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1. Implementation Details
Network Architecture. Figure 1 shows the network ar-
chitecture of DeepPRO. For EdgeConv layers, we search
20 neighbor points to define edges. We refer [14] for more
details of how EdgeConv works. All blocks except the last
blocks of the conditional point cloud generation network and
transform estimation network, we use Conv-Batch Norm-
ReLU layers. For the last block of the conditional point
cloud generation network, we apply the tangent hyperbolic
activation after the convolutional layer. For the quaternion,
we use Sigmoid as the activation function of the first element
without the batch normalization layer. Other elements are
normalized by `2-norm after the convolutional layer.

Linemod Dataset Experiments. Given eleven objects in
the Linemod dataset, we conduct leave-one-object-out train-
ing and test on the unseen object during training. We use
AdamW optimizer [10] with default parameters in PyTorch,
i.e., initial learning rate of 0.001, weight decay of 0.01, be-
tas as (0.9,0.999), and epsilon as 1e-8. The learning rate is
decreased by half at 1,500, 2,000, 2,500, 3,000, and 3,500
epochs. The network is trained until 4,000 epochs with batch
size of 64 per GPU. The input point cloud has N = 512
points throughout the paper. The point cloud is rotated at
most 5◦ in the random rotation layer and embedded into
d = 512 dimensional feature space by the encoder. We
train our algorithm on Intel(R) Xeon(R) Gold 6148 CPU and
NVIDIA V100 graphics card. By using eight GPUs, it takes
approximately a single day to train our algorithm. Across
GPUs, we use synchronized batch normalization. For the ob-
ject mask, we use ground truth labels for main experiments
and report additional results with mask predicted by [2] in
the ablation study.

PRO1k Dataset Experiments. Among 1,000 objects in
the dataset, there are objects that have challenging properties
for point cloud estimation. For example, if the object has
transparent or reflective part, it is difficult to obtain reliable
point cloud since depth sensors like Kinect do not work well

on those regions. Thin objects are also challenging as thin
structures are often ignored by the depth sensor. We set these
objects as our future work and focus on objects that does
not have such challenging issues. To this end, we use 291
sequences for training and 7 representative sequences for
evaluation.

We use distributed training with 240 GPUs to efficiently
consume the dataset. To stabilize the training, we adopt
state-of-the-art techniques such as warmup training, learning
rate rescaling [8] and LAMB optimizer [18]. We have five
warmup epochs and initial learning rate as 4e-6 which is lin-
early rescaled to about 0.001 based on the number of GPUs.
The learning rate is decreased to half at 200, 400, 600, 800
epochs where 1,000 is the total number of epochs. Param-
eters for the LAMB optimizer are similar to the AdamW
optimizer in the Linemod dataset experiment. Synchronized
batch normalization is used. We detect object’s 3D bounding
box based on CGAL library (https://github.com/CGAL) and
use points inside the box.

ModelNet40 Dataset Experiments. We follow the exper-
imental settings and data preprocessings described in [13]
to train DeepPRO on the ModelNet40 dataset. We first ran-
domly sample 1024 points and simulate partial scan by plac-
ing a point in space and gather 768 nearest neighbors. Then,
we add point-wise noise sampled from Gaussian N (0, 0.01)
and clipped to [−0.05, 0.05]. Given the synthetic partial
point cloud, we generate training pair by randomly rotating
each axis [0◦, 45◦] and translate [−0.5, 0.5]. Overall 12,311
CAD models are split to 9,843 train and 2,468 test data. For
more details, we refer [13]. Other parameters are the same
as the Linemod data experiments.

2. Comparison to Existing Methods

We provide webpage links to the code, describe how we
run the code, and discuss their results. Before we evaluate
different methods on the Linemod dataset, we first validate
that the code works properly by comparing test outputs to
the reported accuracy in each method’s published paper on



(a) DGCNN encoder

(b) Conditional point cloud generation network

(c) Transformation estimation network

Figure 1: Network architectures of DeepPRO. It shows a path to predict R21 and t21. For the opposite path, the concatenated
features in (b) are fg2 , fg1 and f l1 and the concatenated point clouds in (c) are P12 and X1.

their dataset. For learning-based approaches, we use the
same leave-one-object out train and test scheme as discussed
in the main paper.

DCP [12] https://github.com/WangYueFt/dcp. In our exper-
iments, the training fails to converge on real objects. It is
because DCP assumes that all points in one point cloud have
a correspondence in the other point cloud. However, for
real objects, this assumption does not hold due to partially
observable point clouds. As the training is not converged,
we use the pretrained model on the synthetic ModelNet40
dataset to report results. Due to the assumption that does not
hold for real observations, the results are inaccurate.

D3Feat [3] https://github.com/XuyangBai/D3Feat. It is a re-
cent keypoint based approach which shows state-of-the-art
results for registering outdoor-scale [7] and indoor-scale
[19] point clouds. One notable experiment in their paper
is that they show strong generalization ability on the out-
door dataset [11] based on the model trained on the indoor
dataset [19]. We focus on whether it can be generalized to
the object-scale point cloud as well. To evaluate the algo-
rithm, we follow author’s suggestions to tune the network
inference parameters such as the scale of the kernel points
for objects. However, results show that the pretrained model
on the indoor dataset [19] does not generalize well on small
objects. It demonstrates that keypoint based point cloud
registration approaches developed on the outdoor or indoor
databases might suffer from less salient geometric features
of the partial and noisy point cloud of objects.

PointNetLK [1] https://github.com/hmgoforth/PointNetLK.
We fine-tune the algorithm on the Linemod dataset based on

the pretrained weights on the ModelNet40 dataset. As the
method relies on a single global feature vector to describe
the point cloud, it is less accurate on the partial and noisy
point clouds.

PRNet [13] https://github.com/WangYueFt/prnet. It is a
keypoint-based approach for object-scale point clouds stud-
ied on the synthetic data. In our experiments on real ob-
jects, however, it frequently crashes when we train the net-
work from scratch or finetune it using a pretrained network
on ModelNet40. Therefore, we report results of PRNet
trained on the ModelNet40 dataset and tested on the Linemod
dataset. During training, PRNet mimics real observations by
augmenting synthetic point. Results show that it is difficult
to enclose the gap between real and synthetic point clouds
due to complex self-occlusion and irregular noises in real
data.

RPM-Net [17] https://github.com/yewzijian/RPMNet. We
train RPM-Net on the Linemod dataset using the author’s
code. For each input point cloud, point normals are com-
puted using Open3D library each time during training. We
use the same settings for the model-related hyper parameters
as the authors.

DGR [5] https://github.com/chrischoy/DeepGlobalRegistration.
DGR is a keypoint-based method which shows state-of-
the-art results on outdoor and indoor scenes. Using the
author’s code, we train DGR on the Linemod dataset with
a smaller voxel size to match with the scale of the object
point cloud while other parameters are kept the same. We
try three different voxel sizes (0.1 cm, 0.5 cm, 1 cm) and
report the best result with 0.5 cm case. DGR shows good



results among the existing learning-based methods while
it is less accurate than Go-ICP on the Linemod dataset.
It is interesting to note that DGR outperforms Go-ICP
on the indoor dataset in the DGR paper. It again shows
that keypoint based approach might not be optimal for
object-scale point cloud.

GMM-based registration [9] https://github.com/bing-
jian/gmmreg-python. It represents point set as a Gaussian
mixture model and the alignment task is formulated as
minimizing the statistical discrepancy between the Gaussian
mixture models. For input point cloud, it uniformly samples
500 to 800 points depending on the object size and distance.
We use default parameters provided the shared code.

ICP [4] http://www.open3d.org/docs/release/index.html.
We use Open3D library for evaluating ICP algorithm. We
try both point-to-point and point-to-plane ICP methods
and report point-to-plane accuracy as it shows better
results. To find parameters for ICP, we did grid search for
two parameters. We consider [0.1 cm, 1 cm, 10 cm] for
the voxel size and [1 cm, 5 cm, 10 cm] for the maximum
correspondence distance threshold. To estimate the normal
plane of the point cloud, the library finds adjacent points.
We use the search radius as two times bigger than the voxel
size and search for up to 30 neighbors. We observe that
ICP has low error in general, however, it often predicts a
transform with large errors due to the noisy point cloud.

FGR [20] http://www.open3d.org/docs/release/index.html.
FGR is also implemented in the Open3D library. We use the
same voxel size search grid as in the ICP experiments. FGR
shows similar results as ICP on the Linemod dataset.

Go-ICP [16] https://github.com/aalavandhaann/go-
icp_cython. As suggested by authors, we first normalize
input point clouds into [−1, 1]3 using the same scaling
factor. Then, we test three different trimming ratio of 0%,
1%, and 10%. Other parameters such as the convergence
threshold and the number of discrete nodes are kept as
default setting, i.e., 0.001 and 300, respectively. Go-ICP can
be considered as a meta algorithm since it runs ICP multiple
times to find the better solution. Therefore it is much slower
than ICP and difficult to optimize for real-time applications.

TEASER++ [15] https://github.com/MIT-SPARK/TEASER-
plusplus. This method requires initial correspondence be-
tween keypoints. As suggested in the offical code, we use
FPFH feature to obtain the initial correspondences. As the
original setting of this code is optimized for indoor scenes,
we get poor results on the object-scale point clouds. We
further tweak the parameters to find the best setting. We

tried with and without the voxel downsampling before ex-
tracting FPFH features, changed the number of neighboring
points to calculate FPFH features, and perform grid search
on TEASER++ solver parameters such as graduated non-
convexity and noise bound.

JRMPC [6] https://team.inria.fr/perception/research/jrmpc/.
We used the Matlab code provided by authors. The original
code works for joint alignment of multiple point sets with
respect to a reference point cloud. To utilize this code in
our setup, we set the reference point cloud as one of the
two input point clouds and obtain the view transformation
between the reference point cloud and each of the point
cloud inputs using JRMPC. The relative pose between input
point clouds are then obtained by combining the estimated
view transformations. We also tested to tune the parameters
and the default values provided the best results.

3. Additional Experiments
Training Stability. We evaluate the stability of the train-
ing process by training the network from scratch three times
with different random seeds. Then, we measure the standard
deviation of results at the final epoch. Across different ob-
jects, the network shows stable results, i.e., 0.07◦, 0.08 cm,
and 0.01 cm standard deviations on average for the rotation
error, translation error, and ADD, respectively.

3DMatch Dataset Experiments. We evaluate DeepPRO
on the 3DMatch dataset to see if it can be directly extended
to indoor/outdoor point clouds. Unfortunately, we observe
that DeepPRO overfits to training data when using the same
network architecture and hyper-parameters. It is because
the current point cloud generation network architecture is
optimized to render the geometry of compact objects. We
believe that the core idea of our approach, i.e., generate
corresponding points, can be applied to indoor/outdoor data
with different network architectures.

Failure case. We collect all failure cases on the Linemod
dataset and sort them based on ADD. As shown in Table 1,
we provide 15 worst cases and analyze why they have large
errors. There are two main failure categories. First, object
mask sometimes cover different objects or backgrounds. For
example, Table 2 shows that the Phone object is slightly oc-
cluded by the Can object in view 1 and occluded by the Cup
object in view 2. These Can and Cup objects are included
in the ground truth mask of the Phone object. Therefore,
the input point cloud contains points from different objects.
As another example, in Table 7, the input point cloud has a
point from very far away background. Second, the ground
truth label is incorrect for some cases. Table 8 shows an
example that the ground truth transform does not align the



Table 1: Summary of worst 15 failure cases on the Linemod dataset. Sorted by ADD.

Object ADD (cm) Visualization Failure category

Phone 3.00 Table 2 Wrong object mask (including different object)
Phone 2.62 Table 3 Wrong object mask (including different object)

Hole puncher 2.03 Table 4 Wrong object mask (including different object)
Hole puncher 1.83 Table 5 Wrong object mask (including different object)

Iron 1.75 Table 6 Deformed object
Driller 1.73 Table 7 Wrong object mask (including very far away background)
Cam 1.71 Table 8 Wrong ground truth transform
Iron 1.70 Table 9 Algorithm failure
Cam 1.62 Table 10 Wrong ground truth transform
Iron 1.59 Table 11 Wrong object mask (including different object)

Duck 1.58 Table 12 Wrong object mask (including different object)
Cam 1.57 Table 13 Wrong ground truth transform
Iron 1.52 Table 14 Algorithm failure
Can 1.49 Table 15 Wrong ground truth transform
Cam 1.39 Table 16 Wrong ground truth transform

point clouds well. For all examples in this category (Ta-
ble 8,10,13,15,16), DeepPRO registers point clouds better
than the ground truth transform.
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Table 2: Results on the Linemod Phone object using frame 293 and 303.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 3: Results on the Linemod Phone object using frame 293 and 302.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 4: Results on the Linemod Hole puncher object using frame 613 and 700.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 5: Results on the Linemod Hole puncher object using frame 613 and 699.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 6: Results on the Linemod Iron object using frame 205 and 964.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 7: Results on the Linemod Drill object using frame 956 and 957.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 8: Results on the Linemod Cam object using frame 544 and 545.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 9: Results on the Linemod Iron object using frame 864 and 894.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 10: Results on the Linemod Cam object using frame 106 and 107.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 11: Results on the Linemod Iron object using frame 199 and 248.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 12: Results on the Linemod Duck object using frame 81 and 94.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 13: Results on the Linemod Cam object using frame 1101 and 1038.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 14: Results on the Linemod Iron object using frame 140 and 141.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 15: Results on the Linemod Can object using frame 838 and 839.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)



Table 16: Results on the Linemod Cam object using frame 106 and 108.

RGB
(left: view 1,
right: view 2)

Point cloud from view 1
(left: observed viewpoint,
right: different viewpoint)

Point cloud from view 2
(left: observed viewpoint,
right: different viewpoint)

Ground truth alignment
(left: observed viewpoint,
right: different viewpoint)

DeepPRO
(left: observed viewpoint,
right: different viewpoint)


