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CHARTS FOR THE DETERMINATION OF SUPERSONIC
ATR FLOW AGAINST INCLINED PLANES AND
AYTALLY SYMMETRIC CONES

By W. E. Mosckel and J. F. Connors

SUMMARY

A set of charts is presented for the convenient determination of
Tlow conditions behind a shock wave and at the surface of inclined
planes and axially symmesric cones located in a uniform frictionless
superscnic air stream. Shock angle, static-pressure coefficient,
static-pressure ratio, total-pressure ratio, Mach number ratio, and
velocily ratio for two-dimeansional and conical flow fields are
plotted for a range of free-stream Mach numbers from 1.05 to infinity.
The charts for two-dimensional flow were calculated from theoretical
relations for oblique shocks in frictionless air streams. The charts
for flow agalinst cones were obtained from solutions previously
reported. A chart of ths Prand:l-Meyer relations for two-dimensional
isentropic flow around corners is also presented.

INTRODUCTION

The deflection of a uniform supersonic air stream produced by
any obstacle in the stream results in the formation of a shock wave.
As the air flows through this shock wave, it is compressed (raised
to a higher static pressure) and its velocity is reduced. Because the
entropy of the air increases in passing through a shock, the total
vressure of the air gtream is also reduced. If the shock is not
normal to the free-stream flow direction, the flow direction Is
changed in passing through the shock. The theory of compression
shocks indicates that, if friction is neglected, the conditions
immediately behind the shock are completely determined by the con-
ditions of the free stream and the angle between the shock wave and
free-stream flow directions. In order to predict the conditions at
the surface of an obstacle in the stream or in the field betwesn the
shock and the surface, it is therefcre necessary to know the relation
between the gecmetry of the obstacle and the angle of the resulting
shock. This relation has been determined for only a few simple, but
very important, geometric elements, among which are the inclined
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plane surface and the axially symmetric cone. The charts presented
are intended to provlde, in couvenient and cowplete form, the theo-
retical relationsg required to determine the supersonic flow against
these two types of obabacle and the conditions immsdiately behind any
ghock when its direction is known. The squations used to compute the
charts for flow conditions behind a shock and on the surface of an
inclined plane were derived from those given in reference 1. The
charts of the conditions on cone surfaces were constructed from data
presented in references 2 to 4. A chart giving the Prandtl-Meyer
relations for supersonic flow around corners (discussed in refer-
ence 5) is also presented.

SYMBOLS |

The following symbols are used in this report:

a local sound velocity
2y df2
acp oritical velocity, (7:T gRT)
g gravitational constant
L velocity component parallel to shock
M Mach number
M., ratio of free-stream velocity to critical velocity, (dg/acy)
P total pressure
P gtatic pressure
o] velocity
R gas constant
T total temperature
% gstatic temperature

u,v velocity components parallel and perpendicular, respectively,
" to the free-stream direction

g Mach angle
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(49} angle between shosk and flow direction ahead of shock
4 ratio of specific heats

A angle between flow ahead of and behind shock

6, cone half-angle
G angle between inclined plane and free-stream direction
o) density

Y angle through which flow is expanded (Prandtl-Meyer theory)

Subscripts:

0 conditionsg in stream before shock

i conditions behind shock (or before Prardtl-Meyer expansion)
2 conditions after Prandtl-Meyer exparnsion

(o conditions on cone surface

w conditions on surface of inclined plane

cr critical values

max maximum values

DESCRIPTION CF TWO-DIMENSIONAL AND CONICAL FLOW

A sketch of a wedge with one surface parallel to the free-stream
direction and the other surface inclined at an angle 6, 1s presented
in figure 1. The flow of a frictionless supersonic air stream
against such a wedge may be described as follows: As the air stream
Passes through the shock attached to the leading edge of the wedge,
it is deflected upward through an angle A. If 8y 1is less than a
certain maximum value, Muax dependent on the free-stream Mach
number My, the shock is attached to the leading edge (fig. 1). The
flow direction is then constant in the entire field between shock and
surface; the surface angle is equal to the angle of deflection
through the oblique shock (A= W). The compression of the flow,
which must result from such a deflection, takes place abruptly through
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the obligue shock wave emsnating from the lsading edge. If the wedge
is assumed to extend an infinite distance downstream, the oblique
shock is straight and of constant intensity to infinity, which means
that (a) the flow is deflected an equal amount wherever it passes
through the shock and (b) conditions behind (downstream of ) the shock
are everywhere equal. The intensity of the shock for a given value
of Mg is a function of the shock angle @, which is in turn
dependent only on A. For 6y = A =0, there is no flow deflection
or compression and the shock wave becomes a Mach waye. The shock !
angle @ is then equal to the Mach angle P = sin"il/fMy. As 6y

is increased, the shock angle and, conseguently, the shock intensity
increase. When 6y reaches & certain critical value A, which
depends on My, the flow behind the shock becomes sonic (M = 1.0).
For values of 6y greater than Ay, the flow behind the shock is
everywhere subsonic (M; < 1.0).

When 6y reaches a certain maximum velue A, (slightly
greater than Acr) the shock wave becomes curved and stands upstream

of the leading edge. The flow behirnd the shock is no longer uniform;
the deflection of the flow in passing through the shock varies from

point to point, depending on the angle of the shock at that point.
The angle of deflection of the fiow A is no longer to be iden-
tified with the surface inclination 6;; and the conditions on the

surface are no longer the same as those immediately behind the shock.

As 6y 1s further increased beyond Ap.y, @ and pj continue
to increase, but A decreases. When 6, reaches 90°, the shock
vave is normal to the free-stream direction over the entire area

ahead of the surface and the flow deflection through the shock is
Zero.

If the shock is attached to the leading edge of the surface,
the flow past the lower surface of the wedge shown in figure 1
remains unaffected because it is parallel to the free-etream direction.
When the shock becomes detached, however, the flow from the uppexr
region, which is now subsonic and at a higher pressure than the free
stream, will expand around the lecading edge into the lower region.
This expansion will result in a compressive deflection of the free
stream in that region and a consequent extension of the shock wave
into the lower region. When &, exceeds Mmaxs & complete bow wave
will therefore appear, which is normal to the free stream just ahead
of the leading edge. The lower half of the wave, however, will degen-
erate into a Mach wave at some distance from the wedge because the
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flow bohind the shock is expanding to free-stream conditions. On
the other hand, if the wedge is of infinite extent as assumed, the
upper hali of the shock wave maintains a finite .intensity.

A description of supersonic flow past a symmctricel cone with
the axis parallel to the free-stream direction (fig. 2) is analogous
in several respects with the description of flow over inclined
surfaces given previcusly. The shock angle and thc shock intensity
again very continuously with cons half-angle 6, wup to a maximum
valuc 6 pmay beyoud which the shock becomes detached from the
cone tip and stands ahead of the cone as a bow wave. The important
difference lies in the fact that, even with the shock attached,
the conditions in the field hetween the shock and the cone are not
constant. After the compression through the shock wave, there is
a further compression of the flow between the shock and the cone
surface. The streamlincs behind the shock are therefore curved and
the cone half-angle 6, cennot te identified with the angle of £low
deflection through the shock A. The condition of the flow imme-
diately behind the shcck, however, is determined from the obligue-
shock velations previously described if the shock angle ® is known.
The relation between this shock angle and the cone angle and the
conditions on the cone surface must be determined by integrating the
differential equation for axiaslly symmetric conical flow. This
equation has been derived, in different forms, by Teylor and
Maccoll (references 2 and 3) and by Busemann (reference 6). The
authors of references 2 and 3 carried out the integration of their
equation for Mach numbers up to 8 and for shock angles up to those
obtained for Gc,max’ The integration of Busemann's equation wag
carried out by Haontzche and Wendt (reference 4) for Mach numbers to
infinity and for all shock angles. No attempt has been made in this
parer to recalculate the results. The over-all agreement between
the two independent calculations already made is deemed sufficient
to agsure their accuracy. The data for the charts on conical flow
were merely replotted and cross-plotted in this report for the sake
o' completeness and greater accessibility. These charts apply only
to cones at an angle of attack of 0. Theoretical discussions of
conical flow at angles of attack may be found in references 7 and 8,

The preceding discussion is concerned only with deflections of
the flow resulting in compreseion. Conditions resulting from an
expansion of the flow around a portion of an obgtacle inclined away
from the flow direction, such as the treiling portion of a wing, can
also be theoretically determined., If the flow is two dimensional,
the Prandtl-Meyer theory for expansion arcund corners is used
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(reference 5). A chart is included in this paper giving the Prandtl-
Meyer relations up to a Mach number of 4. The vsc of this chart is
subsequently described.

DESCRIPTION OF CHARTS

Total-presgurs ratio scross shocks., - Becanse the compression of
“he flow through a shock is not isentropic, the total pressure of the
gtream behind the shock is less than that of the free stream. The
ratio of the total pressures behind and aliead of the shock Pl/PO

depends only on the shock angle ¢ and on the Mach number before the

shock My. (See appendix, equation (16).) This relation is plotted in

figure 3 for values of Mg from 1.2 to 15.0. Because the additional
compression between the shock and the cone surface is assumed to be
isentropic, this chart may be used to find the total pressure in a
conical as well as a two-dimensional field. The intercepts of these
curves at ® = 90° correspond to a normal shock, whereas the other
limits of the curves at P;/Py = 1.0 correspond to the Mach angles.

Change in flow direction, static pressure, and Mach number
acrosg obligue shocks. - The obligue-shock relations between angle of
flow deflection A and shock angle ¢, static-pressure coefficient
(py/pp) - 1 .

g , Static-pressure ratio Pl/PO: and Mach number ratio

b ;

M; My are plotted in figures 4, 5, 6, and 7, respectively, for
soveral free-stream Mach numbers My. The flow against inclined
plane surfaces is directly determined from these charts.

\

In these figures, two shock solutions are given for each
A< Apax. When a plene surface is inclined at an angle &< L
the solution indicated by the solid lines is by far the more likely
to occur in practice. There is experimental evidence, however, that
the dotted-line solutions occur under special conditions (reference 9).
Except for such special cases, the dotted upper portions of the curves
are useful in practice for determining only the flov conditions
immediately behind various portions of a detached shock wave if the
angle of the wave is known at each point. If a detached shock is -
complete bow wave, whose angle @ with the free-stream direction
varies from 90° down to the Mach angle, then each point of the curves
for a given value of My 1s represented by a point on the buw wave
occurring at that values of Mp. The form of such a bow wave has not
yot been theoretically determined but must be determincd by cxperiment.
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The theoretical determination is complicated because for such shocks,
a mixture of subsonic and supersonic flow exisis in the field behind
the shock and because the field is not uniformly isentropic.

As an example of the use of the charts in figures 3 to 7, con-
slder a symmetrical wedge of half-angle 6y = 10° at an angle of
attack of 0° in an air stream of Mach number Mo = 2.0. In figure 4,
the shock angle ® is 39.2°. The static-pressure coefficient from
figure 5 is 0.128 and the static-pressure ratio py/p, 1is 1.7 (fig.6).
The ratio of the Mach number in the field behind the shock M; to the
{ree-stream Mach number My from figure 7 is C.82; therefore, My is
1.64. From figure 3, the total-pressure ratio is found to be 0.983.

The values of A in figure 7 for which M; reaches 1.0 are
slightly less than Emax; that is, the flow behind the shock is

already slightly subsenic before shock detachment occurs. For
My = 2.0, for example, My/Mp = 0.5 when A = 22.7°, whereas
Apax = 22.95°.

Tlow past axlally symnetric cones. - Graphical solutions of
the differential equation for the axially symmetric conical field
have been determined for all ghock angles and all free-sirsam Mach
numbers in reference 4, The shock angle and the preseurs scasfiicient
are plotted in reference 4 against cone half-angle for verisus values
of Mgy. These two charts are replotted in figuree 8 and ¢ for
various values of My, which is a simple function of Mqp. (See
appendix, equation (7}.) The integrations carried out in refer-
ences 2 and 3 were less comprehensive than those in reference 4
and covered only the solid-line solutions (figs. 8 and 9) for Mach
numbers up to 8.0. Within this range, the two methods were compared
at a number of points and were found to be in complete agreement
within the error in reading the values from the respective charts.
This error in readability was about £0.5° for the shock angle and
about £0.01 for the pressure coefficient. Figures B and 9, although

. Plotted on a more readable scale, are therefore limited to the

accuracy of the reference charts. The fairing of curves through the
points, however, should average out some of the reading errors.

An examination of' figure 8 shows that the shock angle @
increases with half-angle of +the cone 8. up to a maximum angle
ec’max, which is considerably greater than Ap,, found for two-
dimensional flow (fig. 4). Again there are two solutions for the
shock angle at each &, < Gc,max' In this case, however, no exper-
Imental evidence is known for the occurrence of the broken-line
solutions. The flow conditions immediately behind a conical shock



8 NACA TN No. 1373

are still determined from the two-dimensional oblique shock relations

of figures 3 to 7 once the shock angle @ has been determined for a
particular cone angle.

(po/po) = 1

. Mo’
is plotted against cone half-angle ec for all values of Mg 1D £1g-
ure 9.

The pressure coefficient at the surface of the cone

The ratio of static pressure on the cone surface P, to the free-
stream static pressure py 1s plotted for Mo = 1,05 to 2.0 iIn fig-
ure 10(a), for My = 2.0 to 6.0 in figure 10(b), and for Mp = 6.0
to 15.0 in figure 10(c). The data were calculated from figure 9. At
9, = 0, the static pressure at the cone surface P, 18 the same as
the static pressure behind the shock p;, both for the normal-shock

solution and for the Mach angle solution. (Compare figs. 9 and 10
with figs. 5 and g )

The ratio of the Mach number at the cone surface M, to the free-
stream Mach number M, 1is plotted against cone half-angle in fig-
ure 11(a) for My = 1.05 to 2.0 and in figure 11(b) for My = 2.0
to 15.0. These curves were calculated from the pressure ratios of

figures 6 and 10, as explained in the appendix (equation (18)). The
critical 6,, for which the surface Mach number M, is 1.0, does

not closely correspond with the maximum angle for which the shock
remains attached to the cone tip ec,maX' For M; = 2,0, for example,
M, = 1.0 when 6, = 36.4°, whereas Oc,max = 41°. The difference
between critical and maximum cone angle is greater than the difference
between critical and maximum plane-surface inclination (fig. 7)
because there is an additional adiabatic compression between shock

and cone surface. In fact, a small range of cone angles exists for
each M; for which the flow behind the shock is partly supersonic

and partly subsonic; the subsonic flow is nearest the cone surface.

The range of cone angles for which a mixed subsonic-supersonic
field exists is determined by finding the limiting 6, for M, = 1.0
and for My = 1.0. Using the curves for My = 2.0, it is found from
figure 7(a) that M; = 1.0 when the angle of deflection through the
shock A is 22.7°. For this value of A, ® from figure 4 is 61.3°.
From figure 8, the cone half-angle that produces this shock angle is
determined to be 38.9%. This angle is then the limiting 6, for
which the entire field behind the shock is subsonic. The surface
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velocity, however, was already sonic for 6, = 808 ol e 103
From 6, = 36.4° "to 38.9°, the subsonic-flow sector therefore
increases gradually from the cone surface to the shock surface.

Determination of other flow variables. - In the appendix it is
shown that the velocity at any point depends only on the Mach number
at the point and upon the critical velocity, which is determined by
free-stream conditions. The relation is plotted in dimensionless
form in figure 12. From this figure, the velocity at the cone
surface g, may be determined when M, has been found from fig-
ure 1l. Similarly the velocity immediately behind the shock a1,
or on the surface of an inclined plane, may be determined when the
Mach pumber M; has been found from figure 7. With the velocity
ratio and Mach number ratio known, the ratio of sound velocities may
easily be calculated. The density ratio is then obtained (because

e = 7p/p) from p/po = p/po (ao/a)z and the gtatic-temperature
ratio, from t/tg = (a/ag)?.

Two-dimensional expansion around corners. - The charts
presented have been concerned with flow conditions resulting from
compressive deflection of the free stream. For the case of two-
dimensional objects, there are also simple relations to determine
conditions after an expansion through any given angle from given
initial conditions. These relations result from the Prandtl-Meyer
theory of supersonic flow around corners. The theory itself will
not be given but may be found in reference 5. According to this
theory, the Mach number and the gtatic pressure are functions only
of the angle through which the flow is turned.

These relations are plotted in figure 13, with the turning
angle V as abscissa and the corresponding Mach number M, ratio
of static to total pressure p/P, and Mach angle B as ordinates.
This chart is based on the initial condition that M = 1.0 for
zero flow deflection (V = 0). The equations (19) and (20) used to
plot these relations are given in the appendix. In order to use
the chart for any other initial Mach number (within the range of the
ohart), it may be assumed that the flow hag already been deflected
through an angle Wl, which corresponds to the initial Mach number
M; assumed. The conditions of the flow foilowing an expansion of
A degrees around a corner may then be obtained by reading the ordi-
nates for an abscissa V = V; + \. Because the Prandtl-Meyer theory
is valid only for isentropic flow, it is only approximately accurate
for compressive deflections resulting in shock waves. If the total-
pressure loss through the shock is negligible, however, figure 13
may also be used to determine conditions resulting from compressive
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def'lection. For such compressive turning, conditions after a deflec-
tion of A degrees are found by reading the ordinates at V = Wl - A
vhere Wl is the abscissa corresponding to the initial conditions.
The accuracy of the approximation may be checked by obtaining corre-
eponding values from the shock charts (figs. 6 and 7). The use of the
chart ig illustrated in the following example: An airfoil with a
symuetrical-diamond profile having edge angles of 20° is placed in a
uniform alir stream of Mach number My = 2.0 at an angle of attack

of 0. (See sketch, fig. 13.) The conditions in field (1) are deter-
mined from the shock charts. From figure G(a), the static-pressure
ratio across the shock emanating from the leading edge is found to be
1.70; the total-pressure ratio, from figures 4 and 3 is 0.983. The
ratio of static pressure to total pressure behind the shock is there-
fore

p1 /Py = (1.70/0.983)(po/Pp)

where PO/PO is a simple function of Mach number and may be obtained
trom figure 13. For M, = 2.0, py/Py = 0.127; hence, p;/P; = 0.220.

For this ratio, it is found from the same set of curves that M; = 1.64.

These values are the initial conditions for the subsequent expansion
through 20° around the midpoint of the profile. The abscissa on fig-
ure 13 for these conditions (Ml =1.64) is V¥ = 16.2°. The abscissa
for the conditions after the expansion is W = 16.2° + 20° = 36.2°,

he conditions on the rear surfaces of the airfoil are now read for
this abscissa: Ms = 2.38, po/Pq = 0.072.

The Mach angle B is useful if it is desired to plot the expan-
sion region; the expansion takes place through a wedge-shaped region
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bounded by lines making angles of By + 109 = 37.29 4+ 10° = 47.2° and
Bo - 10° = 24.8° - 10° = 14.8°, respectively, with the free-stream
directior.

More complete charts for the determination of flow conditions
following expansion around corners may be found in reference 10.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, January 15, 1947.
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APPENDIX - EQUATIONS USED FOR COMPUTING CHARTS

A derivation of the equations that hold across an oblique shock
may be found in reference 1. The relations given in that reference
are modified somewhat and rewritten in terms of more convenient vari-
ables. The modifications made are as follows:

~ The relations between the static-pressure ratio across a shock
pl/po, the angle of deflection through the shock A, and the shock

angle @, are as follows (reference 1, p. 238, equations 2.6 and 2.7,
notaetions modified)

Pl
. [(7 -1) + (7 + 1) 55} (y = 1)

sin® @ = 771 ‘l {14
Pg s
i SR
1Y
tan (© - ) —(7—1)"'(74'1) Wi (2)

tan (90 — @)

@lw hﬂ

o | O]
©
'_l

(9 1) + (% 1)

Because the quantity in the bracket of the denominator of equation (1)

ig equal to 4 ; - MOZ, equation (1) may be algebraically converted
to
Py
L — = (s10® @ - 1/%) (1 - 1) (3)
™o
where
2 _7-=1
iy Pyl

An alternative form of equation (2), which gives A as an explicit
function of ® or pl/po, may be derived. In the notation of fig-

ure 1, the conservation of mass flow, momentum, and energy equations
may be written
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Mass:
At = By (4)
Momentum:
- § 2
Do + polp~ = P + p1N1” = constant (5b)
Energy: -
aoz. ; qoa alz q12 ] acrz (6)
= & =
T X % 7 -1 @ zkz
From equation (6),
2 ok
a "
-k : zk (7)
% Mo

From these equations, the velocity components in the horizontal and
vertical directions are found to be (fig. 1):

up = Ly cos @ + N sin @
i - (acr2 - kzqo2 cos? ®) gin @
= qg cos™ @ + 3 5in @
= (1 - %%) qg cos? @ + acr%/qo (8)
¥y = Ll sin @ ~ Nl cos @
"y | 2 2 2
= cot Q‘{?O [1 < (1 ~ k%) cos® @] - Bk /qé} (9)

where N; was determined from the relation
. 2% 2l nema
NoNl— acr kL
derived from equations 4 to 6.
The equation for A 1is now found by dividing equation (9) by

equation (8) and rearranging terms and symbols with the help of
equations (3) and (7):
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o 2
0 5 cot P
tan)»: mo
P
3/l o >
ny°/

Equations (3) and (10) were used to plot figures ¢4 to 6.

equation (3) becomes

D
i

D
0 —= (1 - k2) sin? ©
Mo

and equation (10) becomes

ol el (1 = k%) sin @ cot @
1 - (1L~-k?) sgin® @
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(10)

For My =,

(11)

(12)

The ratio Ml/MO plotted in figure 7 was obtained from the identity

The ratio q;/qy may be determined from equation (8):

2 2 a'crz
(1 = xe) Qg cos® @ + —=—
40

q u
= cos A = e 5
40 90 Q0

which may be written as

qQ Bopl
o/ 3 cos A = cos® P 4+ _9%_ — %% cog? @
2
=1 - (éinz P - ’; + K% cosg? ¢9
%9
P
ﬁl 2y
o i I

(13)

(14)
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The guantity py/py is obtained from equation (2)

Py
g — + k?
L e (15)

Po k° L1 4 1
Po

Figures 3 and 12, which apply for all flow across compression
shocks, may be determined from the above relations. For the ratio
of total pressure across the shock, the general compressible-flow

relation may be used: 9
y-1
{1 il 2 1
i1+ Z._ M
P1 71| 2
=l St = 5 (18)
Because Pl/Po and Ml are both functions only of A and
M, (figs. 5 to 7) and, because A 1is a function only of M, and

o (fig. 4), the ratio Pl/Po may be plotted as a function of ¢

for various Mgy, as shown in figure 3.

Equation (7) shows that the free-gtream velocity depends only
on the critical velocity and the free-stream Mach number. Because
2,y 18 constant across a shock, equation (7) holds for all velocities
before and after the shock. The ratio of any velocity to the free-
stream velocity may therefdre be written in the following form:

(q \f__ 8oy M /ézmoz +1 - kP
B 202 2 Reris
qO/ kK*M® + 1 - k v, \\ acp My
o B 7-1
Vo B2 i e 2
e 1—\4_0 y-1 o B MO 2 (17)
\ ke [ 2V ¥ y=1
> M® + 1 \M) 72} Mp

Equation (17) is plotted in figure 12 and may be used to determine

the velocity immediastely after a shock q; 1f M; has been determined
or to determine the velocity at the cone surface q, if Mz has been
found.
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The Mach number at the cone surface is determined from isentropic
compregsion relations if the pressure and Mach number immediately after
the shock and the pressure at the cone surface are known. The relation
is

. B S
e L1 o iy (18)
S G Yiadet i wanek
. x
{2
| \5y) .

where Py, M;, and p, may be determined from figures 6, 7, and 10,
respectively. The ratio M,/My is plotted egainst 6, in figure 1l1.
The angle of deflection through the shock A, from which p; and My

are determined, is found from figure 4 when the shock angle @ has
been determined from figure 8.

The derivation of the Prandtl-Meyer relations for flow around
corners is given in reference 5. In the notation of this paper and
with the initial condition that W = 0 when M=1.0, these relations
(plotted in fig. 13) are given by the following equations:

v ll?tan"l (kM2 — 1) + sin~t bld ~ 90°

5 1% tant (k cot ) + p — 90° ' (19)
- 7T
Pl .
=1+ 5h)
=[(L—-%°) cos® k (W — B + 900)37_ (20)
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Total-pressure ratio, Py/Pg
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Figure 3.- Relation between total-pressure ratio across shock and shock angle for
various free-stream Mach numbers. 7Y, 1.40.
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Static-pressure ratio, p;/pp
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Figure 10.- Relation between surface static-pressure ratio and cone half-angle for
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