem 2.1.

= [u(') I u'(') e /-,2; uC-g) = 0 and u(g) = 0] (2.6)



and

_'_o u = V

has the representation

t
1

v(s) - 2£ f
cos (ns/2£)

sin (xs/2g) - sin(Ttc/2£) u'(a)
a.e. -£<s<g. (2.7)

Proof. We use (2.5). Let u• _(a o) and let:

u0(X) -- (k/+ ao)-laou.

Then Uo(_,) is the unique solution of

Xuo(X, s) - u6'(k, s) = -u"(s)

uo(k,-t) = u0(k, Jr) = 0

and is given by:

uo(Z., s) s sinh q-_(£- s) sinh "4"_(t+o)(-u"(o)) dosinh 2"f_ £
-t

+

t

$

sinh _/_(£ + s) sinh q_(_-o)(-u"(o))
_f_ sinh 2_]_

do.

Integration by parts yields

uo(k, s) = s sinh "4-_(£- s) cosh _(£+0)(u'(O))
-_ sinh 24"_ £

do

t

f sinh q-_(£ + s) cosh q'_,(g-o)(u'(o)) do.sinh 2_/_ g
$

(2.8)

Using the known formula: [6, p. 344]



f sinh ax cosh bx dx - n sin (an�c)sinh cx 2c cos (a_c) + cos (brdc) '
0

c > a+b ,

we can see that for o < s

1 f ** 1/2 sinh x/'_(£- s) cosh "4-_(6+O)sinh 2_/_ 6
0

arg

2f
0

sinh x(g-s) cosh x(6+o) dr
sinh 2x6

1 cos (ns/26)
- 26 sin Uts126) - sin (no/26)

(2.9)

and for s<¢_

oo

1 f _.-1/2 sinh _'_,(6+ s) cosh _/-_.(6-0) d'L- _ sinh 2_/'_ 6
0

2f
0

sinh x(g+s) cosh x(g-o) dr
sinh 2x6

1 cos (ns/26)
- 26 sin (ns126) - sin (rto/26) "

Hence for a.e. in (-6, g)

IE

- f1 f _,-l/2u(_,, s) d'L - 1 cos (rra/26)26 sin (ns/26) - sin(no/26) u'(o)
0 -it

dry

providing of course that we can justify the change in order of integration. Let

1 [ cos ns/26 )HF(S, o) - 26 sin rts/26 -- _-n no/26 -£<s,o< 6.

(2.10)

(2.11)

and let

where

t

vr Cs) = f aFcs, o)u'Ca)do

u(') e _(Cto). We can decompose H F(s, o) as



1 7r(s - o) 1 =(s + _)
HF(s,c) = _cot 4g - 4---gtan 4g

For any u(.) in /12,

1
vl(s) - 4£ f

-t

cot rt(s -4£ a)) u(a) do, -£<s<£

the integral taken in the Cauchy sense at s = a, is defined wherever the Hilbert transform

(s - a)
-t

is defined, and hence we note that vl(') is actually also in L2(-g, 6). Hence

v2(s)
1

- 4£ f tan n(s + o) u'(o) do
4£

which is defined in the open interval -£ < s < g, must be in /-,2, if vl(') + v2(') is.

Next, for a finite L, we can clearly change the order of integration, and hence let:

Let

L 1[

vL.s(/ = ltl f Uo(_., s)_,-l/2 d'L = f H(L, s, o)u'(o) do
0 -t

R(L, s, o) =

L

sinh x(£-s) cosh x(£+o)dx
sinh 2x£

-£<t_<s<£

oo

= _ _2 f sinh x(g+S)sinhCOSh2x£X(g-o) dx ,
L

so that

vF(s) - v L(s) = f R(L,s,o) u'(s)ds.

Now for x > L and L sufficiently large,

-£<s<o<g

sinh x(£-s) cosh x(£+o)
sinh 2x£

-x(s-o)
e s>O



sinh x(g+s) cosh x(g-o) _ e-Xta-s)
sinh 2xg

(_>S.

He nce

2 e -t'(s-°)

R(L, s, o) it ( s - t_) ' s > t_

2 e-L (o-s)

it Co-s)
_>$

and hence

f R(L, s, o)u'(o) do -- f R(L, s, o)u'(o) do + "J R(L, O) u'(O) do.S,

The first term goes to zero as L -_ ,,*, for any e > 0. The second term can be written

£

2fit u'(s +'O -Z u'(s-Z) e-L X d'c
0

and since u(.) e _(ao),

't

u'(s + x) - u'(s- x) = f u"(s + o) do
_,g

goes to zero with 4. Hence vL(s) converges to VF($ ), a.e. in (-g, g). But vL(') converges

to a'd'_-ou in /-,2 and hence

VF0) -- 4-_-_u,

or we have justified changing the order of integration. Of course, we have also proved that

vF (-) defined by (2.12) is actually in L2, for u in _D(cto).

Let us next establish (2.6). The orthonormalized eigenfunctions of cto are

1 sin kit(s+fL) -g < s < g
Ck(s)- q-_ 2£ '

and

0t kit= _¢k.

Hence for _. > 0,



hasthesolution

._- If, 0k]
g = _ - "_ Ok

_+_-_

where the series is absolutely convergent. Hence

g(_) = 0.

Also term-wise differentiation is valid, showing vh,_ g'(.) _ L2.

Since the domain of _x/-ffffoi_ precisely the range of the resolvent (_. + _q_o) -1 , it follows

that for g in the domain of _ we must have that

g(t:) -- 0; g'(.) e /-,2.

Conversely for any g in /-.2 with these properties we can find a sequence u n in _)(Cto) such

converges to g'(') in L2, and u,, converges to g. We have only to take, fors

that u,t

example

Then

Hence _u n

where

u n = n(n+o, o)-lg = _ n
fk_)2 tg, _k]_k •1 n + t2g

II_q-ffffo(u. - Un+p)ll2 Ilu,:- un+pll'2 .

converges. Hence it follows that g e _( ad_-_o), or (2.6) is proved. Also

-'-_ Un __ V n

v.(_) = f nrCs, a)u;,(c) do

= a--T cot
-t -t

tan x(s + O) u,_(O) do4£

where the first term converges in/-.2 and the second term for each Isl < g. Hence it follows



thatif

v = limit vn ,
n

V(S) = f HF(S , a)g'(C) de, a.e., -_ < s < g .

for every g in _( a'4-_o) we have the representation above.Hence

Let us note in conclusion that

V(S) = f H F(s, (Y) u(tY) do

is defined a.e. in (-_, g) for every u(.) in /--2, but v/(.) is in /-.2 if (and in fact only if)

f u(c) dc -- 0.
-1_

Finally, for g = +_, it is known (see [4, 51 for example) that _'_ou is Hu' where H is the

Hilbert transform. Hence (2.12) may be viewed as the Finite-limit Hilbe_ transform, new with

this paper.

We can now get back to ,_-.

Theorem 2.2.

E lu 'l l_(4_-) = w: u(g) , u'(.)e t-,2, u(-g_-

and we have the representation:

xi-Aw = ._lAI u(') I = Dow + ,w (2.12)u(_)

where 3" is a compact linear bounded operator on _t into _t, and Do has the same domain

as 4A- and is closed thereon, and has the form:

I Lu'(') + u(g)_ IDow = [h, u']

where L is linear-bounded on L2 into L2, and h(.)e L2, _(')e /-,2



Proof. We use (2.5). Let w e _(A); and

W ==

Let

Then

is the unique solution of

w(X) = (X/+ A)-IAw ,

wCk) = luCX") I
uO., _)

_(_., s) - u"(_., s) = -u"(s) ,

Xu(k, _) + u'CZ.,_) = u'(t)

uCZ,,-_) = O.

Let, as in the proof of Theorem 2.1,

uoO., ") = (Z.+ ao)-laou(') ,

and let

z(X, s) = u(X, s)

Then z(_., ") is the unique solution of

kz(k,£) +

He nee

- uo(X, s).

Xz(X, s) - z"(Z., s) = 0

zO.,-_) = 0

z'(k, _) = u'(£) - u6(k, £).

_.>0.

-£<s<£

(2.13)



But

Hence

u6(X, s) =

aCM =

u'(s) -

$

._ cosh 4-X(t- s) cosh 4-_(_+o)u'(o) dosinh 2"4-_ g

£

f
$

_/_ cosh "¢'_(g + s) cosh _r_(g-o)u'(o) do.
sinh 2_/_

t cosh 4_(t+o)
-t (sinh 2_r_)('_/-_ sinh 2_]_g + cosh 2_]-_g)

u'(O) do. (2.14)

He nce

l__f X-I/2z(_., S) d_
7[

0

a,o

If _-1:2 aZ
0

£

f sinh "_(g+s) cosh _/'_(_+o)
-t (sinh 2"_£)(_ sinh 2q_g + cosh 2"J_g)

u'(O) do (2.15)

2f ax '
= _ (sinh 2.xg)(xsinh 2x£ + cosh 2xg) -t

0

)

sinh x(g+s) (cosh x(g+o))u'(o) do]
J

(2.16)

and the second integral in parenthesis can be expressed

1 £ £
2 f (sinh x(2g+s+o))u'(o)do + ½ f

-t -£

(sinh x(s - o))u'(o) do . (2.17)

The second integral in (2.17) can be integrated by parts to yield

IE
1

1 (sinh x(s- J_))u(_) + _ f x (cosh x(s-o))u(O) do2
-t

Hence (2.15) can be expressed

(sinh 2xg)(xsinh 2x_ + cosh 2x_),_t
0

(sinh x(2_ + s + o))u'(o) do

£

+ f M(s, o)u(o) do + ¢(s) u(t)

(2.18)



where

siohx s,,_(s) = sinh 2x£
0

(xsinh 2x£ + cosh 2x£)
dx, -g < s <_g (2.19)

and is an absolutely continuous function which goes to zero as £ -_ 0% and the kernel M(., .)

is given by

0

x cosh x(s - o)
(sinh 2xg)(x sinh 2x£ + cosh 2x£)

dr (2.20)

and is absolutely continuous in -£ < s,a < t, (and also goes to zero as g _ o,). Hence

oo

1_f X- l/2 u(Z,, s) dX
7t

0

= ¢(s)u(£)
t

M(s, c)u(c) da

¢m

rc (sinh 2xg)(xsinh 2x£ + cosh 2.xg)

t

f sinh x(2£ + s + o)u'(o) do
-It

•'sinh 2xg f cosh
-t

0

x(g + O)u'(o) do

2f_dx sinhx(g+ s) [" cosh- _ sinh 2x£
0 s

x(t - o)u'(o) do.

We now combine the last three terms and then justiBj interchanging the order of integra-

tion. The sum of the last three terms can be expressed as:

l f" /,tx (sinh 2xg)(x sinh 2xg + cosh 2xg) -
0 -t

sinh x(2£ + s + o)u'(C) do

sinh 2.xg f sinh x(s + a)u'(O) do
-t0

if ;,+ _- sirth 2xg sinh x(2£ + o - s)u'(o) do
0 -t

sinh 2xg sinh x(2g + s - o)u'(o) do.
0 s



The sum of the first two terms

I f ** dx tv3(s) = (xsinh 2x{: + cosh 2x_) f (cosh x(s+a) - xsinh x(s+a))u'(c) da (2.21)
0 -t

For w(.) in _(A), u"(.) is in /-.2, and hence we can change the order of integration in the

last two terms and express their sum as:

t

4{:1f _(s4{:- O)v4(s) - u'(O) cot da, -{: < s < {:. (2.22)

-t

Defined wherever the Hilbert transform is,

1 f u(c) cotTt(s - O) do, -{:<s< g (2.23)v(s)- 46 4{:

yields a bounded linear transformation mapping L2 into /-,2. It follows in particular that

v3(') is in /.2. Let

L

K(L, s, a) = f [coshx(s +a)xsinh 2x{:- +xsinhx($ + a)l dXcosh2xg

o

and

oo

,y ,_..x: xsinhtx )K(t) = -_ (x sinh 2x{: + cosh 2--x£ dx,
0

-2{: < t < 2{:. (2.24)

Then

converges in /-.2

t

f K(L, s, c)u'(o) do,

to v3(') as L--),,*. Now

-{:<s<{:

Ir(s+O)l = 012 g 2 c) (s + o) < 2{:

and hence the integral



f K(s + a)u'(c) dc

is defined for each s, s_ g. Also for some M<oo

£ r £

f Ig(s+o) - g(t, s, o)l lu'(o)l do _ M ]
-£ _£

[u'(O)I do

-L (2 £-s)

< e Mf- 2g- s

and hence

v3(s) = f

Hence finally, we have, for w in 27(A):

4_w = 4_[ u(-)u(_)

K(s + ff)u'(c _ 7c_,

lu'(o)l do

-g.: ¢.- g. (2.25)

where

v(s) = Vl(S) + v2(s) + v3(s)

where

Next let us calculate

vl(s) -- _(s)u(g) + f M(s, o)u(o) do
-£

vz(s) 1 f u'(O) COt _t(s - (5) do- 4_ 4£

v3(s) f K(s + O)u'(O) dc.

oo oo

f _-1/2 U(_,, ,1_) d_ = f x-l/2 zC_L, ._) d_,

0 0

(since uo(TL,g) = O)

2o; f cosh x(£ + O) u'(O) do
x sinh 2xg + cosh 2xg

(2.26)



Now

f cosh x(g + O)u'(O) do
-£

It

< f cosh x(_ + o) lu'(o)l do
-It

Ilu'(')ll "N/< J cosh2x(£+o) do

and

£

f cosh2x(g + o) do
-I_

sinh2x4Xl_ [1

Hence (2.26) is smaller in absolute value than

oo

Ilu'(')ll I

0

2x£_/sinh 4xg 1 + sinh 4x£

(x sinh 2xg + cosh 2xg)
dx

and because of the presence now of _x in the denominator, the integral is readily verified

to be finite. Hence we can change the order of integration in (2.26) and express it as

t

f h(s)u'(s) ds (2.27)
-£

where h(-) is defined for -g<s<g by

f cosh x(£ + s) dx (2.28)h(s) = x sinh 2xg + cosh 2xg
0

and is positive for every s. Moreover since

/ 1f h(s)lu'(s)l ds
-£

< Ilu'(')ll const.

it is clear that

It

f
-It

h(s) u(s) ds



defines a continuous linear functional on /-,2 and in particular

f h(s) 2 ds < .o.
-t

Define the operators on /-,2 into L2:

v = Tu ; v(s) = O(s)u(g) + f M(s,O)u(O)do.
-t

and

/

v = Hu ; v(s) = ] u(o) cot/rq's4£- °1 do, a.e. -g<s< _,

-t

where the integral is defined in the Cauchy sense at s -- o. Then for w in _(A)"

v(.)

__:h(s)u'(s) as

(2.29)

(2.30)

where

v(s) = vl(s) + v2(s) + v3(s), a.e.,

where

Vl = Tu

v2 = Hu'

t

v3(s) = f K(s + O)u'(O) do
-t

Next we let w e _('_). Then we can find w,, e _(A) such that

(2.31)

W n ,"-) W

and

_'¢-Aw.



Let

and hence

Hence

is such that

converges in L2.

Hence

is in /-,2.

and

Hence it follows that

IN'm'w. - "_'w,. II2 = Ilu,_- ug II2

u,_(') converges in La to u', where

u(') Iw = u(_) ' and u'_ /-,2.

Tu. + Hu_ --} Tu + Hu'.

£

v3,n(s ) = f KCs + O)u_(O) do,
-£

V3 ,n(')

But for each s, s<t, we do have that

f +o)u;(o)do f

£

f K(s + O)u'(o) do ,

Now given any z(-) in L2, we can define

$

u(s) = f z(o) do

t

f K(s + o)z(o) do

-£<s< g

K(s + O)u'(O) do.

a.e. -_ < s <

f K(s + O) u'(O) do .



Ku = v; v(s) = f K(s + O) u((_) do

actually defines a linear bounded operator on /-a

Next let us consider the sequence

This sequence converges to

e •

since un converges to u.

where

-ig

into /-a.

f hCs)u;,(s)as.
-t

[h, u']

Let us next show that any w in _ of the form

lu ,t
w = u(l_) '

u'(') _ La belongsto _(_/A).

and such that u,_(.) converges to u'(.)

Wpl

Then w. E _(A) and

Then we can find u n

u. (-_) = 0

u_(') _ ta

in /-a. Let

u.(g)

Also

and hence

ll_Aw. - '_ w.,ll 2

"_ W n

Wn --) W.

u(-g) = o,

in /--2 such that

f lu,;(s) - u,_(s)l2 ds

converges.

(2.32)



Hence w_ $('_).

Thus finally for any w in _O('¢'A) we have the representation

w = u(l_)

where

[h, u']

v = Hu" + Ku" + Tu.

We can decompose q_w in various ways. For instance let L = H + K, and

Lu" + u(t)¢ JDow = [h, u']

on _('_'). Then Do is closed thereon. Let

IMuJ0

where

Mu = v ; v(s) = f M(s, a)u(a) do.
-t

and M(., .) is given by (2.20). Then _" is compact and we have representation (2.12).



3. Strictly Proportional Damping

It is known [1] that to obtain a "strictly proportional" damping model where the

damping is strictly proportional to the mode frequency, the abstract wave-equation (2.2)

must have an additional damping operator and be reformulated as:

MY¢(O + Ax(t) + D_(t) + But(t) = 0 (3.1)

where, as in our case, M commutes with A, we must have

D = 2_'4-'M _ (3.2)

where _ is the damping constant, 0 < _ < 1. The eigenvectors t_k of A, defined by

and

where cok satisfies

and as a result

Rewriting (3.1) as:

where

where

A_k -- co_M_k

_k(s) = a k sin0_k 9a'_ v (£+s), -£_s_£

= _k(_)

I°_k 2g

_'(t) = dY(t) + SUc(t)

_U c -_

(3.3)

(3.4)



y

X2 X2E

and we introduce the energy inner product on _(_) x _t by

IIYII2 = [_:-mxl, _x2] + [Mx2, x2]

the eigenvectors of d are given by

and the eigenvalues are

_.k = -_t-Ok + ic0k'_'i"'_

where

Y =-4 + i_'--S_

We have thus strictly proportional damping in the sense that

Re. _.klIm. _-k -- constant = _

The concrete version of (3.1) is

pa _)2u(t'(z+ 2s) - GIw _2u(t'as2 s) + 2_(pa'ff_-_) [¢(s) -_uct,d g)

+ f R(s, t_) O2u(t'otOaO) do + 1
-t.

= 0

(3.5)

Glvu'(t, £) + 14ft(t, g) + 2_/4"_-1 w

where

t _2
f h(s) _ u(t, s) ds
-[

+ Uc(t) = 0 (3.6)

R(s,o) = Ac°tn(s- o)4£ + K(s + O).
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The main unnatural feature of this operator is the presence of the new terms in the

boundary equation (3.6). Unfortunately, this is essential for strictly proportional damping.

It would be interesting to search for an operator without this feature that yet retains

assmptotically proportional damping:

Re. _,kl
k - _ "

In particular this would also retain the main feature of (3.4) in that d generates an

analytic semigroup [1]. Of course the eigenfunctions _)k(') approach those of o.o as k -_ oo,

because of (3.3) -- _k(_) goes to zero as k -_ 0-.
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Abstract

A special class of nonlinear damping models is investigated in which the damp-

ing force is proportional to the product of positive integer or the fractional power

of the absolute values of displacement and velocity. For a one degree of freedom

system, the classical Krylov-Bogoliubov "averaging" method is used, whereas

for a distributed system, both an ad hoc perturbation technique and the finite

difference method are employed to study the effects of nonlinear damping. The

results are compared with linear viscous damping models. The amplitude decre-

ment of free vibration for a single mode system with nonlinear models depends

not only on the damping ratio, but also on the initial amplitude, the time to

measure the response, the frequency of tile system, and the powers of displace-

ment and velocity. For the distributed system, the action of nonlinear damping

is found to reduce the energy of the system and to pass energy to lower modes.

1.0 Introduction

One of the major challenges remaining in the development of large space struc-

tures is to determine a damping mechanism in order to stabilize flexible flight

structures such as solar arrays, antennas and platforms. As the size and flexi-

bility of space structures increase, the need to characterize energy dissipation in

a more appropriate and accurate manner also increases. Under the assumption

of linear viscous damping, the amplitude decrement of free vibration depends

only on the damping ratio, regardless of what the frequency or initial condi-



tionsmightbe.Numerousexperimentalresults,suchasthosein theSpacecraft

ControlLaboratoryExperiment(SCOLE)[1,_],indicatethatthisisfarfromsuf-

ficientandthatthereisagreatneedforunderstandingthedampingmechanism

whichmaybeinherentlynonlinear.

Variousnonlinearmodels,suchaslineardamperswithclearance,Coulomb

friction dampers, velocity-nth power damping, etc., have been investigated in the

past [3-5]. In many cases, these models can be represented by a damping force

that is proportional to the product of integer or fractional powers of the absolute

values of displacement and velocity. Balakrishnan introduced this nonlinear

model in [6] and obtained approximate solutions using the Krylov-Bogoliubov

"averaging" method [7]. lie also showed that these results can be quite useful to

study the response of flexible structures to nonlinear boundary feedback control.

In this paper we further study this special class of nonlinear damping models.

We use the Krylov-Bogoliubov "averaging" technique for a one degree of freedom

system and employ both an ad hoc perturbation method and a finite difference

technique for a distributed system.

This paper is organized as follows. In Section 2, the approximate equations

of amplitude are derived for a single degree of freedom system with nonlinear

damping. In Section 3, the transient response of free vibration of a single mode

nonlinear system is compared to that of a system with linear viscous damp-

ing. In Section 4, the perturbation solution is derived for the vibration of a

pinned-pinned beam with nonlinear damping. In Section 5, the vibration of the
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pinned-pinned beam with nonlinear damping is simulated via finite-difference

methods and the results are compared with those obtained using tile perturba-

tion solution discussed in Section 4.

2.0 Single Degree of Freedom System

The classical Krylov-Bogoliubov "averaging" method, introduced in 1947, is

basically a method of variation of parameters. Over the decades, this averaging

technique has been employed to study nonlinear mechanics and solutions call

be found in tile literature [8] for special cases of nonlinear differential equations.

Balakrishnan applied this averaging method to a particular class of nonlinear

damping models [6] which will be discussed in detail in this section. Since this

damping model is representative of a variety of nonlinear damping mechanisms,

we further study the effects of the model on vibrating structures of the special

class of nonlinear damping represented as

or

(la)

+ vl=lOl,_l_&+,_== = o (lb)

z(O) : Ao,and ._(0) = 0 (lc)

" b"where 3' = _ andw 2= _-,cisdampingconstant, and a, > 0

Note that the term "rlxl a I_t b _ represents the dissipating effect of a nonlinear

damper with "a" and "b" both being positive integers or fractions.



When7 << 1(csmallrelativeto m)wemayapplytileaveragingmethod

of Krylov-Bogoliubovlr] to obtainanapproximateequation

x(t) = A(t)sin(_t + ¢(t))

where the amplitude A(t) and phase angle ¢(t) satisfy the following equations

and

dA(t) _ 7 Ko(t) (2a)
dt w

de(t) ,y

- % Po(t) (2/))7/

The functions K0(t) and Po(t) in equations (2a) and (2b) are defined as

i _o2"Ko(t) = _ D(Asin¢,Awcos¢)cosCd¢ (3(,)

Po(t) = 1 ['_" D(A sin ¢, gw cos ¢) sin ¢d0 (35)
27rJo

where D(x,x) is equal to Ix] a ]2]b for the choice of nonlinear damper in

equations (la-lb), that is, D(x, _) _= D(Asin¢, A_'cos¢). Substituting D(x, 2)

into equations (3a) and (35) we obtain

where

Ko(A) = ._b+_Aa+b+_U (_1.)

P0(A) = 0 (4t_)

If 2_p = _ [sin¢l_l c°s¢lb+2d¢
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Equation (4b) implies that for the choice of a nonlinear damper represented

by 7[x[ _ ]x]b 5:, the phase angle 4(t) does not, on the average, change over time.

The positive number p in equation (4c) is called the nonlinear damping

factor. By changing variables in equation (4c), it can be shown that

2 [_1_
= 7.1o Isin ¢1_1c°s¢lb+2d¢ (4d)

The above expression for p is very similar to that for the so-called "damping

force amplitude ratio %" proposed by Jacobsen [9] when studying equivalent

viscous damping. By employing the properties of the Gamma function, it. is

found that

rr_-+-zl_.. J r[b@q

"= _r[q-_ + 21

where F(.) represents the Gamma function.

odd number , it can be shown that

2(n + 1)n!

= (b + 3)(b + 5)...(b + 3 + 2n)

Fu rt hermore,

(4e)

when "a" is all

for any b > 0

With the above information we are in a position to derive equations for the

amplitude A(t) and displacement z(t) for a system with nonlinear damping.

For the nonlinear damping system, ("a + b" > 0), we substitute equation

(4a) into equation (2a) to obtain a differential equation for the amplitude A(/)

dA(t)
dt ----7_bA(t)_+b+l



It canbeshownthat

where

and

( mA(t) = c]_(a + b)wb(t + to)
(5a)

m

tc = cpwb( a + b)Aoa+ b (5b) .

x(0 = c,(. + b)_(t + t_) ¢os_t (5c)

Recall that for linear damping viscous damping ("a + b" = O) [x0]

x(t) = Aoe-i_t coswt

In equation (5c), the quantity tc is associated with the initial conditions but

is not the initial time. The constant tc has units of time and is never equal to

zero.

Defining t + tc ix n2 _ and replacing ^ 2_= ,o A(n--_- - re) by A(n) in equation (5a),

we obtain an expression for the amplitude in terms of the number of cycles of

nonlinear vibration

__!

c,(a + b)k_(2..)

where n is the number of cycles of oscillation.

(5d)

3.0 Transient Response of Nonlinear Dalnping

Using the solution for the nonlinear damping system in equations (la) -(le),

it can be shown that the logarithmic decrement, 5, which is the ratio of two

71



successive amplitudes, is given by

6=a---- _-

In equation (6a), tl is the time when the response is first measured to com-

pute the amplitude ratio, 6, and T is the period of oscillation. Assuming tl = 0

and using equation (Sb) for tc , we obtain

For linear viscous damping it is well known that the logarithmic decrement is

[10] given by

(_1) = 2_r_ (6e)6 =ln x(tl+T)

Comparing equation (6b) with (6e) one may conclude that while the rate of

amplitude decay depends only upon the damping ratio, (, for the linear damping

model, the amplitude associated with the nonlinear damping system decreases

more rapidly as:

a) the initial amplitude A0 increases

b) the frequency increases

c) "a + b", especially "b", increases

d) damping ratio ff increases
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Numerical Examples

Some numerical results are summarized in Figures 1 through 4, which contain

the time histories for the nonlinear and linear damping models (a = b = 0) and

for the single degree of freedom system with mass m = 1, stiffness k = 4, and

damping coefficient c = 0.01.

For the nonlinear damping cases, "a + b" = 1 in both Figures 1 and 2,

but "a + b" = 2 in Figure 3. The initial amplitude A0 is 25 in Figures 1

and 3, and 50 in Figure 2. It can be seen that while the amplitude decrement

remains constant for all of the linear damping cases in Figures 1 through 3, it

decreases more rapidly for the nonlinear damping model. This condition is more

evident: (a) at the initial time than at a later time, (b) as the initial amplitude

increases and (c) as "a + b", especially "b" increases. This is in agreement with

observations made in practical engineering problems.

Figure 4 compares the logarithmic amplitude decay in terms of the number

of cycles of vibration represented by equation (5d) for a system with the same

parameters as in Figures 1 through 3. The sum of "a + b" remains constant

("a + b" = 3) as "a" and "b" vary individually. It is found that the rate of

amplitude decrease is greater as the value of "b" increases, even though the sum

of "a" and "b" remains constant.



4.0 Perturbation Solutions of Nonlinear

Damping for Distributed Systems

Consider the vibration of a pinned-pinned beam with non-linear damping

u(O, t) = u(L, t) = u"(O, t) = u"(L, t) = 0

Fll 7r X

u(x, 0) = A sin -L--

(7a)

(7_)

(7c)

where p is the mass per unit length, L is the length of the beam, and C,,b is

the nonlinear damping constant.

In [6], Balakrishnan applied the Krylov-Bogoliubov method to a multi-

dimensional system and obtained expressions similar to those in the single mode

case. A common approach to treat an elastic system, such as the pinned-pinned

beam discussed here, is to use a modal expansion method t.o convert a partial

differential equation into a series of ordinary differential equations; however,

great difficulties were encountered in the modal expansion due to the presence

of the absolute value function in equation (7a). For this reason, both an ad hoc

perturbation technique and the finite difference method presented in Sections 4

and 5 were utilized to study the effects of nonlinear damping for a pinned-pinned

beam.

For small values of nonlinear damping coefficient, C_a, the system will osci[-

late at the frequency



andperiod

wm=kL ]

Pm= 2_/_Om (7_)

Let the perturbation solution after one period be

U(X,pm) = U°(x,pm) q- Au(x,pm)

where u°(x, t) is the unperturbed solution of equations (7a-7c) with Cab = 0,

and Au(x, t) the perturbed solution. In other words

u°(z,pm) = Asin rnrr_____x (8a)
L

and
c_

Au(x,pm) = _ Aksink-Lx (8b)
k=l

The values of the coefficients Ak in equation (8b) indicate the degree to

which the initial mode is damped out and the other modes are excited. Tile

perturbed solution in equation (8b) is given approximately by

Aii= cab lu"lal_"l%" (ga)

with u(x, t) on the right hand side of equation (9a) being further approxi-

mated by u°(x, t), that is,



m_x

u(x, t) = u°(x, t) = A sin---if-cos w,.,t

hence

(9b)

\ L / sm---ff-cosw._t (9c)

Substitution of equations (9b-9c) into equation (9a) gives

_ . mTrx 'a+b _TZ . 'a

A_ = _m]sin---ff- I sin---ff-leos wmt I . Isinwmtlb sinwmt (9d)

where _m is a constant that depends on many of the system parameters, such as

the nonlinear damping coefficient, Cab, the amplitude A, and the mode number

m, etc., that is,

2]

l?m 3m(a,b)= V"UAa+b+l_+l
p \L}

where f _ a + b + 1

The coefficient _3m is proportional to 2(a+b+ 1) powers of the mode number

rn, hence, Aft in equation (gd) may become quite large for higher modes. This

suggests that the perturbation solution may apply only to low frequency modes

and not to higher frequency modes.

Because we are mainly interested in the maximum perturbation of the ampli-

tude decay due to nonlinear damping after half a period, we integrate equation

(9d) twice from 0 to t(t <_pro/2) to obtain



. mTrx a+b mTrx (9c)a,4x, ) = 9mcrl,,n--K- I sin --y-

where

A [p_/2 _oo t
C T = dt ]eoswmtl_lsinwmtlbsinw,_rdr

The quantity CT is a constant that depends on tile half period l),n as well

as "a" and "b", but does not depend on x. In order to examine tile interaction

between different ,,lodes in Au(x, e-U) in equation (ge), we expand Au(x, ',_,')

into a sine Fourier series in terms of the nmltiples of the initial mode sin L

that is

_,(x, p'' k (gf)-_-) = A,m sin nmrr_____f_XL
rt=l

It can be shown that if the pinned-pinned beam in equation (7) is excited

only by a single mode ,4 sin .... then for any positive numbers "a" and "b"
---_---,

all of the even multiples of tile initial mode will not be excited; on]y the odd

multiples of the initial mode get excited. In other words

Anm=0, for n=2j

A,,,,, = _L foL t sin _ [_+b sin _-_ sin _dz

for n = 2j - 1

Now expand Au(x, '2e-_-) into a sine Fourier series to obtain the Fot, ricr coef-

ficients A. .... as represented in equation (9f).



It canbeshownthatfora= 0, b = 1

{ Anm-=O, for n=2j (10)Anm 2C_'_m_A2 for n -= 2j -- 1
[(2j-3)( 2j-1)(2j + I )]pL 4'

Similar expressions can be derived for any positive integers "a" and "b".

Equation (10) relates the initial mode Asin _-_ to the distributed nonlinear

damping coefficient A,_,n. Because the perturbation solution contains compo-

nents of other modes, they too will be excited. The degree of excitatiou is

illustrated by the values of A,m. It is obvious that the even-multiples of ini-

tial modes are not excited while all of the odd-multiples are. It will be shown

later that for a beam excited by fundamental modes, equation (10) provides a,l

estimate for the amplitude decay after a half period due to nonlinear damping.

5.0 Finite Difference Simulation for Nonlinear Dalnl)ing

In this section, the transversal vibration of a pinned-pi[med beam excited by

a single mode is simulated via the finite-difference method. We will present

a finite difference scheme for solving the partial differential equation, derive

the stability conditions and then discuss numerical results. Specifically, we

will compute amplitude decay after half a period and compare the results with

both linear and nonlinear damping. We treat only the case of a = 0, b = 1

for nonlinear damping. Finally, we compare the amplitude decrement using

the finite difference method with the amplitude decrement obtained using the

perturbation method presented in Section 4.
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Finite Difference Formulations

When modeling the nonlinear differential equation (7a) with the finite dif-

ference method, we represent beam displacement as u(xi,tj) zx= ttij _ where xi

is defined as xi =iAx, and tj is defined as tj _ jAr. Both grids Ax and At

are defined as Ax _ L A-_ , and At = T_-, where rn and n are the numbers of grids

used for L and T. L is the beam length and T represents the half period for the

initial mode. With the above definition, the nonlinear finite difference equation

corresponding to equation (7a)) for the displacement at xi, tj+l is given by

tti,j+ 1 : "{(Ui+2,j -- 4Ui+I,j + 6ui,j - 4Ui-l,j q- ui-2,j) q- (2ui,j - tti,j-1)

+/31(Ui+l,j - _i+l,j-1) - 2(ui,j - l$i,j-1) _- (lli-l,j - Ui-l,j-1)l

"[(tti+l,j -- tti+l,j-1) -- 2(tli,j -- Ili,j-1) "J[- (Ui+I,j -- ?'i-l,j-1)]

(11a)

If linear damping is assumed ("a" = "b" = 0), then equation (7a) becomes

p_ + c_" + EIu iv = 0 (llb)

and the corresonding finite difference equation is

Ui,j+l = _(Ui+2,j -- 4Ui+l,j -t- 6Ui,j -- 4Ui-l,j -l- Ui-2,j) -1- (2Ui,j -- tti,j-1)

"_-Ol[(Ui+l,j -- Ui+I,j-1) -- 2(Ui,j -- Ui,j-1) "_- (Iti-l,j -- Ui-I,j-1)]

(llc)



Finally,if nodampingispresent,equation(llc) isfurthersimplifiedas

tti,j+l = "[(tti+2,j -- 4Ui+l,j + 6ui,j -- 4ui-l,j + ui-2,j) + (2ui,j -- tti,j_l)

where

(lld)

cat
EIAt 2 Cab ,and a - (lle)

7- pax4 , _- flax4 Ax 2

Formulas for central differences have been used to approximate both u i_

and ii. Forward differences for t and central differences for x are used to obtain

the mixed derivative u" in equations (lla), (llc), and (lld). Two fictitious

boundary conditions have been created such that the zero moment conditions

are satisfied at both ends for the pinned-pinned beam. They are

ttm+l, j = --Urn_l,j and tt_l_ j = -ttl, j

j = 0, 1,2,...n

Stability Conditions

It should be noted that equations (lla), (llc), and (lld) belong to the

explicit forms of finite difference formulation, for which there always exists a

stability problem for the specific finite difference scheme [11]. In other words,

when the finite difference scheme is stable, there exists an upper limit to the



extentto whichanyerrorarisingduringthesimulationcanbeamplified.This

impliesthat thenumericalsolutionwill notdiverge.Clearly,stabilityalone

doesnotnecessarilyguaranteethat thedeviationbetweenthetruesolutionto

a certainpartialdifferentialequationandits finitedifferenceapproximation

will besmallin anysense.Stabilityonlyimpliestheboundednessof thefinite

differencesolution,at agiventime,asAt approaches zero.

In tile case of a beam without damping, the equation of molion is

pii + EIu iv = 0 (12a)

Assuming harmonic motion, that is,

u(z, t) = ei_'T(t) (12b)

Using tile finite difference method, equation (12a) can be replaced by

T(t + At) - 2T(t) + T(t - At) + "/[(e _j'_z + e-2ja_)

-4(e jax + e -j'a':) + 6]T(t)= 0 (12e)

Since [e2jA': + e-2ja': - 4(e ja_: + e -ja*) + 6] = 16 cos4(a@), equation (12c)

is simplified to obtain

T(t + At) - [2 - 167 cos4(_Z-)]T(t) + T(t - At) = 0 (12d)

Substituting 7 in equation (lle) into equation (12d) and utilizing the stabil-

ity criteria for the eigenvalues of a difference equation, we find the stability
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condition for the finite difference equation (lld) to be

mar- < !
pAx 4 2 -- 4

or

(12e)

EIAt 2 1
-- < - (12/)

pax 4 -- 4

For a beam vibrating with linear damping, represented by equation (llb),

the difference equation for the stability condition is

T(t + At) - [2 - 167 cos4(A_--_--)- 4c_ sin2(_-_)]T(*)

+[1 - 4(_ sin2(_-_X)]T(t - At) = 0

This can be further simplified to

(13a)

4EIAt2 cos4(__) +
pax 4

or

2¢ E_/-_At Ax
sina(_--) < 1

pax 2 "2"

EIAt 2 ¢Ev/-_At 1

pax-----T + 2pAx 2 <- _

which is similar to equation (12f).

(13 )

Notice that the stability condition similar to equations (12f) and (13b) is

not available for the nonlinear difference equation. This is mainly because of

the difficuties encountered due to the presence of the absolute value fimction in

equation (1 la).



NumericalExamples

Thenumericalexampleusedforthesimulationisapinned-pinnedbeamwhich

resemblesthe SCOLEprojectmast[1]with L = 130 ft, E1 = 4E07 lb.ft 2,

p = 0.09556 slug/ft. The beam is initially at rest and is excited by a single

mode Asin i_ with A= 1.3 ft and i = 1,2,3,4. The first frequency is 11.95-g--

rad/sec and its corresponding period is 0.5258 second. We proceed to evaluate

the displacement of the beana for tile first half period T.

Because the stability condition (12f) implies that Ax call not be arbitrarily

small, we first chose rn = 10 (Ax = L/m = 13ft) when verifying the stability

condition. It was found that if n > 64, At = T/n < 0.0041,17] = 0.2473 < 0.25,

then the numericalscheme was atways stable. On the other band, ifT_ = 63, ]'tl =

0.2552 > 0.25, the numerical scheme was found to be unstable, which confirms

our stability criteria represented by equation (12f).

Before we compare the amplitude decrement using the perturbation and the

finite difference methods, it. is necessary to verify the finite difference scheme

used in the simulation. We compare the finite difference displacement results

with those obtained using an analytical solution after a half period for a beam

vibrating without damping (corresponding to equation (12a)). We also com-

pare the finite difference results with that for the logarithmic decrements of the

amplitude for a beam vibrating with linear viscous damping (corresponding to

equation (llb)). We believe that as long as the finite-difference scheme con-

verges reasonably well for both equations (12a) and (llb), the scheme should



workforequation(1la) with nonlinear damping.

The relative errors were computed for the displacement of a beam vibrating

without damping after half a period when 20 intervals in L and 1100 intervals in

T were used. The relative errors are defined as the difference between the dis-

placement using finite difference method and that using an analytical method.

The difference is then normalized by the analytical values. The relative errors

are quite uniform for each mode over all locations of the beam with their maxi-

mum values being 0.0025%, 0.037%, 0.23%, and 0.54% for modes 1, 2, 3, and 4

respectively. This implies that the finite difference method provides quite accu-

rate results for beam vibrations without damping. Notice that the errors can be

greatly reduced if more intervals are used for L and T, subject to the stability

condition of equation (12f).

For flee vibration of a pinned-pinned beam with linear viscous damping,

represented by equation (llb), it can be shown that by assuming harmonic

motion (as in equation (12b)), the damping ratio, (, for each mode depends

only on damping constant c, beam properties p and EI, but not on tile mode

number i, that is,

e

¢ = -- (14cl)
2,/-pEI

According to classical vibration theory [10], it is well known that the ampli-

tude decay after half a period for single degree of freedom system is



6_ AA
A - 7r_ (14b)

which also does not depend on the mode number i. Specifically, if ( = 0.003,

then theoretically 8 should equal to 0.0094 after half a period for any single

DOF system. Using the same numbers of grid points for L and T as before,

the amplitude decay, 6, after half a period for modes 1 and 2 at a variety of

locations on a beam with linear damping (( = 0.003) were computed. For both

mode 1 and 2, the amplitude decay, 8, remains almost idcntical at all locations

of the beam, a.s if each point on tile beam vibrated as a single DOF system. It

is interesting to note that the amplitude decay, 6, is about 0,0094 for mode 1,

and 0.0096 - 0.0097 for mode 2, both of which are close to 0.0094 (= _r_). These

results are in good agreement with equations (14a-14b) and further confirm that

the finite-difference algorithm used is quite reliable.

Figures 5 and 6 compare the values of the amplitude decay for modes 1-

3 after half a period T for the same beam with: (1) linear damping using

finite-difference method, (2) nonlinear damping using finite-difference method,

and (3) the perturbation method discussed in Section 4. The abscissas are a

dimensionless quantity damping ratio _. Linear damping coefficient c is equal

to 2_"pv/_-/', and the nonlinear damping coefficient Cab si equal to 4c. These

values are used for both finite-difference and perturbation methods. For the

case of linear damping, the amplitude decay takes almost the same value for

modes 1-3 (e.g., 8 = 0.0064 for modes 1-3 when ( = 0.02), which is consistent



withequation(14a).

FromFigures5 and6 weobservedthat: (1) theeffectof lineardamping

exceedsthatof nonlineardampingformode1,(2) theeffectof lineardamping

isaboutthesameasthatofnonlineardampingformode2,and(3) theeffectof

nonlineardampingoutweighsthatof lineardampingformode3. Theseresults

implythat in thecaseof nonlineardampingthe amplitudeof highermodes

will bedampedout fasterthanthelowermodes,whereasill thecaseof linear

damping,themodesareall equallydamped.Thisisconsistentwiththeresults

of Section3 for a singledegreeof freedomsystem,aswellaswith common

engineeringjudgement.

Finally,whencomparingtheresultsill Figures5and6fornonlineardamping

usingeitherfinite-differenceor perturbationmethods,it isobservedthat for

fundamentalmodestheperturbationmethodprovidesaveryconservativeupper

boundofamplitudedecrementafterhalfaperiod.Thisresultmightbeusefulin

preliminaryassessmentoftheimpactofnonlineardampingeffect,sinceinmany

occasions,wearemainlyconcernedwiththesystem'sfimdamentalfrequencies.

Conclusions

A spacesystemsdynamicsandcontrolsanalystis oft.enconfrontedwith the

problemofgainingabetterunderstandingof thedampingmechanismwhichis

inherentlynonlinear.Fortunately,someof thedifficultyin handlingnonlinear-

itiesisoffsetbythefactthatdampingis still small.Thismakesit possibleto



obtainapproximatesolutionsusingtheclassicalKrylov-Bogoliubov"averaging"

techniqueto studyaclassof nonlineardampingmodels.

Inthispaper,thedampingforceisassumedtobeproportionaltotheproduct

of positiveintegeror fractionalpowersof theabsolutevaluesof displacement

andvelocity.Asisexpectedthatfora typicalnonlinearsystem,theamplitude

decrementoffreevibrationwithnonlinearmodelsdependsnotonlyondamping

ratio,but alsoontheinitial amplitude,thetimeto measuretheresponse,ttle

frequencyof thesystem,andthepowersof displacementandvelocity.Fora

pinned-pinnedbeam,bothanadhoeperturbationmethodandafinitedifference

techniqueareusedto studythevibrationof abeamwithnonlineardamping.

Theactionof nonlineardampingis foundto reducetheenergyof thesystem

aswellasto passenergyto lowermodes.Asa result,theamplitudeof higher

modeswill bedampedout fasterthanthelowermodes.All of theseresults

areveryusefulto studytheresponseof a flexiblestructureto theactionof a

nonlinearboundaryfeedbackcontrol.
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Figure 1 Time llistory l,or Linear and Nonlinear Damping: ad-b -- I

Ao = 25, Mast = I, St iffm-.q.q = 4, Daml_ing Cot,/'. = O.01

Figure 2 Time llistory l,or Linear and Nonlinear Damping: a-_ I, = i

A0 = 50, Mass = 1, Stiffness = 4, Damping Coel,. = 0.01

Figure 3 Time Ilistory for Linear and Nonlinear Damping: a-t-b--2

Ao = 25, Mass = 1, Stiffness = 4, Damping Coef. = 0.l)!

Figure 4 Aml,litude vs. Number of Cycles for l, inear and

Nonlinear Damping

Figure 5 Amplitude Decay vs. Damping Ral, io after llalf Period

FI)S: Finite Difference Simulation

Figure 6 Amplitude Decay vs. Damping Ratio a/Rer flail" l'criod

FDS: Finite Difference Simulation
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Nonlinear and Distributed Parameter Models
of the Mini-MAST Truss

Lawrence W. Taylor, Jr.

NASA Langley Research Center
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ABSTRACT

Large spacecraft such as Space Station Freedom employ large trusses in
their construction. The structural dynamics of such trusses often exhibit

nonlinear behavior and little damping which can impact significantly the

performance of control systems. 1"he mini-lq,,IAST truss was constructed to

research such structural dynamics and control systems. The mini-MAST

truss is an object of study for the Guest Investigator Program as part of

NASA's Controls-Structures Interaction Program. The Mini-MAST truss is

deployable and about 65 feet long. Although the bending characteristics of

the Mini-MAST truss are essentially linear, tile angular deflection under

torsional loading has exhibited significant hysteresis and nonlinear stiffness.

It is the purpose of this study to develop nonlinear and distributed

parameter models of the truss and to compare the model dynamics with

actual measurements. Distributed parameter models have the advantage of

requiring fewer model parameters. A tangent function is used to describe

the nonlinear stiffness in torsion, partly because of the convenience of its

easily expressed inverse. Hysteretic slip elements are introduced and

extended to a continuim to account for the observed hysteresis in torsion.

The contribution of slipping to the structural damping is analyzed and found

to be strongly dependent on the applied loads. Because of the many factors

which affect the damping and stiffness in a truss, it is risky to assume

linearity.

INTRODUCTION

Future missions in space require spacecraft which are considerably

larger and more flexible than current spacecraft. Large spacecraft such as

Space Station Freedom employ large, complex trusses in their construction.

The structural dynamics of such trusses often exhibit nonlinear behavior

and low structural damping which can impact significantly the performance

of control systems. For example, in reference 1, Lallman studies the effect

I00



of damping on the performance of the attitude control system of the Space
Station Freedom. The mini-MAST truss was constructed to research the

interaction of such structural dynamics and control systems and is an object

of study for the Guest Investigator Program as part of NASA's Controls-

Structures Interaction Program.

The Mini-MAST truss was designed to be deployable to a length of

66.14 feet when fully extended. The bending characteristics of the Mini-

MAST truss are essentially linear. The angular deflection under torsional

loading, however, has exhibited significant hysteresis and nonlinear stiffness

during laboratory tests.

The complexity of such structures create a burden to optimal design

and to systems identification for upgrading dynamic model parameters by

analyzing experimental test data. The large number of model parameters
which results if each structural mode is assumed to be independent can be

greatly reduced if distributed parameter models are used.

It is the purpose of this study to develop distributed parameter
models of the Mini-MAST truss and to compare the model dynamics with

the actual dyriamic characteristics. A second purpose is to model the

nonlinear stiffness and damping properties of this joint-dominated truss.

is hoped that the study results will be useful in designing control systems

for large spacecraft such as Space Station Freedom which employ similar

trusses.

It

DISCUSSION

Because the Mini-MAST truss .is representative of structures that will

be used for large spacecraft such as the Space Station Freedom, the study of

its structural dynamics is valuable in assuring the dependability and high

performance of spacecraft control systems. Figure l a. pictures the Mini-

MAST truss being deployed. The reduction in volume is striking when

compared to the deployed truss shown in figure lb. Reference 2 describes

in detail the design of the Mini-MAST. Because of the complexity of the

truss it is important to study simplifying models of its dynamics. Figure 2

shows how many modes are required to depict accurately the static

deflection of a cantilevered beam. The problem is compounded if the modal

parameters are considered to be independent. Because of the resulting

complexity there is considerable advantage in using distributed parameter

models. Due to the greatly reduced numbers of parameters required for

such models as shown in figure 3, the ability to employ systems

I01



identification (Reference 3) and optimal design techniques is greatly

facilitated. Because of these advantages it is valuable to determine the

accuracy with which distributed parameter models can represent the Mini-

MAST truss. For example, can such simple models predict accurately the

peaks of the frequency response shown in figure 4? If distributed

parameter models represent accurately the dynamics of the Mini-MAST

truss, then the model equations can be used to upgrade the model

parameters using systems identification. Also the models will be useful in

integrated control-structures design because their form provides easy access

to global varibles such as the modulus of elasiticity.

The Mini-MAST truss, being deployable, requires a large number of

joints. The compliance and possible slippage of the joints may affect the

overall stiffness of the truss when viewed as an equivalent beam. The

action of the joints may also affect the damp!ng of the truss as well. It is

important to know accurately the damping of a spacecraft in order to assure

reliable and high performance control. It is also important to understand

and to model any nonlinear behavior caused by the numerous joints.

Distributed Parameter Bending Model

Tile Mini-MAST truss is modeled as a cantilevered beam with an

added tip mass as depicted in the schmetic in figure 5. The partial

differential equations (Euler beam equation) and boundary condition

equations (Cantilevered and tip mass) are solved thereby determining the

modal characteristics. First, the calculated static deformation resulting from

a constant 15 pound for applied to the tip is compared to actual test results

in figure 6. The value of the stiffness parameter, El, for an equivalent Euler

beam derived from this test is 27.6 x 106 pound feet squared. The

comparison suggests that the model deformation matches the actual

deformation within the measurement error. The resulting modal

frequencies in bending are then compared with experimental results and

those for a finite element model (Reference 4) in figure 7. The frequencies

for the first few bending modes of the distributed parameter model

accurately match the actual bending frequencies of the truss. At higher

mode numbers, however, the actual modal frequencies are lower than the

theoretical values for the Euler beam model. Belvin, in reference 5, showed

that the shear deformation of a similar truss cannot be ignored as is done in

the Euler beam model. Belvin used the techniques of reference 6 in his

study. The Timoshenko beam, in contrast, accounts for the shear

lOZ



deformation and more accurately models the frequencies in bending as

shown in figure 7.

Figure 7 also shows the accuracy with which the frequencies of a finite

element model match the actual frequencies of the truss. The finite element

model is reasonably accurate even at high mode numbers. The parameter,

El, used in the finite element model equals 29.8 x 106 pound feet squared.

In figure 8 the bending mode shapes generated by the same finite element

model exhibit shapes similar to Euler beams with one exception. Examina-

tion of the third mode reveals that the shear deformation is significant

enough to give a change in slope almost at the bottom of the truss. The

general contour of the mode shapes in figure 8 compare well with those of

the Timoshenko beam (not shown) but the irregularities which show

significant local deformation will be missing from the distributed parameter

models. It is possible that overlookong such local deformations could cause
i,

control system instability.

The effect on tile first bending mode frequency of changing tile mass

at the tip of the equivalent beam is shown in figure 9. The frequency

response measurements of figure 4 had a tip mass which weighs 70.125

pounds (mass ratio = .31). The Mini-MAST truss excluding its tip mass

weighs 229 pounds. The Euler beam model depicts accurately the change in

frequency when the tip mass is removed. The assembly for the active

control of the Mini-MAST is expected to weigh in excess of 300 pounds. The

frequencies for higher mode numbers will not change as much as that for

the first mode because as mode number increases the motion of the tip mass

diminishes, thereby approaching a pinned end condition.

Distributed Parameter Torsion Model

Similar to the bending case, tile truss is modeled in torsion as an

uniform shaft which is fixed at one end and has a tip body attached to the

other end. Based on the angular deformation due to an applied moment the

torsional parameter Glpolar equals 2.16 x 10 6 pound feet squared per

radian. The partial differential equations and end conditions are solved and

in figure 10 the model's torsional frequencies are compared with

experimental results and the finite element model of reference 4. The close

comparison indicates that the modal frequencies for both the distributed

parameter model and the finite element model compare closely with the

actual frequencies.
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Nonlinear Torsional Stiffness

Because the Mini-MAST truss exhibits significant nonlinear stiffness

and hysteretic behavior in torsion, it is necessary to model these
characteristics. The nonlinear stiffness model will be discussed first. The

hysteretic model will be treated in the next section.

Although the form of the nonlinear stiffness is approximately cubic,

a tangent function is used because (1) its form gives the nearly linear plus

cubic relationship that is needed, and (2) the tangent has a conveniently

express inverse. Figure 11 depicts the tangent model of the nonlinear

stiffness in torsion and introduces the parameters, K, and, B, which govern

the linear and the cubic contribution, respectively. The parameter, K, then is

the usual torsional stiffness.

In figure 12 it is evident that the tangent relationship compares well

with the experimental results. The data shown is believed to not involve

any slipping as it represents the relaxation from a load having been applied.

As the load is increased slipping does take place and will next be considered.

Torsional Slip Model

The torsional hysteretic model is comprised of an infinite number of

slip elements. An individual slip element is assumed to slip instantaneously

upon reaching a particular moment threshold. A reverse slip is assumed to

take place at a moment of equal level but opposite sign as depicted in figure

13. A slip distribution function is introduced which describes the

probability density function of the values of moment threshold. The second

order exponential form of the function, shown in figure 14, was chosen to fit

the experimental data. Effort is underway to link this distribution function

to the vertical loading of the joints. The total deflection amplitude consists

of (1) the deflection due to compliance without slipping plus (2) the

deflection due to an accumulation of slips due to the applied moment. The

expected value of the accumulation of slips is given by the integral of the

slip distribution function between the last moment reversal or zero and the

current applied moment. The deflection equation is depicted in figure 15.

The total hysteretic model which contains both the nonlinear stiffness

and the hysteretic slipping is compared with actual test results in figure 16.

The close comparison of the model results and the actual hysteretic behavior

gives validity to the model for torsional deflection due to applied moment.



The hysteretic behavior is expected to be dependent on the vertical loading.
When the 300 pound plus active control assembly is attached to the top of
the Mini-MAST the total angular deflections are not expected to change
significantly, but an increase in the moment threshold is expected. Because
of the effect of gravity it is difficult to de tern)ine tile hysteretic belmvior in

an unloaded condition as in space.

Structural Damping

The damping for the first bending mode is affected by the mass of the

tip body as shown in figure 17. The damping ratio which was measured for

the truss without tip mass was about 3.3%. This value was about three time

the value expected based on the assumption that the dimensional damping

of the truss would not change. The damping ratio would be expected to

double from the value of about .45% for the 70 pound tip mass. This

discrepency is probably due to slipping being affected by vertical loading, as
is the case for torsion.

In torsion it is possible to link slipping to damping by accounting for

the loss of energy due to slipping. Figure 18 shows that the expected

contribution to damping from slipping for oscillations about the unloaded

condition reflect the shape of the slip distribution function. The damping

contribution for oscillations in torsion about a loaded condition may be as

low as zero because of the complete lack of slipping.

The statically determinant truss to be used on the Space Station

Freedom can be expected to involve internal loading. As a result the

damping of the truss for small amplitudes is not expected to involve slipping

and will consequently exhibit very low damping.

Laboratory tests have revealed a damping ratio for bending modes for the

cantilevered truss to be about .0045. The damping ratio will decrease when

large bodies are added to the truss. In the absence of air, the damping can

be expected to be even smaller, perhaps approaching .002.

Past practices of using a constant damping ratio of .005 for space station

studies does not represent the worst case. Lower values of damping should

be used which reflect mass loading and internal loading effects.



CONCLUDING REMARKS

The Mini-MAST truss has been tested and analyzed for the purpose of

understanding the dynamic characteristics, nonlinear stiffness and

hysteretic damping of large spacecraft.

It was necessary to use a Timoshenko beam model for bending to

account for the shear deformation of the Mini-MAST truss. The modal

frequencies of the Euler beam model were higher than the actual values.

A tangent function model of the nonlinear torsional stiffness was

developed and its parameters estimated to match experimental results.

A hysteretic slip model for torsion was developed using the experimental

test data. The slip distribution function used has a second order,

exponential form. The hysteretic behavior is expected to be affected by

changes in the vertical loading due to gravity.

The damping contribution in torsion of the hysteretic behavior was

deduced by analyzing the torsional slip model. The damping due to slipping

was determined to be quite dependent on loading conditions. A steady load,

for example, might eliminate slipping and consequently any damping

contribution due to slipping.

Future studies of control system performance should use lower values of

structural damping than the .005 used in the past, and should consider the

nonlinear effects.



.

,

,

.

.

°

REFERENCES

Young, John W. and Frederick J. Lallman: Control/Structures

Interaction Study of Two 300 KW Dual-Keel Space Station Concepts.

NASA Technical Memorandum 87679. May, 1986.

Adams, Louis R.: Design, Development and Fabrication of a

Deployable/Retractable Truss Beam Model for Large Space Structures

Application. NASA Contractor Report 178287. June, 1987.

Taylor, Lawrence W., Jr.: On-Orbit Systems Identification of Flexible

Spacecraft. 7th IFAC Symposium on Identification and System

Parameter Estimation. York, England. July 2-8, 1985.

Bailey, James: Finite Element Model of the Mini-MAST Truss. Not yet

published.

Belvin, W. Keith: Simplified Analysis of NASA's COFSI MAST-Beam.

Not yet published.

No,r, A. K., Anderson, M. S. Anderson and W. II. Greene: Continuum

Models for Beam- and Platelike lattice Structures. _ AIAA J., v. 16,

no.12, December, 1978.



/
I

Figure 1 The Mini-MAST Truss Being Deployed.

108
ORIGINAL PAGE IS
OF POOR QUALITY



I 1 00_

67 Modes

I Z Error

10 I00

Number of Modes

I000

Figure 2. The Number of Modes Required for a Modal Model to Accurately

Represent the Static Deflection of a Cantilevered Euler Beam.

log



I000

2OO

Independent Modal
Characteristics

Interdependent Modal Characteristics
Distributed Parameter Model

Ol 5 I0 15 20 25 30 35 40 45 50

Number of Modes

Figure 3. Comparison of the Number of Model Parameters for Modal Models
and Distributed Parameter Models.

IlO



.1

) )

' _'4

:i I [_' J t_ _ ,_

L.

,

b..

F
E
I-

--- 1
-- I

t

1
I

I

I
I
!
!
I
i

I ! ! ! i ! I ! I

I # " _.

k

I

I I I" t I ! l I i

0 I0 2O

Frequency - Hz

Figure 4a. Frequency Response of the Mini-MAST Truss in Term of Inches

of Response per Pound of Input. Frequency from 0 to 20 ltz.

III



o_==1
')"==1

<
0t_
O

=4

-4

1

• _ • • L

A
I
=
f_.

! ! 1_ " I : ! T

I
!

f

20 30 40

Frequency- Hz

Figure 4b. Frequency Response of the Mini-MAST Truss in Term of Inches

of Response per Pound of Input. Frequency from 20 to 40 Hz.



,,,iI

<

O

.!

| A t ; I i

,I )

i

I m II I,

! /\ i

t !
I

I
I
!

I
4 i

1 r
1 '| I 11 ! _ I r I •

i L J _ I

)
i

o

I I

I

i

I ! I !

I I I I

l\

I

E
I-

I..

I

!

f
I

, I

40 50 60

Frequency- Hz

Figure 4c. Frequency Response of the Mini-MAST Truss in Term of Inches of

Response per Pound of Input. Frequency from 40 to 60 ttz.



i

--ii I

I I ! I ! ! I 1 i ! l I ! , i '| I f

60 70 80

Frequency - Hz

Figure 4d. Frequency Response of the Mini-MAST Truss in Term of Inches of

Response per Pound of Input. Frequency from 60 to 80 Hz.



I Torsion I

J
N

III/

N,
/

J

TipMass

/-Beam

Tip

Body

I I
I

Shaft

III /II/ I/III

Figure 5. Schematics of Distributed Parameter Models for Bending and

Torsion.



18

15

12

Bay 9
Number

6

3

0

- _...._ /-Theory

Actual -Y -_

_l I I i

16 12 8 4 0

Displacement- mm

Figure 6. Comparison of the Model and Actual Static Deflection in Bending of

the Mini-MAST Truss Subjected to a 15 Pound Force at the Top.



1000

l]_ n

nko

lO0 _/_z/ "Actual

/ Finite Element

1 0 _/

l I I I I I I

1 2 3 4 5 6 7 8 9

Mode Number, n

Figure 7. Comparison of Distributed Parameter Model, Finite Element Model

and Actual Normalized Bending Frequencies.

117



¢q

..l..a

Figure 8. Finite Element Model Mode Shapes for Bending.



l Frequency1st Mode I

70 lb Plate
I [] - Actual 1Theory

300 Ib Assembly

.5

! I

00 .5 1.0
I I !

1.5 2.0 2.5

MTip/MTruss

Figure 9. Comparison of the Model and Actual First ,Mode Bending

Frequencies as a Function of Tip Mass to Truss Mass Ratio.

119



60

50

4O

2O

10

0
1

Frequency,
Hertz

Model

Actual

I ! I I

2 3 4 5

Mode Number, n

Figure 10. Comparison of Model and Actual Torsion Mode Frequencies.



Moment

ngular

Deflection

M = KTan(BO)
B

or 0 =BI Arctan (MB_)

1 d30
= y _31

M=0 M=0
\ / \ /

V V

2B 2

K3

Linear Cubic

Figure 11. Nonlinear Stiffness Formulation Used for the Torsion Model.



MomenL

180 -

I I

-.4

Measu

/ "Model
_" -180

K = 570 Ft-Lb/Deg
B= 1.6

Tip Angle
.4 O, Deg

Figure 12. Comparison of Model and Actual Static Deflection in Torsion.

)22



Moment

MThreshold

O, Angular

Deflection

Figure 13. An Individual Nonlinear Slip Element for the Torsion Model.



Moment, M

dO

0 = MiK + DI_P'(M)dM

Deflection

0

A = Mreversal if M reversal ) 0

0 if M reversal ( 0

Figure 14. Nonlinear Hysteretic Model for Torsion.



Probability

Density, P(M)

Slip Threshold Moment, M

-M/X 1 -M/X2
P-CM) = _ e • 4- e

X2-X 1 X2-X 1

Figure 15. The Slip Distribution Function.



MomenL

180

K = 570 Ft-Lb/Deg

B= 1.6

D = O. I0 Deg

XI = lOFt-Lb

X2 = 50 Ft-Lb
/

I ! 1

-.4

Measurements

Tip Angle

.4 0, Deg

Model

"160

Figure 16. Comparison of Hysteretic Model and Actual Static Defelection in
Torsion.



Da o i°g1
I03E!I o Act°a,1

.01

I

0

70 Ib Plate

I I I I !

.5 1.0 1.5 2.0 2.5

MTip/MTruss

Figure 17. Comparison of Model and Actual Damping Ratios in Bending as a

Function of Tip Mass to Truss Mass Ratio.

127



I Damping]Ratio

.10 i_N_Centered Oscillations

05 _ Off-Center
• ions

0
0 180

Maximum Moment

360

Figure 18. Effect of the ttysteretic Behavior on Damping in Torsion.



EFFICIENCY AND CAPABILITIES OF MULTI-BODY SIMULATIONS

R.J. VanderVoort

DYNACS Engineering Co., Inc.
Clearwater, F1

ABSTRACT

Simulation efficiency and capability go hand in hand. The more

capability you have the lower the efficiency will be. Section I of this

paper discusses efficiency and section 2 deals with capabilities. The lesson

we have learned about generic simulation is: Don't rule out any capabilities

at the beginning but keep each one on a switch so it can be bypassed when

warranted by a specific application.

I. EFFICIENCY

Efficiency means different things to different people. For the person

running simulations Interactively on a terminal quick turn around time is

efficiency. For the person making 10,000 Monte-Carlo runs low cost is ef-

ficiency. For the person running real time simulations minimum CPU time is

efficiency.

Three aspects of a simulation should be considered when dealing with

efficiency; hardware, software and modeling.

Hardwar_ A fast processor will reduce CPU time for a given simulation but

this doesn't necessarily equate to improved efficiency. For example, the

Monte-Carlo simulation may take 10 minutes on a super computer and 2 weeks

on a PC but if time is free on the PC then that may be an efficient solu-

tion. Ve will not discuss hardware related issues except for two points. I.)

Fast hardware is of primary importance to the real time simulation because

it means higher fidelity models can be incorporated 2.) Vector processors

and parallel processors should use custom algorithms that take full ad-

vantage of the special machine architecture.

Software A fast algorithm will also reduce CPU time but again this doesn't

necessarily equate to improved efficiency. For example, it is generally
accepted that an ad-hoc simulation is much faster than a g_nerlc simulation.

The cost of developing and testing the ad-hoc simulation may exceed the run
time saving thereby reducing overall efficiency.
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Recent work in the area of symbolic programming has shown that sig-

nificant savings can be achieved by symbollcaly forming the equation of

motion and numerically solving them. Other algorlthms have been proposed
that promise similar savings. There Is one point that software developers

should keep in mind. Wlth generic simulations the user must have complete
flexibility in retaining or deleting different parts of hls model. Thls is

because generic simulations are often used for model development and valida-

tion. In that environment an analyst wlll add or delete certain features to
determine the effect on performance and whether or not the feature should be
retained in the model.

More on thls subject in section 2.

Modelin_ This is the domain of the simulation user and the area in which

many improvements In efficiency can be made. For example, deleting a high

order mode in a flexible body model has a compound effect. It reduces the

model complexity and at the same time allows a bigger integration step size
both of which reduce run time. Often times the reduced fidelity Is Justified

by the savings in run time.

The point to be made Is that the analyst is the end authority on the

"correct" model for a given application. The more flexibility he has in
changing his model the easier It is for him to select the best model for the

Job.

2. CAPABILITIES

Capabillty in our context is synonymous with flexibility and not with

complexity. A simulatlon may be very detailed and complex but if it can't be

changed then It's only useful in a narrow range of appllcatlons and has

limited capability.

In our experience with TREETOPS and DCAP we have found that it is much

easier to generate a model and obtain a response than It Is to predict the

correct response. In other words, when we don't get the expected response

the slmulatlon is usually correct and our expectation is wrong. This is not

entirely unexpected because it is very difficult, even for an expert, to

solve the equations of anything but the simplest dynamical systems. The

solutlon to this dilemma is flexlbillty. Start with simple models that have

known analytic solutions. Then add complexity one step at a time while

gaining confidence in your model and insl_ht into the behavior of your
system.
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For multlbody systems vlth flexible bodies the same arguments apply but

the complexity of the model increases more rapidly than for rigid bodies.
The person doing softvare development makes assumptions that simplify the
resulting equations of motion. If this is done carelessly then terms are
dropped that may prove essential In specific applications. On the other
hand_ If slmpllflcatlons are not made then the computation burden becomes
too great.

The lesson ve learned Is that you must retain as many terms as possible

In the kinematics but they must have associated svltches so you can easily
add or delete them from a specific application. This Is done for tvo
reasons. I.) to give you insight Into the effect of various model elements

on system response and 2.) to alloy the selectlon of the most efficient
model for a given appllcatlon.
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1. INTRODUCTION

Supported by the Spacecraft Control Branch of NASA Langley Research Center

under the Spacecraft Control Laboratory Experiment (SCOLE) program, the Con-

trol Research Corporation continued the investigation into the control design

challenges of large space systems and Spacecraft Control Laboratory Experi-

ment. This study concentrated on the second stage of a two-stage approach to

active control of the flexible orbital configuration of SCOLE. The principal

objective was to investigate if the structural vibrations excited by time-

optimal llne-of-sight pointing slew maneuvers of the hang-bang type could be

quickly suppressed via "modal-dashpot" design of velocity output feedback

control.

Structural vibrations in future large space systems such as space anten-

nas, space platform, space station, or of deployed flexible payloads attached

to the space Shuttle orbiter, and their interaction with on board controllers

have become a major concern in the design and operation of such control sys-

tems as, say, for pointing and stabilization. The natural vibration frequencies

of such systems are unconventionally low (tenths of I Hz in many cases) and

closely spaced, many of which lle inside or nearby the bandwlth of various

traditional (rlgid-body) control systems. In the past few years, many

approaches were proposed for designing advanced control systems that would

suppress vibrations in large flexible space structures, and various in-house

laboratory experiments were also conducted, each being specifically set up for

demonstrating some particular design techniques of interest. In 1983, the

Spacecraft Control Branch at NASA Langley Research Center initiated the Space-

craft Control Laboratory Experiment (SCOLE) program and the NASA/IEEE

Design Challenge [I] to promote direct comparison and realistic test of dif-

ferent approaches to control design against a common open-to-publlc laboratory

article. As shown in Fig. I-I, the article was intended to resemble a large

space antenna attached to the Space Shuttle Orbiter by a long flexible mast,

similar to the proposed space flight experiments and various space-based

antenna systems, and to have a truly three-dlmenslonal complex dynamics.

As stated in Ref. [I], the primary control task of the Experiment is to

rapidly slew or change the llne-of-slght (LOS) of an antenna attached to

the space Shuttle orbiter, and to settle or damp the structural vibrations

to the degree required for precision pointing of the antenna. The objective is

to minimize the time required to slew and settle, until the antenna llne-of-

sight remains within a specified angle.

Research on a practical two-stage approach and some associated control

design challenges in the context of SCOLE had been conducted earlier by Lin

[2]-[5]. His initial efforts, also supported by the SCOLE program, were con-

centrated on "Stage i" while the flexlble-body dynamics of the configuration

with a flexible mast beam was being actively developed at the Langley Research

Center.

Among the most commonly held ideas for pointing/retargeting of large flex-

ible space systems is the following intuitively appealing and rather practical

two-stage approach: (Stage I) slew the whole structure llke a rigid body in a

minimum time under the limited control moments and forces first, and then
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Fig. i-I Spacecraft Control Laboratory Experiment (StOLE)--
the orbital Shuttle-Mast-Antenna configuration.



(Stage 2) damp out the excited structural vibrations afterwards. Such an

approach undoubtedly will be a very relevant, and realistic as well, to study
with SCOLE.*

To slew a spacecraft for a given angle in a prespeclfled time, there are

many ways to command the slew actuators on board. The one that is easy to

implement is a bang-bang control. That is, a constant force at its allowable

maximum is applied in one direction half of the time and then in the opposite
direction the other half. Such is the most convenient and common with reac-

tion-Jet thrusters, and most spacecraft including the space Shuttle use thrus-

ters. As the structure considered for future space antennas and optics was

becoming larger and more flexible, structural dynamlcists suggested modifying

the constant profile by a sine or versine function so as to smooth the switch-

ing. To explore further in their theorectical and experimental investigations,

control engineers also started to apply Pontryagin's Maximum Principle of the

optimal control theory [6] to develop open-loop profiles that would "minimize"

excitation of the first few vibration modes.** Including more than a few

modes generally will make it almost impossible, even with the aid of powerful

digital computers, to carry out the complicated computations necessary for

applying the optimal control theory. To implement any such slew profile other

than the bang-bang type will also require that the thrusters be at least

"throttleable" in fine steps, which is still beyond the current state of the

art.

To slew SCOLE for the desired 20 ° under the specified limits on control

moments and forces in a minimum time, instead of some arbitrarily fixed time,

application of the well-known time-optimal bang-bang control theory [6]-[7]

was considered the most appropriate for the Stage-I design. The theory, how-

ever, is not directly applicable to SCOLE: due to the asymmetrical configura-

tlon and the moving coordinate frame that is fixed on the Shuttle body axes,

all axes are tightly coupled through nonzero products of inertia as well as

through different moments of inertia. After examining the major assump-

tions in the theory, Lin [2]-[3] was able to develop a useful practical design

technique for time-minimized single-axis bang-bang slew maneauvers. This in-

cludes the possible "bang-pause-bang control" when some judicious slew rate

limits are imposed on the slew design.

Analytical and numerical studies were then conducted on the implicit tran-

scendental nonlinear expression initially provided by NASA Langley Research

Center for SCOLE's line-of-sight error. A designer's choice of allowable in-

itial alignment to take advantage of the low moment of inertia in the roll, as

suggested by Taylor [I], was determined directly analytically. The slew

angles to achieve the desired LOS pointing were thus determined. [4]-[5]

A computer program for SCOLE's complete 3-axls rigid-body dynamics was

developed and used to simulate numerically the application of various time-

* The Space Shuttle, while in orbit, is under the single-axls "phase-plane"

rigid-body attitude control of "Digital Auto-Pilot" (DAP). If the two-stage

._pproach is applicable, then the current DAP can be used conveniently with

various proposed flexible-structure flight experiments in space without having

to make a major specific change in operation or design to suit each different

experiment setup.

** Usually all but 2 to 3 modes of the structure were ignored.
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minimized bang-bang type attitude slew maneuvers. The numerical simulation

test results indicated that the slngle-axis bang-bang or bang-pause-bang slew

maneuvers work fairly well for pointing the LOS of SCOLE under the specified

conditions. In particular, applying a maximum allowable control moment (i.e.,

lO,O00 Ib-ft) on the Shuttle and a maximum allowable control force (i.e., 800

ib) on the Reflector, plus imposing 5 deg/sec slew rate limit on the design,

yields the beat pointing accuracy (0.097 °) with mi_Imlzed slew time (3.733

see) and least sensltiv£ty to nonzero products of lnertla. Such is a best

design for LOS pointing slew maneuver for the SCOLE configuration so far as

the Stage i is concerned._5_

For designing vibration control systems (the Stage 2), a standard choice

would be to apply the modern control and estimation theory, namely, the

linear-quadratic-Gausslan (LQG) state-feedback control technique. The LQG

technique has been well accepted because of its success in various other

applications. Control splllover and observation splllover, however, have

surfaced as major roadblocks to successful application of such a state-of-the-

art state-feedback design technique to control vibrations in large flexible

space structures. Current spacecraft and many other engineering systems on

which the LQG technique has been very sucessful are of the rigid-body type

that do not have as many closely spaced low-frequency vibration modes as

there are in a future large flexible space system. Earlier, Bales [8] showed

by an example and Herrick [9] followed by a hardware experiment that, because

of control and observation spillover, even a simple flexible beam, which was

initially stable in the open loop, became unstable when the "modern modal

control" loops were closed.

On the other hand, dynamic properties of large flexible space structures

can be enhanced by active augmentation of modal damping and stiffness through

proper output-feedback control [10]-[24]. Lin [20]-[23] showed analytically

that an appropriate output feedback control system, particularly when it is of

the type of "modal dashpots" and/or "modal springs" [21], can even ensure

full-order closed-loop asymptotic stability of a very general class of

lightly damped large flexible space structures while improving their dynamic

characteristics.

For Stage-2 design to damp the excited vibrations in the SCOLE configura-

tion, one can consider using a modal-dashpot type of output feedback control

system first. One may then consider using a modal-dashpot augmented LQG

optimal state feedback control system, if the LOS stabilization performance is

not enough to satisfy the specified stringent accuracy requirements.

Before proceeding to designing a vibration control system for SCOLE, many

technical issues need to be addressed. For example, one needs to characterize

SCOLE's vibration modes with respect to (i) the excitation by the rapid slew

maneuvers, (ii) their contribution to the vibration (jittering) of SCOLE's llne

of sight, and (iii) the control authority of the control actuators. Which

modes need to be controlled directly? Which modes only need some additional

damping? Which are more likely to cause serious control spillover if not in-

cluded as "modeled modes"? Those are among many technical questions one gen-

erally should look into before starting out a meaningful design for SCOLE's

vibration control system.



2. MATHEMATICAL MODEL OF THE ORBITAL SCOLE CONFIGURATION

To assist our quantitative assessments of the vibratory impact of rapid

bang-bang slew maneuvers on the flexible SCOLE configuration and the perfor-

mance of proposed vibration control designs, we have developed a computer pro-

gram to simulate various vibratory responses of the configuration. The com-

puter simulation was based mainly on the modal data set D3D585 provided by

Dr. Suresh M. Joshi of NASA Langley Research Center as the flexible-body dyn-

amics, and the nonlinear LOS error expression formulated by Mr. Larry Taylor

[I]. We extended a portion of the expression by including a few more terms to

take a better account of the effect of bending in the mast.

2.0 Outline of the Orbital Shuttle-Mast-Antenna Configuration

As shown in Fig. i-I, the configuration of the SCOLE represents a large

antenna attached to the Space Shuttle Orbiter by a flexible beam as the Mast.

The configuration was chosen for its similarity to proposed space flight exper-

iments and various space antenna systems.

The dynamics of the SCOLE configuration are described [I] by a distributed-

parameter beam equations with rigid bodies in the three-dlmensional space, each

having mass and inertia at either end. One body represents the space Shuttle

Orbiter, having the mass, inertia, and dimensions typical of the real one. The

other body is a large antenna reflector. The equations of motion for the com-

plete configuration are formed by incorporating the three-dlmensional rigid-

body equations into the partial differential equations of beam bending and tor-

sion. The flexible mast is treated as a standard slender beam. The boundary

conditions at the ends of the beam contain the forces and moments applied to

the rigid Shuttle and reflector bodies. The mast is not attached to the

mass center of the reflector, but rather significantly away in both x and y

directions. The nonlinear kinematics of the two sizable bodies and the offset

attachment of the reflector couple the thre& otherwise uncoupled beam equa-

tions. The reader is referred to Taylor and Balakrishnan's paper [I] for the

details. The rigid-body part of the mathematical model was used by Lin ear-

lier in his studies on the LOS pointing (i.e., the Stage i) of the configuration.

The studies on vibration control reported here were based on a most recent

version of the flexible-body part available; see Section 2.1 below.

The line-of-sight (LOS) error of the SCOLE configuration is a h/ghly nonli-

near implicit expression. The line of sight is defined by a ray emited from

the feed on the Shuttle which is reflected at the center of the Reflector. It

is affected by the pointing error of the Shuttle, the offset attachment of the

Reflector, and the misalignment due to the deflection and torsion of the Mast.

The reader is again referred to Ref. [I] for the original formulation of the

LOS error. An equivalent expression having a simple modification, which is

more convenient than the original for both efficient numerical computations

and in-depth analytical investigations, was used by Lin in his earlier rigid-

body studies [3]-[5]. For the current flexible-body studies, the nonlinear LOS

error expressio:_ also needs some more terms in order to have a better

accounting for the bending of the mast beam; see Section 2.2 below.



2.1 Flexible-Body Dynamics

The bending and torsion characteristics of the SCOLE configuration were

or_g[nally formulated in partial differential equations by Taylor and Balak-

rishnan {[_. Robcrtson [25] derived the corresponding equations of free motion

taking into account the kinematic coupling resulted (i) from the offset attach-

ment of the Reflector to the Mast and (ii) from the nonzero products of

inertia of both the Shuttle and the Reflector. He then solved the equations in

terms of trigonometric and hyperbolic functions and computed a set of natural

frequencies and mode shapes. Such results are not readlily useful for control

studies.

To facilitate the control analysis and design for SCOLE, Joshi [26] first

derived a state-space model from Robertson's results; the data set was named

"BMDT3D". Later, he improved Robertson's results, and also derived another

state-space model, named "D3D585 '°. Our computer simulation program was in-

itially based on the data set BMDT3D, which contained only the first five flex-

ible-body vibration modes. It was then updated when Dr. Joshi furnished us

with the set D3D585 later.

The set D3D585 provides modal data in the state-space (A,B,C) form. It

contains only the first i0 flexlble-body modes but no rigid-body modes nor any

nonlinear rigid-body dynamics. This set was quite appropriate for our purpose

of assessing the vibratory impact on SCOLE. We found it more effecient and

convenient, however, to compute the time transition of the states using the

second-order modal equations directly, because of the decoupled nature of the

former, than to do so using the first-order state equations. We thus con-

verted the furnished data back to the following standard modal form:

m

k=l

i : I,...,N (2-i)

n

Yj = ! (Cvj¢i6 i + CDj¢iq i)

i=l

j = 1,...,_ (2-2)

where 6i = 2_iu i, oi = _i 2 (2-3)

are, respectively, the damping and stiffness coefficients of the unit-mass

linear oscillator representing the ith vibration mode; mi and $i denote the

natural frequency and mode shape, respectively, of mode i; :i denotes the in-

herent damping ratio of mode i, which had been assumed to be 0.3% for all

flexible-body modes of SCOLE [I]. qi and qi denote the coordinate and velo-

city, respctively of the ith mode.

The kth force (torque) input is denoted by Uk, with column vector bFk rep-

resenting the corresponding actuator influences on SCOLE. The jth measurement

output is denoted by yj, with row vectors CVj and CDj representing, respec-

tively, the velocity and displacement sensor influences.

Putting (2-1) and (2-2) into a matrix form, we get



where

(2-4)

(2-5)

A = diag [2_i_i] , I " dlag[_i21 (2-6)

# = [@I' "'" @n ]' BF = [bFl' ""' bFm] (2-7)

CVI i
Cv = CV _

CD =
CD_

i Ful
= nN u = Um

[Yl7

L'JY= y£
(2-8)

In accordance with Robertson's formulation, we also assume that the bend-

ing and torsion in SCOLE are referred to the coordinate system defined on its

initial undeformed configuration. Thus, before any deformation, the center of

mass of the Shuttle is at the origin of the coordinates; the roll, pitch, and

yaw axes (i.e., body x, y, z axes) of the Shuttle, align with the x, y, z coor-

dinate axes* respectively; and, in particular, the straight mast beam coincides

with the z coordinate axis. Note that, since the flexible mast was not tre-

ated as a cantilevered beam in Robertson's derivation, not only the mast may

not be tangential to the z coordinate axis, but the center of mass of the

Shuttle also may not remain at the origin, nor may the Shuttle body axes

remain parallel to the coordinate axes, when a significant deformation of the

mast occurs. The llne of sight of the SCOLE configuration will thereby be sig-

nificantly affected.

2.2 Line-of-Sight Error Expression with More Bending Terms

In order that the jittering of the line of sight (LOS) due to excited vibra-

tions can be more accurately evaluated, we used almost the same nonlinear

expression for the line-of-slght (LOS) error of the SCOLE configuration as ori-

ginally given in Ref. [i]. Unlike the orginal, however, our improved version

also takes into account the z-axls dislocation of the Reflector due to

bending of the mast, and like the one Lin used earlier [4]-[5] the LOS vector

RLO S is not normalized. Note that the LOS error expression could be expanded

in a Taylor series and a linearized version could be obtained by taking the

first-order terms. A linearized version, though useful in llnear-quadratlc

* Robertson's y and z axes are opposite in sign to those defined by Taylor for

SCOLE. We continue to adopt Taylor's definition for consistency with Lin's

earlier studies [2]-[5] on the Stage I.



optimal control designs, is not appropriate for our current use since the

excited vibrations are sufficiently large in magnitude and the second- and

high_r-order terms of the series expansion may not be negligible at all.

The location of the center of the Reflector, represented by R R ,is defined

by the location of the joint where the Reflector is attached to the Mast; see

Figure 2-2. Denote by Rj the location of the joint relative to the center of

the Reflector, and by R T the location of the same point (also the tip of the

mast) with respect to the center of the Shuttle. Then the vector R R is given

by

R R = R T - T T T 4 Rj (2-9)

The vector Rj is constant in magnitude because of the rigid reflector, but its

orientation with respect to the Shuttle is affected by the deflection at

the tip J. The product T1TT4 of coordinate transformations T 1 and T 4 is to

take care of the angular change. As in Ref. i, T 1 denotes a direction-coslne

transformation from the Shuttle to the Earth (inertial) coordinates, and T 4 one

from the Reflector to the Earth coordinates.

A reasonable approximation for the tip location is given by

F Bendx I
RT = _ Bendy-J1302 - Bendx z -Bendy 2

(2-11)

where Bend x ffiUxS - UxR Bendy ffiUy S - Uy R

UxS and Uy S denote the deflections of the mast at the Shuttle end in the

xz and yz planes, respectively; UxR and Uy R are the corresponding deflections
at the Reflector end.

Eqs. (2-9)-(2-11) constitute our additional modification to the LOS error

expression. Note that the vector R R originally given as (18.75, -32.5, -130) in

Ref. [I] corresponds to the undeformed case. To see it, assume that ther

are no deflections at all. Then Bend x and Bendy are both zero, and T 4 is

equal to T I. Therefore, R T = (0, O, 130). Consequently, R R ffiR T -Rj - (18.75,

-32.5, 130).

In the analytical studies on the LOS error of SCOLE [4]-[5], we found it

more convenient not to normalize the LOS vector RLO S first, although the res-

ulting error expression is the same since division by its norm is still made

later at the end. The LOS error with such a trivial modification is given by

eLO S ffi + sin -1 [ I IV T x T1RLOSI I / I IRLosllI (2-12)
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Fig. 2-2 Line-of-slght vectors R R and RLOS, and Mast tip position vector R T.



with the unnormalized LOS vector being defined as

RLO S = RF,= R R -R F -2[(R R -RF)-RA]R A (2-13)

Where as defined in [i], R F is the vector representing the feed location (3.75,

0, 0). R A is a unit vector in the direction of the Reflection axis in the Shut-

tle body coordinates, i.e.,

R A = T_ T 4

For the target direction specified in [i] as D T = (0, O, i), Expression

(2-12) reduces to

eLO S = + sin Tlr I RLO S) + (Tlr 2 RLO S) / [[RLOS[ (2-14)

where Tlr I and Tlr 2 denote respectively the first and the second rows of

matrix T I .



3. VIBRATORY RESPONSES TO BklqG-BAMC TYPE RAPID SLEW MANEUVERS

Several LOS pointing slew maneuvers of the bang-bang type were applied to

our computer simulation of the SCOLE flexlble-body dynamics. The resulting

responses range from excessive to minimal, depending on the magnitude of the

applied force at the Reflector. Note, however, that all these slew maneuvers

were designed to provide minimized slew time under the increasingly tight limit

imposed on the respective applied force.

The slew maneuver that excited the most violent vibrations in SCOLE was

chosen for studying the control design and for generating in-depth insights

into the vibration control challenges. On the other hand, the least violent

one deserves further exploration in the future, since it may potentially

require a smaller total time for both slew and stabilization.

In assessing the impact of structural vibrations on SCOLE, we view the

slew maneuvers as tlme-dependent disturbances Instead, and only the vibra-

tory portion of the tlme-domain responses are of real interest. Therefore, it

is reasonable that we concentrate only on the flexible-body and temporarily

ignore any rlgld-body dynamics in this study. This assumption is equivalent to

the absence of rlgld-body dynamics. It is also reasonable to assume that,

before being subject to such disturbances, SCOLE was initially at rest and had

no deformation nor LOS error. The former assumption is equivalent to setting
to zero the initial conditions on the normal coordinates and velocities of all

modes, and the latter equivalent to aligning the undeformed SCOLE configura-

tion with the attitude (_,,e,,_,) that corresponds to zero LOS error. Such

roll-pitch-yaw Euler angles, calculated and used by Lin earlier [4]-[5], are
listed below for reference:

_I = -14"03624347°; 81 = -6"38707294°; _I = O°"

3.1 Excitation by the Rapid Time-Minimlzed Bang-Pause-Bang Slew Maneuver

We first examined, through numerical simulation, the SCOLE flexlble-body

dynamics under the excitation of the rapid tlme-mlnlmlzed roll-axls bang-

pause-bang (BPB) slew maneuver that was considered a best candidate for

pointing the line of sight of the SCOLE as a rigid body [4]-[5]. Amon 8 many

other single-axis LOS pointing slew maneuvers of the bang-bang type previously

studied, this BPB maneuver was judged to be the best compromise in terms LOS

pointing accuracy achievable, slew time required, and performance robust-

ness to nonzero products of inertia. It was designed to slew the SCOLE confi-

guration about the negative roll (i.e., -x) axis for about 20 ° to correct the

initial 20 ° LOS error specified in [I]. This slew maneuver requires that the

maximum allowable moment (I0,000 ib-ft) be applied to the Shuttle about the

negative roll axis and simultaneously the maximum allowable force (800 ib) at

the Reflector center along the negative y axis, both for only 0.867 sec.;

then, after a long pause of 3.158 sec., these maximum moment and force be

applied again for only 0.867 sec. but in the opposite directions (i.e., positive

roll and y axes, respectively).

Such a BPB slew maneuver was applied to our computer simulation of the

SCOLE flexible-body dynamics. The simulation results are summarized by the

plots in Fig. 3-1a, which show that such a maneuever would cause excessive
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vibrations in SCOLE! Observe that: the line of sight vibrated with error

between 89.8 o (or 133.3 o if not taking on the principal value of the arcsine in

Expression (2-14)) and 14.7°; the tip of the mast vibrated in the yz-plane

between +114 ft and -113 ft.

Fig. 3-1b show the deviations in Euler attitude angles of the Shuttle (S)

and the Reflector (R) from their "nominal" alignment of zero LOS error. These

deviations correspond to the bending slopes and the torsion at the respective

end of the mast. Observe that the Shuttle rolled to the right and the left

between +17.16 o and -17.06 o, while the Reflector rolled to the left and right

between -86.96 o and +88.35 °. There were virtually no pitch and yaw motions of

the Shuttle, but the Reflector pitched between -10.63 o and 8.75 o and yawed

betweeen -32.27 o and +27.97 o•

In general, some significant excitation of the vibration modes of a flexi-

ble space system, such as the orbital SCOLE configuration, should be expected

when large moments and forces were used to their limits in a bang-bang manner

to minimize the slew time. The appalling magnitude of the vibratory impact,

however, was indeed a surprise.

Such excessive vibrations certainly post serious challenges to the Stage-2

design, i.e., the control design for suppressing such vibrations after the exci-

tation. Can such large-magnitude vibrations be brought down to some tolerable

level in about the same length of time (say, 5 sec.) as the slew maneuver?

How to design such a fast effective vibration controller? We shall continue

to address such design challenges in Section 4.

3.2 Excitation by Other Rapid Time-Minimized Bang-Bang Slew Maneuvers

Are all slew maneuvers of bang-bang type so terrible to flexible space

systems? Why are the excited vibrations in SCOLE so large in magnitude? Even

when one can design a powerful fast vibration controller capable of damping

out such vibrations, one still cannot stop thinking of these and other puzzling

questions_ To investigate further, we conducted the following numerical

experiments on our computer simulation of SCOLE flexible-body dynamics. All

were the same as before, except that a different bang-bang slew maneuver was

applied.

3.2.1 Experiment FIO -- No force on Reflector. First we tried to use

only the i0,000 ib-ft moment on the Shuttle. The same roll-axis bang-bang

slew maneuver using only such a moment for accomplishing the same 20 o pointing

task in the minimum time as was previously designed and evaluated on the rigi-

dized configuration in [4]-[5] was tried. This maneuver requires that the max-

imum moment be applied first about the negative roll axis for 6.307 sec, and

then switched to the opposite directions (i.e., positive roll axis) for another

6.307 sec. It was truly a bang-bang (BB) control.

The simulation results, as shown by plots in Fig. 3-2, clearly show that

the vibratory impact was greatly reduced. The LOS error was only 6.25 o at

most, and the mast tip vibrated only between +5.06 ft and -5.18 ft.

Of course, the (minimized) slew time is much longer; it is a main reason

why this maneuver has been rejected earlier [4]-[5] as a Stage I design for

Ig3
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SCOLE. This simulation ks useful only when its results are compared wlth the

foregoing case of using additional 800 Ib force on the Reflector: it serves as

an opposite extreme, since no force was applied to the Reflector at all.

By a careful inspection of the time histories of the tip deflection in both

cases (see Figs. 3-1b and 3-2b), we can make the following interesting observa-

tions. While the moment was being applied to the Shuttle about the negative

roll axis without any force on the Reflector, the beam bent backwards and the

Reflector lagged behind*. On the contrary, the addition of the maximum force

on the Reflector reversed the situation, even though the additional force had

exactly the same purpose of rolling the configuration to the same side as the

moment on the Shuttle! The Reflector then became leadln_ instead of lagging.

3.2.2 Experlaent FI80 -- 80 Ib Force on Reflector. The leading of

the Reflector might be responsible for the huge increase in LOS error, as imp-

lied by the above observations. It is therefore reasonable that reducing the

applied force might reduce the lead and hence reduce the LOS error. A second

experiment was thus conducted with an 80 Ib maximum force, which is only one

tenth of the original allowable maximum.

A new roll-axis slew maneuver was designed, in the same way as the first

BPB slew maneuver; but only 80 Ib, instead of 800 ib, force was to be used in

conjunction with the same i0,000 ib-ft moment to accomplish the same 20 e LOS

pointing in a minimized time. It turned out to be a banK-bang maneuver in-

stead, since the slew rate would not reach the imposed 5 deg/sec limit. In

almost the same way as in the case of 800 ib, the slew maneuver requires that

both the moment and the (tlghter-llmlted) force be applied with respect to the

corresponding negative axes for 4.416 sec, and then reversed to the corres-

ponding positive axes for another 4.416 sec, but with no pause in between.

The simulation results, as summarled by plots In Fig. 3-3, confirmed what

we thought. The lead by the Reflector is now greatly reduced, and so are

the LOS error and the mast bending, compared to the case of 800 Ib (Fig. 3-1).

The LOS error was only 24.7 ° at the highest peak of its time history; the tip

deflected only between +20.59 ft and -10.83 ft; and the Reflector rolled only

between +15.98 ° and -8.31 °.

These results have clearly shown that the 800 Ib force was directly res-

ponsible for the excessive vibrations and the unreasonable LOS error.

Next, compare these results wlth those of Experiment FIO (Fig. 3-2). A

peak LOS error of 24.7 ° is fairly large compared to only 6.25 ° of Experiment

FI0; so is a maximum deflection of 20.59 ft compared to only 5.18 ft of FIO.

Does this mean that no force should be applied to the Reflector at all? No,

we did not think so! Instead, we reasoned that if one could reduce the lead

_ightly further, one could further reduce both the LOS error and the tlp def-

lection. So a third experiment with a slightly smaller force was performed.

* Note that when a negative moment is applied to the Shuttle, a positive def-

lection indicates the lagging of both the mast tlp and the Reflector.
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3.2.3 Experiment F125 -- 25 Ib Force on Reflector. Since the Shuttle-

attached SCOLE configuration was chosen because of its similarity to proposed

space flight experiments [27]-[29], we thought it would also be more realistic

to consider a force of about the same level as the vernier RCS thrusters on-

board the Shuttle Orbiter. Since the existing vernier thrusters generate 24 to

24.5 ib thrust each [30], we simply selected 25 ib for the third experiment.

Again a new roll-axls slew maneuver was designed in the same way as

before for accomplishing the same 20 ° LOS pointing in the minimum time. It

certainly is a bang-bang maneuver, llke the case with 80 ib force. This BB

slew maneuver requires that both the I0,000 ib-ft moment and the 25 ib force

be applied with respect to the negative roll and y axes, and then switched to

the positive axes, as before, for 5.479 sec each time.

The results, as shown in Fig. 3-4 by plots, are very pleasing, indeed. The

largest LOS error was less than 0.51°; the tip deflected only between +0.25

and -0.3 ft; and the Reflector rolled only between +0.16 ° and -0.3 a ! All are

one order of magnitude smaller than those from applying no force on the

Reflector! Of course, the time required for completing the 20 ° slew of the

llne-of-sight is also shorter. In summary, for a BB slew maneuver of the

flexible SCOLE configuration, using a force of 25 Ib on the Reflector In

addltlon to a I0,000 Ib-ft moment on the Shuttle Is In all aspects supe-
rior to using no additional force there.

The force of 25 Ib is simply a rather arbitrary trial value. One could

continue to search for an optimal value that would result in still smaller tip

deflection, but we did not do so because we felt that our original purpose had

already been served very well.

If LOS error were the only concern and time were not so important, then

one should immediately stop studying the use of 800 ib force on the Reflector.

On the other hand, since time is at least equally important for SCOLE, it is

not clear at all that 25 ib might be preferred outright to 800 ib: the mini-

mum time required for the same 20 ° slew is 10.959 sec for the case of 25 ib

but only 4.892 sec for the case of 800 Ib, that is, more than twice longer.

Moreover, in both cases, some active vibration controllers are still needed to

damp out the excited vibrations; and hence some additional time is required in

order that the required LOS accuracy of 0.02' can be met.

To damp out excessive vibrations, such as excited by the BPB roll-axls

maneuver using both an 800 ib force and a i0,000 ib-ft moment, can be serious

challenges to the Stage-2 control design. Insight and techniques generated

from dealing with such challeanges certainly will be useful in designing

effective vibration controllers for the case of using a smaller force, such as

25 or 80 lb.
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4. ACTIVE VIBRATION CONTROL FOR SCOLE

4.1 Direct Veloclty-Output Feedback Control

Let YV denote the veloclty-sensor outputs.

(2-4)-(2-5), we have

Yv "

Then from the system Eqs.

(4-1a)

The general form of direct velocity-output feedback control is

u--Gy V

where G denotes a matrix of constant feedback gains.

(2-4) results in the following closed-loop system

(4-1b)

Substituting (4-1) in

+ (_ + 0TBFGCv_) _ + En = 0 (4-2)

The modal stiffness matrix E of SCOLE flexible-body dynamics is positive

definite, since no zero-frequency rigid modes were included in dataset D3DS85.

By applying the classical Kevln-Tait-Chetaev theorem, its extensions, or Liapu-

nov's second method, one can show (see, e.g. [17]-[23]) that the closed-loop

system (4-2) is:

(i) stable (in the sense of Liapunov) if the augmented damping matrix

(A +OTBFGCv 0) is symmetric and nonnegative definite, and

(ii) asymptotically stable if the augmented damping matrix is positive definite.

When the velocity sensors are, as generally assumed, co-located with the

sensors, i.e., CV - BF T, the additional damping matrix (_TBFGCv#) is always

nonne_ative definite*, whether the gain matrix G is positive or merely non-neg-
ative definite. In other words, direct velocity-output feedback control at

least will never destabilize the system, even when no inherent damping exists

(i.e., A ffi0).

For most practical cases where there are less actuators than vibration

modes and there are virtually no inherent damping (i.e., _ is small and some of

its diagonal elements are virtually zero), the existing theory cannot help det-

ermine whether a closed-loop system is asymptotically stable or not, though

numerical results can [17].

The theory is not enough to help design the feedback gains, either. Usu-

ally designers simply restrict the gain G to be diagonal matrix, and therefore,

make each co-located pair of actuator and sensor act llke no more than a (pas-

sive) dashpot. Having no systematic method to help calculate the required or

desirable values for the feedback gains, some designer even set the diagonal

elements rather arbitrarily to some trial positive numbers. A practical ques-

* Only in a rare special case, which is rather unrealistic to truly flexible

large space systems, where there are as many independent actuators (and co-

located independent sensors) as there are vibration modes and the influence

matrix BF is nonsingular, will a positive definite gain matarix G quarantee

that the product 0TBFCv_ is also positive definite.



tion is: how to design the gains so as to add more damping selectively to some
specific modes than others? How not to restrict the resulting design to be
strictly local feedback? How to design the direct velocity-output feedback as
a rc_,[ly multi-variable control system? A systematic design method is needed.

4.2 Concept of Modal Dashpots

The diagonal form of feedback gain matrices spreads the control effort

thin over all the vibration modes. One cannot design the diagonal form for

adding desirable amounts of damping respectively to certain selected vibration

modes. On the other hand, when one wishes to add a certain amount of damping

to each mode, one might consider computing the gain matrix G as the general

solution of the following NxN matrix equation

_TB F G CV$ = 6" (4-3)

without restricting it to be diagonal, where A* denotes the matrix of desired

additional modal damping. Expressed in terms of additional damping ratio _i
desired of each mode, the matrix 4" may take on the same simple form as Eqs.

(2-6), (2-3), i.e.,

a* = diag[ 6;] (4-4a)

* * i = I, .. N (4-4b)and 6i = 2_i_ i . ,

Note that for a realistic flexible space structure there are much more vibra-

tion modes than there are locations for placing actuators or sensors (i.e.,

N>>E and N>>m). Thus, if one wishes to augment some indeterminate amount of

active damping to all the modes, then one may try to obtain an approximate

solution of Eq.(4-3), such as of the least squared error like the following

GP = (_TBF)P &* (CV#)e (4-5)

where AP denotes the Moore-Penrose pseudo-inverse. No conditions on the

matrix sTB F or CV# need to be satisfied, and the pseudo-inverses can be calcu-

lated numerically using the singular value decomposition [31]-[32].

Solutions of the form (4-5) have three major practical drawbacks. First,

the number N of vibration modes in a realistic flexible structures is enor-

mously large, making it impractical, if not impossible, to calculate the

pseudo-lnverses of the extrelely large matrices $TB F and CV#. Secondly, one

still cannot really focus a specific subset of the modes, since the solution GP

is merely a least-square approximation, with errors spread all over the

modes. Thirdly, also because of approximation errors, the resulting product

sTB F GP CV0

might not be symmetric, and hence stability might not be guaranteed.

In practice, one needs to concentrate on a relatively small number of

important modes. In many cases, one cannot care less for those modes which

are less important when one cannot even get what is required for suppressing



the more important ones. Thus, assume that some n modes (n<<N) are the most

important, and a reduced-order dynamic model is formed by selecting only those

n modes. Call those modes modeled modes and the rest unmodeled modes. Par-

tition the matrices n, 0, A, and Z accordingly into the modeled (H) and the

unmodeled (U) parts, i.e.,

F .7
n = L"U] # " [#M,,U] A = black-diagtAM,AU] _ " black-dlagtrM, rU] (4-6)

Then, the closed-loop equation for the reduced-order model is

_'bl+ (AMT + *TBFGCv@M) _ + rMnM = 0 (4-7)

Now, let a reduced matrix A_ be given that corresponds to the desired

additional damping for the n modeled modes. Then the design is reduced to

solving the following much smaller nxn matrix equation, instead of the NxN Eq.
(4-3), for the gain matrix G:

oTB F G CV¢ M = AM (4-8)

AS before, a solution in the same general form as (4-5) can be obtained numer-

ically by computing the pseudo-lnverses of influence matrices (OMTB F) and

(CVOM). It is still an approximate solution unless some rank conditions are

satisfied by the influence matrices.

Of the particular interest is when the control influence matrix (0MTBF)

has the full row rank and the observation influence matrix (CvOM) has the

full column rank. In other words,

rank(@TBF) = row(@MTBF) " n (4-9a)

rank(CraM) = column(Cv@M) = (4-9b)

Such a special case requires that n<__ and n<m, i.e., the number of modeled
modes do not exceed both the number of actuators and the number of sensors to

be used in the feedback control. Under the full-rank conditions (4-9), the

pseudo-inverses are also generalized Inversea. That is,

T R
(_TBF)P = (_MBF) = right generalized inverse of _TB F

" ('MTBF)T [(.MTBF)(_MTBF)TI -I (4-i0)

(Cv#M)P = (Cv#M)L = left generalized inverse of CV# M

=[(Cv_M)T (Cv_M)I -I (Cv_M)T (4-11)



The gain matrix G* computed therewith solves Eq. (4-8) exactlyt.

form expression is given by

, )L
C* = (_TBF)R A M (Cv¢ M

The closed-

(4-12)

Consequently, the reduced-order closed-loop system equation (4-7) thereby

simplifies to

_M + (AM + AM) _M + EMnM = 0 (4-13)

The desired damping aM is thus added,to the reduced-order model exactly as

specified• For stability, the matrix AM of additional damping only needs to be

nonnegative definite; it need not be diagonal.

When a M is chosen to be a diagonal matrix, as it is often convenient and

reasonable to do in practice, the resulting velocity-output feedback control

will perform like a separate "flashpot" attached to each mode of the

reduced-order model. Specifically, let

A M = diag M (4-14)

Then (4-13) can be rewritten in the component form like (2-1) as follows:

N * •

+ (_Mi + 6Mi) nMi + _Mi nMi = 0 (4-15)qMi

where nMi denotes the normal coordinate of the ith modeled mode. Eq. (4-15)

obviously means that the ith modeled mode, like an independent linear oscil-

lator, is augmented with an additional dashpot whose damping coefficient is

_Mi- This is why Canavin called such s design a "decoupled controller", or

"modal dashpots" [ii].

The diagonal elements 6Mi should be nonnegative to _ake a practical sense.

Like (4-4), it can be given in terms of damping ratios _Mi and natural frequen-

cies mMi as , ,

6Mi ffi2 _Mi WMi (4-16)

t Given whatever values to the matrices, it is mathematically an exact solu-

tion so far as the equation (4-8) is concerned. Of course, it may not be an

exact solution so far as the system (4-2) or even (4-7) is concerned, when any

matrix, for example the modal matrix _ as usual, contains some modeling or

computational errors. Small errors in _ may invalidate stability results of

general feedback gains but not the modal-dashpot type [20]-[23].



4•3 Improvement on the Design Method

One can design very effective vibration controllers by the method of modal

dashpots, as demonstrated by our applications to SCOLE. The interesting simple

formula (4-10)-(4-12), however, does not by itself complete the design

method for an effective control of structural vibrations. In fact, when

the concept of modal dashpots was initially formulated by Canavin [10]-[12] as

"decoupled controller", it was accompanied by two major technical drawbacks

that almost rendered itself practically useless. Later, through various

numerical evaluations and theoretical analyses, Lin and his associates

[20]-[24] Identified the underlying causes of these problems, and greatly

enhanced the utility of this concept. In the course of applying it to the

challenging SCOLE vibration control design problem, we also made some addi-

tional improvement on this design method.

A first initial technical drawback was the high-gain low-damplng problem•

After he applied it to a representative large space structure (of which 37

vibration modes were considered), Canavin concluded that "the decoupled con-

troller may be of limited utility due to the high gains produced by this

approach "[II]. The feedback gains were mostly in the orders of 10 I' to 1012 ,

while only additional i0% of critical damping was designed for each of the 12

modes he had selected to be "controlled" (i.e., modeled) modes.

Aubrun [13] proposed the approach of low-authority control (LAC) by limit-

ing to I0% modal damping and by using sufficiently small gains so that the

amount of active damping achievable is predictable. Since then, direct velo-

city-output feed back control has been commonly thought to be of only low

authority, low performance, and secondary importance• However, the vibration

controllers of Aubrun's design should be of low authority, not because of

direct velocity-output feedback, but rather because of the applicability of

Jocobi's root perturbation formula on which he based his theory• For his use

of the perturbation formula to remain valid, the control authority (and

specifically the feedback gains) must be sufficiently low so that the closed-

loop eigenvalues and eigenvectors would be resulted from only infinitesimal

perturbations, i.e•, only very small increase in damping ratios.

A second initial technical drawback of the basic design method was severe

interactions between modeled and unmodeled modes. When the method was

applied to another representative large space structure (i.e., ACOSS model 2

[33]), the interactions were so severe that the desired damping performance on

the modeled modes was degraded very badly, although the closed-loop system

remained stable [24J.

The following common causes were discovered.

(i) Some modeled modes had too small control influences (@MiTBF) or too small

• observation influences (CV@MI). This made the generalized inverses (@MTBF) R

or (CV_M)L , and hence the resulting gain matrix, unnecessarily large•
Theoe low-lnfluence modes should he deleted from the reduced-order model,

or else some actuators or sensors should be relocated to improve their in-

fluences on these modes.

(2) Some of the rows in matrix _MTBF had too small degree of independence from

the others, or some columns of CV_4 had the similar situation• This also



made the generalized inverses, and the gain matrix, unnecessarily large in

magnitude. Llke (i) above, these modes should be excluded, or the location

of some actuators or sensors be improved.

(_) Some [ow-[requency unlnode[ed modes had too large control influences

(_ujTBF) or observation influences (Cv_u_ compared to those of the modeled

modes. This made excessive spillover. These modes should be added to the

reduced-order model; otherwise, some actuators or sensors should be relo-

cated, or their influences be properly synthesized [35]-[36].

(3) Some of the desired additional damping coefficeints (6Mi*) were too large

for some modeled modes, even all were set equal to the same small design

value (say, _Mi _ 0.i). This made some part of the gain matrix unneces-

sarlly large, and hence increased interactions with some unmodeled modes.

Open-loop responses of individual modeled modes should be analyzed and the

need for additional damping realistically guesstlmated with respect to the

control/observatlon influences on each modeled mode. For properly designed

modal dashpots, e.g., our design for STOLE, the additional damping could be as

high as 67 % for some modes or as low as 3% for some others, depending on the

ability of the actuators as well as on the individual open-loop responses.

We have begun to develop the concept of modal dashpots into a useful sys-

tematic design method for direct output feedback vibration control. Although

the closed-form formula has reduced the design of modal dashpots to simple

cranking of numbers, yet to make it really work for effective control of large

excited structural vibrations in flexible space systems, such as the SCOLE con-

figuration, many careful pre-design steps have to be taken.

The design method was initially formulated by Canavin without explicit

consideration of limitations on the requirement for control forces and torques.

Now, the explicit limits must be considered when applying the method to SCOLE.

Also, some saturation "circuitry" must be imposed on the feedback control so

that the magnitude of the forces or moments generated by the modal dashpots

would automatically be limited to 800 ib and i0,000 ib-ft, respectively.

Saturation may not destroy stability when actuators are co-located _rlth sen-

sors [37], but would somehow limit the performance of the feedback con-
troller.

2O7



5. DESICN OF NODAL DASHPOTS FOR SCOLE

The vibrations in the SCOLE configuration excited by the rapid time-minim-

ized BPB LOS pointing slew maneuver, as reported in Section 3.1, posted three

serious vibration control design challenges:

(i) The excited vibrations were excessively and unrealistically large in magni-

tude: the llne of sight once had an error of 89.9 ° (or beyond) and the

130-it mast once had a tip deflection of 114 ft.

(2) The allowable time was extremely short: it should be minimized, so only

an equally short time (specifically, only 5 sec, which was approximately

equal to the maneuver time) was allowed.

(3) The available control forces and moments were limited: the 800 ib and

i0,000 ib-ft limits were imposed the same way as on slew maneuvers.

In order to design effective modal dashpots for suppressing such excessively

large vibrations In SCOLE in a very short time, we conducted careful pre-deslgn

analyses on the vibration modes and their influences by the actuators and sen-

sors. The candidates for modeled modes were selected, and then divided into

two groups according to the actuator influences. The design of the modal

dashpots was therefore divided into two parts accordingly.

5.1 Analysis on Vibration Modes

Initially, two different numerical analyses of SCOLE vibration modes were

made, each with a different standard measure of importance. The results were

inconsistent. Then a third measure was developed and used; the results were

finally fair and satisfactory.

5.1.1 Measure I: LOS Error due to Initial Modal Displacement

"LOS error contribution" is a common measure used by many structural dynami-

cists for determining if a vibration mode is "critical" or not, i.e., if it needs

active control or not. It was used by Draper Laboratory [33]-[34], and

accepted by other ACOSS* and VCOSS** contractors [38]-[45] as the standard

approach, in the modal analysis of both Model No. i (namely, the Tetrahedron)

[34] and Model No. 2 [33] of representative large flexible precision space

structures. The standard approach is to express the LOS error as a linear

function of physical coordinates under the assumption that all the displace-

ments a_e sufficiently small. When the physical coordinates are transformed

into the normal coordinates of the structure, the LOS error become a linear

function of the normal coordinates. The "critical modes" are then determined

by comparing the modal coefficients of the LOS error.

Such a measure is not directly applicable to rapid pointing of the SCOLE

confLguration nor, in general, to large space structures that are subject to

:-apid sl_w or retargeting maneuvers. First, the displacements (deflections and

_rsions, for example) generally are large, hence the linearizatlon of the LOS

error is not valid. Thus, for SCOLE, we used the original nonlinear expression

Active Control of Space Structures, a DARPA technology program.
**

Vibration Control of Space Structures, sponsored by Air Force Wright
_e ronautical Laboratories.



without linearization. Secondly, the LOS error is a dynamic vibratory res-

ponse, instead of being simply a static displacement of the line-of-sight.

Thus, instead of comparing only the LOS error coefficients, we compared the

tLme histories of the LOS error the individual modes would separately cause if

they were intially excited alone.

For this analysls, the SCOLE configuration was assumed to be initially at

rest with no LOS error*, and only one mode was excited each time because of a

unit initial displacement in its normal coordinate. Specifically, for the ith

time history, the initial condition was assumed to be:

ni = i, and nj = 0 for all j # i ; _j = 0 for all j.

For each such initial modal displacement, the time history of the resulting LOS

error was calculated separately using our computer simulation program.

The results of i0 separate cases (one for each mode) are shown together by

the overlapped plots in Fig. 5-1, where each curve represents a colpletely

separate time history of LOS error. Listed below are the highest peak value

of each tlme-history curve.

Mode: i 2 3 4 5 6 7 8 9 i0

Peak: .37 .53 .54 .93 1.3 .14 .51 .002 .18 .03

The relative importance of the I0 modes is thus given in the descending order

as follows.

Mode: 5, 4, 3, 2, 7, I, 9, 6, i0, 8.

5.1.2 Measure 2: Modal Response Co the Rapid Pointing Maneuver

By intuition, a vibration mode is more in need of active control than others

when its magnitude of excited vibration is larger. Thus, a second measure of

importance for the SCOLE configuration naturally is the vibratory response of

each mode to the rapid pointing maneuver. For this analysis, the configuration

was assumed, as before (in Section 3.1), to be initially at rest without any

LOS error or any nonzero initial conditions, and the same BPB slew maneuver

was the source of excitation. The time history of the resulting modal res-

ponse ni(t ) was calculated for each mode separately.

The results are shown by the plots in Fig. 5-2, with each curve represent-

ing an individual mode. Listed below are the highest peak value of the curves.

Mode: i 2 3 4 5 6 7 8 9 i0

Peak: 21.6 603 41.2 13.7 0.49 0.48 0.28 .058 .041 .001

Accordingly, the relative importance of the l0 modes is thus given by the fol-

lowing descending order:

Mode: 2, 3, i, 4, 5, 6, 7, ...

* As stated in the beginning of Section 3, we assumed that, before any of its

vibration mode was subject to excitation, SCOLE was initially at rest and had

no deformation nor LOS error. Specifically, the undeformed configuration was

assumed to have been aligned with the attitude angles of zero LOS error.

Therefore, if all the normal coordinates and velocities were zero, the LOS

error would remain zero.
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5.1.3 Measure 3: LOS Error Solely due co Each Node Excited by the Man-

euver

To measure by the LOS error a vibration mode could cause, or to measure by the

extent to which a vibration mode could be excited, seems to be a rather rea-

sonable technique by itself, but the resulting ranklngs were inconsistent and

rather confusing. For example, Mode 5 is the most important one by Measure I

but only the fifth by Measure 2. Moreover, Mode 5 could even be ignored

because of its insignificant Measure-2 value (about two orders of magnitude

smaller than the fourth). Similarly, Mode I ranks number 3 by Measure 2 but

only number 6 by Measure i. It was hard to determine rationally which modes

would really need active control. A third measure was then developed.

For this analysis, the LOS error caused by a single mode alone was calcu-

lated separately, llke for Measure I, but the mode causing the error was

excited by the very maneuver of concern, instead of initial conditions. All

the initial conditions were assumed to be zero. On the other hand, the excita-

tion of the vibration modes was exactly the same as for Measure 2, but the

resulting LOS error, instead of the modal response, was taken as the measure.

This measure is a sound rational combination of the cause (slew exci-

tation) and the effect (LOS error) with respect to each vibration mode.

It can appropriately indicate for each mode individually the extent to which a

single mode could be excited, and the degree of LOS error this mode alone

could cause if it alone were so excited and, hypothetically, no other modes

were present at all.

The i0 separate numerical results are shown together by the plots in Fig.

5-3. Each curve represents the LOS error caused solely by a single mode

while the mode was being excited by the rapid slew maneuver. The table below

lists the highest peak value of the each curve.

Mode: i 2 3 4 5 6 7 8 9 i0

Peak: 3.26 88.6 9.57 6.53 0.33 .036 .077 .002 .004 .0002

The relative importance of the I0 modes Is thus given by the following des-

cending order:

Mode: 2, 3, 4, I, 5, 7, 6,...

An inspection of this ranking and the peak values will show that a signifi-
cant break between the fourth- and fifth-ranked modes (i.e., modes i and 5,

respectively). We thus selected the four top-ranked modes, i.e., modes 2_ 3,

i, and 4, as the primary candidates for modeled modes.

Mode 5 is marginally important compared to other modes, but is the fifth in

the rank and has a much higher value than the remainder. We therefore consi-

dered it to be a secondary candldate for modeled modes.

Mode i could have been ranked higher than Mode 4 if the time average were

used instead. This would make no significant difference, however, since both

were among the top four modes anyway, and these four had all been selected to

be primary candidates for modeled modes.
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5.2 Analysis on Modal Control Influences of Actuators

We recently discovered that the high-galn problem Canavln encountered in

his first modal dashpot design [ii] would not have existed if he had paid

attention to the ill conditioning of the coefficient matrix _MTBF he used in

his numerical example. Among the 12 "controlled modes" he selected to form

his reduced-order design model, several have very little control influences

from the 32 actuators he used on the structure*. It is intuitively apparent

that actuators having smaller influences on a given mode are less effective in

controlling the mode, and thus require to be compensated with larger gains.

Mathematically speaking, when the smallest "singular value" of the coefficient

matrix _MTBF is one order of magnitude smaller, the largest singular value

of the resulting gain matrix G* as a solution of Eq. (4-7) generally is two

orders of magnitude larger. This means that not all his "controlled" modes

should be included in the modal-dashpot design without any discrimination

against excessively small control influences by the actuators. In other

words, all the available actuators need not be lumped together to control

all his "controlled" modes through one large feedback gain matrix.

To make an effective design for the SCOLE configuration, we analyzed the

control influences of the actuators first and match those modes in need of

active control with the right actuators.

For evaluating and comparing their modal influences properly, we grouped

the actuators according to their location on the SCOLE configuration as well

as their type. As a result, the actuators** were divided into the following

four different groups:

Group i: Actuators I to 3, for applying moments on the Shuttle about its body

x, y, and z axes, respectively;

Group 2: Actuators 4 to 6, for applying moments on the Reflector about its

body x, y, and z axes, respectively;

Group 3: Actuators 7 and 8, for applying forces at the Reflector mass center

in the x and y directions, respectively;

Group 4: Actuators 9 to 12, for applying forces at two specific points on the

Mast beam in the x and y directions, respectively.

The control influences on each mode, say mode i, from all the actuators in

a specific group can be summarized by calculating their RMS (Root-Mean-Square)

value

over the group. Listed in Table 5-1 are these RMS values in the descending

order.

* The antenna-like structure consisted of a large dish in the forward section

and a gimbaled equipment section to the aft. It had 32 member dampers (as the

co-located actuators and rate sensors). Its flnlte-element model has 35 deg-

rees of freedom.



Table 5-1 RMS Actuator Influences on first I0 Modes

Group I Group 2 Group 3

Mode Act. i - 3 Mode Act. 4 - 6 Mode Act. 7 - 8

2 0.30019961E-02 5 0.36487188E-01 2 0.14311218E+O1

4 0.41220308E-03 4 0.25172627E-01 i 0.14061384E+O1

1 0.40146321E-03 3 0.15999462E-01 3 0.81986851E+00

3 0.19184369E-03 2 0.15595800E-01 4 0.39743480E+00

5 0.II186474E-03 7 0.14711439E-01 7 0.30395976E+00

6 0.69881789E-04 1 0.13037169E-01 9 0.25503686E+_}0

7 0.36829457E-04 9 0.57048416E-O2 6 0.21852742E+O0

8 0.26261532E-04 6 0.34139471E-02 8 0.14623879E+O0

9 0.15072107E-04 8 0.12352261E-02 i0 0.I0801539E+00

I0 0.13497747E-04 I0 0.63637015E-03 5 0.74399590E-01

Group 4

Mode Act. 9 - 12

2 0.I0711402E+00

1 0.I0338868E+O0

3 0.I0171293E+00

4 0.69439910E-01

9 0.68373762E-01

8 0.67025743E-01

5 0.63191518E-O1

I0 0.46103600E-01

6 0.39935779E-01

7 0.32263912E-01

Table 5-2 RMS Sensor Influences on first i0 Modes

Group 1 Group 2 Group 3 Group 4
Mode Sen. 1 - 3 Mode Sen. 4 - 6 Mode Sen. 7 - 8 Mode Sen. 9 - 12

2 0.28690067E-03 5 0.34890966E-02 2 0.13466856E+O0 2 0.I0711402E+O0

4 0.39390128E-04 3 0.32387748E-02 I 0.12736945E+00 i 0.I0338868E+O0

I 0.39113598E-04 4 0.24055073E-02 3 0.12407852E+00 3 0.I0171293E+O0

3 0.18940789E-04 2 0.15346858E-02 4 0.38158901E-01 4 0.69439910E-01

5 0.I0689848E-04 7 0.14879148E-02 7 0.36793593E-01 9 0.68373762E-01

6 0.66779044E-05 1 0.13531352E-02 9 0.30879460E-01 8 0.67025743E-01

7 0.35194691E-05 9 0.67911280E-03 6 0.20832075E-01 5 0.63191518E-01

8 0.25095521E-05 6 0.32624099E-03 8 0.14005536E-01 I0 0.46103600E-01

9 0.14402938E-05 8 0.I1804001E-03 i0 0.I0299906E-01 6 0.39935779E-01

i0 0.12898448E-05 i0 0.60812166E-04 5 0.90737212E-02 7 0.32263912E-01

Observe that Actuators 1 to 3 (Group I) have an RMS value for Mode 2 that

is one order of magnitude higher than all other modes, and hence are most

effective in controlling Mode 2 than controlling other modes. Observe also

that Mode 2 ranked the highest in RMS value with respect to Group-3 actuators

7 and 8. In addition, this RMS value is two orders of magnitude higher than

that with Actuators I to 3. Consequently, Actuators 7 and 8 should be more

effective for controlling mode 2 and require much smaller feedback gains.

Note that Actuators 9 to 12 (Group 4) are less effective than Actuators 7 and

8 in controlling Mode 2.

With a similar argument, Actuators 7 and 8 are also most effective in con-

trolling Mode I. Therefore, Modes 1 and 2 and no more others should be

_elected as the "modeled modes" in the design of the modal dashpots using

Actuators 7 and 8.

Since Mode 3 is a torsion mode and is more appropriate to be controlled by

moments than forces. The RMS values clearly suggest that Actuators 4 to 6

(Group 3) will be more effective than Actuators i to 3 for controlling Mode 3.

Although among the four groups, Actuators 9 to 12 did have the highest RMS

values of control influences on Mode 3, we did not expect the proof-mass actu-



ators (9 to 12) to be capable of suppressing large torsional vibrations of any
modein such a very short time.

The KMScontrol influence on Mode4 is larger from Actuators 4 to 6 than
from Actuators 1 to 3. Consequently, both Hodes 3 and 4 should be selected

as the "modeled modes" in the design of modal dashpots using Actuators 4 to

6.

All the four primary condidates have been selected as the "modeled modes"

for the appropriate matching groups of actuators. A review of Table 5-1 will

show that Mode 5, the secondary candidate, has a higher RMS value of control

influences from the same Group 2 of actuators than both Modes 3 and 4.

According to a previous study by Lin and Jasper [24], such a situation would

result in large spillover of Mode 5, severe dynamic interactions of modeled

modes with unmodeled modes, and significant degradation of damping performance

if Mode 5 were not also modeled with Modes 3 and 4 for control by Actua-

tors 4 to 6.

To summarize, this analysis shows applying moments and forces at the Ref-

lector end of the Mast beam will be more effective in controlling the excited

vibrations in SCOLE (and particularly Modes I to 5) than at the Shuttle end or

at the intermediate points of the flexible mast. Instead of lumping up all

candidate modes (I to 5) to be controlled by Actuators 4 to 8 together, the

designer for modal dashpots should match these modes with their most effec-

tive or most appropriate actuators. Specifically, Modes i and 2 should be

controlled by Actuators 7 and 8 and Modes 3 to 5 by Actuators 4 to 6.

There is no need to include more modes to each group since there are

enough actuators to be distributed among all the 5 most important modes of

the SCOLE flexible-body dynamics. Including more modes may not always help:

it might simply increase the magnitude of the feedback gains without any real

benefit, particularly when the additional modes are of significantly smaller

control influences by the actuators; the increased feedback gains might in-

stead amplify various adverse effects of control spillover and system noises.

5.3 Design of Modal Dashpot MDI

The modal dashpot MDI was designed for SCOLE for Quick suppression of the

excessive vibrations excited by the rapid BPB LOS pointing slew maneuver. It

is composed of two parts. Part i is for applying forces at the Reflector mass

center in the two transverse directions using a feedback of linear velocities

at the Reflector end of the beam. Part 2 is for applying moments also at the

Reflector about the three body axes but using a feedback of angular velocities

instead.

The location of these actuators are the same as specified by Taylor in

Ref. i for the control forces and moments at the Reflector. The sensors were

located where the "outputs" of Dr. Joshi's modal data set D3D585 had been cal-

culated. Some of the control inputs (ui) and observation outputs (yj) were re-

labeled for technical convenience. Sensors I to 8 are not really co-located

with the correspopnding actuators, but note that their RMS values of modal

observation influences (Table 5-2) exhibit virtually the same patterns as

those of modal control influences (Table 5-I).



5.3.1 Part I: Linear Velocity Feedback Force Control

Two force actuators (or equivalently, a single force actuator capable of

delivering separate Forces in two independent axes) are assumed to be placed

at the center of the Reflector. The force inputs* u7 and u 8 (in the x and y

directions, respectively) are each limited to 800 Ib as specified. Two linear

velocity sensors (or equivalently a single velocity sensors capable of measur-

ing the rate of linear displacements In two independent axes) are assumed to
be located at the Reflector end of the mast beam. The sensor outputs** YI5

and YI6 (in the x and y directions, respectively) represent the time rate of

deflection of the Mast beam at the Reflector end relative to the Shuttle end.

Note that these sensors are only approximately co-located with actuators:

they are apart by 18.75 ft and 32.5 ft In x and y directions, respectively,

whereas the beam is 130 ft long.

The design problem is thus to determine a 2x2 gain matrix GLV R for the

following linear velocity feedback control law

(5-i)

The foregoing analysis of the control influences has suggested that only

Modes I and 2 be selected as the "modeled modes" for this part of design.

Accordingly, the control and observation influence matrices _MTBF and CV_ M

on the two modeled modes to be used in the modal dashpot design equation (4-8)

have the following numerical values:

@TBF = [ .19875923E+01.14599262E+00
.62669927E-01]

-.20186396E+OIJ
(5-2a)

.18012760E+00CV@M = .55188192E-04
.21140305E-01 l

-.18927317E+OOJ
(5-2b)

Before solving the corresponding design equation (4-8) for a specific gain

matrix, we must specify the desired value for the additional damping matrix

AM . For technical simplicity, we choose it to be diagonal, so that its diago-

nal elements 6MI and 6_2 can be used rather directly for guiding the modal-

dashpot design. Since both modes i and 2 substantially dominate the vibratory

response of the SCOLE configuration to the BPB pointing maneuver, we wish to

augment each with active damping as close to 70.7 % -- of critical damping as

* These correspond to u4 = Frx and u5 = Fry , respectively, in Dr. Joshi's nota-

tion.

** These are indirectly equal to the derivatives of the deflections Y7 = _x and

Y8 = _y in Dr. Joshi's notation.
f

These terms represent the additional damping coefficients in the correspond-

ing decoupled equations of motion; see Eqs. (4-14)-(4-15). In multivariable

oot-locus analysis, these values also represent the "rate of departure" from

the open-loop poles when the feedback loops are closed.

't 70.7% is an optimal value In the sense that the second-order system cor-

responding to the single mode will neither be too sluggish nor have a large

overshoot.
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possible. Let us attempt a theoretical 2% settling time of 3 seconds for

Mode 2 in estimating the desirable additional damping coefficient 52 . The cor-
responding time constant is 3/4 sec; thus by definition

¢2 _2 = 4/3

where ¢2 denotes the closed-loop damping ratio desirable of Mode 2. Substi-

tuting in the natural frequency w 2 = 1.97024 rad/sec yields

_2 = 0.6767,

which is acceptably close to the optimal value. Whence, the closed-loop damp-

ing coefficient desirable of Mode 2 is given by

_2 = 2 "_2 _°2 = 8/3.

Since an inherent damping of 0.3% has been specified in the data set

"D3D585" for each mode, the desirable additional damping coefficient # desirable

of Mode 2 is

* -_262 = - 2 _2 w2 = 8/3 - 2 x 0.003 x 1.97024 = 2.6548

Next, we choose the additional damping desirable of Mode i to be 60%,

i.e., _* = 0.6, since Mode I has a smaller magnitude of vibration than Mode 2.

In summary, the desired damping coefficients as in Eqs. (4-14)-(4-15) for

the two modeled modes are then readily given as

6MI = 61 = 2 _I Wl = 2 x 0.6 x 1.7470 = 2.0964 (5-3a)

_M2 = 62 = 2.6548. (5-3b)

Now the feedback gain matrix GLV R is readily obtained from solving (4-8) as

.58420630E+01GLVR = .42038249E+00
.43392044E+O0]
•69796355E+OIJ (5-4)

5.3.2 Part 2: Angular Velocity Feedback Moment Control

Three torquers (or equivalently, a single torquer capable of delivering

separate touques about three independent axes) are assumed to be located on
the Reflector. The torque inputs u4, u5, and u 6 (about the x, y, and z axes,

respectively) are each limited to i0,000 ib-ft as specified. Three angular

velocity sensors (or equivalently a single sensor capable of measuring separ-

ately the rate of rotations about three different axes) are assumed to be

located at the Reflector end. The sensor outputs** YlO, YlI, and YI2 (about

the x, y, and z axes, respectively) represent the time rate of rotations of the

# The corresponding additional damping ratio ¢2 for Mode 2 is 0.6737. A few

slightly modified values were also tried when the design of this part was rep-

eated (see Section 6.2).

* These correspond to Dr. Joshi's u 6 = Trx , u 7 = Try , and u 8 = Trz , respec-

tively.

** These correspond to Dr. Joshi's YI2 = Sr, YI3 = @r, and YI4 = _r, respec-

tively.



Reflector end of the mast due to bending and torsion.

are only approximately co-located with the actuators.

lector itself is a rigid body.

Again, these sensors

Note that the Ref-

The design problem is to find a 3x3 gain matrix GAV R for the following

angular velocity feedback control law

[u4_

[u]
YI0

Yll

YI2

(5-5)

Similarly, as suggested by the previous analysis on control influences, we

choose Modes 3, 4, and 5 to be the "modeled modes" for this part of the

design. Accordingly, the specific control and observation influence matrices

are given by

[ .I076178OE-01

'TBFM = | .37541741E-01
L-.31739483E-01

-.18101653E-01

.22172032E-01

.54643290E-01

-.18012847E-01]

.45802862E-04|

.81303515E-O3J
(5-6a)

F .I0592386E-02

|-.17367745E-02
CV# M - L_.52450669E_02

.35194610E-02

.21135667E-02

.13325330E-04

-.30149737E-02

.52175940E-02

.23641118E-03
(5-6b)

Since the vibratory responses of Modes 3, 4, and 5 are much smaller in

magnitude than those of Modes i and 2, it is reasonable to augment them with

only a relatively small amount of active damping. We chose rather arbitrarily

3% of critical damping for each. The diagonal elements of the desired addi-

tional damping matrix AM are then given as follows:

* = 63 = 2 x 0.03 x _3 = 0.3065 (5-7a)6MI

6M2 = 64 = 2 x 0.03 x _4 = 0.4470 (5-7b)

6M3 = 65 = 2 x 0.03 x _4 = 0.7742 (5-7c)

Substituting (5-5)-(5-7) in Eq. (4-8) and solving the resulting equation, we

get the following gain matrix

[ .24172707E+04

.15734103E+03GAVR = .13433660E+O4

.16653096E+03

.21781213E+04

-.22055215E+04

.45158162E+03]

-.72768193E+O3J.42951681E+04
(5-8)



6. PERFOEMANCE OF VIBRATION CONTROL DESIGNS ON SCOLE

To evaluate the vibration control performance of the modal dashpot design

MDI, we incorporate the two feedback laws (5-1) and (5-5) into the same SCOLE

flexible-body dynamic model as was used in simulating its vibratory responses

to the BPB pointing maneuver. As stated in the beginning of Section 3, the

undeformed SCOLE configuration was assumed to have been aligned with the spec-

ific attitude of zero LOS error. Thus, the velocity-sensor outputs would con-

tain only the flexible-body rates*, just as desired for feedback control of the

excited vibrations. Recall that the model is of the "full order" in the sense

that it includes all the ten modes as provided in the data set D3D585. In

order that the control moments and forces do not exceed their specified

limits, the computer program also simulates the saturation of the actuators at

their respective limits. For example, if at any tlme the feedback control

input, say, u 8 would command the actuator to exert more than 800 Ib force to

the Reflector, the actual force applied would be only 800 ib maximum.

The feedback control consisting of the two parts of modal dashpot MDI is

turned on right after the completion of the BPB pointing maneuver. Thus the

terminal state of the SCOLE vibrations (i.e., the LOS error, the deflection and

its rate of change, the angular displacement and its rate, modal displacements

and velocities,...) at the end of the maneuver become the Inltlal condltlons

of the feedback controlled system. The vibration control is applied for five

seconds, which is about the same duration as of the pointing maneuver. We in-

tentionally use such a rather "long" period in order to check if instability in

the closed-loop system might start to develop after the excessive vibrations

has been rapidly forcefully suppressed. Various versions of the modal dashpot

design MDI (each with a slightly different value for the additional damping

coefficient 62*) were evaluated. Reported below are two representative cases.

6.1 Simulation Results of Modal Dashpot Design MDI

The specific values of the gain matrices GLV R given by (5-4) and GAV R given

by (5-8) were incorporated with the control laws (5-1) and (5-5) respectively

in the full-order dynamic simulation. The simulation results are summarized

by time-hlstory plots in Fig. 6-1.

The history of the applied moments and forces (Fig. 6-1a) shows that the

applied moment about each axis never exceeded the limit of i0,000 ib-ft, nor

did the applied force in each direction exceed the limit of 800 lb. Large

moments and forces were needed only during the early portion of the control

period, but did not exceed the limits because of "saturation". All the applied

forces and moments quickly reduced to minimum automatically because the

sensed rates of vibrations rapidly became insignificant.

Fig. 6-1b shows that the LOS error was rapidly subdued to II.79" from

71.43" where the pointing maneuver ended. Note that the initial LOS error con-

tinued to rise to 85.29" (or I15.13" = 180 o - 64.87" if not tak/ng the principal

* If the configuration had not been so aligned, then rigld-body rate would also

be present and some filtering or signal processing might be required. Alterna-

tively, one could use relative sensors instead of inertlally referenced sen-

sors.
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value of the arcsine function) because of its large rate of change at the very

instant of switching from pointing maneuver to vibration control. Neverthe-

less, the LOS error was suppressed down within 18.46 e after oQly 2.5 sec of

active vibration control and remained below 17.54 e thereafter. Moreover, it

was even reduced to Ii.79 ° in 3.1 see.

The bending of the mast beam was very rapidly suppressed to virtually

null. Observe in particular that even the y-directionally deflection at the

Reflector end (i.e., YI4) continued to increase to 119.7 ft (again because of

the large "initial" rate of change), it was suppressed down into the band of

±5 ft in only 2 see, and into the band of ±0.5 ft in 4.2 sec. It is interest-

ing to notice that it took less than 2.9 sec* to settle within 2.4 ft, 2% of

the peak value. Recall that a 2% settling time of 3 sec for Mode 2 was used

in the design.

Fig. 6-ic shows the rapid reduction of the initially large deviations in

the Shuttle and Reflector attitude angles to zero in a very short time. The

last peak diviation of the Reflector roll, pitch and yaw attitude angles is

only 0.460', 0.546 ° and 1.360', respectively.

Fig. 6-1d shows that the large-magnitude vibrations of first five modes

all were rapidly suppressed to virtually zero in a very short time. Note in

particular that this vibration control was very effective for quick reduction

of the excessively large magnitude of Mode 2. Observe, on the other hand,

that Mode 5, the secondary candidate, was reduced only in a moderate rate by a

moderate amount, but recall that it was not really significant at first place

with respect to excitation by the BPB maneuver nor its contribution to the LOS

error. Mode 5 did not need much active control anyway, and hence only a very

small additional damping was designed for It.

The vibrations in other modes (i.e., Modes 6 to i0) remained virtually in

the same insignificant levels as before, and hence their plots are omitted.

Still their magnitudes were more or less decreased with time because of some

concomitant additional damping as a side benefit of spillover.**

6.2 Simulation Results of A Modified Version of MDIA

We also tried a few other versions of the modal dashpot design MDI by var-

ying the additional damping coefficient 6z* desired of Mode 2. Because of the

saturation of the actuators at the imposed limits, it is reasonable to consider

some smaller feedback gains. The following is a typical case.

* The peak occurred at t = 0.5 sec whereas the deflection was -2.24 ft at t =

3.4 sec.

** In the standard LQG design, one will generally try hard to reduce spillover

because it has been well known to degrade performance and even to introduce

closed-loop instability. With a modal-dashpot design, spillover can be bene-

ficial instead, in leaking some active damping forces to unmodeled modes.

Such is particularly the case when the design is not carefully focussed. The

side benefit in our design was intentionally minimized because we tried to

maximize our effort on the most important modes and matched them with most

influential control actuators to minimize the leak.



This version, let us call it MDIA, is almost the same as before, except

that the additional damping ratio _z* desired of Mode 2 was arbitrarily set

equal to that of Mode I; namely,

¢2 = ¢I = 0.60.

Therefore,

62 _ 2 -z_ m_z _ 2 x 0.6 x 1.97024 = 2.36429

Mode 2 would then have a theoretical 2%-settling time of 3.38 sec.

(6-1)

Using the new value for 62* in (5-3b), and repeating Part 1 of the modal

dashpot design, the following new value of the feedback gain matrix was read-

ily obtained.

.58420557E+01 .45784262E+00_GLVR " .42061494E+00 .62209375E+OIJ (6-2)

The same simulation was then repeated with these new values. Results are

summarized by the plots in Fig. 6-2. The applied moments and forces shown in

Fig. 6-2a are virtually the same as before (Fig. 6-1a) with only some invisible

differences. Some meaningful differences do exist in the histories of LOS

error and beam deflection.

Observe that the LOS error (in Fig. 6-2b) quickly reduced to about 9.57 °

from the same initial value (71.43°). Similarly, due to large initial rate of

change at the end of the pointing maneuver, the LOS error also continued to

rise to 85.61 ° (or 180 o - 64.81 o - i15.19 ° if not taking the principal value of

the arcsine). The large LOS error was suppressed down to the level of

16.66' in 1.8 sec, and remained under it thereafter. Moreover, it was reduced

to 9.57 ° also 3.1 sec after the vibration control began.

The bending of the Mast was also suppressed down very rapidly. Though it

continued to increase to 120.28 ft, the y-directionally deflection at the Ref-

lector end (i.e., YI4) was suppressed down into the band of ±7.35 ft in less

than 1.8 sec., and into the band of -+0.75 ft in 3.7 sec. It took less than 3

sec for the large deflection to settle down to the band of 2% of the peak*,

i.e., i2.4 ft. Recall that 3.38 sec is the theoretical 2%-settling time used

for Mode 2 in this modified design.

The histories of attitude changes (Fig. 6-2c) and modal responses (Fig.

6-2d) are again virtually the same as before (compared to Figs. 6-Ic and 6-1d,

respectively) with only some invisible or insignificant differences. The last

peak deviation of the Reflector roll, pitch, and yaw attitude angles is only

0.714 e. 0.582', and 1.399e, respectively.

* The peak occurred at t = 0.5 sec., whereas the deflection was only -1.95 ft

at t = 3.5 sec.
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6.3 Comments

6.3.1 The modal dashpot designs of vibration control met the vibration

control design challenges fairly well and are effective and fast in sup-

pressing excessive vibrations. Excited by BPB type rapid pointing slew man-

euver, the flexible mast beam deflected between +114 ft and -113 ft, but such

an excessive vibration was then quickly suppressed down to less than 0.75 ft

in less than 3.7 sec after a modal-dashpot vibration control was turned on.

The roll vibration of the Reflector between -86.96 ° and +88.35 ° during the man-

euver was also quickly suppressed down to less than 0.72 °. The large LOS

error of 89.8 ° (or 133.3 ° if not taking the principal value of the arcslne) was

also reduced quickly to less than 17.54 °.

i

6.3.2 The original version of the modal dashpot design MDI performed

slightly better than the modified version MDIA in suppressing the deflection of
the Mast beam and all the attitude deviations, but not so well in reducing the

LOS error. The modified version used a slightly smaller additional damping

ratio for Mode 2 in the design, i.e.,

_2" = 0.60 instead of _2" = 0.6737.

6.3.3 When a velocity feedback control, whether it is of the modal-dash-

pot type or not, is not properly designed, even feedback gains of an intermedi-

ate magnitude can cause severe interactions between modeled and unmodeled (or,

equivelently, between "controlled" and "uncontrolled") modes, and hence badly

degrade the desired performance of active damping augmentation [24]. The res-

ults of these two versions have shown, on the other hand, that if modal dash-

pots are properly designed, both the modal interactions and the performance

degradation are not problems.

Thus, some of the additional damping can be as high as the optimal value 0.707

if necessary, hence can have high feedback gains, to be really effective in

quick suppression of vibrations. In other words, not all veloelty output
feedback vibration controllers are of low authority, low performance !

6.3.4 Now, not having to worry about the spillover and modal interaction

problems, the feedback gains of properly designed modal dashpots ideally can

be as high as the designer wishes. High gains can be as desirable for flexi-

ble-body vibration control as they have traditionally been for effective con-

trol of rigid bodies.

High gains are desirable for generating comparable negative feedback to offset

the vibrations. Theoretically, the higher the better. For example, the ver-

sion MDI has a higher gain (because of higher _2") than the version MDIA, the

deflection and attitude deviations can be continuously suppressed down to

smaller values (e.g., ±0.5 ft vs ±0.75 ft, in deflection; 0.46 ° vs 0.714 ° in

Reflector roll angle,...).

The size of the feedback gains for a properly designed modal-dashpot

vibration control is virtually limited only by the force and torque capability

of the actuators. Since the vibrations were initially very large, the high

gains resulted in requiring larger forces and torques than their limits. The

simulated saturation thus restrict the applied force/torques to the limits.

Therefore, there are no needs to be concerned with high gains as much as

before, even the actuators may saturate at their force/torque limits.



6.3.5 Recall that the badly excited modes, i.e., Modes 2 and i, were made

most strongly controllable and obserable by carefully matching them with

actuators and sensors with the strongest influences. Recall also they were

stro,gLy _o,tro[led by selecting them as modeled modes in the Part I design of

thL, mod,,[ dashl_ots and by adding to the., the highest additional damping

ratios. Th_ results of Sections 6.1 and 6.2 show that the resulting modal-

dashpot designs are very effective for fast suppression of large vibra-

tions. The results also show that spillover is mlnlmum and that the unmo-

deled modes receive some small concomitant additional damping because of spil-

lover.

6.3.6 Unlike all other vibrations (deflections, attitude deviations and

modal responses), the LOS error was not reduced to a smaller value by the

version MDI than by the version MDIA. Also, the LOS error was not continu-

ously reduced to near zero as were all other vibrations, although the reduc-

tion from its excessively high peak was quite substantial. Nonlinear proper-

ties of large Euler attitude angles, and the truncated forces and moments

from the saturated actuators (due to high feedback gains) likely are the

causes. We have no clear explanations at the present time. Nevertheless,

observe Figs. 3-ic, 6-Ic and 6-2c that the Reflector continued to have suffi-

ciently large pitch and yaw ratations during the initial phase of the vibration

control, in addition to the main (and larger) roll rotations.

6.3.7 Figs. 6-1 and 6-2 show that after the excessive vibrations have all

been suppressed down to sufficiently low levels, the tlme rates of change

naturally start to become much less slgnlflcant, and the modal-dashpot

vibration control also starts to become less effecltve. Unless the feedback

gains are increased thereafter, the vibrations may not continue to be reduced

to the desired precision in a reasonably short time. One way to achieve the

desired precision is to start to increase the modal-dashpot gains progressively

after the vibrations become sufficiently small, e.g., after 2 seconds of the

initial vibration control.

Another way is to switch to some form of "modern control" for complet-

ing the vibration suppression and precision pointing. When all the displace-

ments and rates of change have become reasonably small, the whole dynamic

system becomes legitimately linear, and the LOS error expression legitimately

linearizable. The condition is very su.ttable for application of the modern

optimal state-feedback control technique.

Modern control using standard Linear-Quadratic-Gaussian (LQG) optimal state

regulators and optimal state estimators has traditionally performed very well

in precision pointing and attitude control of rlgid-body systems, even using

small signals. For application to a flexible-body system, the modern control

must be very carefully designed, however; otherwise the notorious spillover

problems may destabilize the system insteadl

6.3.8 Several major approaches to extend or adapt the LQG design tech-

niques were proposed during the years of ACOSS (Active Control of Space Struc-

tures) and VCOSS (Vibration Control of Space Structures) programs [38]-[45],

[15], [46]-[50]. Either the weighting matrices in the control performance

index is modified in some ways [51]-[52], or some positivlty requirement is

imposed on the design [53], or some pre-design compensation of the actua-

tor/sensor influences is made [35]-[36]. All were successful to some limited

extents in addressing the major challenge of spillover problems, but are not



readily applicable to realistic large flexible space structures.

Formal applications of the robustness theory [54]-[55] were started rec-

ently [56]-[59]. The method of loop transfer recovery (LTR) was also

applied to recover sizable gain and phase margins of LQ regulators. The modi-

fication recently proposed by Blellock and Mingorl [58] appears to have made

the LTR method more directly applicable to LQG controllers designed for large

space structures, so far as the uncertainties in the modal frequencies of the

plant are concerned. Recent results obtained by Sundararajan, Joshi, and Arm-

strong [59] are rather encouraging. Based on their Interpretation of spillover

problems as additive uncertainty [60], [55], they were able to make an innova-

tive application of the LTR method to overcome spillover problem with their

LQG attitude controllers designed for the Hoop/Column antenna. This approach

has a great potential for practical application to realistic large flexible

space structures, since it appears to be able to overcome the spillover prob-

lem of an unlimited number of unmodeled modes.

Incorporating modal dashpotsinto a LQG or L_G/LTR design and following a

similar sequence of careful pre-design analyses certainly will greatly enhance

the stability and performance of the resulting LQG/MD or LQG/LTR_MD vibra-

tion controller. The two proof-mass actuators placed on the mast beam may

be used together with all the force and moment actuators on the Reflector and

the Shuttle for such a low-power but hlgh-preclslon control.



7. CONCLUSIONS

7.1 The two-stage approach is a feasible and promising one for rapid slewing

and precision pointing/retargeting of large flexible space systems and, in par-

titular, the orbital SCOLE configuration. It is capable of rapidly slewing

the line-of-sight and settling the excited vibrations in a minimum time.

The resulting control design, in general, will consist of the following three

parts in cascade:

Stage I: a bang-bang type rapid slew maneuver based on the rigid-body dynamics

for pointing/retargeting in a minimum time; if excessive vibrations may

be excited, using smaller forces and moments should be considered.

Stage 2, Part I: a high-power modal-dashpot design of velocity output feedback

control based on the flexible-body dynamics for fast and effective

reduction of large excited vibrations to a small magnitude;

Stage 2, Part 2: a LQG/LTR design of optimal state feedback control augmented

with a broad-band low-power modal-dashpot design of velocity output

feedback control, also based on flexible-body dynamics, for (i) achiev-

ing the specified pointing accuracy in a short time and (ii) maintaining

the precision and closed-loop system stability. The LQG/LTR design

may be incorporated or integrated with an appropriate modal-dashpot

design.

7.2 Not all bang-bang (BB) type of time-minlmized slew maneuvers will excite

large structural vibrations. When large forces are used up to their extremes

(for example, 800 ib on the Reflector) to complete the specified slew angle

(20 o) of the rigidized configuration in the shortest time, the excited vibra-

tions can be excessively large in magnitude (e.g., a ll4-ft peak deflection of

the 130-it Mast beam), even only moderated maneuvers of the bang-pause-bang

(SPB) type is used instead. On the other hand, when properly selected small

forces, e.g., 25 ib, of the kind of vernier RCS thrusters onboard the Space

Shuttle, are used, even BB-type maneuvers will excite very little vibra-

tions (e.g., 0.3 ft peak deflection of the _last beam).

If the excited vibrations are excessive, a "high-power" modal-dashpot design

of velocity output feedback control can be used in the first part of the Stage

2 to suppress the vibration down to a reasonable small magnitude quickly and

effectively. If the excited vibrations are relatively small, or have already

been suppressed to a small magnitude, some modified for,, of linear-qua-

dratic (LQ) optimal state feedback control augmented with a "low-power"

design of modal dashpots can be used in the Stage 2 to achieve the desired

pointing precision.

7.2.1 The vibration modes of the SCOLE configuration were excessively

excited when an 800-1b force was applied on the Reflector in the y direc-

tion during a BB type slew maneuver. When the best Stage-I design, i.e.,

the BPB roll-axis slew having the best LOS pointing accuracy with a minim-

ized slew time (4.89 sec) and the least sensitivity to nonzero products of

interia) was applied to the SCOLE flexible-body dynamics, the Reflector end

of the mast vibrated between +114 ft and -113 it, the Reflector rolled
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between -86.96 ° and +88.35 °, and the line of sight jittered between 89.8 °

(or 133.3 ° if not taking on the principal value of the sine function) and

14.7 °.

Our carefully designed modal-dashpot type of velocity output feedback

control was able to suppress the excessive vlbrati2[ons quickly and
effectively: the Reflector end deflection down to ±5 ft in 2 sec, and to

±0.5 ft in 4.2 sec; Reflector roll to +-3.48° in 7.1 sec, and to -+0.54e in 4.4

sec; and the LOS error down to II.79 ° in 3.1 sec. In other words, after

only about 2 to 3 seconds of applying the "high-power" modal dashpots, the

vibrations were reduced to a region where some form of linear-quadratic

optimal "state" feedback control (properly augmented with "low-power"

modal dashpots) would be effective in luther reducing the vibrations and

LOS errors to the desired precision.

7.2.2 The large magnitude of the force, i.e., 8OO Ib, applied on the Ref-

lector was responsible for the excessive excitation of vibrations in
the SCOLE configuration. Whether bang-bang type time-optimal slew man-

euvers would excite excessive vibrations or not depends on the allowable

maximum magnitude of the applied forces. When the limit of the force was

decreased to only one tenth (i.e., 80 ib) but the pointing slew maneuver

was still performed in a similar tlme-optimal bang-bang manner for the

same 20 ° angle, the excited vibrations were significantly decreased. The

maximum LOS error was 24.7 °, comparable to the specified initial value (20 °)

due to the initial mlsallgment of the SCOLE configuration. The maximum tip

deflection (20.6 ft) of the mast beam was also quite reasonable compared

to the length of the Mast (130 ft). When no additional forces were

applied, however, the vibrations excited by the applied moments alone In-

creased, instead.

We found that if the applied force on the Reflector was about 25 ib,

i.e., in the range of the vernier RCS thrusters used on the Space Shut-

tle, the corresponding tlme-mlnlmized bang-bang pointing slew maneuver

would excited very little vibrations in the SCOLE configuration. The

Reflector end of the mast vibrated only between +0.25 ft and -0.30 ft, the

Reflector rolled only between +0.16 ° and -0.30 °, and the LOS error was at

most 0.51 °. If the BB slew maneuver was followed immediately by some

form of llnear-quadratlc optimal "state" feedback control (properly aug-

mented with "low-power" modal dashpots), such small vibrations and LOS

errors would be easily reduced to the desired precision.

7.2.3 During Stage i, the BB maneuver using a 25 ib force on the Reflector

required 10.96 seconds to complete the 20 ° slew while the BPB amneuver

using a 800 ib force on the Reflector required only 4.89 seconds. A

"high-power" modal-dashpot design of velocity output feedback control

required additional 2.5 to 3 seconds to bring the excessive vibrations

excited by the 800-1b maneuver down to the same order of magnitude as the

vibrations excited by the 25-Ib maneuver. Therefore, the total time

required for both Stage 1 (slew) and Stage 2 (stabilization and pre-

cision pointing) is likely to be around i0 and 12 seconds, respectively,
for the two cases.



The two stages of the 800-1b BPB maneuver will probably require the least

total time, but the excessive vibrations during the maneuver are impracti-

cal and undesirable.

The 80-1b BB maneuver requires a similar high-power design of modal-

dashpots for quick and effective suppression of the moderately large vibra-

tions to the same order of magnitude as the case of 25-ib maneuver. The

total time required for the two stages is likely to be also around 12

seconds or a little less.

7.3 Although modal-dashpot type of velocity output feedback control can be

designed as a usual diffuse (or "broad-band") low-power (or "low-authority")

control, the simulation results of our careful designs have shown that modal

dashpots can also be a concentrated hlgh-power ("hlgh-authority") control for

fast and effective suppression of large vibrations. Careful pre-deslgn ana-

lyses made it possible to do so for SCOLE.

7.3.1 Our pre-design analysis on the vibration modes of the SCOLE configu-

ration shows that modes 2,3,4,1,5 are the five most important modes

requiring for vibration control and LOS error reduction, with mode 2 need-

ing active control the most.

7.3.2 Our Pre-design analysis on the modal control influences of the actu-

ators shows that: two force actuators on the Reflector in x and y

directions, respectively, are most effective for controlling modes i and 2;

three moment actuators also on the Reflector about the x, y, and z

(i.e., roll, pitch, and yaw) axes, respectively, are most appropriate for

controlling modes 3, 4, and 5.

7.3.3 For quick effective suppression of the excessive vibrations in the

SCOLE configuration excited by the tlme-minimized BPB slew maneuver, it is

more appropriate to design the modal dashpots into separate parts than to

lumping up all the 5 most important modes to be controlled by all the five

actuators together. High gains not only do not create spillover and

interaction problems as usual but rather make the resulting modal dash-

pots truly powerful and effective for quick suppression of excessive vibra-

tions.

7.4 In general, modal dashpots when properly and carefully designed, can add

desirable amount of active damping to modeled (or "controlled") modes. Unmo-

deled modes can also receive some concomitant active damping, as a benefit of

spillover to complement their inherent damping.



8 • RECOMMENDATIONS

We recommend that:

I. the two-stage approach be accepted as a promising one, and included in Part

Two of the Design Challenge, for validation using the hardware SCOLE labora-

tory facility and for comparison with other approaches, and

2. theoretical and simulation studies on the two-stage approach be continued

using the mathematical models of both the orbital and the laboratory SCOLE

configurations for further development of the technology.

8.1 Careful scientific studies have been successfully conducted on the two-

stage approach to rapid pointing and vibration control of the flexible orbital

SCOLE configuration, and the results have been very encouraging. Now that the

physical SCOLE labortory facility is operational, we recommend that the

design techniques developed and the technical knowledge gained on the two-

stage approach be translated to the tethered laboratory SCOLE configuration

and be tested and validated by the experimental apparatus. Specifically:

(I) Design a rapid tlme-mlnimlze bang-pause-bang line-of-sight pointing slew

maneuver (Stage i), and a fast effective modal-dashpot type of vibration

controller (Stage 2), using the mathematical model of the tethered confi-

guration and the actuators and sensors actually available on the labora-

tory article. Test the designs on the SCOLE facility in real time.

(2) Then, conduct a comprehensive sequence of experimental evaluations similar

to Steps (a) through (e) below.

8.2 To further develop the technology associated with the promising pratical

two-stage approach and to gain additional technical knowledge, we recommend

that studies be conducted on the use of MD-augmented LQG/LTR design of

vibration control for attaining the specified LOS pointing accuracy. We also

recommend that the limit on the applied force at the Reflector of the

orbital SCOLE configuration be lowered by one order of magnitude from 800 ib

to between i00 and 200 lb, or alternately between 20 and 30 ib, in each direc-
tion.

Specifically, we recommend that:

(I) a series of design, simulation, study and evaluation be carried out on two

representative cases,

(2) the total time required from the beginning of the LOS pointing slew man-

euver to the end of stabilization with the desired 0.02 ° precision be deter-

mined for each case, and

(3) a trade-off study be conducted.



Case i. Limit set at 150 ib*

(a) Use a Stage I design similar to the one described in Section 3.2.2 for the

time-minimized pointing slew maneuver. Simulate such a BB slew maneuver on

the 3-dime_is[onal nonlinear rigid body dynamics of the SCOLE configuration

first; evaluate the LOS accuracy, and assess the effects of nonzero pro-

ducts of inertia during the rapid maneuver; compare the results with BPB

slew maneuver with the 800-1b limit.

Then simulate this slew maneuver on the flexlble-body dynamics of the

configuration as if it were a time-varying disturbance, and analyze the

vibrations thus excited.

(b) Design a similar high-power modal-dashpot type of velocity output feedback

control (following the same design proceedure as in Section 5). Such a

vibration control design is to be used, as the first part of Stage 2 for

suppressing the (moderately) excited vibrations quickly and effectively to

some desirable low levels.

(c) Design a "low-power" modal dashpot (MD) type of velocity output feedback

control first. Augment the SCOLE configuration with the resulting modal

dashpot design. Then design a LQG/LTR type of optimal state feedback con-

trol. Such a LQG/LTR/ND control design is to be used as the second part

of Stage 2 for continuing on suppressing the vibrations quickly to the

desired LOS pointing accuracy of 0.02 o• All force and moment actuators,

including the two proof-mass actuators, are to be used in both the MD and

the LQG/LTR/MD designs.

(d) Simulate the entire Stage 2 design on the SCOLE flexible-body dynamics and

evaluate the vibration control performance numerically.

(e) Integrate the Stage-i and Stage-2 designs (for a continuous operation of

both pointing slew and vibration control), simulate their application on the

coupled SCOLE dynamics (i.e., flexible-body dynamics kinematically coupled

with rigid-body dynamics); evaluate the total LOS pointing and vibration

control performance and determine the total time required for achieving

the desired precision.

Case 2. Limit set at 25 ib

Use the same Stage 1 design as described in Section 3.2.3, instead of Sec-

tion 3.2.2, for the time-minlmized pointing slew maneuver. Conduct all the

corresponding sequence of design, simulation, and evaluation as Case 1

except step (b).

* In the laboratory SCOLE configuration, the equivalent torque the thrusters on

the Reflector can generate is about two times the torque producible by the CMG

on the Shuttle. For the same ratio, the applied force on the Reflector of the

orbital SCOLE configuration is approximately 160 lb.
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ABSTRACT

In this article, the dynamics of slew maneuver of NASA Spacecraft COntrol
Laboratory Experiment (SCOLE) test facility are developed in terms of an arbi-
trary maneuver about any given axis. The set of dynamical equations incorporate
rigid-body slew maneuver and three-dimensional vibrations of the complete
assembly comprising the rigid shuttle, the flexible beam, and the reflector with an
offset mass. The analysis also includes kinematic nonlinearities of the entire assem-
bly during the maneuver and the dynamics of the interaction between the rigid
shuttle and the flexible appendage. The final set of dynamical equations obtained
for slewing maneuvers are highly nonlinear and coupled in terms of the flexible
modes and the rigid-body modes.

The equations are further simplified and evaluated numerically to include the
first ten flexible modes and the SCOLE data to yield a model for designing control

systems to perform slew maneuvers.
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1. INTRODUCTION

The primary control objective of the Spacecraft Control Laboratory Experi-

ment (SCOLE) is to direct the RF Line-Of-Sight (LOS) of the antenna-Like

configuration towards a fixed target under the conditions of minimum time and

limited control authority [1]. This problem of directing the LOS of antenna- Like

configuration involves both the slewing m_meuver of the entire assembly and the

vibration suppression of the flexible antenna-like beam. The study of ordinary

rigid-body slew maneuvers has received considerable attention in the literature

[2,3] due to the fact that any arbitrary, large-angle slew maneuver involves

kinematic nonlanearities. This is further complicated in the case of SCOLE by vir-

tue of a flexible appendage deployed from the rigid space shuttle. The dynamics of

arbitrary large-angle slew maneuvers of SCOLE model are derived in this report as

a set of coupled equations with the rigid-body motions including the nonlinear

kinematics and the vibratory equations of the flexible appendage.

The dynamical equations of slewing maneuvers of this large flexible spacecraft

are developed by writing the total kinetic and potential energy expressions for the

entire system. The energy expressions are further utilized in formulating

Lagrange's equations which are expressed in terms of non-generalized co-ordinates

using an inertial co-ordinate system and a body-fixed co-ordinate system at the

point of attachment of the flexible beam to the shuttle. The generic model used for

this analysis consists of a distributed parameter beam with two end masses. The

three dimensional linear vibration analysis of this free-free beam model with end

masses [4] is incorporated together with r:igid-slewing maneuver dynamics which

are written in terms of four Euler parameters [5] and anguaar rotation about an

arbitrary axis of rotation to yield the fanal set of highly nonlinear and coupled

equations. In the derivation of the equations, it is assumed that the vibratory

analysis is for small motions.



2. LIST OF SYMBOLS

.B

C

c

D

a_.(z,t )

E

F_o(t)

£2(t )

)

G,I,

I

Ix

Iy

Io

Ii

12

J

K

L

M

M_

m

rn t

m2

Position vector of mass element on the beam from the point
of attachment

Damping matrix

Inertial frame to body-fixed frame transformation

Position vector from the point of attachment to the mass center
of the beam

Mass density of the beam

Displacement vector of mass element in the body-fixed frame

Modulus of Elasticity

Force applied at the orbiter mass center

Force applied at the reflector mass center

Moment applied about the orbiter mass center

Modulus of rigidity for the beam

Beam cross section moment of inertia

Beam cross section moment of inertia, roll bending

Beam cross section moment of inertia, pitch bending

Equivalent mass moment of inertia

Mass moment of inertia matrix of the shuttle

Mass moment of inertia matrix of the reflector

Mass moment of inertia matrix of the beam

Stiffness matrix

The Length of the beam

Angular velocity vector transformation

Effective moment applied at the reflector c.g.

Total mass of the flexible beam

Mass of the orbiter

Mass of the reflector _9



n

o

qt

R_

r

r X

ry

T

U

u_(z ,t )

uy (z ,t )

u _(z ,t )

V

p

dAyi

o_

The maximum number of modes considered

The generalized force vector

Generalized coordinates

Position vector of the mass center of the orbiter in the inertial
frame

Position vector from the orbiter mass center to the point of
attachment

x co-ordinate of the reflector mass center in the body-fixed
frame

y co-ordinate of the reflector mass center in the body-fixed
frame

Total Kinetic Energy

Total Potential Energy

The beam deflection in x direction referred to the body-
fixed frame

The beam deflection in y direction referred to the body-
fixed frame

The torsional deflection about z axis in the body-
fixed frame

Velocity vector of the mass center of the orbiter in the body-
fixed frame

Velocity vector of the point of attachment in the body-
fixed frame

Mass per unit length of the flexible beam

Vector representing the axis rotation during the slew
maneuver

i th Eigenfunction corresponding to ux

i th Eigenfunction corresponding to uy

i th Eigenfunction corrsponding to u q,

The attitude of the orbiter in the inertial frame

Slew Angle

The angular velocity of the orbiter in the inertial
frame



The angular velocity of the reflector in the inertial
frame

Damping ratio



3. ANALYTICS

Co-ordinate S.ystems

The motion of SCOLE assembly when considered as a rigid body in space has

six dynamic degrees of freedom: three of these define the location of the mass

center, and three define the orientation (attitude) of the body. The motion of this

rigid body is goverened by newtonion laws of motion expressed in terms of

changes in linear momentum and angular momentum. These relationships are

valid only when the axes along which the motion is resolved are an inertial frame

of reference [9,10]. To define the orientation of the orbiter in space, a set of orthog-

onal axes fixed in the body is utilized. Then the attitude of the orbiter is defined in

terms of the angles (01,02,03) between the body- fixed axes and the inertial co-

ordinate axes. The body-fixed frame origin is located at the point of attachment of

the flexible appendage with the rigid shuttle for this analysis (Fig. 1).

The transformation from the inertial frame to the body-fixed frame is given

by the matrix, C as developed in figure 2 where if _', 7, k' represent the dexteral

set of orthogonal unit vectors fixed in the body- fixed frame and e i is the rotation

about i-', 02 is the rotation about j and 03 is the rotation about k. These rotations

are carried out successively as shown in figure 1 and the matrix C is given as

cos03 sin03 0

--sin{) 3 cosO 3 0

0 0 1

Thus C r is obtained as

co02 0 --sin021 0

[sin02 0 cosO2
!o ocos01 sin01

--sinO 1 cosO 1

(i)

cT=

cosO 2cosO3

sinO lsinO 2cosO 3+sinO 3cosO 1

--cosO lsinO 2cosO 3+sinO 3sinO 1

--cosO 2sinO 3 sinO 2 [

--sinO lsinO 2sinO 3+cosO 3cosO 1 --sinO lcosO 2 I
cosO lsinO 2sinO 3+cosO 3sinO 1 cosO lcosO 2 l

(2)



In order to completely define the attitude (orientation), it is needed to relate

the rotation angles 0 t, 0 z, and 0 3 to the angular velocity components (or, o2, o3)

of the orbiter. One way of obtaining the required relations is via body-three angles

method [5] which was utilized in developing C matrix in equation (1) and these

relations are

() 1 = ( °lc°s0 3 -- ¢°2sinO 3)/ cos0 2

() 2 = ( °tsin0 3+°_z c°so 3)

O 3 = ( --¢°lcosO 3+_°2 sin0 3) tan0 2+c°3

(3)

Thus, the angular velocity of the orbiter can be obtained in the inertial frame

by means of the following transformation

0_'- MT"_

where the transformation M T is given as

(4)

coso2coso3sino3 lMr = -cosO 2sin0 3 cos0 3 (5)

sin0 2 0

Although the body-three angles method is used here for obtaining the

transformations C and M, there are three other methods which can be used to

obtain the same transformations. A detailed discussion of all the methods is given

in reference [5] and a summary of the transformations using the remaining three

methods is given in the Appendix.

Kinetic Energy

If the position vector of the mass center of the orbiter in the inertial frame

(Fig. 3), R, isgiven as



Rx
R_= Ry

Rz

then the velocity of the mass center in the inertial frame is

(6)

Rx
Z_(t) = Rr

This velocity can be transformed in the body-fixed frame as

(7)

Z(t)= c Ry (8)

The velocity of the point of attachment in the body-fixed frame is

V_o = V +c_xr (9)

where r is the vector from orbiter mass center to the point of attachment.

Defining the position vector (Fig. 4), a, of a mass element on the beam from

the point of attachment (origin of the body-fixed frame) before deformation as

!]
and the displacement vector of this mass element as

(10)

a_(z ,t ) = 'z,'l](z ,t

0

(11)



the position vector after deflection is given as a +d.

[6] is

The kinetic energy in the beam

T 1 = (1/ 2) raV_orV__ + (1/ 2)_._.r[J]_o_----mVor__..]__+(ll 2)f drddm

/ix'

+ _T f dim +_,j f ad___am+(i/2) f [,i,._._ ]az _y.
h a

(12)

where the vector c is from the point of attachment to the mass center of the beam

and if it is assumed that the beam is a thin rod, then it is given as

I--L! 2
(13)

Cx

C = Cy

Cz

=(1/ ra ) f _adm =

and using the skew symmetric form for the vector cross product for any two vec-

Cy

mc x

0

tors c and _ (in the same reference frame) as

cx_=[_]__

0 -cz

_= c, 0

--Cy Cz

also, the moment of inertia matrix is given as

(14)

(15)l = (1/ 3) pL 3

100

010

000

where p is the mass per unit length of the beam. The last term in the equation (12)

corresponding to torsional motion is given as



1"*1

I ° °1I';"1= (1/ 2)f z_x' @' u_ 0 1/ 2(pds)s 2 0 @'o o o11  !
The kinetic energy equation (12) can be simplified as

(16)

where

TI = (I/

i=1

"l'Y_or-_-_+eo__r_+(l/4) p psi_i2+ Zp6_i2
i i=1

(I7)

n

u, = Z ¢_i (s)q_ (t)
t=1

n

Uy -- y' ¢yi (s)qt (t)
t---1

n

u,' = Z _i '(s )q_(t)
t---1

n

u_' = Z ¢yi '(s)qi(t)
i=l

n

u _,= :E _ (s)qt (t)
i-----1

L

0

L

P 2i = f ¢yt (s)ds
0

L

P 3t --" fs ¢zi (s)ds
0

L

P 4t - fs ¢_ (s)ds
0

L

0

L

(18)



and

&__it) = p

n

Z p 1i4i
t--1

n

Zp,i0t
t--1

0

(19)

_(t) = p

n

Zp4t41
t=1

n

Zp_IO,
i----1

0

(20)

The expressions for p 1t, P 2t, P st, P 4t, P 5t, and p 6t are developed as follows. Note

that

@xt is ) ----AXt stnA9t s + Bxt cos/3 i s +Cxt stnhBi s + Dxt cosh/3 i s

Since for SCOLE configuration E/x = E/y and/3Lx =/3iy , E/

for both ¢_xi(s) and _ytis). However, this may not be

configurations.

and/3 i are used

true for other

L

p ,, = f is)ds
0

L

P 2i = f ' t ( S ) ds
0

1

Bi L 2 [ --Axt cos_t L + Bxt slnoq +Cxt cosh_i L ]

[ +Dxi stnhBi L +Ax_--Cxt ]

Defining oh = B1L

i21A)



Pu (21B)-Axx cosoq +Bxt sinoq +Cxt coshcq +Dxi sinhoq +Axi -Cx_ ]

similarly,

P 21 --

P 21 --

1 !

[ --Ay_ cosBt L +Byt sinBi LL 2

+Cyt cosh/]i L +Dy_ sinhBi L +Ay_ -Cyt ]

1 [_Ayicoscx ,+By,sincx, +C,,cosho_,+Dy_slnho h +Ayt--Cy , 1ohL

(22A)

(22B)

and these can be given as

L

P 3_ = fos ¢b_a(s)ds
z.

P 4t -- fOs dAyl(s)ds

P 3_

:_oo_T_..-.--}

P 3i

= Axt

= Axt

Cx_ [ L 2cosh_

'inO'LLc°s 'Lx,lc°s 'LL'In 'L
I I 1L coshBt L sinh/31L L sinh/3i L cosh/3 i L +l_!-

Cxi _i /3/2 +Dxt lit B[ _t 2

L 2sinai L 2cosoq +Bxi _ +

L 2slnhcqot_ +Dxi L ZsinhOqoh L _-coshoho_ +_-7

Similarly,

(23A)

(23B)

P4i

P 4i

= Ay i

= Ay i

L 2cosh_ L Zstnhc h ] L Zslnh_ L 2coshegl L _ ]

1

(24A)

(24B)



P 5i

P 61

L

--;oI'_.,'_)}2"_
L

-;o('°_'_)I2''
and these can be shown to be

Psi _t _- cos2/]i L +( 2

--A_l Bzt 2L---sin2BiL + 4Bl

+Axt Cx_ [ _l

!

L 2

[

--2L [ sin_ L sinhBt L

J

I

+Ax_ Dxl [ Bl L 2

[

--2L [ sinBl L cosh/3_ L

J

I

4B_

L 2B' Ic°s2/3' L --'L'I ]2 4/3,

(cos/] t L sinhBi L )+(sin/]t L cosh/]t L ) [
/

-'_'i (cosBt L slnhB_ L )-(stnBt L coshB_

(cosBt L coshB_ L )+(stnBt L stnhBi L ) ]

I

. - _-cos2/3 t L +( )sin2/3_ L
6 2 2 4/3_ .



1 L2Bt )cos2Bt L 1--A_ B_ Lsin2BtL +( 4_ t 2 4Bi

Bt L c°s2Bi L +( B_ L 2 + l-_- )sinh2Bi L + B_-----_3} ]24Bi
(25)

+Ayt Cyt [ (3t L 2 { (cos[3_ L sinh(3t L )+(sinBt L cosh[3t L ) }--2L {sin[3i L sinh[3i L ]

-1---[(c°s(]_LsinhB'L)--(sinBiLc°sh[3iL)]lBi

--'_-'l (cosBt L coshBt L )-(sinB_ L sinhB_ L ) _

+Byt2[B3L3 1 {L L2/3, 1 ]16 2 -_-cos2Bi L +( 2 4Bt )sin2Bi L

Bi L 2 1 2 B2L 3

Cy_ Dyt --_cos2Bt 1 1+ _-Tcos2Bt L

2 4Bi 3 "
(26)

The equations (25) and (26) can alternatively be derived by replacing Bi = °_--k-i•
L

The kinetic energy of the reflector is



T2 = (1/ 2) m z_VrV__-m z_V_a (L)__.+rn z._Vrd"(L)--( 1/ 2) rn __r_r (L)_(L )o_

+rn_o__r_(L )_(L )+(ll 2) mz._r(L )d_(L )+(l! 2)glzQQ (27)

when rn 2 is the mass of the reflector and 12 is the mass moment of inertia matrix

of the reflector. The deflection vector d_(L ) at the mass center of the reflector is

given

d(L ) --

ux (L) - ry u 9(L )

uy(L ) + rxU¢,

ux '(L )r x + uy '(L )ry

(28)

and the position vector from the point of attachment to the reflector mass center is

given by

Thus,

9..(L ) = . (29)

d'(L ) =

t, (L ) - ry t 9(L )

fly(L) + r x fi _o( L )

ux '(L )r x + ty '(L )ry

(30)

The angular velocity of the reflector in the inertial co-ordinate system __flcan be

shown to be

_=_+ 4'
tiC, L

(31)

The equation (27) can be simplified as

+m__r_(7. __(L )+(11 2) m2 E Z _'_ (L)_.j (L _, @ +
t-_I]_1



where

f f _yt(L )_byj (L)_,_¢ ]+(1/ 2) _rI2.._.P+(l/
tffiljffil

2) _Jz_ (32)

_T = l gtx ' gZy' gt_ ]1.,

ffi f_.._,.,'(z.),_,(t)Z%'(L)O, _,_,p,(z_.),_,(t)•
tffil i=l i=1

(33)

The kinetic energy of the shuttle, To , is given as

To =(1/ 2) mlVrV+(ll 2) _._r [I1_ (34)

where m I is the mass of the shuttle and 11 is the mass moment of inertia matrix

of the shuttle.

The total kinetic energy is given as

T = T o +TI+T _ (35)

This can be simplified as

T = (ii +2) moVrV+J H +(1/ 2)¢z_..r lo oL)'_q,2+vT__
i=1

+o,r? _+o,r__+m_r a_"(L)+r. __r_(L )+

+(1/ 2)/_rlz_P+(l/ 4) p Ps,0 P61_Tiz

where

(36)

H

I o -- I1+(1/ 3) pL s

rno = mt+pL +rn 2

= [pL +mz __..+rn.__.(L )+pl-__

oob1 0 +I2+J2--pLT_--pLT___c--m?._.--m?2_.(L )

O0



The term 12 in this equation can be shown to be:

J2 -" m2

(r_+L 2) -r_ ry r_ L

--r, ry (r_+L2) ry L

The total kinetic energy expression can be further simplified as

where

In this equation

A I_ --&_+m__(L )

= ?a__+A+m_(L )+___(L)__(L)

O L)I''2{O L)}I

(37)

'(L ) ]r =

6_ '(L) 0 0

0 61y '(L) 0

0 0 6_¢(L )

6_ '(L) 0 0

0 6_y'(L) 0

0 0 _ _(L )

Here i-2,3 ...... ,n. The number n indicates the total number of flexible modes con-

sidereal.

_uations of motion



Lagrange's equations of motion for the case of independent generalized co-

ordinates qk are

d OT _ 07" =Qk - OU (k=1,2 ........ n)
at O(_k Oqk Oqk

where, T = T(.q__.) is the kinetic energy

U = U (9.) is the potential energy, and

Qk are the generalized forces arising from nonconservative sources.

(38)

The generalized co-ordinates are:

R x ,Ry ,R z -- position of orbiter mass center relative to inertial frame origin.

e 1,0 2,0 3 - r011, pitch and yaw angles of orbiter.

q z,q 2....... qn - modal deformation co-ordinates for the beam.

The previous kinetic energy expression developed in equation (37) is given in

terms of nonholonomic velocities V and _ and generalized velocities _. Using the

notation T(V,___) for this kinetic energy expression and T for kinetic energy

expression in terms of generalized velocities, the equations of motion are developed.

Thus, equation (37) is rewritten as

+ ,07IA2_.+ (i/ 2).4:[As

(a) Translatignal Equations

From the chain rule applied to equation (37) using equation (8), one gets

AT_
ORx

Ay_
aRr

AT_
LaRz

=C r

0V1

AL
8v2

AL
0V3

(39)



Also, the generalized forces are CF(t ) where

F__(t ) -- f__o (t)+F2(t ) (40)

F__o (t) represents the force applied at the orbiter mass center and F_2(t ) represents

the force applied at the reflector mass center. From Lagrange's equations

and from equation (37)

IX7_-I=moV-Ho+A_q_OV _ _ (42)

Substituting equation (42) in (41),

mo_-H_+A _. = --Cdr(moV_-H__+A _) + F__(t) (43)

This can be rewritten as

mo_ --Hgo+ AlL = N__I + F(t)

where the nonlinear term N 1 is given as

N I = --cd r (mo V_.--H _+A _ )

= --h(mo V--H _+A _)

Here, _ == CC r.

(b) Rotational Equations :

From equation (4)

Again using the chain rule

(44)

(45)

(46)



ALso

_SZ_
8e_

8e2

J_
8e3

a_v_
8e_

= v.azL
8e2

803

-I_8.£_+
8_v

80

802

803

(47)

It can be shown that

8v--'r = v r c 8C r i=1,2,3 ........
80 i - 80 _ .....

(48A)

and

and

= _....rM-i ON/ ..... i=1,2,3 ........
80 t 80 i

(48B)

vrc3 C_f_..
- 80 1

= Vrc.,C___.__
- 802

V r c., C_f__
- 803

.,.T, I+

O O 1

corM-l_O__
-- 00 2

803

(49)

From equation (37),

and asbefore

IAft_
0---

: HV + Io_ + A z_q. (50)

[-_ ] = mo V -- Hc_ + A I_._V -- --
(42)



Using the Lagrange's equations

d [-f_--I-- OT =MG (51)00_ 00_

where G is the net moment about the mass center of the orbiter with respect to

the body-fixed frame, It is given as

= _ + _+a_)xE2 (52)

.Qo is the external moment applled about the mass center. Eqation (51) can be

simpified by substituting equations (42),(49), and (50) together with the relation-

ship developed in (46) as

I-tV + Io&__+ A_L =G +N 2

where the nonlinear term N2 is given as

vrcOC r
- O01

N 2 " M -1 V T C C-_ [ -O-_-]+ M - I__00 2 O___V

vrcC._, r
- 8Oa

o_rM-, aM
OO1

orM-1 0M -/_
- 002

(¢) Vibration Equations of the Beam

(53)

(54)

Since T in equation (37) is given in terms of _ which is a vector of general=

izedvelocities,

and

0T ]-- AlrV +A12o.)+A_.q..0.£

2C7

(55)



The potential energy in the beam is given by

U = (1/ 2).q.rK.q.

where the stiffness matrix K is given as

(56)

and

g __ (57)

k,, = _ _? ,_,(s)ds + ,_(s)as + cv,e,_, ,b_,(s)ds

Ioo,] G _ represents the modulus of rigidity of the beam and B_ - _

is the mass per unit volume (mass density) of the beam. Thus,

where D

°u 1= Ka..oa_

Using the Lagrangian Equations (38) and assuming that F__2 = O,

(58)

(d) Slewing E_uations

A _£ + A T2_ + A 3_. = --K.q " (59)

If it is considered to perform a slew maneuver about an arbitrary axis k. and

the slew angle to be _, then the slew maneuver can be expressed in terms of four

Euler parameters. These four Euler parameters are defined as

El

..{. -- E2

E3

= K sin{ (60)



(61)

and their derivatives with respect to time are given as

d__ = I__( E__ + E><_o) (62)
dt 2

dE4 _ I(o.E • (63)
dt 2----

The four Euler parameters can be related to the angular velocity components

of the rigid assembly as

E1

E2

E3

E4

E1

E2

E3

E4

E4 --E 3 E2

E3 E4 --E 1

--E 2 E1 E4

--E 1 --E 2 --E 3

0(O2

0) 3

(64)

If a slew maneuver is considered to be purely rotational, then the transla-

tional velocity and acceleration can be shown to be negligible during the slew

maneuver and only the rotational and vibration equations are reqired for the

analysis and they are simplified by setting _---_0__ in both (53) and (59) and are

written as follows

Io&__+ A_ff_ = GCt ) + N2(_._)

A2r&_.+ A3._/. + K.q. = O(t) •

(65)

(66)

where,

G(t ) is the net moment applied about the mass center of the orbiter and is

given by the following equations (figs. l& 2)

G__.(t ) = G0(t ) -]- _ d- a)xF2 • (67)

Also, O(t ) represents the generalized force vector which is given by the following



equation

g.(t ) =

]----1

171

_., ( Q]x,(t ) + Qly,(t ))
]----1

ooo

Jee

all

gtl

Z ( Qjx, (t) + Qjy, (t))
]=1

+ Qx, + Qy, + Qq_,

+ Q_ + Q_ + Q_

(68)

where, the generalized force components are given as

L

Qj_, = f Fj_ (z ,t )8(z-zj )_ (z )dz (69)
0

L

Qjy,= f_y (z,_,),_(z-z] )_,_(z_z (703
0

and

Ojq,,(t ) = 0 . (71)

Here, Fix (z ,t ) is the x component of the concentrated force applied at location ]

on the flexible antenna and Fjy is the y component of that force.

Also,

Qxi(t) = F2_ (t)6xi (L)

Qyt (t) = F2y (t)_yt (L) (72)

Qq, Ct ) = Maflt )_a_ (L )

Here, F2 is the force applied at the reflector C. G.



Thlls,

M_(t ) = Fz_ ry + F2y rx + M2¢, • (73)

The location of reflector C. G. ts given by coordinates (r x ,ry) and M2q J

represents the external moment applied at the reflector C. G.

Thus equations (62) - (73) completely represent the dynamics of the slew

maneuver. These equations are nonlinear and coupled including both the rigid-

body dynamics and the dynamics of the flexible appendage with kinematic non-

linearlttes. It Is Important to note that the nonlinear term N2(__.) is dependent on

the rotational velocity and as a result determined by the slew maneuver rate. Thus

the basic slew maneuver stretegy has to be developed before this term can be

linearlzed.

_e) Vibration Equations of the Beam with Damping

If damping IS included in the derivation of vibration equations of the beam,

then the damping effect can be expressed in terms of frictional forces. These are

nonconservative, retarding forces and are assumed to be proportional to the gen-

eralized velocities. In deriving the vibration equations by means of Lagrange's

equations, the following function is introduced

l=lj=l

(74)

It also has a positive definite quadratic form similar to the kinetic and poten-

tial energy expressions.

With this definition, Lagrange's equations assume the form

a__.flE_ _ _Or Of a = o_ - _u (k =1,2 ........n ) (75)
at 8Zlk 8qk Oqk Oqk



Ag_n, as before

and

[ _T ] -- A{_V + A[o +A_.
(55)

and it can be seen from (74) that

(58)

where the damping matrix B is symmetrical and is given as

(76)

B __

bll b12 bin

bzt b22 • bzn

bn t bn 2 • • bnn

(77)

The vibration equations are given as

Ar_ +A_+A:_..+B_=--K..q +O(t)

The slewing equations (65) and (66) would be modified as

(78)

I_+ Az:4. = __(e ) + N2(__A)

At&_.+ Aa_ + B.g.=- K9.. +O(t)

Nonlinear Term in the Rotational Equations

(79)

(803

The nonlinear term N 2 in the rotational equations (65) and (79) during the

slewing maneuver is simplified as



N2-- M-1

,,,__rM-10M
801

_,__rM-I OM
802

o,_rM-10M
803

- z# (81)

where

_T M-I _M
]

-I0 00l
- 801 ]

(82)

cot M-1 ON/ _ 1 I(--c°lsinO 2c°s20 3+¢°2stnO 2sinO 3cosO a)- 80 2 cosO 2
(t_lstnO 2sinO 3cosO 3

--ta)2stIlO 2siI120 3 )
(tt_lCOSO 2 c050 3--¢_2 cOSO 2sinO 3) ] (83)

o,_rM-'OM _ 1 I(_2cosO 2)
80 3 cosO 2 1 (-t_lcos02) 0 ] . (84)

Since the transformation matrix, M , is a function of 0 2 and 0 a, the time

derivative of M can be expressed by the chain rule as

(85)

From equation (5)

(--SinO 2COS0 3)0 2 (sinO 2sinO 3)0 2 (cosO 2)0 2

0 0 0

0 0 0

(86)

(--COSO 2StDO 3)0 3 (--COSO 2COS0 3)0 3 0

(cosO 3)0 3 (--sinO s)O 3 0

0 0 0

(87)

Substituting these equations (86) and (87) in (85)



(-sin02cos03)02+(-cos 02sin03)03 (sin02sin03)02+(-cos02cos03)03 (cos02)02

(cosO 3)e S (--slnO 3)0 3 0

0 0 0

(88)

From equation (4), this can also be expressed as

/_/ _ 1
cos02

(--Sin0 2COS0 3)(_lCOS0 2sin0 3 (sin0 2sin0 3)(¢_1c0s0 2sin0 3

+_2cos0 2cose 3)+(--cos0 2sine 33 +_2cos0 2cos0 3)+(--cos0 2cos0 3)

(--¢_x sine 2c°s0 3+°)2 sine 2sine 3 (--¢_1 sine 2c°s0 3+¢_2sin0 2sin0 3

+_scos0 2) +_scosO 2)

(cosOs)(-olsinO2cosO3

+¢o2sln02sines+c_scose2)

(--sin0 3)(-ahsin0 2cos0 3

+_2sine 2sine 3+_3cos0 2_

0 0

Also, M -1 is given as

COS0 2(¢_ lcOSe 2sLue 3-[-¢D2COS0 2COS0 3)

0

0

(89)

cosO 3 cosO 2sine 3 --sinO 2cosO 3

--sinO 3 cosO 2cosO 3 sinO 2sinO 3

0 0 cosO 2

Thus, the nonlinear term N 2 can be rewritten as

(9O)



Where the term A '3 is

N 2 -- A '3(___,0_.)

A '3(_,0_.) = M -1

0

M-10M
802

or
003

N 2 -- A '3(_0.)Io _ + A '3(o,0_.)A _.

-- A 4(_0_.) + A 5(__,0_.)__ (91)

where A 4 depends on the rigid-body slewing and is nonlinear in terms of o and 0_

The second term relates the coupling between the rigid-body slewing and the flexi-

ble modes, This equation can be further simplified in terms of Euler parameters by

relationships developed in appendix II as

N2 -- A6 (__,.g.) + A7 ( _.__.,.g..)_

where _¢.is the Euler vector comprising all four Euler parameters,

(92)

From equations (65) and (66) and by defining A = A 2r Io-1 A 2 + A 3 , the

following equations are obtained

A2A-1B._. + A2A-1K.q. + {A2A-1A2TIo -1 + 13]

a' -----A-11ki -- A-1Kcl -- A-IA2 T lo-iG(t) + A-1A2 T Io-1

(93)

+ A-10 (t) . (94)



It is assumedthat control forcesapplied for vibration suppressionhasnegligi-

ble effect on rotational maneuver of the spacecraft in developing equations (93)

and (94). Also, 13 represents 3x3 identity matrix in these equations.

4. NUMERICAL DATA

The analytics developed in the previous section are utilized together with the

basic SCOLE data [1] and the three dimensional Linear vibration analysis [4] to

generate the following numerical data.

m 1 = 6366.46slugs. ; m 2 = 12.42slugs. ; O = O.0955slugs ! ft. ;

G _ = 7.2E+81b l ft2; (F_.I )x = (E./)y = (EI ) = 4E+7lb--ft2;

L = 130ft.

0.036

rE_= -0.036

-0.379

11--

905443.0 0.0 145393.0

0.0 6789100.0 0.0

145393.0 0.0 7086601.0

12--

18000.0 --7570.0 0.0 I

l--7570.0 9336.0 0.0

0 0.0 27407.0

The three dimensional vibration analysis is given in terms of the first ten

modal frequencies and mode shapes in table I. Here,

@xl (s) -- Axl sin--_--+B.t cos--_--+C.t sinh--_--+D.L cosh _-:



otis oQS o_tS oQ$

_y_ (s) = Ay_ sin--_--+By t cos---_--+Cyt sinh---_--+Dy t cosh--_---

S S

Using these data the following matrices are obtained.

1216640 --1.530307 175667.1

I0 = --31.66433 7082976 --52474.84

175690 --52503.9 7131493



TABLE1

FIRSTTENFLEXIBLEMODES OF SCOLE MODEL

THREE DIMENSIONAL MODE SHAPE CHARACTERISTICS

MODE No. 1 2

0.27804240E+00 0.31357296E+00FREQ. (HZ.)
of

Ax
B_
G
G
Ay
B,
G
D,

A_
B_

0.12012084E+01
0.16282665E+00

-0.19670286E+00
-0.16983450E+00

0.12756518E+01
0.38855291E-02

-0.14998387E-01
-0.43321018E-02

0.19616259E+00
-0.10274618E-01

0.57579133E-02
0.11810057E-01

-0.57220462E-02

0.19360955E-01
-0.50748354E-01

0.13978018E-04

0.14985820E-01
0.14219781E+00

-O.22695797E+00
-0.19283105E+00

0.22644561E+00

0.21835058_-O1
0.31115282E-01

-0.75992337E-O5

MODE No. 3 4

FREQ. (HZ.) 0.81300189E+O0 0.11856099E+01

of

Ax
Bx
Cx

Dx
Ay
By
c,
D,
a¢
A t
B t

0.20540387E+01

0.40868188E--01

--0.61958845E--01

-0.41309992E-O1

0.61880796E-01

--0.22438404E-01

0.36509234E-01

0.24390447E--01
-0.36464758E--01

0.56611842E-O1

0.92698901E--01

-0.87320799E--05

0.24804687E+01
0.80641794E-01

-0.67233377E-01
-0.80913938E-01
0.67106316E-01
0.13728679E+00

-0.11746932E+00
--0.14085209E+00

0.11725057E+00
0.82557693E-O1

-0.16158934E-03
0.10437718E-07

MODE No. 5 6

0.20536300E+01 0.49716090E+O1FREQ. (HZ.)
of

Ax
Bx
Cx
D_
Ay
By
C,
D,
oft
At
Bt

0.32645546E+01
0.99278129E-01

-0.92344553E-01
-0.99442145E-01
0.92225801E-01

-0.57396019E-O1
0.53976008E-O1
0.58114853E-01

-O.53906980E-01
0.14300062E+O0

-0.16588614E-02
0.61861804E-07

0.49716090E+01
0.45739784E-01

-0.46365581E-O1
-0.45763106E-O1

0.46329676E-01
0.78612940E-01

-0.79952853E-01
-0.78914485E-01

0.79891039E-O1
0.33165303E+00

-0.93394833E-05
0.15017211E-09



THREEDIMENSIONAL MODE SHAPE CHARACTERISTICS

MODE No. 7 8

0.55157833E+01 0.12281249E+02FREQ. (HZ.)

of

Ax
Bx

Cx
Dx
Ay
B,
c,
D,
ore
A#

B,
MODE No.

0.53501560E+01

0.81311804E-01
-0.82056569E-01

-0.81344923E-01
0.81997259E-01

-0.47145439E-01
0.47703590E-01
0.47289807E-01

-0.47669155E-01
0.38408110E+00

-0.23855560E-02
0.33122041E-07

0.79833305E+01
0.44835061E-01

-0.44834914E-01
-0.44840508E-01
0.44813000E-01
0.77404756E-01

-0.77465629E-01
-0.77475327E-01

0.77427782E-01
0.85518143E+00
0.15830371E-05

-0.98715017E-11

9 10

FREQ. (HZ.) 0.12890442E+02 0.23679520E+O2
t_

A_
Bx
c_

Ay
B,
c,
n,

A_
B,

0.81789349E+01

0.78743585E-01

-0.78755259E-01
-0.78752483E-01

0.78717693E-01

-0.45569244E-O1

0.45609474E-01

0.45607884E-01

-0.45587726E-01

0.89760145E+00

0.94995483E-03

-0.56437766E-08

0.11085347E+02
0.44348498E-01

-0.44367373E-01
-0.44350511E-01

0.44351763E-01
0.76707490E-01

-0.76762782E-01
-0.76733612E-01
0.76735779E-01
0.16488784E+01

-0.51105957 E-06
0.16528495E-11



A3_

0.45879E +2

0.36305E-1

-0.89042E- 1

--0.1406 7E 0

-0.1457E0

0.1914E-1

0.845 97E - 1

-0.6893E --2

--0.4269E--1

0.4204E-2

0.36305E-1

0.6211E +2

0.11263E0

--0.1471E0

-0.5518E-1

0.19839E-1

0.3935E--2

--0.7165E--2

0.5969E-2

0.41227E--2

-0.89042E-1

0.11263E0

0.32737E +2

-0.6392E-1

--0.14526E0

0.7925E-2

-0.8369E- 1

-0.2829E -2

0.89767E-1

0.1866E--2

--0.14067E 0

-0.1471E0

--0.6392E -1

0.2547E+3

0.1908E0

-0.4278E--1

-0.76115E- 1

0.1543E-1

0.2859E--1

-0.9067E --2

0.1457E0

--0.5518E-1

--0.14526E0

0.1908E0

0.8103E +3

-0.2570E-1

--0.12912E0

0.9222E -2

0.4611E-1

-0.5 947E -2

0.1914E--1

0.19839E-1

0.79251?, --2

-0.4278E- 1

-0.2570E -1

0.23209E +5

0.10383E--1

-0.2089E--2

-0.3955E--2

0.1227E --2

0.84597E--1

0.3935E--2

--0.8369E-1

--0.76115E-1

--0.12912E0

0.10383E--1

0.55561E+5

--0.37286E-2

--0.3859E-- 1

0.2397E-2

-0.6893E-2

--0.7165E-2

--0.2829E--2

0.1543E--1

0.9222E--2

-0.2089E--2

--0.37286E--2

0.1342962E +8

0.1421E-2

-0.4427E-3

-0,4269E-1

0.5969E -2

0,89767E- 1

0.2859E--1

0.4611E--1

--0.3955E--2

--0.3859E-1

0.1421E --2

0.2095672E +8

-0.9108E-3

0.4204E--2

0.4127E--2

0.1866E--2

--0.9067E --2

--0.5947E --2

0.1227E --2

0.2397E--2

--0.4427E--3

--0.9108E--3

0.8662547E + 10

A2r=

--0.2133821E0

0.3808921E+3

-0.1808478E +3

0.1423380E +3

-0.2416743E +2

--0.6802273E 0

0.2784792E +2

0.7842818E + 1

-0.2694455E +2

-0.9225328E- 1

--0.3687057E +3

-0.3030935E +2

-0.1318596E +3

--0.1135851E + 1

0.574383E +2

0.3104929E 2

0.6651585E +2

--0.1930097E +2

-0.5544252E +2

0.1594045E +2

--0.7253901E--1

-0.8427658E - 1

-0.125799E0

-0.2367351E-1

-0.9150328E-1

--0.3843062E--1

0.596075E--1

-0.4363533E-2

--0.4200623E - 1

--0.1626004E --1



The stiffness matrix K is calculated using equation (57) and the mode shape

coefficients given in Table 1. This matrix is a diagonal matrix and is represented in

terms of the diagonal elements as

K

kl, x = 0.2820217E0

k2,2 = 0.3574692E0

k3, 3 = 0.2412807E I

k4, 4 = 0.5285116E I

k5,5 = 0.1588654E2

k6,6 = 0.8573860E2

kT, 7 = 0.I146118E3

ks, s = 0.5686101E3

k9,9 = 0.6254598E3

1o,1o = 0.2114612E4

The damping matrix B used for this analysis is a diagonal matrix and for

damping ratio _ -- 0.003, it is calculated to be

B

b 1,1 -" 0.9685964E--3

b2, 2 -" 0.1088608E--2

b3, 3 -" 0.2834016E--2

b 4,4 = 0.4256808E--2

b5, 5 = 0.7387177E--2

b6, 6 = 0.1719014E--1

b7, 7 ---- 0.1984237E-1

bs,s = 0.4421234E-1

bg, 9 = 0.4633434E--1

loAo = 0.852 7647E-- 1
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APPENDIX I

The following is a summary of transformations between inertial frame and

body-fixed frame. Here, s i and c i (i=1,2,3) denote sinei and cos0_ (i=1,2,3)

respectively.

(a) Space-three Angles

C __

(b) Space-two Angles

1
C2C3 C2S3 --$2 I

IS1S2C3--S3C 1 SIS2S3"t"C3Cl SlC 2

ClS2C3"t"S3S1 CLS2S3--C3S 1 CLC2]

M T -- iio-s lC 1 SlC

--S 1 C IC

C __
c2 $2S3 --S2C 3$1 $2 --S1 c2 S3JrC3 C1 $1 C2 c3Jc's3 C1

CiS --CLC2S3--C3S 1 CLC2C3--S3S 1

M T --

1 0 c2

0 c1 sis2

0 --S 1 ClS 2

(c) tkxiy-two Angles

C __

C2 S1S2 --CIS 2

S2S 3 --SLC2S3"!'C3C 1 C l C 2S 3 Jc'c 3s1

$2C 3 --SlC2C3_$3Cl C1C2C3--$3S 1

M .T

c2 0 1

$2S3 C a 0

s2ca -s3 0



APPENDIX II

The transformation that relates the orientation angles O to Euler parameters E

is a nonlinear transformation. This transformation is developed for body-three

angles representation in this appendix and similar transformations can be derived

for other three representations, namely space-three angles, space-two angles, and

body-two angles.

(a) For sin0 2 ;e 1 :

7/" 77

If -- _- < 0 2 < _-, then

If ( cos01cos0 2) >f 0, then

0 2 = sin-l[2(E3El + E2E4) ]
(A.1)

0 1 _- sin-I

If ( cos0 tcos0 2) < 0, then

01--- w--sin -I

--2 (E2E 3 -- 61E 4 ) [

COS

(A.2)

(A.3)

If ( cose 2cos0 3) >f 0, then

(}3 "-- Sin--1

--2 (E1E 2 -- E3E 4 )
(A.4)

If ( cosO 2cos0 3) < 0, then



_3_-- w--sEt1-1 (A.5)

77"

(b) For sin02 = ± 1, 02 is a constant. For sin02 = 1, 02 --_-. However, if

w

sin02 = --1, then 02 = --_-. For this case, if ( sin01sin02sin03 + cos03cos01 ) >/0,

then

01 -- sin-1 [2 ( E2E3 + E1E4 ) ] . (A.6)

If ( sin01sin02sin0 3 + cos03cos0 1 ) _ O, then

01=rr--sin-l[2( E2E3+ EIE4) ] • (A.7)

For this entire case, 0 3 = 0.
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Optimal Planar Slewing of the Flexible Orbiting SCOLE

P. M. Bainum and Feiyue Li

Department of Mechanical Engineering

Howard University, Washington, D.C. 20059

Abstract

The nonlinear equations for the planar motion of the

flexible SCOLE are derived by using Lagrange's equations. The

displacements of the flexible parts are assumed small as

compared with the SCOLE dimensions. The linearized version of

the motion equations is obtained. The Maximum Principle is

applied to the planar maneuver of the SCOLE to obtain the

associated optimal control. The resulting nonlinear two-point

boundary-value problem is solved by using the quasilinearization

method, in which the solution of the linearized version is used

as a starting solution. Some numerical results are presented to

show the application of this method.
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Introduction

Pontryagin's Maximum Principle has been used for the optimal

attitude maneuvers of a spacecraft in the following cases:

i) Rigid (3-D, multi-control source)

(Junkins, J.L. and Turner, J.D., 1978)

(Bainum, P.M. and Li, F., 1986-1988)

(Lin, Y.Y. and Kraige, L.G., 1987)

2) Flexible

a) Linearized Eq.(single-axis rotation, rigid-hub-2

symmetric beams; Breakwell, J.A., 1979)

b) Nonlinear Eq. (single-axis rotation, rigid-hub-4

symmetric beams, 1 control torquer;

Junkins and Turner, 1980)

c) Nonlinear Eq. (single-axis rotation, rigid-hub-4

symmetric beams, 5 control torquers;

Turner and Chun, 1984)

d) The Present Problem:

Nonlinear Eq. (single-axis rotation, Shuttle-beam-

reflector, control torquers and

control forces)



The methods used in solving the two-point boundary-value

problem are:

i) For Rigid Spacecraft:

a) Differential Correction (of unknown initial costates)

and Relaxation Process (to increase the participation

of the nonlinearity in the solution)

(Junkins and Turner)

b) Hybrid Approach (direct gradient method and the method

of particular solutions) (Lin and Kraige)

c) Quasilinearization Method (Bainum and Li)

2) For Flexible Spacecraft:

a) Linear Eq.

Transition Matrix Method (close'form solution of the

unknown initial costates)

b) Nonlinear Eq.

Differential Correction and Relaxation Process

(Junkins, Turner, and Chun)

Quasilinearization Method (Bainum and Li)



MAXIMUM PRINCI PLE

STATE EQUATIONS

= f(x) * B(x)u, x(O)-xo, x(tf)=xf

PERFORMANCE INDI CES

tf

J1=(112) J (xTQx +uTRu)dt

0

tf

J2 = J(l)dt= t f

0

lullC Ulb, i= I ... n

NECESSARY CONDITION5

HI=(112)(xTQx "* uTRu) -* _.T(f(x) + BU)

,_ = - (<)H I lax), ,_ (0) unknown

(OH !/_u)=O, Ru=-BT;_

H2= ! + AT(r(x) + Bu)

= - (aH2/ax), _ [0) unknown

ui= - Uib sign(BT_ ), i = 1 ... n

(I)

(2)

(3)

(4]

(5)

(6)

(7)

(8)

(g)

TPBVP

= g(z), z=[ x, _ IT = [ zl" z2 IT

z i (0), z i (tf) known;

z2(O), z2(t f) unknown.

z2(O) to be determined.

(1o)
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QUASILINEARIZATION AL6ORITI-rl

(A) LINEAR DIFFERENTIAL EQUATION:

Nonhomogeneous: _, = Az • B. z=[zl, z2 ]T, (1 I)

Zl (0). Zl (tf) known, z2(O) to be determined

Homogeneous: _, = Az ( ! 2)

(a) n solns, of (I 2) + i particular soln. of (! I )

(b) n + I particular solns, of (I I)

(B) NONLINEAR CA5E:

Linearized equation of (!0):

_(k+ l)=(aglaz)z (k+ I) • h( z(k))

where

z (k) is the k th approximate solution

of the nonlinear equation (!0),

z(k+l)=z(k)+Az(k)

z=[z !, z2]T,

z I (k÷ 1 )(0), z I (k+ ! )(tf), known

(k+l) (0) to be determinedz2

(13)



PLANAR SLEWING OF FLEXIBLE 5COLE

LINEARIZED EQUATION OF MOTION:

I mT

B M

o oJ

0 •

0 I z! Z U s

ui_

u2

•U]

where

8 is the angle of rotation,

nxl is the amplitude vector of the flexible modes,

n is the number of mode used.

i is the moment of inertia about the axis of rotation

m. ill are the Inertia parameter vector, matrix.

• is the stiffness matrix.

_(z) Is the mode shape function vector.

cp i---_(_), _ is the coordinate along z axis,

L is the length of the beam,

us is the control torque on the Shuttle,

u i are the control actuators on the beam and the

reflector.



STATE EQUAT IONS

- As + Bu

BOUNDARY CONDITIONS FOR s

ell
ol

s(O)= --I

o I'

s(tf)= °
Q

O]

01
2(n+ I )x I

where n is the number or mode shapes used.

PERFORMANCE INDEX

tf

J =(1/2)J (xTQx +uTRu)dt

0

TPBVP

z=Cz, z=[s.A lT= [z 1.z 21T

7_ is the costate vector,

z I (0), z ! (tf) known;

z2(O) to be determined.

300



U

t

t

ilt

+ + + + + 0
i

_6 6 6 6 6

0

0

o"

0

0

0

II

--)

0
_E



0

m

t

o

_t

t

:l
m

IO

°

0

0

t

I

8 8 8 8 o
+ ÷ ÷ + ÷W

0 _ _ _

6 6 6 6 6 6
I I i

0

6

6

6

II

0

°

0

0

0

II

Q

W

N

r,

Z

--1

0



u.

i

uJ
Q
0

0

&
°

0

0

0

M

t_
_n

U

N

_J

O

Ig
i

O)



.J
i

i

A

i

t

t

t

t

I

IO

0 0 o o o o
÷ ÷ _. ÷ ÷ ÷

,- o _ _ _

6 o 6 6 c_
i i !

o

c_

II

0

o

o

o

i!
-n

uJ

U

t_

..J

0



I-
u.

t

t_
Q
0
X

+

.It

f

t

PO

o

• Ii
" Ii

i i t

A

0

&

0

0

0

o.

t_

U

.J
Z

0
Z

0

!

t_



b6

i

WJ

0
0

t

1

lO

Iit

+

t

$

u.

/el. . . r
_ot*

I.

t

t

m.
t

Iitl.
D

tl
m

" LitJ

_ o o

- o o 6
0 , , '

306

0

0

0

0

0

Z

_J
Z

0
Z

uJ
0

0
s_
i



U?

.J

I

6

t

m

i

I*

J'.

I

D

t

I0

" Ii
0 0 0 0 0 0
÷ + ÷ + ÷ ÷

6 6 6 o 6 6
I I I

307'

0

d

d

d

I!

0

0

0

0

D

t_

On

t)

..J

Z
0
Z

W

Q
0



U3

F-

I

W

0

t

t

t

t

I

I
t

I"

I0

I0

0

0

IZ

........._.........o.........o.........;........._-o
+ ÷ i t ÷ +

6 6 6 6 6 6
I I I

308

c;

0
II

L

0

S

S

S

0

0

I|

t_

U

0
0
E
I

03



LLI

Q
0

e

O

_r

e

t

_0

.i
'0

i
_O

t
e

e

O

m
!o

!o
0

.

" It

0 0 0 _ _

' , , 0 0 0

• _ _ _ '

i i i

o"

c_

¢D

O_
eO

ii
r

.

0

c;

c;

0

0

H

UJ

_3

Z_
O_
N

c

C-

0

0
E



.J
!

!

-q

e

f,

e
y,

e

e

t

_MMMMWWMMM_MMM MMMMMM_WMM

0 o
+ +

6 6

m

t

il.

m_

4_

e

e

MMMMMM_WMMM MMMMM_MMMMM 0

0 0 +

|!
t

:310

i

°

UO
i

ol

G
I!
L

o

G

o

0

(.3

i0
@
N

¢,.

r.

@
o
o

0



I

o-

Jl"

I.

W,

"1.

m-

r

t

,m.

t

a.

W,

4(.

IF

I0

? _ + ÷ + +

o 6 6 6
I ! 'I

0

8

7_

o

0

0

I

o.

0
N

0

®

0
I=
I

311



M.

i

W

O
0
Z

f_
f_

f_

_r
_r

t

t
m

f_

t

f_

I0

.i

iii .
0

o o 8 8
i _ ! I I !

! ! !

312

rl

L

c;

0

0

_n

U

0

N

L

@
c"

¢g

0
0

i



m-

i.

i-

tl.

k_

f.

i.

i.

a.

o _
_ n

6 6 6
0

t

I,

" /ia,

" Ii
0

0 0 0=
i =

= ,.,o _
6 6 6

i
i i

I0

d

6

L

..2

°

°

0

0

3

U

N

@

I
C

_3

0

o
I'1



m
_J
i

..s
b

t

t

t

0 0 o
+ +

tn

_o

_6

o

t

t

t

o

+ +

6 6 6
i

I I

_3
II

o

o

o

o

uI

(J

12
®

f_

C

o



A

lID

!

q,

U'I

t

t

K,

ti-

ll-

I*

,IF

I,

I-

N-

IF

Jl,

I0

"il
÷ ÷ ÷ ÷ ÷

! o I

_J

II

0

3

0

0

t_

0

N

®
0
0

I



Concluding Remarks

i) For the examples given here, the solutions of the

linearized equation and the nonlinear equation are close.

2) Use of the Maximum Principle can make the states satisfy

the boundary conditions ver_ well.

3) Due to the fact that the costates must be used in the

method, the number of equations of the system is doubled,

and more time is needed for the computation.

4) Further work on more complicated models (3-D) is needed.

5) Need to consider different cost functions and perform

parametric studies.
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MOTIVATION

• Modeling, analysis, and control of multi-body systems
with flexible elements is of interest in many techologies
including robotics, space structures, and high speed
mechanisms.

• While the basic problem is well studied and
understood, there are some important aspects requiring further
research. These include full nonlinear coupling, prismatic joints,

controller design, and impact.

• In all the research areas cited above, there is a need for

experimental as well as analytical and numerical studies.

A. Galip Ulsoy

Mechanical Engineering

University of Michigan,

and Applied Mechanics

Ann Arbor, Michigan



BACKGROUND

Modeling:
• Song and Haug 1980
• Shabana and Wehage 1983
• Ryan 1985

Analysis and Simulation:
• ADAMS, DADS, TREETOPS, etc

• Sunada and Dubowsky 1983
• Wang and Wei 1987

• Wehage and Haug 1982; Khulief and Shabana 1984

Control:

• Book, Maizzo-Neto and Whimey 1975
• Meckl and Seering 1983

Experiments:
• Zalucky and Hardt 1982
• Cannon and Schmitz 1983

M A. Galip UlsoyMechanical Engineering and

University of Michigan, Ann

Applied Mechanics

Arbor, Michigan



RECENT RESEARCH AT MICHIGAN

• Control of a spherical coordinate robot arm with one

flexible link using only the joint actuators, but with both joint
and end-of-arm sensors. Modeling, analysis, and controller
design. Modeling of the rigid/flexible manipulator including the
non-backdrivable leadscrew transmission mechanisms.

Comparison of simulation and experimental results. Evaluation
of a rigid body motion controller and a rigid and flexible motion
controller.

• Modeling and simulation of robots with rigid and/or
flexible links and revolute and/or prismatic joints. Employs a
Lagrangian formulation with kinematic constraints and a finite

element discretization. Euler-Bernoulli beam theory is employed,
but the axial stiffening effect is included. Experimental
evaluation of the modeling approach and solution method.

• Modeling of impact in systems with flexible links.
Various impact modeling methods are compared with each other
and with the results of experiments for a radially rotating elastic
beam. The impact models employed all provide reasonably
accurate results when appropriately employed; even the
momentum balance (coefficient of restitution) method which

strictly speaking is not applicable to flexible systems.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE MANIPULATOR CONTROL

Lead Screw

DC Motor _

_ Third Lmk

Lead Screw

°
A

I

iC
i

IBM PC/XT

Microcomputer

Second Link

Rotating Base

J

Accelerometers

Coupler {

Analog Double

Integrator

Filter

Schematic of the experimental setup.

M A. Galip UlsoyMechanical Engineering
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FLEXIBLE MANIPULATOR CONTROL

• The laboratory robot is used to compare
the performance of a rigid body motion
controller with that of a rigid and flexible
motion controller.

• The rigid body motion controller uses

only the joint motion measurements and joint
actuators. The rigid and flexible motion
controller also uses the end of arm motion

measurements, but no additional actuators.

• The leadscrew transmission
characteristics as well as observation and

control spillover are considered.

• The numerical and experimental results
show good agreement, and indicate that

significant reductions in arm vibration are
possible through use of the rigid and flexible
motion controller.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE MANIPULATOR CONTROL

EquaLions of motion:
/

M(__)2" ÷ f (-', -_) = f (r)

2% [_,, T=, 7, 1

Linearized equaLions:

_:- - oCT: L:_" _l ; _- -

InLegral plus staLe feedback controller:
tb t- f

g
u= - g ,_

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE MANIPULATOR CONTROL

i

I

I

I

t

I

I
I
I
I

I

_.J

w

Block diagram of the integral plus state feedback controller.
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FLEXIBLE MANIPULATOR CONTROL

Standard Set of PhyI[eAl Sys_m
P_rame¢_

M_s of the first beam (ms}
Mass ot the second beam (m.,)

M_ of the P_yload (nb )
Crosssectionalaresofthe second

beam (A:)
Length of the first bezm {L t)

Length of the second beam (L_)
Grsvitationafl acceler',tion (g
Aluminum density /P)

Flexural risidity (EI)
Reference position tot r
Reference position for0

Reference position for
Desired reteteuee posiUou for r
Desired re4'ert_ee position for 6
Desired nefere_e position for
Servo usttea4 f_ques_ rot • (_,_)
Servo n_rsi frequency tot e (_. ,)
_,q_o uamrat, frequency for, two,)
F'_e_bk meckx:ix/n, K ,it

F'_exiMe mm_oa l_im, rK _,10

VALUE

0.454Kg

0.816 Kg
0.07 K$

0.000151m:

0.233m

2m

9.gim/Bee:

2707 Kg/m:
770.87Pa

1.85 m

Or'_d
Orsd
2m
0.5tad
0.5r_l

4 r_d/see
4 rsd/_ee

-O.0001T$

-0.0_
1.568

A. Galip Ulsoy

Mechanical Engineering and

University of Michigan, Ann

Applied Mechanics

Arbor, Michigan



FLEXIBLE MANIPULATOR CONTROL

i!

' LII 4.00 li.O0 t2,.OI

Ilm,,t limm

e response obt._lned from the rigid body controller In
the experimental work.

Z
Q

Z]lm,.Lllama

Total vertical deflection In response to the rigid
body. controller In the experimental work.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics
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FLEXIBLE MANIPULATOR CONTROL

ii

:I

flexible

' , ! i : : ?

aLU 4.gO II,,O0 1"2.00

Z)nsn,,_m

Control signal for the second Joint obtained from the
rigid and flexible motion controller in the

experln',_ntal work.

A. Galip Ulsoy
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FLEXIBLE MANIPULATOR CONTROL

|

Total vertical deflection In response to the rigid and
flexible motion controller In the experimental work.

rigid body controller

rigid and flexible
motion controller

11.0

3.0

maximum detlectiom

(peak to peakI

7.Smm

2.Tam

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE M_NIPUL A.TOR CONTROL

Simulation

* Control spillover effect can be observed, but
does not cause significant deterioration.

* Control and observaUon spi]lover can
destabilize the residual mode. However, a
small amount of damping (0.0145) eliminates
the problem.

* Settling Lime is reduced from 3.5 to 1.07
seconds, and maximum vibration amplitude is
reduced by 50_.

Experiment

* With low pass filtering and light structural

damping, no detrimental spillover effects were
observed.

* Settling timu is reduced From 11 to 3
seconds, and maximum vibration amplitude is

reduced by 75_,.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

links attached with

prismatic joints can
analyzed.

Robots with both rigid and flexible
revolute and/or
be modeled and

Lagrange
• The

equations
constraint

using
motion, and prescribed
can both be handled.
° Flexible elements

Euler-Bernoulli beams,
shortening effect is
• Finite element
the discretization of

equations of motion.
• Constraints are

multipliers.
resulting

are solved

The equations of motion are derived
Lagrange's equations. The prescribed

torque/force cases

are represented
and the axial

also included.
analysis is used for
the resulting hybrid

as

handled using

algebraic-differential
numerically using

stabilization methods.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

I Nounal configuration

1 Actual configuration

Wo

x:/
/

r o
~p

b 2
~p

0

X o

D

Z o, Z 1

Schematic of a two-_k ro_t.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

[

ds ds

dx

Axia_ shortening of a beam under plane tlansverse deflection.

Schematic of revolute joint i.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

link i-1
linki

Schematic of prismatic joint i.

linki

Unk i'

link i'-I

Schematic of prismatic joint i.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

y
Beam moving over bilateral supports.

H

_t

W

_\\\\_\\\\\\\\\'%\'_

---X ×
_\\\\\\\\'%,\\\\\\\"_

J_ D
L

E

X
v

A

t"

0.02

0.01

0.00

-0.01

-0.02

BaiTm_cm and Ka_ [29].

- -. preseal,method.

L I I I I

1.0 1.5 2.0 2.5 3.0

Tim, Cs_:.)

Tip displacement in "slow push" case with
CI = 0.725 m, C2 = 0.7 m and T = 3.5 sec.

3.S

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

JE

¢0

e_
m

.4

0.02

0.01

0.00

-0.01

-0.02 :
0.0

m

a -.

I

0.1

Buffmton and Ka$_ [291.

present method.

' I I I '

0.2 0.3 0.4 0.5 O.6

Time(se,c.)

Tip displacement in "fast push" case with
Ct = 0.725 m, C2 = 0.7 m and T = 0.7 sec.

i

07

0.02

,-, 0.01

g

i 0.00

_ 43.01

-0.02
0.0

BuffintonandKane [29].

- - - present memod.

I l I I I I

0.I 0.2 0.3 0.4 0.5 0.6 0.7

Time (_.)

Tip displacement in "fast pull" case with

C1 = 0.025 m, C2 = -0.7 m and T = 0.7 sec.
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

.015 ..... i ..........

.01

i .OO50

-,005

-.01

-.015

simulation

 VVVVVVV

Time (see.)

=

.015

.01

.OO5

0

-.005

-.01

..o15

0
T • 1 , I ' i , ! • ! , l • I • ! ,

1 2 3 4 5 6 7 8 9 I0

Time (sec.)

Vertical elastic tip displacement of the last link in the two-dimensional
maneuver.
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

.O3

.025

- .02

.015

.01

.005

0

-.005

-.01

-.015

-.02

prescribed motions

0 .5 1 1,5 2 2.5 3 3.5 ,1 -t.5 5

Time tsec.)

.03

.025

,02

.015

.01

_ .0o5
% o

_- °'0_051

•_ -.015

-,02

-.025

-.03

0 " .5 " i " 1.'5 " ½ " 2:5 " 3 " 3J5 " ,i " 4.'5 " 5
T'_e (see.)
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

• A general modeling procedure for robot

arms consisting of rigid and flexible links
connected by revolute and/or prismatic joints
has been developed and experimentally
validated.
• The significance of full coupling (effect
of flexible motion on rigid body motion) has
been demonstrated.

• The axial shortening effect is shown to be
significant for high speed operation of
lightweight manipulators.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE SYSTEMS WITH IMPACT

The effect of impact on mechanical systems

Impact

• gives rise to impulsive forces

These impulsive forces in turn

• Induce high stress levels at different joints

damage to the mechanical components of the system

• Cause higher modes of vibration to be excited

deviation from a desired performance

A. Galip Uisoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan
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FLEXIBLE SYSTEMS WITH IMPACT

Spring-Dashpot Models

Dubowsky and Freudenstein (1971) Impact pair model

Crossley and Hunt (1975) Viscous damping model

Lee and Wang (1982) Damping functions

Dubowsky and Gardner (1975) Impact beam model

• Based on a force-displacement law, and a form of damping

• Does not neglect the contact duration

• It is possible to predict the contact forces directly

• Requires the determination of stiffness and damping

• Computationally expensive

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan
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FLEXIBLE SYSTEMS WITH IMPACT

Methods based on Momentum Balance

(Coefficient of Restitution Model)

Haug and Wehage (1981) For rigid body impact

Khulief and Shabana (1984) Extension to flexible bodies

• Simplest model for impact

• Computationally efficient

• It is possible to predict the contact forces directly

• Does not require determination of stiffness and damping pa-

rameters

• Neglects the period of contact

• A direct prediction of stresses and frequency content of impulse

during contact is not possible

• Mathematically discontinuous

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan
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FLEXIBLE SYSTEMS WITH IMPACT

Procedure for Momentum Balance Method:

1- Natural frequencies and mode shapes are determoned for

each fle.,dble body in the system; analytically, experimentally,

or by using a finite element approximation.

2- Discretized equations of motion are generated and integrated

forward in time using this modal information.

3- Impact conditions are checked, if an impact is detected to

occur, integration is stopped, and the equations of momentum

balance are generated using the coefficient of restitution and

solved for jump discontinuities in velocities.

4- The velocity vector is updated

5- Integration is started once again with the new initial condi-
tions found from above.

(It is assumed that the system configuration does not change

with impact.)

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan
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FLEXIBLE SYSTEMS WITH IMPACT

Coefficient of Restitution, e

Newtonian Concept:

e = f (material pair)

Modern Concept:

e = f (severity of the impact)

for rigid bodies

severity of impact = impact velocity

e = f (material pair,impact vel.)

experimental data or analytical/emprical formulas

for flexible systems
V

the severity of impact = f (impact vel.,flexibility, configuration)

No experimental data or anal_ical formula available

for e

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan

_ /47



FLEXIBLE SYSTEMS WITH IMPACT

x

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE SYSTEMS WITH IMPACT

Equations of Motion

- Euler-Bernoulli Beam Theory

- Hamilton's Principle

- Neglect higher order elastic terms

Galerkin's Method

N

w(x,t) = E ¢(j)q(t)
j=l

- Neglect higher order elastic terms

(IR+ J)/_+
N

E Sj(t'j - M(t)
j=l

St0 +
N

z [_n_j0i+ 0"_qj(crj--mrj) + krjqj]
j=l

r -1,2,...,N

where

IR " Inertia of the Rigid Shaft

J " Inertia of the Flexible Beam

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE SYSTEMS WITH IMPACT

Simulations

- A variable order variable time step integrator

- A velocity dependent coefficient of restitution

e = f(v) (experimental data) for low velocities

e = oev (-t14) (analytical data) for high velocities

Contact algorithm

based on the distance between impact point and the impact
surface

- define a clearance zone

- monitor the location and the velocity of the impact point

- first penetration into the clearance zone _ back up one time

step and reduce the time step.

- second penetration with the smaller time step --+ impact if

the velocity is toward the surface

- keep the smaller time step size as long as the impact point
is within the clearance zone

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan



FLEXIBLE SYSTEMS WITH IMPACT

!

Hall Effect Current

Transducer

F/VConverter I

[Angular

Velocity _ Torque

TAPE RECORDER

PDP-11/23 COMPUTER

_ Strain
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FLEXIBLE SYSTEMS WITH IMPACT

The momentum balance (coefficient of restitution) method

has been demonstrated, through experiments on a specific sys-

tem, to be capable of adequately predicting the dynamic be-

havior, with impact, of systems which consist of both rigid and

elastic finks.

It has been demonstrated experimentally that using a con-

stant coefficient of restitution value (chosen for a particular

initial impact velocity) throughout the simulation does not sig-

nificantly affect the accuracy of the model, even in the presencof

multiple impacts.

Sensitivity studies were used to show that the momentum

balance (coefficient of restitution) model will also work reason-

ably well for a wide range of system parameters.

Employing high speed video techniques the existence of mul-

tiple impacts which appear to the naked eye as a single contact

were demonstrated. Contact algorithms have been developed
which captures these multiple impacts in the simulation.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan
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SUMMARY AND CONCLUSIONS

• This presentation has reviewed the results of some recent
studies, experimental and theoretical, in the modeling, analysis,
and control of flexible multi-body systems. The control of a
leadscrew driven robot with a flexible link was considered. The

modeling of robots with rigid and/or flexible links connected by
revolute and/or prismatic joints was developed. Studies were
conducted to evaluate various competing impact models for use

in simulations of flexible systems.

• The major conclusions to be drawn from these studies are:

For robots with sufficient actuator bandwidth, the use of end-
of-arm sensors can enable effective control of the joint motions

as well as active damping of the end-of-ann vibration.

A general modeling and simulation approach for robots
consisting of rigid and/or flexible elements connected by
revolute and/or prismatic joints has been developed and
experimentally validated.

Impact models for systems with flexible elements have various

problem dependent characteristics, however, even the simplest
of these can give good results in many problems of engineering
interest.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, Michigan
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MINIMUM ATTAINABLE RMS ATTITUDE ERROR

USING CO-LOCATED RATE SENSORS

A. V. Balakrishnant

Abstract

In this paper we announce a closed form analytical expression for the minimum attain-

able attitude error (as well as the error rate) in a flexible beam by feedback control using

co-located rate sensors. For simplicity, we consider a beam clamped at one end with an

offset mass (antenna) at the other end where the controls and sensors are located. Both

control moment generators and force actuators are provided. The results apply to any beam-

like lattice-type truss, and provide the kind of performance criteria needed under CSI --

Controls-Structures-Integrated optimization.

"1"Research Supported in part under NAS1-18585 Task Assignment 49.

Paper presented at the 3rd Annual Conference on Aerospace Computational Control, Oxnard,
August 1989.



1. Introduction

One of the challenges in the Design Challenge For Flexible Flight Structure Control

System Design formulated in the inaugural paper on SCOLE [1] was to hold the antenna

pointing error within :t.-0.02 degrees after slewing by appropriate feedback control. In this

paper we derive a closed form expression for the minimal achievable mean square pointing

error using co-located rate sensors. A slightly simplified form of the SCOLE article (which

eliminates rigid-body modes) is used: a cantilevered beam with an offset mass where the

controls -- both c.m.g.'s and force actuators -- and the rate sensors are located. Our results

are in terms of continuum model parameters -- the uniform Bernoulli version is used. The

beam dynamics are given in Section 2. The main results are in Section 3. We note that a

technique for deriving equivalent Bernoulli beam parameters for various types of trusses is

described by Noor and Anderson in [4]. Recently Noor and Russell [5] presented equivalent

anisotropic Timoshenko beam models for beam-like lattice trusses with an arbitrary degree of

modal coupling, which appear to yield excellent agreement with modal frequencies derived

from finite element models. Our theory is able to handle these Timoshenko models, and

moreover we can also use it for rigid-body modes, although they are not included here. Thus

our results can be used for any beam-like lattice truss structure.



2. The Model

We consider a uniform Bernoulli beam clamped at one end with an offset mass (antenna)

at the other end which also houses the sensors and actuators. See Figure 1. We allow for both

force actuators and moment actuators. The sensors are rate gyros. Because of the clamping at

one end, no rigid-body modes are involved and hence no attitude sensors are needed.

We allow bending in two mutually perpendicular planes containing the beam axis, as

well as torsion in the plane perpendicular to the beam axis, all uncoupled. The continuum

model (uniform Beroulli beam) dynamics can then be described by the following partial differ-

ential equations (similar to those in [2, 31). Let the beam extend along the z-axis, 0 < s < L,

and let uO(s, t), uo(s, t), denote the bending displacements and uv(s, t) the torsion angle

about the beam axis. Let in the usual notation (cf. [1]), EIo, E1o denote the flexural stiffness

and GI v the torsional rigidity. Let 9 denote the mass per unit area and A the cross-sectional

area. Then we have:

pA _)2uO(s' t) _4ue_(s, t)_t 2 + El 0 _s 4 - O, 0<s<L; 0<t

b2uo(s,t) b4uo(s,t)
pA _)t2 + E! o _s 4 - O, O< s < L ; O< t

b2u v (s, t) ,,
Ply _t2 GI vu v(s,t) = O, O<s<L; O<t

with the clamped boundary conditions at s = 0:

u_(0, t) = u0(0,t) = uv(0,t) = 0

u_(0, t) = u_(0, t) = 0.

The antenna center of gravity is located at

(rx, ry, L).

The distance from the beam tip to antenna center of gravity is denoted by

Irl --- _/_ + ry2

3 '9
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Figure 1" Shuttle/Antenna Configuration
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The force balance equation at s = L yields

m

O l ry

ii, (L, t)

/ia (L, t)

/2v (L, t)

= [Et, u_"(L,O[Et ou_"CL,t)

where rn is the antenna mass and fl('), f2(') are the applied control forces. The torque

balance equations yield

Elt_ u_' (L, t)

EI 0 u_'(L, t)

GIv u_ (L, t)

+ laCO + M(t) +r®

fl (t)

f2(t)

0

l ii0 (L, t) + rx iiq (L, t)+ r _ fro(L, t) + ryi_,CL, 0

where the superdots indicate time derivatives and the primes the derivatives with respect to

the spatial variable s; ® denotes the vector cross-product and to the angular rate vector

i%' (L, t)

to = a0'(L,O ,

%(L, 0

la denotes the moment of inertia of the antenna about the beam tip (s = L) and finally, M(O

denotes the applied control moment.

It is convenient to denote by b(t) the boundary vector:

u_ (L, t)

uo (L, t)

b(O -- u_ (L, t)

ua'(L, t)

%(L, 0

The boundary rate vector would thus be/_(t). Hence our sensor model is:

v(t) = b(t) + No(t )

where we assume that No(t) is white Gaussian noise with spectral density matrix dol, where

I is the identity (5x5) matrix. Similarly we assume that the control actuators are also

3GI



characterized by additive white Gaussian noise. Denoting the applied control vector by u(t):

u] (L, t)

u2(L, t)

u(O = u3(L, t)

u4 (L, 0

u5 (L, t)

we have

fl(t)

f2(t)

M(t)

= u(t) + Ns(t )

where Ns(t ) is white Gaussian with spectral density ds . We shall also use M b to denote the

actuator mass/inertia matrix

Mb = 0

0

mr x

m 0

0 m

0

0

mry

0 0 mr x

0 0 mry

la

where

_ =/_ +

2
ry -r_ry 0

2 0
--r z ry r x

o o

where I a is the antenna moment of inertia about its center of gravity. For any control input

u(.) (which must perforce be a "feedback" control, based on the sensor data v(.)) the mean

square pointing error is then expressed by:

l im _ f %(L, t) 2 dt + f uo(L , 0 2 dt + Irl2f uv(L , t) 2 dt
T-+** 0 0 0

and the mean square pointing rate is given by
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1(lim

T T T |

f t_.(L, 0 2 dt + f ko(L,t) 2 dt + Irl2f i%(L,O 2 dt_.
0 0 0

From the results in [6] it follows that the minimal attainable mean square pointing error is

given by

where

a = row vector (1, 1, 0, 0, Irl)

a* -- transpose of a

3. Main Results

We need some notation first. The mean square attitude response, whatever the feed-

back control used is defined by

l im f u,(t,g)2dt + f u6(t,g)2dt + Irl2f uv(t,g)2dt . (3.1)
T-_** 0 0 0

This isrecognizedas the mean squaredisplacementof the centerof gravityof the antenna

which is then also proportionalto the mean square "pointing"error -- see [I] for the

relationships.

Next letu denoteany (vector)of controlinputs-- a constant"step"input:

Ul

u2

U = U3

U4

U5

(3.1)

Solve the equations

El, u_'"(s) = 0 )

Elou_'"(s) 0

GIvu_ (s) 0

0 < s < L , (3.2)



subjectto theendconditions

EI, u_"(L) = ul

E1ou_"(L) = u2

EI, u_'(L) + u3 ffi 0

EIou_'(L) + u4 = 0

t

G1quq(L) + u5 ffi 0

(3.3)

Note that the solution can be recognized as the steady-state response of the system to the

step-input u, assuming that there is some damping. We only need to calculate the response to

three specialized inputs:

Calculate the response to u0 (L) to the special case, Case 1, where:

Ul = 1

ui = O, 2<i<5.

Calculate the response uo (L) to the special case, Case 2, where:

Ul = 0

u2 = 1

U3 _ffi U4 ffi= U 5 = 0 .

Calculate the response uv (L) to the special case, Case 3, where

Ul -- U2 ffi U3 = U4 = 0

u_ = 1.

Then the minimal achievable mean-square response whatever the choice of the feedback and

whatever the mean-square control effort, is given by

'l-dsd o (u_(L) 2 + uo(L) 2 + r2%(L) 2) . (3.4)

This is our main result. Unfortunately the derivation is beyond the scope of this report and



will bepublishedelsewhere.To proceed further with (3.4) we calculate the solution of (3.2),

(3.3) explicitly. Thus for any u, the solution is of the form

u, (s) = aas 3 + a2s2 , O < s < L

u o(s) = b3s 3 + b2s 2, O<s<L

uv(s) = cls, O<s<L

where

Thus for Case 1 we have

and for Case 2 we have

and for Case 3:

b 3 -- 1,12
6El o

[ u_Aq1 ua_+EI,. ]a2 = 2 EI_

[1 u4 + EIo J= _ eto

cl = us
GI_

L 3

u_(L)2 - 3EI¢

L 3

uo(L)2 - 3EIo

L

uv(L)2 - GI w

Hence the mean-square attitude error

--_ 3--N,+ + J (3.5)

Note the appearanceof the noiseparametersin (3.5)inproductform.

The techniquefor calculatingthe minimal mean square atttiudeerrorin more complex

models than that illustrated is the same: calculate the mean square step response (assuming



some damping) to unit step inputs.

In conclusion we suggest this result (3.5) can be the basis for combined structures-

controls optimization -- CSI, since the required structural parameters can be calculated for a

lattice truss from the material gage and physical dimensions as in [4, 5]. We omit the details

of these calculations.
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A WAVE EQUATION FORMULATION FOR THE SCOLE

Rober'to Araya

AutoMind

Providencia 591 D.51

Santiago Chile.

;his- paper- r'c_view the modeling and cointrol strategy proposed by

the author [I ] [2] for the slewing and stabilization problem of the

Space Shuttle Orbiter with a large Antenna attached to it

throL_.gh a long fle_.'ible mast.

The main rlistinguished feature o_ the problem treated here as com-

pared with the standard problems studied in this area is the require-

merit tc, -Find c_-ptimal solutions for a nonrigid spacecraft con-Figu-

ration whic-h is subject to nonlinear kinematic forces.

A dis t;r-ibuted parameter model of the Space Shuttle/Antenna Con.Fi-

guration is derived from first principles of rigid body dynamics and

elementary beam theory. ]-he model is then put in the form of a compact

semilinear abstract wave equation. Within this framework, the slewing

and stabilization problem is then formulated as a nonlinear infinite-

dimensiE, nal control problem.

A linear feedback control law is proposed to simultaneously solve

the _].evJing and st.abilizatic:,n problem. This control law is a generali-

zatic, n of s Landard position-plus-rate feedback controls used for simi-

lar purposes in rigid spacecrafts and is also an extension of linear

feedback controls used in stabilization theory of linear in÷inite di-

mensional systems.



STATEMENTOF THE PROBLEM

Difficulties in controlling lightly damped Large Space Structures

has motivated NASA to offer a design challenge called Spacecraft

Control Laboratory Experiment (SCDLE) [5] . The aim of this "design

challenge" is to evaluate control laws for flexible spacecraft.

The SCOLE configuration consists of a flexible beam with two rigid

bodies at either end. (]ne body represents the Sparze Shuttle orbiter,

the other is the Antenna reflector.

]her-e are two types of control : control moments and the control

force. Control momerrts denoted by 11, , PI, are applied to the Shuttle

orbiter and the reflector, respectively. The components of these mo-

m_,nts for each a,'_is are limited to 10,000 ft-lb. Control force Ic is

applied at tlne center o÷ the reflector in two perpendicular directions

along tlne plane of_ the reflector. The control force in a particular

direction is limited to 80c_ Ibm.

Measurements consist of the inertial attitude direction cosine

matrices for the Shuttle body and the Antenna, angular velocities o ,

w_ ÷or the Sl.uttle and the reflector body respectively and accelera-

tions measured by three axis accelerometers located on the Shuttle and

the center o÷ the re÷lector.

A certain ray is emitted towards the center of the re_lector from

the ;eed located on the Shuttle. The direction of reflection of this

ray is called the linc-o;-sight. Initially the error between the

line-o÷-sight and the target is 20 degrees and the SCOLE configuration

is at rest.

The problem is to minimize the time required to slew or change the

line-o÷-sight towards a fi,'.,ed target and to settle or stabilize the

iFpdur_E_d str_.ctural vibrations of the Shuttle/Antenna configuration to
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the degree required for precise pointing.

TIdE EQUATIONS OF blOT ION AND THE CDNTROL SATRATEGY

The derivation of the eqLtations of motion is based on basic principles

of rigid body dynamics and elementary beam theory.

Under the assumption that the flexible beam is subject' to only

small deformations, a linear Euler/Bernoulli beam model is utilised.

l4,__n].inearitie_ ar'e due only to kinematic effects caused by the large

angu].a_' velocities that the whole configuration can reach in a time

opti real mane_._.ver.

Since inher-ent stFuctural dampinc] is very weak and the phenomenon

is not _._ell l.::no_.Jn,no damping is assumed in the model. Therefore energy

d:i.ssipation is caused only by the control action.

G:i.v_-.n tlnat the main concern is spacecraft orientation,

c,nly rotational dynamics is considered.

A rSoL,pled sy_t:em of hyperbolic partial differential equations arid

ordinary di._ferential equations is obtained. The variables considered

are the elastic defocmations u 8 and u f , the torsion u $ and the

lor, gitL'dinal deformation u z along the beam axis.

To obtain tlqese equations, the angular momentum p of the whole
I

_,n,iguration about the center of gravity of the Shuttle and the

( p ) and the angular momentum p_ (p) of each element ofmomentum #z

tl7e beam ( Antenna ) are computed.

After deriving the equations of motion, the {ollowing Lyapunov

e.qL,.ation can be obtained:



d__[D (t) +T (t) +V(t) ]
dt

I

= ..(n,-_ XiDiSRi)+o,.M,+v_.F
3=L

where

T is the kinetic energy,

V is the potential energy

D is a :_Jea..sure of the distance to the target orientation

D = I=,.,._7. X iDi" Di
'::" i := I

Di=Ri-S i i=,,.. ,

(S i , i=,,.., : } is an orthonormal triplet in the inertial frame

{R'.i , i=,,..,_) is an orthonormal triplet fixed to the Shuttle

u angular velocity o+ the shuttle

e, is the angular velocity of the antenna

v, is the linear velocity of the mass center of the antenna

This equation provides a clear insight into our problem . It

suggests a straightfoward and implementable feedback control law :

choose H,,M, and F so that the right hand side in becomes strictly

negative .

Thus, the problem is broken down into two parts

i) Orientation of the whole configuration as a rigid __.pacecraft.

3

This is achieved by choosing M_ to make o,(fl'_->- kiDi6R i) negative.

ii) Stabilization of the induced structural deformations

Choosing 11, and F to make g, 0M,+v,,F negative

The first control strategy is well known for rigid spacecreaft



stabilization and slewing. The second one, is the classical

stabilization control for rigid and flexible structures.

THE ABSTIRACTWAVEEQUATION SET UP

The equations of motion can be written as an abstract semilinear

wave equation:

x (t) = Ax (t) + K, (x (t)) + I<z (x (t)) + Bu(t)

;,([_) = ..
"' U

in a Hilbert space J. Here, A is an infinitesimal generator of a group

_ith cc.mpact resolvent, B is a linear operator with finite dimensional

range, l<t and Kz are nonlinear but continous operators :

L."

g'" I
with finite dimensional range and representing the orientation of

the con-figuration as a rigid spacecraft;

K= represents the nonlinear kinematics and satisfies

[ Kz(X) _'.:] = 0 V;.'EB.

More specifically,

il = D(A '/z) xD(A °)
0 0

with the inner product

Y' I ] =x' I,/y[ ( Xz z
[ A'/Zx, _ A'/ZY, ] + [ M>'z , Yz ]

Q 0

V.:h el'- E'



D(A_) = i_xi kz ( -L , 0 ) )'xl_

A_

D I

D Z

u @

Lt

U, _'_

u._'

t-
I

Z

r
:I

E |

XzDz

ZLl_

EI____u _ (-L)

-Gi!g_(-L)

and the domain oT A_ is

D (A O) = { (I_l ,I_z ,L!O,U_
• _ILIZ U _r _ _rz _rl _t _ Ez_ E_) ED(Au )

O

u 8
,u EH't (-L,O) , L_Z,L{÷EHZ(_L,O )

u @ (('_)= L:_ (0 )= U Z (<))= U _ (0 )=--@LJ@ (('))=_@Cd_ (0 )=0

such that



u _(-L)=r, ,u l(-L)=rz , uz(-L>=r_ ,

-_u_ (-L)=_c . ,u# (-L)=¢___L__@ ('L)=_z , --

M is the mass moment operator, defined from D(A_) into itself by:

k _ 0 0 0
0 u

-L -L
_ P A ( . ) _ p P A 0

0 PI _ 0 PI

_ m_ (.) [D(p,+p) 0 B

©_ l_+m_P@((.) @p,) 0 0

0 0

m, (ll,+p) B(.) l,+m,P,8((.) §p)

0 0

0 0

m, m, (.) Ble

m,PS(,) I,

In this abstract set up, the norm induced by the inner product is:

Z

(1/2) _I x(t) IIE = D(t) +T(t) + V(t)

arid therefore the slewing and stabilization problem can be viewed as

driving the initial state '.', towards the originO

This compact and geometric Tormulation of the problem is very

fruitTul. It allows a detailed mathematical analysis of the evolution

eqoation and the control strategy. This gives existence results

oT mild and strong solutions under suitable conditions. It give_ also

the correct Tramework to do modal analysis:

A o;' = PM'-:

This compact formulation gives also the insight to understand the

proposed control laws as a natural generalisation from a finite



(lim_::.r_!=.ir_:4_a:lto an in.Finite dimensional set up.

The proposed contr'ol stategy can be expressed as:

:i.) Fk.'.<: a standard linear feedback control used for slewing of

rigid spacecraTt.

i i ) -B_x : a standard feedback stabilization control used in in-

finite dimensional control theory and widely known

-For stabilization of flexible beams.

E.o,_h components hawe simple physical interpretation and can

b(:_ coml::_ut_ed directly .From the ser_sor data.

l_-_, Lyapunov equation and the proposed control law, is e'-:pressed

dl;-,(t) iz = _
---- " _$ U -- U 4 _ U 4 -- V 4 oV 4
d t

Thus, i,,,(t) n is decreasing. The original evolution equation is

cc, r]vc-:,rteL-J to l:he autonomous system:

;" = A;.' + Y(,,')

::.'. ((3) =: v

or, tlne integral equation version:

,.,._.p) = pAt,, + _teA(t-s)Y(x (s))ds
.... "'_ 0 /.,, 0 -

]he major result obtained witln this approach is the ability to

show that if the system is initially at rest and the line-of-sight erro

:_ _.-_h:i.thin 20 degrees, l:her_ the linear feedback position-plus-rate

cor,tro] la!,,_ :



U ----B*× + RX

of equivalently

. =- .÷

= -- V,I

_ill drive Ix(t> i to zero as t goes to infinity. Thus, in finite time

the line-oT-sight will be pointed to the target up to an error _ and

simL_itaneously the oscillations of the flexible configuration will be

settled down, in the strong sense, to the degree required to precise

pointirlg.

To _chieve this result is necessary to prove the controllability

of tI,c-flexible modes. ]hat is, when linearising and considering

only flexible modes, the obtained linear model has to be controllable.

Ibis absLract wave equation formulation is a basic framework for

the complete problem analysis. It also offers a correct and compact set

u,p to study the different control strategies. In particular, non linear

feedback conLrols on the angular and linear velocities [3] [4][6]
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