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Abstract—This paper applies machine learning to power mag-
netics modeling. We first introduce an open-source database
– MagNet – which hosts a large amount of experimentally
measured excitation data for many materials across a variety of
operating conditions, consisting of more than 500,000 data points
in its current state. The processes for data acquisition and data
quality control are explained. We then demonstrate a few neural
network-based power magnetics modeling tools for modeling the
core losses and B–H loops. Machine learning allows multiple
factors that may influence the magnetic characteristics to be mod-
eled in a unified framework, while provides insights to quantify
the complexity of magnetic characteristics and reduce the size of
the measurement data required to build a precise model. Neural
network models are found to be effective in compressing the
measurement data and predicting the material characteristics.
The behaviors of a typical power magnetic material (TDK N87)
across a wide range of operating conditions (e.g., temperature,
waveform, dc-bias) can be well described by a small-scale neural
network (204 KB) which is 2,500 times smaller than the raw
measured time-series data (512 MB), paving the way for “neural
networks as datasheet” to assist power magnetics design.

Index Terms—power magnetics, core loss, hysteresis loop,
open-source database, machine learning, data-driven method,
neural network

I. INTRODUCTION

MAGNETIC components, such as inductors and trans-
formers, are critical in almost all power electronics

systems. These magnetic components are typically the largest
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in volume and have significant power loss, and therefore
have an adverse impact on the system performance. While
there have been major strides in the modeling and analysis
of power semiconductor devices and circuit topologies, the
necessary advances in the modeling and design of power mag-
netic components and materials are lagging [5]–[9]. Currently,
power magnetics models are usually developed and tested
on different private datasets [10]–[13] with either unknown
or unreported data quality. Data and its models cannot be
rapidly compared or cross-validated. An open-source large-
scale power magnetics research platform with controlled data
quality and state-of-the-art software tools is needed and serves
as the basis of this research.

Modeling magnetic materials is challenging due to the
complicated material excitation-response mechanisms, the nu-
merous factors involved (i.e., temperature, dc bias, memory
effects), and the fact that no fully satisfactory first-principle
model is yet known. Figure 1 compares multiple measured
B–H loops for N87 ferrite material as an example, where
the material characteristics differ significantly under different
conditions. These intertwined influence factors are quantified
in [14]. They typically co-exist and change at the same time
in real applications, which renders the modeling of magnetic
materials extremely difficult. A widely used method to model
the core loss is the Steinmetz Equation (SE) [15], [16], which
is an empirical equation based on curve-fitting, employed to
calculate the core loss per unit volume in magnetic materials
subjected to sinusoidal magnetic flux. However, most of the
magnetic components in power electronics systems often have
magnetizing currents with significant harmonic components,
e.g., triangular, trapezoidal, or piece-wise linear waveforms.

Many advanced methods have been developed for mod-
eling core loss under non-sinusoidal excitations. Some of
these, including the modified Steinmetz equation (MSE), im-
proved generalized Steinmetz equation (iGSE), and improved-
improved generalized Steinmetz Equation (i2GSE) [17]–[20],
are listed in Table I. All these models have known accuracy
limitations for specific waveform types. They usually do
not have a clear pathway toward capturing the impact of
temperature, dc-bias, and relaxation effects.

Recent advances in data-driven methods, especially neural
networks and other machine learning techniques, have proved
extremely effective in solving non-linear multi-variable clas-
sification and regression problems, such as those in computer
vision and speech recognition [21]–[24]. They also have been
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Fig. 1. Examples of measured B–H loops for ferrite materials under
different conditions: (a) frequency, (b) peak flux density, (c) magnetic material,
(d) shape of waveform, (e) dc bias, and (f) temperature. Except for the
specified property, other properties are approximately kept the same for each
measurement (TDK N87 ferrite material, 200 mT peak flux density, 100 kHz,
25 ◦C, and without dc bias).

TABLE I
NUMBER OF PARAMETERS USED BY CORE LOSS MODELS

Method Core Loss (PV ) #Param.

SE kfαB̂β 3

iGSE 1
T

∫ T
0 ki| dBdt |

α(∆B)β−αdt 3

i2GSE 1
T

∫ T
0 ki| dBdt |

α(∆B)β−αdt+Σn
l=1QrlPrl 8

ML Neural Network ≫100

applied to power electronics design and optimization [25]–
[29]. The main strength of a neural network approach is the
possibility of capturing many intertwined influence factors in a
unified framework. Neural networks have been used to model
magnetic hysteresis loops [30]–[38]. However, existing neural
network models usually have limited data sizes, unclear data
quality, and sometimes outdated network structures.

The main contributions of this paper include: (1) We
presented a large-scale open-source database - MagNet -
for power magnetics research; (2) We show an end-to-end
machine learning framework which can capture the many
factors that many impact the magnetic material characteristics
in an unified setup; and (3) we demonstrate that a neural net-
work can effectively store material characteristics information
and has the potential to be used as an active datasheet for

Fig. 2. Overview of the MagNet framework from data engineering, model
development, to magnetics design tool. The building blocks in the shaded area
are covered in this paper.

describing power magnetic materials in the design pipeline.
The key workflow of MagNet is illustrated in Fig. 2. Just

as ImageNet advances computer vision research [24], the goal
of developing MagNet is to advance research in data-driven
power magnetics modeling by providing a common ground
for testing and comparing different magnetic materials, mod-
eling methods, and design optimization tools. The accuracy
of equation-based models and data-driven models both rely
heavily on data size and data quality.

The rest of the paper is organized as the following: Sec-
tion II introduces the automatic data acquisition system of
MagNet, including the hardware setup and software config-
urations, with extended details in Appendix A; Section III
discusses the considerations on data quality evaluation and
methods to improve the data quality, with extended details in
Appendix B; Section IV introduces the database structure and
data format in their current states; Section V presents a few
example ways of applying neural networks to model power
magnetics for different purposes, including scalar-to-scalar
core loss prediction, sequence-to-scalar core loss prediction,
sequence-to-sequence B–H loop prediction, data augmenta-
tion for increasing the model generality, transfer learning
for reducing the training data size. Section VI introduces
the “Neural Network as Datasheet” concept. Appendix C
introduces the web-based open-source platform of MagNet.

II. DATA ACQUISITION

Large-scale and high-quality database lies the foundation of
machine learning and data-driven modeling methods, which
fundamentally bounds the accuracy of models. However, the
behaviors of power magnetics, especially the core loss, can be
impacted by many factors including frequency, flux density,
dc-bias, waveform shape, and temperature, among others. The
large number of degrees of freedom leads to an extremely
large parameter space to sweep and measure. To capture the
impact of all these factors, a fully automated data acquisition
with carefully evaluated accuracy is needed. Increasing the
automation level also reduces the error caused by human
factors during the measurement.

The most common procedure for B–H loop (and core loss)
characterization is the use of the two-winding method, also
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Fig. 3. Overview of the automated data acquisition system of MagNet.

Fig. 4. Experiment setup and circuit configuration of the magnetic core loss
data acquisition system of MagNet.

referred to as the voltamperometric method [17], [39], [40],
where two separated windings are used. The excitation is
applied to the primary, where the current is measured to obtain
H . The voltage across the secondary winding is measured to
obtain B as the voltage drop in the primary winding resistance
or leakage inductance is not reflected in the secondary [40].

We adopted the two-winding method for magnetic charac-
terization. Fig. 3 depicts an overview of the fully automated
data acquisition system, comprising a power stage that is ca-
pable of generating different excitation waveforms, the device
under test (DUT), voltage measurement, current measurement,
auxiliary stage for the dc bias, and temperature control. Fig. 4
shows a picture of the experimental setup.

In this particular design, the excitation of the magnetic core
is synthesized and generated by a T-type inverter in the power
stage (for non-sinusoidal waves) and a power amplifier with a
function generator (for sinusoidal waves). Both the secondary-
side voltage waveform and the primary-side current wave-
form are captured and measured by an oscilloscope, where
a wide-band coaxial shunt is used to enable accurate current
measurement at high frequency. An optional dc bias injection
circuitry is implemented to excite the magnetic core with a

non-zero bias current. An external water heater, water tank,
and oil bath are implemented to provide temperature control
for the measurement under different temperature conditions.
A software system is programmed on the host PC to control
and coordinate with the hardware system to enable fully
automated equipment settings and measurements. More details
about the automated power magnetics data acquisition system
including the hardware configuration and implementation, the
measurement equipment, and the software programming are
provided in Appendix A.

This data acquisition system can automatically excite and
drive the DUT with pre-programmed excitations and measure
the material responses. With this system, the B–H loop
and core loss can be directly measured and calculated via
voltamperometric method [12], [39], [41], [42] by:

Ploss =
1

NT

∫ t0+NT

t0

vL(t) · iL(t) dt (1)

B(t) =
1

Ae · n2

∫
vL(t) dt (2)

H(t) =
n1

le
· iL(t) (3)

where vL and iL are the measured secondary-side voltage
and primary-side current, respectively. n1 and n2 refer to the
number of turns of each winding. Ae is the effective cross-
section area of the magnetic core and le is the effective length.
NT is the total duration of the measurement. The duration is
intentionally configured to ensure that the measured waveform
contains an integer number of periods.

With this system, the time it takes to complete one mea-
surement is around 1.5 seconds. The actual measurement
duration is 100 µs, and the rest time is used for control,
communication, and relaxation of the material. The system
can, fully autonomously, collect around 2,400 data points per
hour. A complete characterization of one material usually takes
a few hours, during which no human operation is needed.
Please note that certain materials may require longer relaxation
time between measurements to resume to the demagnetized
state, leading to slower data acquisition speed. One should
carefully understand and pre-calibrate the material to select
the appropriate measurement time interval.

III. DATA QUALITY CONTROL

The accuracy of a data-driven method is highly dependent
on the data size and data quality. Measuring the B–H loops
and core losses accurately across a wide operation range is
challenging. The error distribution may be impacted by many
factors including: parasitics, oscilloscope limitations, timing
skew between channels, misbehavior of the micro-controllers,
electrical noise and quantization noise, temperature variation,
and many others. The real-time measured voltage and current
signals can be decomposed as:

vL(t) = GV (V0 + VDC + vAC(t))

iL(t) = GI(I0 + IDC + iAC(t− θ))
(4)

where GV represents the gain factor of the voltage measure-
ment. V0 is the zero-drift offset voltage introduced by the
equipment. VDC , and vAC are the dc and ac components in the
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Fig. 5. Example measured voltage, current, and power waveform of TDK
N87 ferrite material at 100 kHz.

measured voltage signal, respectively, in the periodic steady
state. θ denotes the time skewing between the voltage and
current measurement results. Similar definitions go for all the
current-related variables. Based on Eq. (1), the average power
loss across N cycles is:

Ploss =
1

NT

∫ t0+NT

t0

vL(t) · iL(t) dt

= GV GI(V0I0 + V0IDC + VDCI0)

+GV GIVDCIDC

+
GV GI

NT

∫ t0+NT

t0

vAC(t) · iAC(t− θ) dt

(5)

Equation (5) provides useful information for the semi-
quantitatively understanding of the error associated with gain
and offset. Errors in GV , GI , VDC , IDC , V0, I0, vAC and
iAC all have an impact on the core loss error. Fig. 5 illustrates
an example voltage and current waveform measured with N87
ferrite material at 100 kHz, as well as the instantaneous power
and average power (i.e., the power loss). The instantaneous
power is much larger than the average power. A minor error in
either the voltage or the current, or a phase mismatch between
them, may lead to a significant percentage error in power loss.

All equipment used in the data acquisition system is evalu-
ated and calibrated. Experiments to calibrate the oscilloscope
against a digital multi-meter are conducted, where the relative
error of the mean dc voltage measured by the oscilloscope is
0.25%, and the relative error of the root-mean-square (RMS)
ac voltage is 0.67%. Auto-calibration of the oscilloscope is
conducted before the measurement iteration starts to minimize
the undesired zero-drift offset and deskew the voltage and
current channels. The parasitics introduced by the power stage
circuit and the cable connections are also minimized in order to
further reduce the potential time skewing between the voltage
and current measurement.

A model-driven method combining the physics-based virtual
measurement simulation and the Monte Carlo experiments is
proposed to quantify the measurement error and estimate the
error distribution. Appendix B analyzes the systematic error

and statistical error of the system. The analysis helps to deter-
mine the range of measurement and maintain high data quality.
The analysis also shows that the geometry variation can
significantly impact the core loss. Similar phenomenons are
reported in [14], where the maximum geometry-to-geometry
variation of core loss density can be more than 10%, larger
than the impacts of most other sources of error.

Finally, a data-driven algorithm is developed to detect and
remove the anomaly outliers in the collected dataset, as they
are impossible to be completely avoided in the large-scale
automated data collection. The essential idea of the algorithm
is to evaluate the smoothness of the measured data points
within a certain range of flux density and frequency, based on
the curve-fitting of the local Steinmetz Equation. For a certain
data point, an expected value of core loss can be inferred
based on other adjacent data points, then the discrepancy
between the expected value and the measured value can be
calculated. Suspicious data points that are likely to be outliers
can be removed. Extended details about data quality control
are provided in Appendix B.

IV. DATABASE CONSTRUCTION

The fully automated data acquisition system enables rapid
measurement of B–H loop data. Fig. 6 shows the voltage
and current waveforms of four examples of measured data,
including sinusoidal, triangular, symmetric trapezoidal, and
asymmetric trapezoidal, all measured with N87 ferrite material
at 100 kHz. The sampling time step of the measured waveform
sequence is set as 10 ns, and each waveform sequence contains
10,000 sampling points for a 100 µs measurement period.

Better data documentation enables better data usage. Fig. 7
shows the data format of MagNet in its current state, which
comprises three data domains: 1) information about the DUT,
including the material type and the geometry parameters; 2)
raw measured time-series data, including the voltage, the cur-
rent, and the corresponding time stamps; and 3) post-processed
data, including the frequency, the peak flux density, the dc
bias, the duty ratio, the temperature, the volumetric power loss,
and the single-cycle B–H loop sequences. The frequency is
post-calculated from the data using the Welch’s method [43],
which estimates the power spectral density of the signal, and
identifies the frequency with the highest power spectral density
near the commanded frequency as the fundamental frequency.
The flux density is calculated by the integral of the voltage
signal together with the geometry parameters. The duty ratio
is detected based on the zero-crossing point for each section.
The single-cycle B–H loop data is produced by averaging
the waveforms of different periods across the entire sequence
and applying a 100-step interpolation within the averaged
waveform. The single-cycle data captures the majority shape of
the B–H loop with much less amount of data, but meanwhile
loses resolution, especially near the switching events. [14]
provides extended details about the data processing methods
used to construct MagNet.

Data are open-sourced in four different formats, including
“.mat”, “.json”, “.hdf5”, and “.csv”. This data structure is
designed to contain sufficient information that facilitates the
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Fig. 6. Example voltage and current waveforms of sinusoidal, triangular,
symmetric trapezoidal, and asymmetric trapezoidal excitations.

Fig. 7. Data format of the MagNet with four different types of contents.

research community to compare, verify and reproduce the core
loss measurement, and trace the potential error mechanisms in
the automatic data acquisition process.

Table II lists the size of the MagNet dataset in its cur-
rent state. The sizes of the data for the ten materials are
slightly different because of their various designated operation
ranges for the parameter sweeping. Details about the range
of measurement (e.g., flux density, frequency, dc bias, and
temperature) are provided in Appendix. A. The total number
of data points is more than 500,000 so far. Measurements for

TABLE II
NUMBER OF DATA POINTS CURRENTLY IN THE MAGNET DATASET

Material Sine Tri. Trap. Total

TDK N27 1,612 13,480 27,856 42,948
TDK N30 741 4,254 9,139 14,134
TDK N49 1,392 13,591 26,185 41,168
TDK N87 3,495 46,973 92,403 142,871

Ferroxcube 3C90 4,008 34,833 69,653 108,494
Ferroxcube 3C94 5,130 35,442 73,119 113,691
Ferroxcube 3F4 925 18,210 31,495 50,630
Ferroxcube 3E6 503 2,045 44,48 6,996

Fair-Rite 77 1,115 9,316 19,555 29,986
Fair-Rite 78 1,000 7,437 15,654 24,091

Total 19,921 185,581 369,507 575,009

other materials are in progress and the scale of MagNet dataset
is expanding constantly.

Figure 8 illustrates the magnetic core loss density of N87
ferrite material as an example to visualize MagNet. The mag-
netic core is excited with triangular excitations with different
duty ratios. Fig. 8a shows the core loss variation against the
peak flux density with the frequency fixed at 200 kHz, Fig. 8b
illustrates the variation against the frequency with the peak flux
density approximately fixed at 120 mT, and Fig. 8c presents
the variation against the duty ratios at different flux density
level with the frequency fixed at 200 kHz, all of which are
measured at 25◦C. Fig. 8d depicts the core loss variations at
different temperatures, with the duty ratio fixed at 0.5 and the
frequency at 200 kHz. Each figure demonstrates a different
nonlinear relationship in terms of different impact factors,
and these factors typically co-exist in real applications. An
extended discussion on these impacts is provided in [14]. The
complexity of power magnetics characteristics motivates the
use of machine learning.

An open-source webpage-based platform with a graphical
user interface (GUI) – MagNet1 – has been developed. The
MagNet platform offers access to searching, visualizing, and
cloning all the aforementioned measured datasets. It also
provides a user-friendly interface to calculate and simulate the
magnetic core loss using neural network models introduced
in Sec. V with the support of a PLECS simulation engine.
The website, models, and datasets have been open-sourced in
GitHub2. More details about the MagNet platform are provided
in Appendix C.

V. NEURAL NETWORK MODELS

The MagNet database can be used in many different ways.
For power magnetic designs with sinusoidal, triangular, or
trapezoidal excitations, one can simply plot the data and read
the core loss under a particular operating condition, and use
the values in the design process with or without interpola-
tion. MagNet can also be used to develop equation-based
analytical models for magnetic core loss, such as identifying
the Steinmetz parameters, forming a loss map, or extracting
parameters of the Jiles-Atherton model. In this paper, however,

1Princeton MagNet website: https://mag-net.princeton.edu/
2MagNet GitHub repository: https://github.com/PrincetonUniversity/magnet/
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(a)

(b)

(c)

(d)

Fig. 8. Data visualization of the measured core losses under triangular
excitation for N87 material: (a) core loss versus peak flux density with
frequency at 200 kHz; (b) core loss versus frequency with peak flux density
around 120 mT; (c) core loss versus duty ratios at different flux density level
with frequency at 200 kHz; (d) core loss versus peak flux density at different
temperature with frequency at 200 kHz and duty ratio at 0.5.

Fig. 9. Three example ways of modeling the behavior of magnetic materials
with neural networks: (a) scalar-to-scalar, (b) sequence-to-scalar, and (c)
sequence-to-sequence.
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Fig. 10. Structure of an example 4-layer feed-forward neural network with
three inputs (f , B, D) and one output (PV ). The structures and number of
neurons in the hidden layers can be optimized. There is a trade-off between
model size and model accuracy.

we demonstrate and highlight the neural network modeling
method of power magnetics based on the MagNet database.
As illustrated in Fig. 9, we explore three ways of modeling
the behavior of magnetic materials with neural networks:

(a) Scalar-to-scalar: similar to the Steinmetz Equation,
a neural network can be implemented as a scalar-to-scalar
model to map multiple scalars, such as the frequency, peak
flux density, and duty ratio, to a scalar value describing
the magnetic core loss. This type of model is suitable for
predicting the core loss under specific types of waveform
shapes and operating conditions.

(b) Sequence-to-scalar: similar to the improved General-
ized Steinmetz Equation (iGSE), a neural network can function
as a sequence-to-scalar model, which takes the entire exci-
tation waveform (e.g., flux density) as the input, and builds
a regression mapping to the scalar value of the core loss.
Compared to the scalar-to-scalar model, this type of sequence-
to-scalar model is more feasible for core loss prediction under
arbitrary excitation waveforms. It is no longer required to
extract parameters from the waveform, reducing errors.

(c) Sequence-to-sequence: similar to the Jiles-Atherton
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model [44], a neural network can also function as a sequence-
to-sequence model to predict the magnetic responses (e.g.,
B(t)) due to an excitation waveform (e.g., H(t)). A sequence-
to-sequence model can be potentially included in time-domain
circuit simulations, such as SPICE.

A. Scalar-to-Scalar Model: Feed-forward Neural Network

Feed-forward neural networks (FNNs) are some of the
simplest and most widely used artificial neural networks,
and have proved to be effective in solving multi-variable
nonlinear regression problems. As illustrated in Fig. 10, an
FNN comprises one input layer, one output layer, and multiple
hidden layers. The connections of the parameters in the feed-
forward neural network can be described as:

zji = σ

(
n∑

k=1

(wj
k,i · z

j−1
k + bjk)

)
(6)

where w is the weight between each pair of hidden neurons,
and b is the bias of each hidden neuron. The subscript stands
for the index of hidden neurons, and the superscript stands for
the index of hidden layers. The function σ(x) is the nonlinear
activation function of the hidden neuron, which provides
the network with the capability of learning non-linearity. z
calculates the output value of each hidden neuron, where the
subscript and the superscript share the same definitions as
those of w and b.

We use a 4-layer FNN as an example to develop a scalar-
to-scalar core loss model for ferrite materials under triangular
excitations at a fixed temperature without dc bias. This partic-
ular network has one input layer, one output layer, and three
hidden layers. The input layer takes three post-processed scalar
parameters as the input variables: the fundamental frequency
f , the peak flux density B, and the duty ratio D of the
triangular waveform. The output layer has one parameter: the
magnetic core loss density of the material PV . Given the
pre-known fact that the core loss PV approximately changes
exponentially in terms of f and B, these three variables
are transformed into the logarithm values to enable a better
convergence of the network. Each of the three hidden layers
has multiple neurons. This model has a similar input-output
configuration as the Steinmetz equation but has much more
parameters available to function across a wide operating range.

The network model is synthesized and trained with PyTorch
[45]. The activation function is ReLU. The loss function for
the network training is selected as the mean-squared error
(MSE) of the logarithm value of core loss to ensure uniform
performance across the different orders of magnitude of the
core loss in the operation range. The training optimizer is set
as Adam [46]. An exponentially decayed learning rate strategy
is implemented to yield a better model convergence, where the
initial learning rate is 0.02 and the decaying rate is 50% per
200 epochs. To start with, the dataset of N87 ferrite material in
the MagNet database is selected, and the dataset is randomly
split into two parts as 80% and 20%. The first part is further
split into five subsets to conduct a K-fold (K = 5) training and
cross-validation of the candidate networks, while the second
part is kept aside untouched as the test set.

TABLE III
PERFORMANCE OF A FEW DIFFERENT FNN MODELS WITH DIFFERENT

SIZES FOR N87 MATERIAL WITH TRIANGULAR-WAVE EXCITATION

Neuron
Search
Range

Neurons in
Hidden
Layers

Total
Number of
Parameters

Avg. Relative
Error on
Test Set

Max. Relative
Error on
Test Set

[1, 4] (2,1,3) 21 19.76% 68.59%
[4, 8] (5,8,4) 109 9.81% 47.72%
[8, 16] (15,15,9) 454 5.33% 21.36%
[16, 32] (29,27,23) 1594 1.81% 9.47%
[32, 64] (44,57,47) 5515 1.77% 8.62%

To determine the number of neurons in each hidden layer,
we need to consider the trade-off between the network size
and network performance. A small network may have limited
learning capability and cannot provide good predictions, while
a large network is more prone to overfitting, and also require
a larger amount of training data. To analyze the relationship
between the network size and prediction performance, we first
set multiple boundaries for the number of neurons in each
layer. A hyperparameter optimization tool – Optuna [47] –
is selected to automatically search for the optimal number of
neurons in each layer within each range. Table III lists the
search range for the number of neurons in each layer, the local
optimal number of neurons, and the average and maximum
relative error of the prediction results on the test set for five
FNNs with different scales. The total number of parameters
in each neural network is also listed. As expected, prediction
performance boosts as the size of the neural network increases.

Specifically, three neural networks with different numbers of
hidden layers neurons are selected for the case study, including
NN(2,1,3), NN(5,8,4), and NN(44,57,47), noted as a small-
scale network, a medium-scale network, and a large-scale
network, respectively. Fig. 11 compares the predicted core
loss curves of the three different neural network models for
N87 material under triangular excitation with different duty
ratios. The results demonstrate that a small neural network
is only capable of capturing part of the magnetic core loss
characteristics (e.g., the slope of core loss curves), but unable
to distinguish the impact of duty ratios. As the scale of the
network increases, the model starts to capture the nonlinear
impact of duty ratio, and eventually achieves a very close
match with the measured core loss curves, given a large
number of hidden neurons. This validates the effectiveness of
feed-forward neural network modeling on magnetic core loss
under certain shapes of excitation waveforms.

This FNN-based model can be easily extended with more
input variables to capture other impact factors, such as the
temperature and the dc bias, while special attention must be
paid when considering multiple variables with different orders
of magnitude, in which case the normalization operation is
necessary in order to uniform the data distribution, as well as
avoid undesired numerical problems during the training.

One of the limitations of this FNN-based model is that
the prediction relies on the scalar representation of waveform
shapes. Different types of waveform shapes may require a dif-
ferent number of scalars to be described. In the example above,
the shape of the triangular wave is abstracted by the duty ratio.
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Fig. 11. Prediction results of three neural network core loss models for the
N87 material at 300 kHz: (a) small scale; (b) medium scale; (c) large scale.
The prediction accuracy increases as the number of hidden neurons scales up.

Other piece-wise waveforms such as the trapezoidal wave
require numerous duty ratios to be fully described. However,
there are also various types of nonlinear waveforms that cannot
be described simply with scalars, which limits the applicability
of scalar-to-scalar model, and motivates sequence-to-scalar
and sequence-to-sequence models.

B. Sequence-to-Scalar Model: LSTM Network

It is important to consider the waveform information when
modeling power magnetics with non-sinusoidal excitations.
The long short-term memory (LSTM) network [48], [49] is
one of the most commonly used neural networks for regression
problems with sequential input. An LSTM has feedback con-
nections with the capability of memorizing information across
the sequences of data. LSTM networks are well-suited for
classifying and making predictions based on time series data,
especially if there are sophisticated correlations (e.g., memory
effects) in the time domain. Modeling the unclear sequential
causality relationships between B(t), H(t), and core losses is
LSTM models’ forte.

Figure 12a shows the basic structure of a standard LSTM
cell. The fundamental mechanism of an LSTM cell that dis-
tinguishes it from other types of recurrent neural networks is
the implementation of the input gate it, the forget gate ft, and
the output gate ot. With these gates, the cell is able to regulate
the information flow and selectively memorize the important
information across a specific time interval within the sequence
rather than across the entire sequence. Mathematically, the
operation of the LSTM cell at time t can be described as:

ft = σ (Wifxt + bif +Whfht−1 + bhf )

it = σ (Wiixt + bii +Whiht−1 + bhi)

gt = tanh (Wigxt + big +Whght−1 + bhg)

ot = σ (Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(7)

where ct and ht refer to the cell states and the hidden states,
respectively. These states are the recurrent variables that will
be fed back to the LSTM cell and thus provide the memorizing
capability. The function σ(x) is the Sigmoid function that
operates as the activation function to provide the nonlinear
learning capability. As in an FNN, W and b are the weights
and biases, and the subscript refers to the source and target
variables that they are applied to. The operator ⊙ stands for the
Hadamard product, which performs an element-wise product
for all the elements of two matrices.

To start, based on the inputs xt and the previous hidden
states ht−1, the forget gate ft determines to what extent the
cell states impact the calculation at the current time step. Then
similarly, the input gate it and the cell gate gt jointly determine
how the cell states are updated. Finally, the output gate ot
regulates and updates the hidden states ht, which are typically
considered as the output of an LSTM cell.

In this particular example, we develop an LSTM-based
sequence-to-scalar model with time sequences of excitation
flux density B(t) as the input (full waveform with multiple
cycles, fixed length, rather than the single-cycle data), and the
volumetric power loss as the output. An example structure of
the model is demonstrated in Fig. 12b. The input layer of the
LSTM takes the entire flux density waveform as a sequence
input. The output of LSTM is aggregated and loaded with
an FNN to perform the core loss regression. In this example
design, the LSTM has 32 cell states and 32 hidden states,
while the FNN comprises three hidden layers. The output of
the FNN is the volumetric magnetic core loss. This example
model contains 5,569 parameters in total.

To validate the effectiveness of this LSTM-based core loss
model, the network shown in Fig. 12 is synthesized and trained
with PyTorch. A merged dataset that contains all three types
of waveforms (sinusoidal, triangular, and trapezoidal) for N87
material is now selected, instead of the single-shape waveform
in the scalar-to-scalar cases. Due to the fact that different types
of waveform shapes have different degrees of freedom (e.g.,
the amplitude, the frequency, and the duty ratio), the numbers
of original data points for the sinusoidal wave, the triangular
wave, and the trapezoidal wave vary significantly, as listed in
Table II. Such an unbalanced dataset may potentially impact
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Fig. 12. The network structure of the long short-term memory (LSTM) network for sequence-to-scalar model: (a) the basic structure of a standard LSTM
cell, which contains the input gate, the forget gate, and the output gate; (b) the structure of an example LSTM-based sequence-to-scalar magnetic core loss
model, which takes the time sequence as inputs.

Fig. 13. The data preparation process of sequence-based network training.
The original dataset is augmented and balanced by assigning a random phase
shift, then shuffled and randomly split into the training set, the validation set,
and the test set.

Fig. 14. An example illustration of the data augmentation for sinusoidal
waveforms. Each waveform sequence is circularly shifted with a random
phase. Theoretically, the magnetic core loss does not change in the steady
state regardless of the starting phase.

the performance of the neural network model. Data augmen-
tation techniques can be used to increase the scale of the
original dataset and balance the data distribution. In this work,
the augmentation technique consists of circularly shifting and
adding noise, where each of the waveforms is circularly shifted
with a random phase [50] and then superposed with white
noise. Theoretically, the magnetic core loss stays constant in
the steady state regardless of the starting phase. Hence, this

Fig. 15. The distribution of the testing relative error for the LSTM-based
core loss model on the N87 ferrite material.

TABLE IV
LSTM MODELING RESULTS FOR N87 MATERIAL AS CORE LOSS ERROR

Type of
Waveform

Abs. Avg. of
Relative Errors

RMS of
Relative Errors

Maximum of
Relative Errors

Sinusoidal 1.86% 2.33% 8.08%
Triangular 2.41% 3.19% 14.35%

Trapezoidal 1.95% 2.58% 12.85%

Overall 2.09% 2.78% 14.35%

data augmentation with random phase assignments also helps
to enhance the neural network’s capability of characterizing
the intrinsic features of the waveforms, rather than simply
memorizing the waveforms. The augmented dataset is further
shuffled and randomly split into the training set, the validation
set, and the test set for the LSTM model with a ratio of 70%,
20%, and 10%. Fig. 13 and 14 illustrate the process of data
augmentation, balancing, and shuffling. Other techniques, such
as weighting the loss function, can also help to tackle the
unbalance of the dataset, yet are beyond the scope of this
work.

Figure 15 shows the error distribution between the measured
core loss and the predicted core loss achieved by the LSTM-
based model. More prediction results are listed in Table IV. As
observed, the proposed LSTM model achieves a good core loss
prediction accuracy for all three types of waveforms, where
the relative error approximately has an even and unbiased
distribution that is close to 0%. The overall absolute average of
relative error is around 2% and the maximum relative error is
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Fig. 16. Structure of an example encoder-projector-decoder network architecture that predicts the response sequence H(t) based on the excitation sequence
B(t) and additional inputs of temperature T , frequency f , and dc bias Hdc.

within 15%. The LSTM model contains 5, 569 parameters in
total, which is close to the largest FNN mentioned in Sec. V-A.
Nevertheless, this LSTM-based model is able to make core
loss predictions for all three types of waveforms and beyond.
The applicability of this LSTM model is not restricted by the
scalar representation of waveform shapes. It can be inferred
to predict the core loss for excitation waveforms that are
not precisely included in the training data. This ability to
generalize to arbitrary waveforms is an important objective,
as with the iGSE and similar methods.

C. Sequence-to-Sequence Model: Encoder-Decoder Network

The above example proves the effectiveness of LSTM
networks for solving sequence-to-scalar problems, extend-
ing from which we can further explore the concept of the
sequence-to-sequence model in order to capture the magnetic
material behavior more comprehensively.

The encoder-decoder network architecture [51] is one of the
state-of-the-art architectures for solving sequence-to-sequence
regression problems that attracts significant attention in recent
years. It has proved to be successful in applications such as
voice-to-voice translation and stock-price correlation, both of
which take a time sequence as the input and map it to another
time sequence as the output. The modeling of the magnetic
B–H hysteresis behavior is faced with similar problems as
the aforementioned applications. However, the modeling of
the B–H loop can be more complicated to some extent, as
it is also impacted by other factors besides the time sequence
itself, such as the temperature and the dc bias.

Here we proposed an encoder-projector-decoder network
architecture as shown in Fig. 16 for B–H loop regression.
The encoder is composed of a 1-layer 32-state LSTM network.
Leveraging the input gate, forget gate, and output gate mecha-
nism of the LSTM, the input sequence B(t) passes through the
encoder in such order where the encoder captures and saves
the characteristics within the sequence as the hidden states and
cell states. The hidden states and cell states are then passed
into the projector, which consists of a 3-layer FNN with 64
hidden neurons in each layer. The additional inputs, such as
the temperature T , the frequency f , and the dc bias Hdc, are
concatenated with the states and fed to the projector at the

same time. In order to avoid the potential mismatch among
the scales of different input variables, a normalization process
is implemented. The FNN projector modifies the state values
according to the values of these additional inputs and generates
the updated state values. The updated values are further loaded
into the decoder to initialize its states. The decoder has the
same network structure as the encoder. Based on the updated
values of hidden states and cell states, the decoder generates
the output sequence H(t).

The difference between the encoder and the decoder is that
the encoder processes the entire input sequence all at once,
while the decoder generates the output sequence step-by-step,
which is also known as auto-regressive inference or walk-
through validation. To start with, a default value is fed to the
decoder to initialize the output and generate the first time step
of the output sequence. Then the generated value is fed back
to the decoder to generate the next time step in iteration, until
the entire output sequence is generated.

The mean-squared error (MSE) between the predicted se-
quence and the target sequence is selected as the loss function
to update the weights and biases in the network. Other loss
functions are also feasible, such as a higher-order power of
error to penalize more on the data points with larger amplitude,
a relative loss function to balance the error distribution across
the entire amplitude range, or a phase-related loss function
to minimize the phase mismatch, which is critical to the
accurate prediction of the magnetic core loss. Here, we present
two training examples to demonstrate the effectiveness of the
proposed encoder-projector-decoder network architecture:

1) B–H loop prediction for different excitation waveforms:
The first case study is to predict the B–H loops under different
excitation waveforms. The input sequences are the flux density
waveforms in sinusoidal, triangular, and trapezoidal shapes,
whose amplitude varies from 10 mT to 300 mT. The additional
input for the projector is the fundamental frequency of the
excitation waveform in the range of 50 kHz to 500 kHz.
The temperature is fixed at 25 ◦C and the dc bias is set to
zero. Each pair of B–H sequences is circularly shifted with
a random phase, as mentioned in Sec. V-B, to augment the
data and minimize the impact of phase. The entire dataset
contains 15,327 pairs of B–H sequences, which are split into
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Fig. 17. Triangular and trapezoidal output sequences (N87 ferrite, 150 kHz, 25 ◦C) and the corresponding B–H loops predicted by the sequence-to-sequence
model as it gets trained by the experimental data. The accuracy of the prediction improves with the training proceeding as the NN learns more and more data.

the training set (70%), the validation set (20%), and the test
set (10%). The data is shuffled before each training process.

Figure 17 shows two examples of the comparison between
the predicted sequence and the target sequence at different
stages of the training. In the early stage of the training, the
predicted sequence greatly deviates from the target sequence.
As the training continues, the mismatch between the predicted
sequence and the target sequence is gradually corrected, and
eventually achieves a good match. Similar trends can be
observed from the predictions of B–H loops.

To quantitatively evaluate the prediction accuracy, the rela-

tive error of sequence matching is defined as:

Relative Err. of Sequence =
rms(Hpred −Hmeas)

rms(Hmeas)

=

√
1
n

∑tn
t=t1

(Hpred(t)−Hmeas(t))
2√

1
n

∑tn
t=t1

(Hmeas(t))
2

(8)

The model is evaluated with the test set based on this def-
inition. Fig. 18 shows the histogram of the relative error.
Overall, a 3.73% average relative error of the sequence-to-
sequence matching is achieved, and the maximum relative
error is 18.29%. The proposed sequence-to-sequence model is
capable of accurately predicting the response H(t) sequence
given the excitation B(t) sequence across a wide frequency
range and under multiple types of excitations.
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Fig. 18. The distribution histogram of the relative error of the sequence
matching for N87 material under multiple types of waveforms and at 25 ◦C.

Fig. 19. The error distribution of the predicted core loss density based on the
predicted B–H loops for N87 material under multiple types of waveforms
and at 25 ◦C.

Moreover, with the predicted B–H loops, one can calculate
the area of the loop as the core loss density with the integral

PV =
1

T

∫ B(T )

B(0)

H(t) dB(t) (9)

to compare the predicted core loss against the measured core
loss. Fig. 19 illustrates the distribution of the relative error of
the predicted core loss on the f–B plane. Most of the data
points are predicted with a low relative error below 15%. The
high-error cases mainly concentrate in those areas with very
low flux density or frequency, where the core loss itself is
extremely small and close to the limit of the equipment.

It should also be noticed that the accuracy of the sequence-
to-sequence regression is not necessarily consistent with that
of the core loss prediction. Intuitively, a small phase mismatch
in the predicted sequence may or may not lead to a large
relative error in sequence-to-sequence regression, but can
significantly impact the core loss prediction.

2) B–H loop prediction under different temperatures: The
second example is to predict the B–H loops under different
temperature conditions. The shape of the input flux density
sequence is fixed as the sinusoidal wave, while the additional
inputs of the projector now contain the temperature at different
values, including 25 ◦C, 30 ◦C, 50 ◦C, 70 ◦C, and 90 ◦C,
together with the frequency of the corresponding sequence and

zero dc bias. Phase-shift data augmentation is implemented
as aforementioned. The dataset contains 4,359 pairs of B–
H sequences, which are similarly split into the training set,
validation set, and test set.

Figure 20 shows an example comparison between the pre-
dicted sequence and the target sequence at different stages
of the training process, as well as the corresponding B–
H loops. When the training begins, the predicted sequence
deviates greatly from the target sequence. As the training
continues, the mismatch between the predicted sequence and
the target sequence is gradually reduced, and eventually, a
good match is achieved. Using the same criteria defined in
the above subsection, a 1.33% averaged relative error with a
maximum of 8.32% of the sequence-to-sequence matching is
achieved. Similarly, Fig. 21 demonstrates the histogram of the
relative error. The predicted core loss is also calculated based
on the predicted B–H loops, the error distribution of which
is illustrated in Fig. 22 in the f–B–T space. The high-error
cases concentrate in low flux density, low frequency, and high
temperature areas, where the core losses are very small and a
minor mismatch may lead to a large relative error.

D. Transfer Learning for Data Size Reduction

In the above examples, the large-scale database MagNet
acts as a foundation that supports the training and testing of
the data-driven models. Sometimes, however, it is unrealistic
for designers to build a core loss measurement platform by
themselves and collect a sufficiently large amount of data for
model training, especially when dealing with new materials
that only have a limited number of data points available, or
dealing with operating conditions that are outside the ranges
covered by the database or the capability of the equipment.

Transfer learning is a machine learning technique in which
knowledge gained by solving one problem is applied to a
similar problem. A major hypothesis behind applying trans-
fer learning to magnetic modeling is that similar physical
mechanisms govern the response of similar magnetic materials
to similar excitations. As a result, one can train a generic
neural network model that captures the common patterns and
characteristics of magnetic materials, and further use it to
support the development of the models for other new materials,
excitations, temperature, or dc bias. Fig. 23 illustrates the
basic principle of transfer learning. We demonstrate material-
to-material and temperature-to-temperature transfer learning to
elaborate the key concepts.

1) Material-to-Material Transfer Learning: Material-to-
material transfer learning is helpful if a model for a new
magnetic material is needed, and only a small amount of data
for this new material is available. Transfer learning can reduce
the required size of the dataset needed to achieve satisfactory
accuracy with a neural network model.

Figure 24 illustrates three machine learning experiments to
demonstrate the principles of transfer learning: (1) selecting
four materials from the MagNet database (N27, N49, 3C90,
3C94) as the existing materials, and employing a large amount
of their data to train a pre-trained model similar to the FNN
trained in Sec. V-A. The data points of the four materials are
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Fig. 20. Sinusoidal output sequence (N87 ferrite, 220 kHz, 50 ◦C) and the corresponding B–H loops of the sequence-to-sequence model as it gets trained
by the experimental data. The prediction accuracy improves with the training proceeding, indicating the NN is learning the patterns in the B–H relationships.

Fig. 21. The distribution histogram of the relative error of the sequence
matching for N87 material under sinusoidal waveforms and at multiple
temperature conditions.

Fig. 22. The error distribution of the predicted core loss density based on
the predicted B–H loops for N87 material under sinusoidal waveforms and
at multiple temperature conditions.

directly mixed into a larger dataset for the network training,
while the material type itself is not used as the input; (2)
selecting another material from the MagNet database (N87) as

Fig. 23. Key principle of transfer learning for magnetic core loss modeling.

Fig. 24. Network training process of the material-to-material transfer learning.

the targeted new material that has a limited amount of core loss
data, and re-training on the pre-trained model with only a small
amount of data randomly selected from the database; (3) for
comparison purpose, direct training of a randomly initialized
neural network with the same small amount of data.

Figure 25 shows the results of material-to-material transfer
learning for triangular 180 kHz excitations and three different
duty ratios. The pre-trained model is trained on the large-scale
data (30,705 data points in total) of the four existing materials
(N27, N49, 3C90, 3C94). Fig. 25a shows the prediction results
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Fig. 25. Prediction results of: (a) applying a pre-trained model to the new
material without re-training; (b) applying a pre-trained model to a new
material after re-training with very few data points (100, randomly selected)
from the new material; (c) applying a randomly initialized model trained
only with very few data (100, randomly selected) from the new material; (d)
applying a randomly initialized model trained with a large amount of data
from the new material.

applying the pre-trained model directly to the new material
(N87) before re-training. The pre-trained model can capture
some common patterns of the magnetic core loss, such as the
approximate exponential relationship between the core loss
and the flux density, as well as the impact of the duty ratios,
but failed to capture the details.

The pre-trained model is re-trained with 100 new data
from the N87 material. Fig. 25b shows the updated prediction
results. After re-training, the pre-trained model is greatly
improved. The rationale behind the results is that the pre-
training procedure provides a good starting point for the re-
training, where the new data fine-tunes the model and greatly
improves the model’s accuracy. In comparison, Fig. 25c shows
the results when the network is simply randomly initialized
and only trained with 100 new data from the new material,
without pre-training. It is observed that this model unsuccess-
fully captures the distribution of the magnetic core loss, and
the predicted curves deviate greatly from the measured curves.

To provide a benchmark, a normal training process is
also conducted, similar to the one described in Sec. V-A,
where a randomly initialized neural network is trained with
a large amount of data from the new material. This bench-
mark experiment achieves the highest prediction accuracy as
expected, shown in Fig. 25d, among the four experiments
aforementioned. The prediction results of the transfer-learned
model, however, are almost comparably accurate as those of
the benchmark model, despite the fact that only a small amount
of data is available in this case. It proves the effectiveness of
material-to-material transfer learning.

Figure 26 shows the overall error distribution of the normal
training results and the transfer learning results, corresponding
to Fig. 25b and Fig. 25c, respectively, where the duty ratio is
selected to be 0.5. In the normal training case without pre-

Fig. 26. Error distribution of the prediction results of: (a) applying a randomly
initialized model trained only with 100 data points randomly selected from the
N87 material data points (normal training); (b) applying a pre-trained model
based on 4 existing materials to the N87 material data points after re-training
with 100 randomly selected data points (transfer learning). The plotted points
are the subset of data with a duty ratio of 0.5.

Fig. 27. Testing average relative error rates after training the normal FNN
and re-training the pre-trained FNN with a varied amount of data.

training, the network performs poorly in most of the areas
due to the limitation of available training data, resulting in a
large average relative error of more than 50%. On the contrary,
with transfer learning, the network achieves a reasonably good
accuracy across the entire evaluation range, resulting in an
absolute average error of 8.81%.

Furthermore, the pre-training, re-training, and testing pro-
cesses are repeated many times while varying the number
of data points available for the re-training step. Fig. 27
shows the testing average relative errors on the y-axis with
the numbers of available data points on the x-axis ranging
from 25 to 3,600. The percent errors are averaged over 10
trials to ensure consistency. The pre-trained neural networks
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Fig. 28. Network training process of the temperature-to-temperature transfer
learning. Pre-training and fine-tuning can greatly reduce the amount of data
needed to model the power magnetics at a different temperature.

Fig. 29. Prediction results of: (a) applying a pre-trained 25 ◦C model
to the 90 ◦C data points without re-training; (b) applying a pre-trained
25 ◦C model to the 90 ◦C data points after re-training with very few data
points (10, randomly selected) from the 90 ◦C data points; (c) applying a
randomly initialized model trained only with very few data points (10,
randomly selected) from the 90 ◦C data points; (d) applying a randomly
initialized model trained with a large amount of data (800) from the 90 ◦C
data points.

constantly achieve good performance no matter if it is provided
with 25 target data points or 3,600, whereas a normal and
randomly initialized FNN requires at least 2,400 data points
to consistently accomplish good and comparable performance
with a similar error rate. The amount of data needed to retrain
the neural network for a new material is significantly reduced
by transfer learning.

2) Temperature-to-Temperature Transfer Learning: Tem-
perature also greatly influences the behavior of magnetic
materials. Using an established model based on the data
measured under one temperature to predict the magnetic core
loss under another temperature will lead to a significant mis-
match. Temperature-to-temperature transfer learning method
helps to build a neural network model that works for different
temperature conditions, especially when the available data
across different temperatures is limited.

The principles of temperature-to-temperature transfer learn-
ing are similar to that of material-to-material transfer learning.

Fig. 30. Error distribution of the prediction results of: (a) applying a randomly
initialized model trained only with 10 data points randomly selected from the
90 ◦C data points (normal training); (b) applying a pre-trained 25 ◦C model to
the 90 ◦C data points after re-training with 10 data points randomly selected
from the 90 ◦C data points (transfer learning).

Fig. 28 shows an example training process to transfer the
model for 25 ◦C to a new one for 90 ◦C. In this example,
the neural network is pre-trained for 500 epochs based on the
core loss data of N87 ferrite material that measured at 25 ◦C
with sinusoidal excitations. This source dataset is selected
from the MagNet database, consisting of 800 data points.
Then, the model is further re-trained and fine-tuned with a
small number of data points that measured at 90 ◦C for 3,000
epochs. To make a comparison, a randomly initialized network
without pre-training is also trained based on the same limited
dataset with the same training settings. As a benchmark, both
networks are trained with a large dataset containing 800 data
points measured at 90 ◦C, which represents the cases where
there are no limitations on the number of available data points.
All the network models are again synthesized with the same
structure as the NN(15,15,9) FNN mentioned in Sec. V-A.

Fig. 29 demonstrates multiple core loss curves predicted
by different network models. In Fig. 29a, the model that pre-
trained with the 25◦C data points is directly evaluated with
the 90◦C data points without re-training, where the predicted
core loss curves match poorly with the measured ones due
to the temperature difference. After re-training with a small
dataset that contains only ten 90◦C data points, the model is
effectively transferred, and the predicted curves match well
with the measured ones, as shown in Fig. 29b. The prediction
accuracy is comparable to that of the model demonstrated
in Fig. 29d, which is trained with the large dataset. In
comparison, the network model that is directly trained with
the small dataset without pre-training only achieves a rough
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Fig. 31. Testing average relative error rates of the normal training and the
transfer learning as the size of the new data increase.

prediction, as observed in Fig. 29c, where the accuracy is
obviously inferior to that of the transfer learning case.

More specifically, Fig. 30 displays the overall error distri-
bution of the normal training results and the transfer learning
results, corresponding to Fig. 29b and 29c, respectively. The 10
data points included in the training and the re-training dataset
are marked as black pentagrams. In the normal training case
without pre-training, the network only achieves a low relative
error in those areas around the 10 training data points, but
performs poorly in other areas, resulting in an absolute average
error of 28.4%. On the contrary, with the transfer learning
process, the network not only achieves lower relative error in
the areas around the 10 training data points, but also maintains
a good accuracy across the entire evaluation range, resulting
in an absolute average error of 7.94%.

The above temperature-to-temperature transfer learning and
normal training process are repeated multiple times while
sweeping the number of data points available for the training
and re-training step. The number of data points in this limited
dataset is selected from 10, 20, 50, 100, 200, and 400. Fig. 31
shows the testing average relative error of each case for both
the normal training and the transfer learning. As observed, the
amount of data needed for retraining the neural network for a
new temperature is similarly reduced by transfer learning.

VI. NEURAL NETWORK AS DATASHEET

Classical datasheets for magnetic materials cannot provide
sufficient information for all possible scenarios that designers
may have to work with. Manufacturers sometimes provide
design tools containing information that is not provided in their
datasheets, where data can easily be interpolated and extracted
(instead of having to read the information from graphs).
However, these datasets, sometimes extensive in power loss
information, still do not provide B–H loops data for a wide
range of operating points and usually only work for sinusoidal
waveforms. The data size increases rapidly as the number
of variables increases. The capability of predicting the B–
H loop under various operating conditions makes NNs a
good candidate to be used as an active datasheet for power
magnetics [4].

Figure 32 illustrates the concept of “neural network as
datasheet”. As demonstrated in Sec. V-C, this NN would

Fig. 32. Concept of neural network as datasheet. An NN is better equipped to
store the shape of B–H loops for different operating conditions as compared
to traditional datasheets or datasets of B–H loops that can only contain
limited information. Neural networks can “compress” the information in
datasets efficiently for size reduction.

Fig. 33. Process for B–H loop modeling. From the training of the neural
network to the inference of H(t).

have B(t) as an input and output H(t) or vice versa. The
input of the NN is a sequence of B(t), the temperature, and
frequency, and the output is H(t). The user can input the
desired parameters and use the trained NN to obtain the B–
H loop, which can be imported into circuit or finite-element
simulation models. Figure 33 describes the different steps for
B–H loop inference using NNs from data acquisition, model
training, to NN inference. The NN can be directly used to
predict H(t) for any B(t) that the user defines. From the B–
H loop, different magnetic properties such as the core loss or
the permeability can be extracted. An example neural network
has been implemented on the MagNet webpage.

Table V compares the size and accuracy of a few different
data formats for an example material (TDK N87) and the
corresponding neural network model. The dataset consists of
sinusoidal, triangular, and trapezoidal waveforms measured
at 25 ◦C and zero dc bias, while the NN is constructed
and trained as in Sec. V-C. The NN was able to effectively
compress the information contained in the dataset and reduce
the data size by 2,500 times from 512 MB to 204 KB.

VII. CONCLUSIONS

This paper applies machine learning to modeling power
magnetics. We first present an open-source large-scale
database – MagNet – for data-driven magnetic components
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TABLE V
COMPARISON OF DATA SIZE FOR N87 AT 25 ◦C (10,928 DATA POINTS).

Description Format Size

Raw Measurement (fixed-length) “.csv” 5.63 GB

Raw Data (fixed-length) “.mat” 512 MB

Processed Data (single-cycle) “.json” 23.5 MB

Neural Network Model “.sd” 204 KB

modeling. The data quality of MagNet is carefully evalu-
ated and controlled to ensure model accuracy. With a large
amount of data in the MagNet database, several example
neural network modeling applications of the MagNet database
have been explored, including the scalar-to-scalar model, the
sequence-to-scalar model, the sequence-to-sequence model,
as well as the transfer learning methods, which prove the
effectiveness of neural networks in modeling the behavior of
power magnetics. We anticipate that with constantly increasing
scale, data quality, and waveform diversity, MagNet can offer
unique opportunities to researchers in power electronics, power
magnetics, and data science.

APPENDIX A
AUTOMATED DATA ACQUISITION

We introduce more details about the design of the data
acquisition system in the following aspects.

A. Excitation

With this setup, the DUT can be excited with sinusoidal,
triangular, and trapezoidal waveforms.

In our design, sinusoidal waveforms are synthesized and
created using a function generator (Rigol DG4102) and a
power amplifier (Amplifier Research 25A250AM6). The com-
puter sets the command for the frequency and voltage for the
signal generator automatically to generate different sinusoidal
excitations. Calibration for each measurement is required, as
the voltage gain of the power amplifier is not constant due
to the changing load under different conditions. Moreover,
distorted voltage and current are obtained when the core is
subjected to a large Bac due to the power gain of the amplifier
and low load impedance.

For piece-wise linear waveforms, such as triangular and
trapezoidal excitations, a T-type inverter supplied by two
voltage sources (B&K Precision XLN60026) is used, as il-
lustrated in Fig. 34. GaN devices (GaN System GS66508B)
are employed to obtain fast transitions between the three
voltage levels [Vin; 0;−Vin]. To control the waveform shape, a
micro-controller (Texas Instruments F28379D controlCARD)
commanded the signals for the drivers. The micro-controller
and voltage source commands are synchronized by the host PC
to iterate the different duty cycles, frequencies, and amplitudes
of the waveform.

To block the average voltage of the switching node of the
power stage or any unwanted dc current present in the power
amplifier, a blocking capacitor is placed in series with the
DUT. The capacitance should be large enough to avoid the

Fig. 34. Circuit schematic of the power stage for generating the excitations
and measuring the magnetic component behaviors in the data acquisition
system of MagNet.
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iL = ishunt = Idc + iac
Fig. 35. Circuit schematic of the auxiliary dc-bias current injection circuitry
for the measurements under dc-bias conditions.

voltage ripple distorting the excitation. For this purpose, a
100 µF 100 V film capacitor is used.

To test the core under different dc bias conditions, an
additional dc-bias current injection circuitry is included. A dc
current is injected into the primary winding, after the series
capacitor. This is preferred over the traditional third winding
method [40], [52], [53]) as it avoids the unwanted current
ripple in the dc winding. A mirror transformer and a filter
inductor are added as indicated in Fig. 35, to prevent the re-
flected voltage of the DUT to be applied to the current source.
The current source is a voltage supply (Siglent SPD3303X-
E) with the current limit set by the computer automatically.
Details regarding the operation and construction of the dc bias
circuit can be found in [54].

Please note that a direct current is used to define the dc bias,
implying that cores are tested under predefined Hdc rather than
Bdc. The reason is that Bdc cannot be controlled properly as
the initial state of magnetization (B0) is not known. Bdc is
not reported in this work as relating Hdc and Bdc through
the initial magnetization curve might not be a reasonable
approach, as described in [39].

B. Device Under Test

The DUT consists of a toroidal magnetic core, a primary
winding, and a secondary winding. The primary winding is
connected to the power stage and used for exciting the core,
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whereas the secondary winding is open-circuited and used
for inferring the magnetic flux density (B) by integrating the
measured voltage across its terminals.

The DUTs considered for most of this paper are in
R34.0×20.5×12.5 or similar sizes as typically used in the
manufacturer’s datasheet. Please note that the size and geome-
try of the magnetic core do affect the measured characteristics,
such as the B–H loop and the core loss, primarily due to
its impact on the flux density distribution within the core.
The effect of geometry is beyond the scope of this paper.
Discussions on the measurement results with different core
sizes can be found in another publication [14].

The alternating current in the shunt and the maximum flux
density set the limits for the number of turns. Given the rated
voltage of the data acquisition system, the number of turns
should be selected such that the available range of flux density
and frequency is maximized. On the other hand, the number
of turns also changes the inductance of the DUT, which is
limited by the rated current of the data acquisition system.
In this work, for example, the number of turns for the TDK
N87 DUT is designed as 5 for both the primary and secondary
windings. For the primary winding, 22 AWG Litz wire with
40 strands of 38 AWG wires optimized for 100 kHz is used.
For secondary, as the current is theoretically zero, an 18 AWG
round wire is used. As discussed in [55], toroidal cores without
air gaps are preferred for magnetic characterization.

C. Measurement and Acquisition
The measurements for the voltage and current waveform

are acquired directly with an 8-bit oscilloscope (Tektronix
DPO4054). A waveform of 10,000 samples is saved for each
test, with a sampling rate of 10 ns, leading to a total time
for the sample of 100 µs. Therefore, a different number of
switching cycles is captured depending on the frequency of
the excitation. The bandwidth of the measurement is limited
to 20 MHz to avoid excessive switching noise in the triangu-
lar/trapezoidal waveforms due to the fast switching transitions.

For the voltage measurement, a low-capacitance passive
probe (Tektronix P6139A) is used. For the current, a coax-
ial shunt (T&M Research W-5-10-1STUD) of 0.983 Ω is
connected in series with the primary winding of the DUT,
as it is preferred over current probes to minimize the phase
mismatch [39], [40], [52]. The terminal impedance of the
current measurement channel in the oscilloscope is set to 50 Ω
and is accounted for in the calculation of the current [39].

D. Temperature Control
Keeping a controlled temperature for the DUT is critical

since core losses are highly temperature-dependent. This is
challenging as core losses during testing cause the core to
heat up. To set the temperature at the desired level, the DUT is
submerged in a mineral oil bath, which is inside a large water
tank. The temperature of the water tank is controlled using
a water heater (ANOVA AN400). The water tank is covered
to ensure the oil reaches the same temperature as the water.
To prevent the DUT from reaching temperatures significantly
higher than the one set by the water heater, a magnetic stirrer
is used (INTLLAB) to keep the oil constantly flowing.

Fig. 36. Range of measurement for the flux density amplitude and the
frequency.

E. Software System

Python-based software interface on the host PC is designed
and programmed to control and coordinate with the hardware
system to enable fully automated equipment settings, synchro-
nization of the different instruments, perform the measure-
ments, and store the acquired data.

The software has three major functions: (a) communication
with the power stage (power supplies, micro-controller and
function generator) to transmit the waveform properties for
each test, including the frequency, voltage, and waveform
shape, so that the power stage can synthesize and generate the
desired excitations; (b) communication with the oscilloscope
to set the configuration of signal sampling and data acquisi-
tion, perform calibration if needed, and receive the measured
digitized waveforms; (c) storing the collected data points and
converting them into the expected dataset format.

Specifically, the communication with the micro-controller is
implemented based on the UART protocol, and the communi-
cation with equipment including the power source, the function
generator, and the oscilloscope, is implemented with the
support of the virtual instrument software architecture (VISA)
protocol. The three aforementioned functions are executed in
sequence within a multi-level iteration loop that sweeps the
entire parameter space automatically. No human intervention
is needed to perform a set of tests except to change the desired
temperature, to change the connections from sinusoidal to
piece-wise linear excitations, or to change the DUT.

F. Range of Measurement

The range of measurement is constrained by various factors,
and needs to be determined carefully in order to guarantee high
data quality. The proposed range of measurement for the data
acquisition system in this work is illustrated in Fig. 36.

For the flux density amplitude, data is measured in the
10 mT to 300 mT range with 36 steps in the logarithm scale,
leaving some distance from the saturation level provided by
the material datasheet. Logarithm scales are preferred due to
the exponential nature of core losses with Bac.

For the frequency, data is measured from 50 kHz to
500 kHz. This range fits the operation range of the cores under
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test. In order to correctly and accurately obtain the characteris-
tics of the measured magnetic material, the frequency needs to
be selected with specific frequency steps, which guarantees the
measured waveform always contains complete cycles. Here,
we selected a 10 kHz step of frequency given the sampling
rate and the number of samples in each measurement.

Meanwhile, the ranges of flux density amplitude and fre-
quency are also constrained by the measurement accuracy, as
discussed in Sec. III and Appendix B, where data points with
low amplitude or high frequency are more prone to error.

Regarding the dc bias, Hdc is swept in 15 A/m linear steps.
For N87 ferrite, the limit is 60 A/m to leave some room for
Bac. To avoid running into saturation, the maximum value
for Bac (300 mT) is decreased with higher Hdc based on the
maximum amplitude permeability listed on the datasheet.

Additionally, there are limitations associated with the power
stage and the power amplifier The voltage range for the tests
is 1 V to 50 V for sinusoidal waveforms and 5 V to 80 V for
PWM waveforms, considering the rated voltage of equipment
and components, which limits the Bac · f product of the data
measured, especially for those with extreme duty cycles.

Furthermore, to avoid a significant rise in the core tem-
perature with respect to the target temperature, measurements
with extremely large estimated loss (based on iGSE) above
5000 kW/m3 are skipped. On the other hand, low loss points
below the range of interest (1 kW/m3) are skipped to reduce
the data collection time.

Considering the typical operating condition of the magnetic
materials under test and the capability of the temperature
control equipment, the temperature range for the tests is 25 ◦C
to 90 ◦C. Advanced equipment such as constant temperature
ovens will enable the measurement at higher temperatures
above 100 ◦C, which is also occasionally encountered in power
magnetics applications.

APPENDIX B
DATA QUALITY CONTROL

We introduce more details about data quality control in the
following aspects.

A. Equipment Evaluation and Calibration

The experimental setup of the MagNet data acquisition
system and its calibration processes are designed following
the recommendations in [39], [41], [42]. Extra attention must
be paid when designing and implementing the measurement
system to understand the equipment limitations.

We evaluate the error and measurement capability of the
oscilloscope. The oscilloscope (Tektronix DPO4054) used in
the system is calibrated against an Agilent 34401A 6 1

2 digits
multimeter to evaluate the dc and ac accuracy by measuring
the same dc and ac voltage signals at the same time. Relative
errors of measurements are calculated by averaging multiple
testing points among the entire measurement range from 0 V
to 80 V and 50 kHz to 500 kHz. The relative error of the
mean dc voltage is measured as 0.25%, and the relative error
of the RMS ac voltage is 0.67%, which proves the oscilloscope
accuracy of VDC , IDC , vAC , and iAC (see definitions in

”

Fig. 37. Workflow of the virtual measurement simulation. The virtual
measurement setup numerically simulates the impact of various sources of
measurement error. The virtually measured waveform is compared against
the ideal waveform to estimate the measurement accuracy.

Eq. (5)). The gain accuracy of the oscilloscope is rated
as ±1.5% according to the equipment specifications, which
quantify the error rates of GV and GI . Additionally, every
time before the measurement iteration starts, the signal pass
of the oscilloscope is reset and re-calibrated, which minimizes
the undesired zero-drift offset V0 and I0, and the time skewing
θ between the voltage and current signals.

We then evaluate the error and measurement capability
of the power stage. As mentioned in Sec. II, a wide-band
coaxial shunt (T&M W-5-10-1STUD) is used for measuring
the current. This current shunt has low parasitic inductance and
is stable against temperature variation. A BNC connector with
parasitic terminal capacitance lower than 10 pF is implemented
to connect the coaxial shunt, the device under test, and the
circuit board. Other parasitic capacitances on the circuit board
are also minimized to our best. All these design criteria help
to reduce the measurement error in IDC and iAC , especially
minimizing the time skewing θ, which is critical to the
accuracy of core loss measurement.

To highlight, the equipment calibration and measurement
processes are fully automated. Human influence is minimized
during the calibration and data acquisition process, which
further enhanced the measurement accuracy and consistency.
Repeating experiments on the same DUT consistently show a
relative discrepancy lower than 3% between different trials of
core loss measurements, which validates the reproducibility of
the measured data.

B. Model-driven Method for Quantifying the Error

The accuracy of data-driven models is bounded by the ac-
curacy of the data. In order to quantify the measurement error
and estimate the potential error distribution of the measured
results, a model-driven method combining the physics-based
simulation to create virtual measurement and the different
uncertainties can be assessed with Monte Carlo experiments.
The error analysis also provides a baseline for setting the
accuracy target for machine learning or curve-fitting methods.

Figure 37 illustrates the workflow of the virtual mea-
surement simulation. A reference waveform is generated by
the material model and passed into the virtual measurement
setup. The virtual measurement setup takes various sources
of measurement error into account, numerically simulates
their impact on the measurement, and generates the virtu-
ally measured waveform. Comparing the virtually measured
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Fig. 38. Example simulation results for TDK N87 material with the virtual
measurement setup and Monte Carlo experiments, where the measurement
uncertainties introduced by the probe and scope are taken into consideration.
Colors depict the discrepancy between the virtually measured core loss and
the expected core loss.

waveform against the ideal waveform, the uncertainty of the
measurement can be evaluated and estimated.

All the parameters in the virtual measurement setup are
either determined according to the datasheets of equipment,
components, and materials, or estimated based on the actual
experimental results. Some of the most important sources of
measurement error include:

• Systematic error: parasitics of power stage circuit, para-
sitics of wire and cable, parasitics of the DUT, the timing
skew of passive probes (±1.5 ns), the uncertainty of probe
gains (±0.5%), the uncertainty of probe offsets (±0.5%),
and the manufacturing tolerance of the core geometry
(area and length, ±2%) which affects the calculation of
B(t) and H(t), etc.

• Statistical error: electrical noise due to the environment,
quantization error and sampling noise due to the oscil-
loscope, and the undesired temperature variation of the
DUT (±1.6%), etc.

Based on the virtual measurement setup, a series of Monte
Carlo experiments is conducted, where the uncertain variables
are assumed to follow the Gaussian distribution or uniform
distribution with aforementioned values as their 2σ deviations.
Fig. 38 demonstrates simulation results for TDK N87 material
as an example, where the measurement uncertainty introduced
by the probe and scope are taken into consideration and
numerically simulated. Note that the result of Monte Carlo
experiments for each sample point is a random distribution
(the discrepancy between the virtually measured core loss and
the expected core loss), and the value shown in Fig. 38 is the
95th-percentile of each distribution. As demonstrated in the
figure, the majority of the samples within this examined range
maintain a low measurement error rate that less than 6%. The
most erroneous samples locate in the area with high frequency
and low flux density, where the measurements are more prone
to noise and the inaccuracy of equipment.

More specifically, the error distribution of an example point
(300 kHz, 50 mT, 50% duty ratio triangular wave with zero dc
bias measured at 25◦C) is demonstrated in Fig. 39, where the
measurement uncertainties introduced by the circuit parasitics,

Fig. 39. Error distribution of an example point (300 kHz, 50 mT, 50%
duty ratio triangular wave with zero dc bias measured at 25◦C), where the
measurement uncertainties introduced by the circuit parasitics, temperature
variation, and geometry variations are considered. Both the systematic error
and the statistical error are less than 4% for the majority of trials in the
Monte Carlo experiments. The spread of systematic error is larger than that
of statistical error.

temperature variation, and geometry variations are considered
and simulated numerically. For the majority of trials among
the Monte Carlo experiments, as shown in the histograms, the
systematic error is less than 3.6% and the statistical error is
less than 2.3%. Comparatively, systematic error brings a larger
impact on the overall measurement accuracy than statistical
error. Geometry variation contributes largely to systematic
error and cannot be avoided in design, while upgrading the
capability of equipment and reducing the hardware para-
sitics to minimize the time skewing between signals can still
marginally improve the measurement accuracy. In addition,
the temperature variation of DUT contributes a large portion
of the statistical error, highlighting the importance of more
precise temperature control.

Overall, high measurement accuracy is achieved in the
main operating range of the data acquisition system, while
the measurements for magnetic materials with high quality
factor at high-frequency or low-amplitude ranges could be
more prone to error. Based on the model-driven error analysis
and the typical operating conditions provided by the material
datasheet, we determine the measurement region that we are
confident about the data quality, as aforementioned in Fig. 36
in Appendix A. A similar error map can be created for each
material in the database for evaluating the data quality.

C. Data-driven Methods for Data Quality Control

Outliers are unavoidable for large-scale automated data
collection. An algorithm was developed to detect and remove
the outlier data points caused by rare anomaly operations based
on smoothness analysis. As illustrated in Fig. 40, for each
point in the dataset, the estimated power losses are calculated
based on the Steinmetz parameters inferred from the points
that are close in terms of frequency and flux density to the
considered point holding constant the other variables. If the
measured losses of the data point are far from this estimated
value, the data point can be considered an outlier. More
specifically, for a given data point, a weight reflecting the
closeness is assigned to all the other data points, which is
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Fig. 40. Example distribution of the defined weight of closeness for a specific
considered data point. The local Steinmetz will be performed within the local
range that is close enough to the considered data point.

defined as:

wi = max {1−
√
(log fi − log f0)2 + (logBi − logB0)2

wmax
, 0}

(10)
where (f0, B0) are the frequency and peak flux density of
the specific data point being considered, and (fi, Bi) refer to
those of every other data point in the dataset. The square-root
part quantifies the distance between two data points on the
logarithm plane of f–B, and wmax is a parameter that can be
tuned to determine the size of the neighboring area taken into
consideration. Based on the definition of wi, the closer the
(fi, Bi) is to the (f0, B0), the closer wi is to 1. Oppositely,
any (fi, Bi) that are farther from (f0, B0) will get a smaller
wi value and eventually 0 if the distance exceeds the wmax.
Fig. 40 illustrates an example distribution of the weights of
closeness for a considered data point, where the color of points
reflects the normalized distance between any given data points
and the considered data points.

Based on the weight wi, a weighted least square regression
is conducted to calculate the local Steinmetz parameters by:

min
k,α,β

∑
i̸=0

[(kfα
i B

β
i )

2 − P 2
meas,i]w

2
i (11)

The local Steinmetz parameters for a given data point are
calculated based on the data points nearby, with which an
expected core loss value can be estimated according to the
Steinmetz equation. The outlier factor is defined as the relative
discrepancy between the expected loss and the measured loss:

Outlier Factor =
kfαBβ − Pmeas

Pmeas
× 100% (12)

Figure 41 shows an example of the discrepancies between
the expected losses based on the Steinmetz parameters of
nearby points and the measured losses for different data points.
A data point with a high outlier factor is considered a low-
quality measurement and is removed from the dataset.

Outlier detection is critical for data quality control. This
outlier detection algorithm is just one example way of evalu-
ating the data quality and removing abnormal data. It has its
own strengths and limitations, e.g., it cannot detect systematic
error and may miss unusual material characteristics.

Fig. 41. Example of outlier data points in a dataset for the material N87 under
sinusoidal excitation. For each point, data up to 0.1 decades far in terms of flux
density and frequency are used to generate the local Steinmetz parameters.
The data points discarded because the error compared to the estimation is
above ±4% are marked as solid stars.

APPENDIX C
MAGNET WEBSITE

An open-source webpage-based platform with a graphical
user interface (GUI) – MagNet – has been developed. MagNet
in its current state contains over 500,000 excitation waveforms
for ten ferrite materials – TDK{N27, N30, N49, N87}, Fer-
roxcube{3C90, 3C94, 3E6, 3F4}, and Fair-Rite{77, 78} – in
the 50 kHz to 500 kHz, 10 mT to 300 mT range for the sinu-
soidal, triangular, and trapezoidal waveforms, collected under
multiple temperatures and dc bias conditions. It is powered
by Streamlit (an open-source app framework of Python for
website deployment), and shared in GitHub, offering a variety
of data-visualization tools with a graphical user interface for
the database, magnetic core loss estimation, simulation, and
prediction based on multiple models (see more details in
Sec. V), as well as the access to download all the measured
data points. Fig. 42 demonstrates the website architecture in
its current state.

The website allows the dataset to be visualized in many
ways, and enables rapid comparison of the core loss and B–
H loop data of different materials. The user may specify the
type of magnetic material, together with the waveform shape,
frequency range, flux density range, and tolerable outlier level
(described in Section B-C). The website backend searches
for the requested data in the database and visualizes it in
the way that the user selects. The website also provides
download access to the raw data being collected from the
equipment before any post-processing with the test conditions
documented, and the post-processed dataset files for data-
driven modeling applications.

The website embeds and deploys multiple core loss model-
ing algorithms, including iGSE and other data-driven methods
as introduced in the following sections, for online core loss
estimation. Designers can specify the expected excitation
waveforms and operation conditions, based on which the
website backend calculates the estimated core loss with both
the iGSE equation and the neural network model.

The webpage is also connected to a circuit simulation server
hosted by Plexim. The webpage feeds information to the
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Fig. 42. The website architecture and information flow of the MagNet web-
page platform, which provides users with access to download and visualize
the measured data in the MagNet core loss database, as well as analyze and
simulate the magnetic behaviors with the deployed neural network models
and the PLECS simulation engine.

Fig. 43. An example screenshot of the core loss simulation session in the
Mag-Net webpage-based magnetics database and analysis platform.

server, and the server returns inputs to the machine learning
algorithms in combination with power converter operations, as
shown in Fig. 43. Users can choose from a pool of common
topologies (Buck, Boost, Flyback, Dual Active Bridge), spec-
ify the circuit parameters, magnetic component specifications,
and operating conditions, then the simulation engine simulates
and outputs the excitation waveform of the magnetic compo-
nent. The MagNet server collects the waveform and predicts
the core loss using the algorithms available on the web server
including iGSE and neural networks.

The MagNet platform is constantly maintained and updated
with new data and neural network models. Extended details
are included on the website to enable trustworthy repeating
measurements and cross-validation of the dataset.

ACKNOWLEDGEMENTS

This work was jointly supported by the DOE ARPA-E
DIFFERENTIATE program and the Schmidt DataX Fund at
Princeton University made possible through a major gift from
the Schmidt Futures Foundation.

REFERENCES

[1] H. Li, S. R. Lee, M. Luo, C. R. Sullivan, Y. Chen, and M. Chen,
“MagNet: A machine learning framework for magnetic core loss model-
ing,” in 2020 IEEE 21st Workshop on Control and Modeling for Power
Electronics (COMPEL), 2020, pp. 1–8.

[2] E. Dogariu, H. Li, D. Serrano López, S. Wang, M. Luo, and M. Chen,
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