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1. INTRODUCTION

 In the past few decades Drosophila melanogaster (fruit fly) has been widely used 

as a model organism for investigating the nervous system, and this research has got 

impetus from the complete sequencing of the Drosophila genome (Adams et al., 2000). 

Generating Drosophila mutants by  several approaches like Ethyl Methyl Sulfonate (EMS) 

and X-ray treatment, P-element jump-out mutagenesis for targeted gene disruption and 

many other techniques have elucidated the role of genes and proteins in different cellular 

and molecular pathways occurring in different subsets of cells in a fly. In this thesis I 

have used Drosophila as a model system for analyzing functions of synaptic proteins 

synapsin and SAP47, as well as a putative SAP47 interaction partner TBCE-Like which 

have direct or indirect role in neurotransmission.

 

 In the nervous system of vertebrates and invertebrates several neuronal cells 

connect together by means of synaptic connections (chemical synapses) or physical 

contacts (in case of gap junctions) to faithfully transmit a signal from one part of the body 

to another. Neuronal cells have polarized structure and function, namely: (i) a signal input 

domain represented by dendrites and the cell body which receives inputs from other 

neurons via synaptic connections; (ii) a signal assimilation domain represented by the 

initial segment of the axon which integrates the several inputs into an electrical impulse; 

(iii) a transfer domain represented by  axons transfers signals called action potentials 

(electrical impulses) rapidly  and without loss to the terminal; (iv) finally, the nerve 

terminals form the transmission domain, which convert the action potential to a chemical 

signal by releasing neurotransmitters via a controlled exocytosis of vesicles containing 

chemical neurotransmitters into the synaptic cleft. The postsynaptic receptors bind to the 

neurotransmitters and respond to it in a way such that  the downstream signal transduction 

can occur.

Proteins that participate in neurotransmission can be classified into two major groups:
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A. Cytoskeletal and associated proteins. These proteins form the inner scaffold of a 

neuron and provide the basis for transport  of substances in retro- and anterograde 

directions.

B. Synaptic proteins (pre- and postsynaptic). These proteins function in the regulated 

release (exocytosis) or uptake (endocytosis) of synaptic vesicles (presynaptic proteins) 

or are involved in signal transduction cascade at the postsynaptic side (postsynaptic 

proteins).

1.1 Cytoskeletal architecture of the neuron

 The cytoskeleton determines the shape of a neuron and is responsible for the 

asymmetric distribution of organelles within the cytoplasm. It contains three main 

filamentous structures: 

A. Actin microfilaments,

B. Neurofilaments (called intermediate filaments in non-neuronal cells), and 

C. Microtubules 

The role and function of microtubules and associated proteins is discussed in detail. 

1.1.1 Microtubules

 Microtubules (MTs) are cytoskeletal structures made of 13 protofilaments of 

tandem α- and β-tubulin heterodimers. The staggered assembly of protofilaments yields a 

helical arrangement of tubulin heterodimers in the form of a hollow cylinder (Fig. 1). The 

orientation of α- and β-tubulin in the polymer confers polarity to MTs, with β-tubulin at 

the ‘plus’ end and α-tubulin at the ‘minus’ end. MTs play  a major role in providing cell 

shape and division, structural conformity, flagellar movement, sperm and cellular motility 

and many other similar functions. In neurons, MTs serve as tracks for transporting variety 

of cargo in anterograde (towards the synaptic terminal) and retrograde (towards the soma) 

directions by  motor proteins like kinesin and dynein, respectively. In axons, MTs are 

Introduction

10



uniformly oriented with their ‘plus’ ends directed towards the axon terminals whereas in 

dendrites both the orientations are observed.

 MTs under in vivo and in vitro conditions, undergo continuous growth and 

shrinkage from the plus and minus ends, respectively (Fig. 1). This property of MTs is 

referred to as dynamic instability (Desai and Mitchison, 1997). The non-equilibrium 

nature of MT dynamics is dependent on several tubulin and MT binding proteins and also 

on the hydrolysis state of the bound GTP (Mitchison and Kirschner, 1984a, b). 

1.1.1.1 GTP cap model for dynamic instability

 Mitchison et al., in 1984 proposed that MTs are constantly growing and shrinking 

and this is due to the hydrolysis or uptake of GTP molecules. Each tubulin monomer at 

the either end can bind to a single molecule of GTP. The GTP bound to α-tubulin does not 

hydrolyze whereas the GTP bound to β-tubulin is hydrolyzed to GDP and this GDP is 

later exchanged for GTP to confer stability (formation of GTP cap) or continue the 

growth of MTs. The MT end with exposed GDP bound tubulin subunits is highly unstable 

and is depolymerized atleast 100 times faster than GTP bound tubulin end, also known as 

the GTP cap. The presence and absence of this ‘cap’ determines the polymerization and 

depolymerization rates of MTs. The stability of MTs is also dependent on several 

cofactors and proteins which regulate the capping process or the assembly/disassembly of 

tubulin subunits (McNally, 1996; Desai and Mitchison, 1997).

The dynamics of MTs are largely  governed by  the presence of two classes of proteins 

namely:

1.1.1.2 MT destabilizing proteins

 These are a family of proteins which promote disassembly  of intact microtubules 

under in vivo and in vitro conditions (Cassimeris and Spittle, 2001). These proteins have a 

regulatory role on MT dynamics by mechanisms which include inhibition of MT 

formation, by  quenching of nascent tubulin heterodimers or by promoting disassembly  of 
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already formed MTs. For example, Op18/stathmin proteins cause hydrolysis of GTP at 

the plus end and promote formation of unstable GDP-MTs and in the case of XKCM1 

(Xenopus kinesin-related protein) and X/mKIF2 (Xenopus or mouse kinesin-related 

protein with high similarity  to XKCM1) the destabilization is caused by binding and 

altering the ends of the MTs (Belmont et al., 1996; Belmont and Mitchison, 1996; 

Walczak and Mitchison, 1996; Walczak et  al., 1996; Desai et al., 1999; Kline-Smith and 

Walczak, 2002). MTs are also destabilized by the action of AAA ATPases like katanins, 

which function by assembling on MT surface and then undergoing conformational change 

by ATP hydrolysis and phosphorylation subsequently destabilizing the tubulins in the 

protofilaments (Quarmby, 2000).

Fig. 1: Microtubule structure and dynamics: The heterodimers of α- and β-tubulin 

form 13 protofilaments which form the microtubule. The growth is faster at the 

‘plus’ end relative to the ‘minus’ end (compiled from Nogales, 2000).
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1.1.1.3 MT stabilizing proteins

 Microtubule stabilizing proteins also known as the microtubule associated 

proteins (MAPs), are a large family  of proteins that have functional and regulatory roles 

in MT assembly  and disassembly  (Maccioni, 1986; Rose et al., 1993; Schoenfeld and 

Obar, 1994). MAPs are involved in stabilizing and controlling MT dynamics by 

interacting with MTs via the C-terminal tubulin domains. MAPs play a central role in 

forming and stabilizing interactions of MT with other cytoskeletal components like actin 

(Griffith and Pollard, 1978; Margolis and Wilson, 1978; Margolis et al., 1978; Danowski, 

1989; Cross et al., 1993). The MAPs family  is comprised of MAP-1(A to C), MAP-2 and 

2C, MAP-4 and tau.

1.1.1.4 Effects of specific drugs on microtubule stability

• MT polymerization inhibition: Drugs like colchicine, colcemid, and nocadazole 

inhibit polymerization by binding to tubulin and preventing its addition to the plus 

ends.

• MT depolymerization: Drugs like vinblastine and vincristine aggregate tubulin and 

lead to microtubule depolymerization. 

• MT stabilization: Drugs like taxol, epothilone and tiscodermolide stabilizes 

microtubules by binding to MT polymer.

Introduction

13



1.1.1.5 Motor proteins associated with MTs

Fig. 2: Motor proteins: Kinesin and dynein move along the MTs accompanied with 

hydrolysis of ATP. The directed motion of both the proteins is shown. (Image source: 

http://www.ksys.me.kyoto-u.ac.jp/ry/e/index.php?Research, with permission from 

Ryuji Yokokawa, (Sheetz et al., 1987; Vale, 1987; Yokokawa, 2004; Yokokawa et al., 

2008))

 There are two motor proteins associated with MTs: (1) The kinesins transport  the 

cargo towards the plus end, for example they transfer synaptic vesicle proteins and 

precursors from cell body to axon terminals or transfer receptors to dendrite terminals  

(anterograde transport)(Vale et al., 1985a; Okada et al., 1995; Setou et al., 2000; Zhao et 

al., 2001; Wong et al., 2002; Guillaud et al., 2003). (2) The dyneins transport the axonal 

cargo from peripheral arborizations to the cell body (retrograde transport)(Vale et al., 

1985b; Schnapp et  al., 1986; Vale, 1987). Both these proteins have head regions that are 

ATPase motors that bind to MTs and ATP (Vale et al., 1985a; Porter et al., 1987). The tail 

domain binds the cargo (organelle). ATP hydrolysis is needed for both binding and 

movement (Porter et al., 1987) (Fig. 2). 

 Apart from the different proteins mentioned in 1.1.1.2, 1.1.1.3 and 1.1.1.5 which 

alter the state and dynamcis of MTs there is another group  of proteins known as the MT 

associated cofactors or chaperones. These proteins function by  binding and stabilizing the 

monomers or the heterodimers of tubulin thus regulating the rate of MT formation.

Introduction

14



1.1.1.6 Chaperone mediated microtubule formation

 First step in the proper folding of nascent tubulin involves the interaction with  

prefoldin. Prefoldin is a heterohexameric chaperone that captures nascent tubulin and 

actin and transfers them to the cytosolic chaperonin (CCT or c-cpn)(Lewis et al., 1996; 

Geissler et al., 1998; Vainberg et al., 1998).

 Chaperonin in an ATP dependent manner facilitates the proper folding and 

formation of tertiary structure of α- and β-tubulin subunits (Gao et  al., 1992; Gao et al., 

1993; Gao et al., 1994; Kubota et al., 1994). The properly  folded tubulin subunits bind to 

a series of tubulin binding cofactors (TBCA to TBCE). The β-tubulins bind to TBCD or 

to TBCA and the α-tubulins bind to TBCE or TBCB. The properly  folded and stabilized 

tubulin monomers are then joined together by  a complex formation between TBCE/α-

tubulin and TBCD/β-tubulin. Finally, the heterodimers of α- and β-tubulins are released in 

the presence of TBCC (Lewis et al., 1997)(Fig. 3).

Fig. 3: Chaperonin (CCT) and cofactors mediated α- and β-tubulin folding. The 

interaction with chaperonin is ATP-dependent. Post-chaperonin quasi-stable 

polypeptide is acted upon by several chaperones to produce stable αβ heterodimers  

in a GTP dependent manner (modified from Tian et al., 1996; Lewis et al., 1997).
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1.1.1.6.A Cofactor A (TBCA)

 TBCA is a 38-40 kDa protein that exists in a monomeric and at times partially 

dimeric state. It was first discovered in bovine testes and subsequently in pig and human 

testes (Gao et al., 1994; Melki et al., 1996). TBCA binds to β-tubulin under in vitro and in 

vivo conditions (Campo et al., 1994). In S. pombe, TBCA is required for growth, polarity 

and stability  of MTs (Radcliffe et al., 2000b). Studies done in mouse have shown that 

TBCA is highly enriched in testis tissues and is involved in β-tubulin processing during 

spermatogenesis (Fanarraga et al., 1999).

1.1.1.6.B Cofactor B (TBCB)

 TBCB is a 38 kDa protein which was first isolated from bovine testes (Lewis et 

al., 1997; Tian et al., 1997). TBCB binds to α-tubulin under in vivo and in vitro conditions 

(Feierbach et al., 1999; Radcliffe et al., 2000a; Radcliffe et al., 2000b). TBCB has a 

cytoplasmic linker (CLIP-170) domain that is also present in most  of the MAPs and 

mediates the interaction with MTs (Lewis et al., 1997; Feierbach et al., 1999).

1.1.1.6.C Cofactor C (TBCC)

 TBCC binds to TBCD/TBCE/α- and β-tubulin heterodimer complex and releases 

αβ tubulin heterodimers from the complex (Zabala and Cowan, 1992). TBCC is a 40 kDa 

protein and functions as a quality  controller in the MT polymerization pathway (Lewis et 

al., 1996; Tian et al., 1996).

1.1.1.6.D Cofactor D (TBCD)

 TBCD is a 300 kDa dimeric protein associated with β-tubulin (Zabala and Cowan, 

1992; Fontalba et al., 1993; Tian et  al., 1996; Lewis et al., 1997). TBCD has high affinity 

for β-tubulin and hence under in vivo and in vitro conditions it specifically binds to β-

tubulin in the tubulin heterodimer and disrupts the dimer and subsequently the MT. Thus, 

TBCD is also termed as a MT destabilizing protein (Martin et al., 2000). The binding of 
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TBCD to β-tubulin is regulated by proteins of the Arl family which are ADP ribosylation 

factors. These proteins prevent  the formation of a TBCD-β-tubulin complex by 

preventing GTP hydrolysis required for this reaction (Fontalba et al., 1993).

1.1.1.6.E Cofactor E (TBCE)

 TBCE is a 60 kDa protein that binds to α-tubulin under in vivo and in vitro 

conditions (Lewis et al., 1996; Tian et al., 1996). TBCE has three conserved domains: a 

glycine rich cytoskeletal associated protein domain CAP-Gly; a leucine-rich protein-

protein interaction domain LRR; and an ubiquitin-like domain UBL (Parvari et al., 2002; 

Grynberg et  al., 2003; Bartolini et al., 2005). It is largely present in the cytosolic fraction 

of spinal cord and brain tissue homogenates but is also observed in crude membrane 

fractions (Bhamidipati et al., 2000; Tian et al., 2006; Schaefer et al., 2007). 

Overexpression of TBCE leads to disruption of MTs by binding to the α-tubulin subunits 

and altering the conformation of the αβ-tubulin heterodimer (Bhamidipati et al., 2000). 

 

1.2 TBCE plays a role in neurodegenerative disorders

1.2.1 Mutation in human Tbce causes hypoparathyroidism, mental retardation and 

facial dysmorphism (HRD) and Kenny–Caffey syndrome (AR-KCS) symptoms

 Parvari et al (2002) have reported that a 12 bp mutation in human homologue of 

Tbce gene which maps to chromosome 1q42.3 causes autosomal recessive disorder HRD 

(hypoparathyroidism, mental retardation and facial dysmorphism)/Sanjad-Sakati/

Richardson-Kirk syndrome and autosomal recessive Kenny-Caffey syndrome (AR-KCS) 

in mostly  Middle Eastern populations (Richardson and Kirk, 1990; Richardson and Kirk, 

1991; Sanjad et al., 1991; Hershkovitz et al., 1995). It was observed that the amount of α-

tubulin incorporated into MTs was lowered in diseased cells and the polarity  and the 

density of the MTs was irregular (Parvari et al., 2002) (Fig. 4). 
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gene results in a very different genetic
disease in mice homozygous for the mu-
tation2.

The mouse mutation results in an al-
teration in the last encoded amino acid
of murine chaperone E, which the au-
thors show destabilizes the protein. The
mice suffer from a progressive degenera-
tion of their motor neurons, resulting in
their death 4–6 weeks after birth. These
mutant mice were thought to be a
model for the human genetic disease
spinal muscular atrophy, but the au-
thors have shown that the latter disease
is in fact caused by mutations in a dif-
ferent gene. When a construct express-
ing wild-type chaperone E was inserted
into the mouse germline, the pheno-
type was reversed in homozygous mu-
tant offspring carrying this construct.
Although they have very different man-
ifestations, the mouse and human dis-
eases have several features in common.
Both result in loss and disorganization

of microtubules, and both result in
growth retardation, small brains and de-
fective spermatogenesis.

Tubulin protein sequences are highly
conserved in all multicellular organisms,
suggesting that almost any mutation in
these essential building blocks is not tol-
erated. However, mutations in micro-
tubule-associated proteins are the causes
of several inherited human diseases, in-
cluding frontal-lobe dementia with
parkinsonism and lissencephaly (tau mu-
tations)8, Charcot–Marie–Tooth (KIF1B
mutation) and Opitz syndrome (MIDI
mutation). All of these diseases cause
major brain impairment, consistent with
the important role of microtubules in
neuronal architecture and axonal trans-
port. Several diseases, in addition to the
tubulin-specific chaperone diseases dis-
cussed here, are caused by mutations in
chaperones or putative chaperones, for
example McKusick–Kaufman syndrome
(mutations in the putative chaperonin,

MKKS), spastic ataxia of
Charlevoix–Saguenay (mutations in
SACS, which is similar to hsp90) and
desmin-related myopathy (mutations in
human !-crystallin, a small heat-shock
protein)9. In addition, as chaperones deal
with misfolded proteins, they are in-
volved in many diseases in which abnor-
mal proteins are deposited as aggregates
such as Huntington and Alzheimer dis-
ease9. Thus chaperones are considered
potential therapeutic targets because of
their ability to disaggregate and dispose
of misfolded proteins.
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Fig. 2 Individuals with Kenney-Caffey syndrome have cells with abnormal tubulin architecture. 
a, Organized tubulin in lymphoblastoid cells of a healthy individual. b, Disorganized tubulin in cells
from an affected individual.

Circadian rhythm beats back cancer
The Per2 gene helps measure the pace of the circadian

rhythm—and now it appears that it also helps keep cancer at
bay, according to a study in the October 4 Cell. Fu et al. sus-
pected a connection to cancer when they found hyperplasia in
the salivary glands of relatively young Per2-mutant mice. They
next tested the animals’ sensitivity to radiation, an indication of
cancer susceptibility. Irradiation can damage the cells responsi-
ble for hair color. Indeed, after irradiation all of the Per2 mutant
mice developed prematurely gray hair (shown here) and a high
frequency of lymphomas as compared to wild-type mice.
Mutant mice also had aberrant temporal expression of genes
involved in cell cycle regulation and tumor suppression. The re-
searchers honed in on a mechanism for circadian control of one
such gene, the p53 regulator c-myc. Its transcription is con-
trolled directly by two PER2-controlled clock proteins. The results jibe with previous findings hinting at a link between circa-
dian cycles and cancer; for example, women working the night shift appear to have an increased risk of breast cancer.
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Fig. 4: Individuals with AR-KCS  have disorganized tubulin (shown in 

lymphoblastoid cells). Left, Organized tubulin in cells of a healthy individual. Right, 

Disorganized tubulin in cells from an affected individual (Reprinted by permission 

from Macmillan Publishers Ltd: Nature genetics (Lewis and Cowan, 2002), 

copyright (2002)).

 HRD patients show symptoms of enophthalmos (deep set eyes), 

hypoparathyroidy, small foot and hand, thin lips, teeth anomalies, depressed nasal bridge, 

beaked nose tip and external ear anomalies like thick ear lobe along with mental 

retardation and severe intrauterine and postnatal growth retardation (Richardson and Kirk, 

1990; Richardson and Kirk, 1991; Sanjad et  al., 1991; Hershkovitz et al., 1995; Kelly  et 

al., 2000).

 AR-KCS patients have stunted growth, small and thin bones, thickened cortex of 

the long bones, hypocalcemia, hyperphosphatemia, and ocular abnormalities. Unlike 

HRD, AR-KCS patients have normal intelligence (Bergada et al., 1988; Franceschini et 

al., 1992; Diaz et al., 1998; Parvari et al., 2002).

 

1.2.2 Mutation of mouse Tbce causes progressive motor neuropathy (pmn) symptoms

 Bömmel et al., (2002) have shown that a point  mutation (Trp524Gly) in the Tbce 

gene causes progressive motor neuropathy (pmn). The missense mutation in Tbce gene 

destabilizes the protein and targets it  for degradation causing a reduction of TBCE protein 

levels in the system (Martin et al., 2002). The pmn mouse serves as a model for human 

spinal muscular atrophy  (SMA) (Bommel et al., 2002; Martin et  al., 2002). It is also 
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noteworthy  that the pmn mouse has defects in spermatogenesis (Schmalbruch et al., 

1991).

 Degeneration of motoneurons in pmn mutant mouse in early postnatal period is 

similar to the observation in SMA patients (Bommel et al., 2002; Martin et al., 2002). It  is 

also observed that in isolated motoneuron cultures from wild-type and pmn mutant 

mouse, the length and survival of axonal processes is significantly reduced, they  have 

axonal swellings and varicosities (Bommel et al., 2002). The pmn mutant mouse dies 

within 6 weeks after birth and also shows axonal degeneration in the sciatic and phrenic 

nerves (Bommel et al., 2002).

 Mutations of both human and mouse Tbce gene cause reduced number of MTs 

whereas most of the other manifestations are distinct and specific to the organism under 

study. However, a human individual with the same mutation as the pmn mouse 

(Replacement of C-terminal penultimate amino acid W to G) has not been reported.

cumbed to typical progressive motor neuronopathy before five
weeks of age. We verified expression of the transgenic mRNA in
spinal cord of H1-transgenic pmn/pmn mice (Fig. 3b) and ana-
lyzed nerves of the same mice by electron microscopy (see below).

To analyze whether the Tbce mutation resulting in the
Trp524Gly substitution affected the stability of the protein, we
overexpressed wildtype or mutant Tbce tagged with FLAG at the
amino terminus. Transfection of COS-7 and HeLa cells with wild-
type and mutant Tbce showed that each encoded single proteins of
60 kD, and that the mutant protein was less abundant than the
wildtype (Fig. 4a,b). In addition, pulse–chase experiments showed
that the mutant Tbce protein was considerably less stable than the
wild type. Immunoprecipitation of metabolically labeled proteins
in transfected COS-7 cells showed that a large proportion of the
wildtype Tbce was still present after 24 h (data not shown),
whereas most of the mutant Tbce had disappeared after 8 h (Fig.
4c). Wildtype and mutant proteins synthesized in vitro also

showed subtle differences in their susceptibility to proteolysis.
When 35S-labeled proteins synthesized in vitro were subjected to
limited proteolysis with trypsin, the mutant Tbce was moderately
more susceptible to proteolysis than its wildtype counterpart over
a narrow range of 3–6 µg ml–1 trypsin (Fig. 4d), consistent with a
putative conformational difference between the two proteins.

To evaluate whether the observed mutation in Tbce of
pmn/pmn mice affects the expression of tubulin in peripheral
nerves, we analyzed cross-sections of sciatic nerves from wild-
type and pmn/pmn mice by double immunofluorescence label-
ing. We used monoclonal antibodies against either the !- or
"-subunit of tubulin and polyclonal antibodies against neurofila-
ment medium chain as a control. Large-caliber axons of normal
mice were immunoreactive to both tubulin subunits, and we
observed a small reduction in immunoreactivity to !- and "-
tubulin in the degenerating axons of pmn/pmn mice (Fig. 5a–d).

Finally, we evaluated the microtubule structure in axons by
electron microscopy. Phrenic and sciatic nerves of pmn/pmn mice
that were clinically unaffected (one week old), mildly affected
(two weeks old) or severely affected (three to four weeks old) were
analyzed together with nerves of control mice and phenotypically
normal H1-transgenic pmn/pmn mice. In phrenic nerves from
unaffected pmn/pmn mice at one week of age, all axons showed
normal microtubules, but in mildly affected two-week-old mice,
20% of axons showed loss of microtubules, and in severely
affected mice, all microtubules were lost but intermediate fila-
ments were still present (Fig. 6a–d). We also observed occasional
nerve-fiber collapses on 10% of the sections, probably originating
from degenerating motor neurons. At the same age (3–4 weeks),
microtubules were still observed in 15–20% of sciatic nerve fibers

Fig. 4 Analysis of Tbce protein stabil-
ity. a,b, Western-blot analysis of
COS-7 (a) and HeLa (b) cell extracts
obtained 24 h and 48 h after trans-
fection with wildtype or mutated
Tbce expression constructs. The
expected fusion protein (60 kD) was
detected in both constructs with the
antibody against FLAG. Mutant Tbce
(m) was less abundant in COS-7 cells
than wildtype Tbce (wt), and in HeLa
cells was barely detected 24 h after
transfection and not detected after
48 h. Co-transfection with a plasmid
containing the GFP gene was used as
a transfection efficiency control, and
the band detected with GFP anti-
serum is shown. Transfection with-
out plasmid was used as a negative
control (c). c, COS-7 cells were trans-
fected with either wildtype (wt) or
mutated (m) Tbce cDNA, metaboli-
cally labeled with TranS35-label and
then chased for 4 h and 8 h. After
immunoprecipitation and SDS–
PAGE, we observed that the wild-
type protein was intact after 8 h,
whereas most of the mutant Tbce
had disappeared. d, Autoradiograph of 35S-labeled wildtype (wt) or mutant (m) Tbce proteins translated in vitro using a rabbit reticulocyte lysate and
treated with 3 µg ml–1 of trypsin for 5, 10 and 20 min.
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Fig. 5 Immunofluorescent analysis of tubulin levels. Sciatic nerve cross-sections
from 4-week-old wildtype (a,b) and pmn/pmn (c,d) littermate mice were dou-
bly labeled with antibodies against !-tubulin (a,c) and neurofilament medium
chain (b,d). High !-tubulin and neurofilament levels were observed in the
large-caliber axons from wildtype mice (asterisks). A typical aspect of axonal
degeneration, with reduced and irregular caliber fibers, was observed in the
pmn/pmn mice (c,d). Large-caliber axons from pmn/pmn mice had reduced
immunoreactivity to !-tubulin (c; arrowheads), compared with neurofilament
medium chain (d). Similar results were obtained when using antibody against
"-tubulin (data not shown). Scale bar: 5 µm.
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cumbed to typical progressive motor neuronopathy before five
weeks of age. We verified expression of the transgenic mRNA in
spinal cord of H1-transgenic pmn/pmn mice (Fig. 3b) and ana-
lyzed nerves of the same mice by electron microscopy (see below).

To analyze whether the Tbce mutation resulting in the
Trp524Gly substitution affected the stability of the protein, we
overexpressed wildtype or mutant Tbce tagged with FLAG at the
amino terminus. Transfection of COS-7 and HeLa cells with wild-
type and mutant Tbce showed that each encoded single proteins of
60 kD, and that the mutant protein was less abundant than the
wildtype (Fig. 4a,b). In addition, pulse–chase experiments showed
that the mutant Tbce protein was considerably less stable than the
wild type. Immunoprecipitation of metabolically labeled proteins
in transfected COS-7 cells showed that a large proportion of the
wildtype Tbce was still present after 24 h (data not shown),
whereas most of the mutant Tbce had disappeared after 8 h (Fig.
4c). Wildtype and mutant proteins synthesized in vitro also

showed subtle differences in their susceptibility to proteolysis.
When 35S-labeled proteins synthesized in vitro were subjected to
limited proteolysis with trypsin, the mutant Tbce was moderately
more susceptible to proteolysis than its wildtype counterpart over
a narrow range of 3–6 µg ml–1 trypsin (Fig. 4d), consistent with a
putative conformational difference between the two proteins.

To evaluate whether the observed mutation in Tbce of
pmn/pmn mice affects the expression of tubulin in peripheral
nerves, we analyzed cross-sections of sciatic nerves from wild-
type and pmn/pmn mice by double immunofluorescence label-
ing. We used monoclonal antibodies against either the !- or
"-subunit of tubulin and polyclonal antibodies against neurofila-
ment medium chain as a control. Large-caliber axons of normal
mice were immunoreactive to both tubulin subunits, and we
observed a small reduction in immunoreactivity to !- and "-
tubulin in the degenerating axons of pmn/pmn mice (Fig. 5a–d).

Finally, we evaluated the microtubule structure in axons by
electron microscopy. Phrenic and sciatic nerves of pmn/pmn mice
that were clinically unaffected (one week old), mildly affected
(two weeks old) or severely affected (three to four weeks old) were
analyzed together with nerves of control mice and phenotypically
normal H1-transgenic pmn/pmn mice. In phrenic nerves from
unaffected pmn/pmn mice at one week of age, all axons showed
normal microtubules, but in mildly affected two-week-old mice,
20% of axons showed loss of microtubules, and in severely
affected mice, all microtubules were lost but intermediate fila-
ments were still present (Fig. 6a–d). We also observed occasional
nerve-fiber collapses on 10% of the sections, probably originating
from degenerating motor neurons. At the same age (3–4 weeks),
microtubules were still observed in 15–20% of sciatic nerve fibers

Fig. 4 Analysis of Tbce protein stabil-
ity. a,b, Western-blot analysis of
COS-7 (a) and HeLa (b) cell extracts
obtained 24 h and 48 h after trans-
fection with wildtype or mutated
Tbce expression constructs. The
expected fusion protein (60 kD) was
detected in both constructs with the
antibody against FLAG. Mutant Tbce
(m) was less abundant in COS-7 cells
than wildtype Tbce (wt), and in HeLa
cells was barely detected 24 h after
transfection and not detected after
48 h. Co-transfection with a plasmid
containing the GFP gene was used as
a transfection efficiency control, and
the band detected with GFP anti-
serum is shown. Transfection with-
out plasmid was used as a negative
control (c). c, COS-7 cells were trans-
fected with either wildtype (wt) or
mutated (m) Tbce cDNA, metaboli-
cally labeled with TranS35-label and
then chased for 4 h and 8 h. After
immunoprecipitation and SDS–
PAGE, we observed that the wild-
type protein was intact after 8 h,
whereas most of the mutant Tbce
had disappeared. d, Autoradiograph of 35S-labeled wildtype (wt) or mutant (m) Tbce proteins translated in vitro using a rabbit reticulocyte lysate and
treated with 3 µg ml–1 of trypsin for 5, 10 and 20 min.
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Fig. 5 Immunofluorescent analysis of tubulin levels. Sciatic nerve cross-sections
from 4-week-old wildtype (a,b) and pmn/pmn (c,d) littermate mice were dou-
bly labeled with antibodies against !-tubulin (a,c) and neurofilament medium
chain (b,d). High !-tubulin and neurofilament levels were observed in the
large-caliber axons from wildtype mice (asterisks). A typical aspect of axonal
degeneration, with reduced and irregular caliber fibers, was observed in the
pmn/pmn mice (c,d). Large-caliber axons from pmn/pmn mice had reduced
immunoreactivity to !-tubulin (c; arrowheads), compared with neurofilament
medium chain (d). Similar results were obtained when using antibody against
"-tubulin (data not shown). Scale bar: 5 µm.
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Fig. 5: Analysis of α-tubulin levels in (A) wild-type and (B) pmn mutant mouse 

sciatic nerves. Asterisks mark the α-tubulin staining in cross-sections of sciatic nerve 

from 4 weeks old wild-type mouse and arrowheads point to the same region in pmn 

homozygous mutant mouse with disrupted and reduced α-tubulin staining  

(Reprinted by permission from Macmillan Publishers Ltd: Nature genetics (Martin 

et al., 2002), copyright (2002)).
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1.3 Yeast homologue of Tbce (pac2)

 The yeast TBCE protein, also known as Pac2, has the three conserved domains 

CAP-Gly, leucine rich repeats and ubiquitin like domain (Verma et al., 2000) and is 

involved in several interactions:

A. with α-tubulin and MTs via the CAP-Gly domain, 

B. with regulatory core of the proteosomal degradation machinery  namely  Rpn1 and 

Rpn10 via the LRR and the UBL domain, respectively (Voloshin et al., 2010). 

C. Pac2 interacts with the UBL domain of TBCB to maintain the quality  and turnover of 

MTs and 

D. Pac2 also interacts with the Skp1-Cdc53-F-box (SCF) ubiquitin ligase complex for 

ubiquitylation and targeting for proteosomal degradation (Voloshin et al., 2010).

1.4 Drosophila Tbce gene (CG7861)

 The orthologous protein for mammalian TBCE in Drosophila is coded by  CG7861 

gene (flybase.org). The high sequence similarity  between Drosophila TBCE and human 

form are suggestive of the fact that the protein is evolutionarily conserved and thus may 

have similar function across species (Jin et al., 2009). The null mutants of Tbce are 

embryonic lethal with few escapers as was verified by two independent null mutations 

generated by Jin et al (2009). One of the mutants (Z0241) has a nonsense mutation in the 

5’ coding region and the other mutant (LH15) has a deletion spanning the first  three exons 

and an exon of the neighboring gene CG14591 (disruption of CG14591 does not cause 

any obvious defects). In Drosophila, TBCE expression was detected in the central 

nervous system (CNS) and TBCE was also localized to the neuromuscular junctions 

(NMJs) suggesting that it  has a nervous system specific function. It was also shown that 

TBCE is present  in the perinuclear region of muscle cells and epidermal cells (Jin et al., 

2009) but the specificity of the signal was not verified by immunostaining of null 

mutants. 
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1.4.1 Drosophila TBCE is essential for MT formation and synaptic transmission at 

the NMJ synapses

 The homozygous null mutants of Tbce (escapers from Z0241) have disrupted MT 

network, a phenotype which is also observed in flies with RNAi mediated TBCE 

knockdown. As a consequence, the structure of axons is disrupted in Tbce mutants. The 

observation is similar to the presence of degenerate axons in pmn mutant mouse (Bommel 

et al., 2002). Overexpression of TBCE by the Gal4-UAS system (Brand and Perrimon, 

1993) facilitates the recovery  and formation of stable MTs from nocodazole treated and 

disrupted MTs. TBCE has a regulatory function at synapses of the NMJ, knockdown of 

TBCE by RNAi mechanism causes increased synaptic branchings along with large 

numbers of small sized boutons. It is interesting to note that the overexpression of TBCE 

in the presynaptic compartment has a mild or no effect on the development of NMJ 

synapses but causes an increase in miniature excitatory junction potentials (mEJPs), 

excitatory junction potentials (EJPs) and quantal content. The knockdown of TBCE at the 

presynapse also causes an increase in mEJP and EJP amplitude along with an increase in 

mEJP frequency (Jin et al., 2009). 
Fig. 18: Immunostaining, no difference in staining pattern of Synapsin in Sap47156CS and CS. 

Conserved domains in TBCE and TBCEL
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Fig. 19: TBCE and E-Like domain homology

TBCE-like (55-59 kD)

CSP (34 kD) 

Fig. 20: TbceL antibody produces a specific signal in fresh head homogenates.

Fig. 6: Conserved domains in TBCE protein. CAP-Gly is a glycine rich domain 

involved in attachment to the cytoskeletal structure, LRR is a leucine rich domain 

involved in protein-protein interaction (modified from Riehemann and Sorg, 1993; 

Grynberg et al., 2003).
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1.5 Tubulin binding chaperone E-Like (E-like or TBCEL)

 TBCE-Like/E-like/TBCEL, as the name suggests, is a protein with high sequence 

similarity to TBCE. It has been studied in vertebrates by Bartolini et al., (2005). TBCEL 

is conserved across several species (Fig. 7).

1199E-like, a novel tubulin destabilizing protein

Immunofluorescence 
DNA- or siRNA-transfected HeLa cells were fixed with 4%
paraformaldehyde in PBS for 20 minutes at room temperature, washed
in PBS and permeabilised in 0.2% Triton X-100 for 5 minutes.
Primary and secondary antibodies were diluted in 3% BSA, applied
to fixed cells and incubated for 1 hour at 37°C. Primary antibodies
included a monoclonal anti-α-tubulin and a monoclonal anti-
acetylated tubulin (Sigma) for the detection of stable microtubules.
Antibodies specific to giantin, calnexin and lamp-2 were used to
visualize Golgi cisternae, endoplasmic reticulum membranes and
lysosomal vesicles, respectively. Detection was via Texas Red or
FITC-conjugated secondary antibodies (Jackson ImmunoResearch).
For microtubule depolymerization experiments, cells were transfected
with plasmids encoding E-like and 24 hours later incubated with 10
µM nocodazole for 1 hour prior to fixation. In nocodazole recovery
experiments, siRNA transfected cells were treated 72 hours post
transfection with 10 µM nocodazole for 1 hour, restored to drug-
free medium, incubated for various times and fixed in 4%
paraformaldehyde. In tubulin extraction experiments, siRNA-
transfected cells were incubated with 0.2% Triton X-100 in MT
stabilizing buffer (130 mM HEPES, pH 6.9, 2 mM MgCl2, 10 mM
EGTA) for 3 minutes at 37°C, washed in the same buffer lacking
detergent, incubated for 30 minutes and then fixed and processed for
immunofluorescence. Slides were observed using a Zeiss Axiophot
fluorescence microscope with a Plan-Neofluar 63× /1.25 objective.

Images were captured using a Zeiss-Axiocam digital camera linked
to Axiovision 2.0.5 software.

Microtubule binding assays 
Bovine brain tubulin purified by passage through phosphocellulose
(Tian et al., 1997) was incubated in the presence of increasing
concentrations of taxol (0.1-10.0 µM) in tubulin buffer (80 mM
PIPES, pH 6.8, 1 mM MgCl2, 1 mM EGTA, 1 mM GTP, pH 7
and 0.1 µg/µl BSA) to induce microtubule polymerization. 5µl
aliquots of 35S-labeled in vitro translated GEF-H1 and E-like
proteins were incubated with 50 µg taxol-polymerized tubulin
for 10 minutes at 37°C, and loaded onto 50% sucrose cushions
which were centrifuged at 150,000 g for 20 minutes at 37°C.
Equivalent amounts of supernatant and pellet were analyzed by
SDS-PAGE.

siRNA transfection 
Three siRNA duplexes designed to target different portions of the
mRNA encoding E-like (AACCTCCCAAGTGTACTAGTGTT,
AACAGTGTCTTGTCCTTCTAT and AAGTAGAAGTCCACTTT-
AACG) were synthesized (Dharmacon Research; Ambion). HeLa
cells were transfected using the oligofectamine transfection reagent
(Invitrogen). For analysis of time points beyond 48 hours, cells were

Fig. 1. E-like, a protein related to tubulin-folding cofactor E. (A) Amino acid sequence comparison showing 23% identity between human E-
like (El) and cofactor E (Cof E). (B) Evolutionary relationship between currently known cofactor E-related sequences; fly, Drosophila
melanogaster; celeg, Caenorhabditis elegans; atha, Arabidopsis thaliana; yeast, Saccharomyces cerevisiae; spombe, Schizosaccharomyces
pombe; leisch, Leishmania donovani. (C) Schematic of domains identified in cofactor E and E-like. CAP-gly, glycine-rich cytoskeleton-
associated protein domain; LRR, leucine-rich repeat sequence; UBL, ubiquitin-like domain. (D) Northern blot showing distribution of E-like
expression in various human tissues. Location of size markers is indicated on the left.

Fig. 7: TBCEL is conserved across several species. Drosophila and Human TBCE 

and E-like are closely related (Reproduced with permission from Development-

(Bartolini et al., 2005), copyright (2005)).

 TBCEL has UBL and LRR domains but no CAP-Gly domain (Fig. 8). Human 

TBCEL is present in several tissues but specifically enriched in the testis (Fig. 9). 

Fig. 18: Immunostaining, no difference in staining pattern of Synapsin in Sap47156CS and CS. 
Conserved domains in TBCE and TBCEL
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Fig. 19: TBCE and E-Like domain homology

TBCE-like (55-59 kD)

CSP (34 kD) 

Fig. 20: TbceL antibody produces a specific signal in fresh head homogenates.

Fig. 8: Conserved domains in TBCEL protein. There is no CAP-Gly domain in 

TBCEL which is found in TBCE.
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1.5.1 In vitro and in vivo functions of TBCEL

 TBCEL affects the unpolymerized αβ-tubulin heterodimers by  rapidly degrading 

the α- and subsequently β-tubulin subunits by proteosomal degradation pathway 

(Bartolini et al., 2005). This way TBCEL is similar to TBCE (Tian et al., 1997).

1199E-like, a novel tubulin destabilizing protein

Immunofluorescence 
DNA- or siRNA-transfected HeLa cells were fixed with 4%
paraformaldehyde in PBS for 20 minutes at room temperature, washed
in PBS and permeabilised in 0.2% Triton X-100 for 5 minutes.
Primary and secondary antibodies were diluted in 3% BSA, applied
to fixed cells and incubated for 1 hour at 37°C. Primary antibodies
included a monoclonal anti-α-tubulin and a monoclonal anti-
acetylated tubulin (Sigma) for the detection of stable microtubules.
Antibodies specific to giantin, calnexin and lamp-2 were used to
visualize Golgi cisternae, endoplasmic reticulum membranes and
lysosomal vesicles, respectively. Detection was via Texas Red or
FITC-conjugated secondary antibodies (Jackson ImmunoResearch).
For microtubule depolymerization experiments, cells were transfected
with plasmids encoding E-like and 24 hours later incubated with 10
µM nocodazole for 1 hour prior to fixation. In nocodazole recovery
experiments, siRNA transfected cells were treated 72 hours post
transfection with 10 µM nocodazole for 1 hour, restored to drug-
free medium, incubated for various times and fixed in 4%
paraformaldehyde. In tubulin extraction experiments, siRNA-
transfected cells were incubated with 0.2% Triton X-100 in MT
stabilizing buffer (130 mM HEPES, pH 6.9, 2 mM MgCl2, 10 mM
EGTA) for 3 minutes at 37°C, washed in the same buffer lacking
detergent, incubated for 30 minutes and then fixed and processed for
immunofluorescence. Slides were observed using a Zeiss Axiophot
fluorescence microscope with a Plan-Neofluar 63× /1.25 objective.

Images were captured using a Zeiss-Axiocam digital camera linked
to Axiovision 2.0.5 software.

Microtubule binding assays 
Bovine brain tubulin purified by passage through phosphocellulose
(Tian et al., 1997) was incubated in the presence of increasing
concentrations of taxol (0.1-10.0 µM) in tubulin buffer (80 mM
PIPES, pH 6.8, 1 mM MgCl2, 1 mM EGTA, 1 mM GTP, pH 7
and 0.1 µg/µl BSA) to induce microtubule polymerization. 5µl
aliquots of 35S-labeled in vitro translated GEF-H1 and E-like
proteins were incubated with 50 µg taxol-polymerized tubulin
for 10 minutes at 37°C, and loaded onto 50% sucrose cushions
which were centrifuged at 150,000 g for 20 minutes at 37°C.
Equivalent amounts of supernatant and pellet were analyzed by
SDS-PAGE.

siRNA transfection 
Three siRNA duplexes designed to target different portions of the
mRNA encoding E-like (AACCTCCCAAGTGTACTAGTGTT,
AACAGTGTCTTGTCCTTCTAT and AAGTAGAAGTCCACTTT-
AACG) were synthesized (Dharmacon Research; Ambion). HeLa
cells were transfected using the oligofectamine transfection reagent
(Invitrogen). For analysis of time points beyond 48 hours, cells were

Fig. 1. E-like, a protein related to tubulin-folding cofactor E. (A) Amino acid sequence comparison showing 23% identity between human E-
like (El) and cofactor E (Cof E). (B) Evolutionary relationship between currently known cofactor E-related sequences; fly, Drosophila
melanogaster; celeg, Caenorhabditis elegans; atha, Arabidopsis thaliana; yeast, Saccharomyces cerevisiae; spombe, Schizosaccharomyces
pombe; leisch, Leishmania donovani. (C) Schematic of domains identified in cofactor E and E-like. CAP-gly, glycine-rich cytoskeleton-
associated protein domain; LRR, leucine-rich repeat sequence; UBL, ubiquitin-like domain. (D) Northern blot showing distribution of E-like
expression in various human tissues. Location of size markers is indicated on the left.Fig. 9: Northern blot reveals TBCEL transcript is abundant in testis and also 

present at lower levels in different tissues (Reproduced with permission from 

Development-(Bartolini et al., 2005), copyright (2005)).

 

 However, in several aspects TBCE and TBCEL are functionally  distinct even 

though they have high sequence similarity. TBCE and TBCEL are both localized to the 

cytoplasm of the cell but TBCEL is also present in the nucleus. Equal amounts or 10 

times the amount of TBCEL relative to TBCE cannot substitute for TBCE function in MT 

polymerization under in vitro conditions suggesting that they  have distinct functions. 

TBCEL does not directly bind to the MTs but binds to the freely  available αβ-tubulin 

heterodimers and prevents the formation of MTs. Overexpression of TBCEL in HeLa 

cells causes severe MT depolymerization and disruption of Golgi membrane, causing the 

Golgi apparatus to be mislocalized to several peripheral sites through out the cytoplasm 

of the cell. Also, TBCEL does not substitute for TBCE’s function of enhancing the 

activity of TBCC and TBCD (Bartolini et al., 2005).

 On expression of TBCEL-specific small interfering RNA (siRNA) in HeLa cells 

the debilitating effects of TBCEL on MTs was suppressed and the number of stable MTs 

increased in the perinuclear region of the cell. Also, TBCEL knockdown in HeLa cells 
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resulted in clustering of endocellular membrane around the microtubule-organizing center 

(MTOC). Bartolini et al., (2005) have concluded from their experiments that TBCEL 

plays a significant role in regulation of MT stability and in the organization of 

endocellular membranes.

1.6 Molecular architecture of the synapse

 British physiologist Charles S. Sherrington coined the term “Synapse” (from the 

Greek term “tighten together”). There are two types of synapses- (1) Chemical synapses, 

which represents the most common mechanism for signaling between neurons and 

involves release of neurotransmitter from synaptic vesicles into the synaptic cleft. (2) 

Electrical synapses are formed from specialized structures called gap junctions that allow 

ionic current to flow directly between neurons for faster and simpler signaling.

1.6.1 Electrical Synapse

 First evidence for the existence of electrical synapses was obtained from studies in 

crayfish and shrimp neurons (Furshpan and Potter, 1957; Watanabe, 1958) subsequently  

electrical synapses were also discovered in vertebrate nervous system (Bennett et al., 

1959).

 In electrical synapses, groups of channels containing connexin link the two 

neurons by aligning the channels in the post- and presynaptic membranes to form pores 

and thus electrically coupling the two cells (Wolburg and Rohlmann, 1995; Evans and 

Martin, 2002; Bruzzone and Dermietzel, 2006; Mese et al., 2007). These gap junction 

pores allow ions, secondary messengers and metabolites to flow from one side to the 

other by diffusion or electrophoresis. Important  consequences of ionic current flow 

through electrical synapse is that the transmission is usually bidirectional and is 

extraordinarily fast; as passive current flow across the gap  junction is virtually 

instantaneous, communication can occur without the delay that is characteristic of 

chemical synapses.
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 In invertebrates like Drosophila and C. elegans, there is no homologous protein 

for connexin but they have a family  of gap junction coding proteins totally unrelated to 

vertebrate connexins called innexins (invertebrate connexins)(Landesman et al., 1999; 

Phelan and Starich, 2001). Recently, innexin-like genes were discovered in mammals 

called pannexins (Px)(Panchin et al., 2000). The function of pannexins in mammals is 

currently unknown. 

1.6.2 Chemical Synapse
THE SYNAPTIC VESICLE CYCLE C-1

Figure 1 The synaptic vesicle cycle. Synaptic vesicles are filled with neurotransmitters
by active transport (step 1) and form the vesicle cluster that may represent the reserve pool
(step 2). Filled vesicles dock at the active zone (step 3), where they undergo a priming
reaction (step 4) that makes them competent for Ca2+ triggered fusion-pore opening (step
5). After fusion-pore opening, synaptic vesicles undergo endocytosis and recycle via sev-
eral routes: local reuse (step 6), fast recycling without an endosomal intermediate (step 7),
or clathrin-mediated endocytosis (step 8) with recycling via endosomes (step 9). Steps in
exocytosis are indicated by red arrows and steps in endocytosis and recycling by yellow
arrows. 
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Fig. 10: Neurotransmission in a chemical synapse (permission obtained by 

University of Wuerzburg (from review Sudhof, 2004) ).

 Several steps are involved in successful neurotransmission through a chemical 

synapse (Fig. 10):

A. Synthesis, transport and filling of synaptic vesicles: Vesicle synthesis begins with the 

synthesis of lipids and associated proteins in the cell body of the neuron, specifically 

in the endoplasmic reticulum (ER). The proteins and lipids are then modified in the 

Golgi apparatus and subsequently  integral membrane proteins are incorporated into 

the vesicles. The vesicles are transported to the synaptic terminals by MT-associated 
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motor proteins like kinesins. Neurotransmitter uptake into mature synaptic vesicles 

(SVs) occurs at the nerve terminal and involves different mechanisms, namely: (1) A 

H+ ATPase pump, establishes a proton gradient across the SV membrane. (2) The 

proton gradient drives specific transporter which cause transmitter uptake against a 

concentration gradient (Buckley and Kelly, 1985; Fykse and Fonnum, 1988; Hell et 

al., 1988; Bajjalieh et al., 1992; Parsons et al., 1993) (3) ion channels (for example 

chloride channel)(Rahamimoff et al., 1988), and in some cases, electron transporters 

allow for charge compensation or provide reduction equivalents (for example 

cytochrome b561)(Beers et al., 1986).

B. The next step is the arrival of an action potential at the presynaptic terminal and 

depolarization of the cell. Neurotransmitter release is initiated within 400 µs after the 

arrival of the action potential (see review Sudhof, 2004).

C. Depolarization of the pre-synaptic terminal causes voltage-gated Ca2+ channels to 

open. In vertebrate synapses the release is stimulated by  Ca2+ influx through P/Q- 

(CaV2.1) or N-type Ca2+ channels (CaV2.2)(Olivera et al., 1994; Dunlap et al., 1995).

D. Rapid influx of  Ca2+ ions through the voltage gated Ca2+ channels occurs due to the 

concentration gradient across the membrane (the external Ca2+ concentration is 

approximately 10–3 M, whereas the internal Ca2+ concentration is approximately 10–6 

M).

E. The sudden influx of Ca2+ causes the concentration of Ca2+ in the vicinity to reach 

approximately 10 µM (threshold for exocytosis of SV) and subsequently the maximal 

activation concentration of 50 µM (Llinas et  al., 1992; Smith et al., 1993; Stanley, 

1997; Schneggenburger and Neher, 2000).

F. SNARE proteins: The Ca2+ ion sensor protein synaptotagmin and other intracellular 

proteins involved in feedback regulation of the channels and Ca2+ dependent proteins 

and kinases involved in synaptic plasticity are activated. The SNARE proteins are 

localized near the Ca2+ channels by having a direct interaction with an intracellular 
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domain of the channel, the synaptic protein interaction (synprint) site on the N-type 

Ca2+ channels (CaV2.2) (Sheng et al., 1994; Sheng et al., 1997) (Cohen et al., 1991; 

Westenbroek et al., 1992; Westenbroek et al., 1995; Catterall, 2000) and thus they 

instantaneously  respond to the Ca2+ influx and initiate vesicle exocytosis. The 

SNARE proteins are classified into two categories- (1) v-SNARE or vesicle 

associated SNARE, like VAMP (or synaptobrevin) and (2) t-SNARE or target 

membrane associated SNARE, like syntaxin and SNAP-25 (see Fig. 10). Only the t-

SNARE proteins syntaxin-1A and SNAP-25 interact with the Ca2+ channels at 

synprint sites (Sheng et al., 1994; Sheng et al., 1997). Syntaxin interacts with Ca2+-

bound synaptotagmin and triggers the SNARE complex to fuse vesicles with the pre-

synaptic membrane which causes the release of neurotransmitters into the synaptic 

cleft (Sheng et al., 1994; Sheng et al., 1996; Sheng et al., 1997).

P1: FQP/LQD P2: FQP

September 6, 2000 14:43 Annual Reviews AR112-02

28 LIN ! SCHELLER

Figure 3 Model pathway of SNARE-mediated synaptic vesicle membrane fusion. Syn-
taxin is initially unbound to VAMP or SNAP-25. Nucleation of the ternary complex is the
initial event in membrane fusion. Calcium induces further zippering of the parallel helices,
bringing the vesicle and plasma membranes into contact. This transient intermediate state
either reverses rapidly or proceeds forward to membrane fusion, with the energy for fusion
provided by complex formation.

the membrane anchors and thereby disrupting the lipid bilayer structure. Note
that after exocytosis, the resultant cis complex must be disassembled before these
particular syntaxin, SNAP-25, and VAMP molecules can participate in another
round of membrane fusion.
Each step of this model pathway certainly involves the action of additional

regulatory factors. The proteins thought to take part in mediating core complex
assembly and disassembly and sensing calcium are discussed below. This model,
except for the aspect of its calcium sensitivity, is also likely to describe SNARE-
driven membrane fusion events throughout all eukaryotic cells.

SNARE Homologs

The neuronal SNAREs have homologs that participate in other forms of exocytosis
and intracellular vesicle trafficking in species ranging from yeast to humans (re-
viewed in Hay & Scheller 1997). As mentioned above, the syntaxin and SNAP-25
homologs have been classified as Q-SNAREs because of the conservation of
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Fig. 11: SNARE proteins mediated vesicle exocytosis. Ca2+ bound synaptotagmin 

interacts with syntaxin, which then interact with v-SNAREs and cause the 

‘zippering’ and fusion of SVs to the presynaptic membrane (permission obtained by 

University of Wuerzburg (Lin and Scheller, 2000), copyright (2002)).

G. The transmitters bind to the receptors on the postsynaptic side which cause the 

opening or closing of postsynaptic channels or activation of secondary messengers 

mediated signaling pathways, thereby altering the excitability of the postsynaptic cell.
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H. Phosphorylation of proteins like synapsin by Ca2+ dependent kinases causes the 

vesicles at  the reserve pool to move towards the active zone for replenishing the 

readily releasable pool of SVs (see Fig. 10 and 12). Properties of the different SV 

pools are summarized in Table 1.

Table. 1: Characteristics of different vesicle pools at the synapse (modified from 

Rizzoli and Betz, 2005).

Pools
Readily 

releasable 
pool (RRP)

Recycling pool Reserve pool

Size (% of total vesicles) ~1-2 % ~10-20 % ~80-90 %

Location Docked Scattered Scattered

Recycling Fast (Seconds) Fast(Seconds) Slow (minutes)

Mixing with other pools
Fast mixing 

with recycling 
pool

Slow mixing 
with reserve 

pool

Slow mixing 
with all other 

pools

Mobility at the terminals Docked (No 
mobility) High None or low

I. Finally, the vesicle membranes are retrieved from the plasma membranes by clathrin 

mediated endocytosis and are sent back into the cycle (Fig. 12).
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Fig. 12: Synaptic vesicle cycle. The vesicles are retrieved from the synaptic cleft via 

endocytosis, filled with neurotransmitters and recycled back to different vesicle 

pools based on requirement (modified from review Dittman and Ryan, 2009) 

(Permission obtained by University of Wuerzburg).

 

 The process of transmitter release is a result of concerted interactions between 

several signaling pathways activated sequentially or in parallel. The main components of 

these pathways are the presynaptic proteins, both vesicle associated and non-associated. 

In section 1.7 and subsections I will discuss in detail the functions of two presynaptic 

proteins of particular interest with respect  to this thesis synapsin and synapse associated 

protein of 47 kDa (SAP47).

1.7 Synapsins

1.7.1 The synapsin gene locus is highly conserved in different species

 Synapsins are a family of presynaptic phosphoproteins associated with synaptic 

vesicles (SVs) (Fig. 13) where they constitute approximately 10% of the total SV protein 

(Navone et al., 1984; De Camilli and Greengard, 1986; Sudhof et al., 1989; Greengard et 

al., 1993) and approximately 0.4% of the total protein content in a mammalian brain 

(Goelz et  al., 1981). Synapsins are evolutionarily conserved proteins and are abundant at 

the presynaptic terminals in most neuronal cells but are absent in cells with ribbon 
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synapses which are generally found in neuronal population involved in sensory 

transduction (see review Cesca et al., 2010). The synapsin gene locus in several species 

has a nested tissue inhibitor of metalloproteinases gene (Timp). In vertebrates, three genes 

(synapsin I, II, and III) code for at least six isoforms (De Camilli et al., 1983a; Sudhof et 

al., 1989; Esser et al., 1998; Hosaka and Sudhof, 1998a, b; Kao et al., 1998; Hosaka et al., 

1999; Hosaka and Sudhof, 1999). 

FIGURE 5 Specific decoration of synaptic vesicles by 
anti-synapsin I immunoferritin. The micrographs were 
obtained from agarose blocks containing synapto- 
somes fixed in nonlytic conditions. The two synaptic 
vesicles shown have leaked out of nerve endings and 
appear to have been cross-linked by the fixation to 
other vesicular structures. Free synaptic vesicles (not 
cross-linked to other structures) were never observed 
in our preparations. We assume that, due to their small 
size, they were not retained by the agarose meshwork. 
a and b, x 220,000. 

FIGURE 6 Morphometric analysis of immunoferritin labeling of nerve endings processed according to various experimental 
procedures. Synaptosomal preparations were fixed either in nonlytic or in lytic conditions, agar-embedded, incubated in the 
absence or presence of 0.5% saponin, and then immunoferritin-labeled. Control IgG (Rb) or anti-synapsin I IgG (Rb) was used at 
the primary antibody step of the immunolabeling. For EM analysis, randomly taken micrographs, including 100 nerve endings for 
each experimental condition, were used. Nerve endings were grouped into two major classes (well-preserved nerve endings or 
disrupted nerve endings) according to the following characteristics: well-preserved nerve endings were those with a continuous 
plasma membrane and a dense appearance as indicated either by the close apposition of synaptic vesicles, or by the presence of 
a dense cytoplasmic matrix, or by both. They are represented in the figure by solid circles. Disrupted nerve endings were those 
with a clear (empty) cytoplasm and dispersed vesicles. They are represented in the figure by open circles. The few nerve endings 
that were difficult to classify (for instance, having an interrupted plasma membrane but a rather dense cytoplasmic matrix) are 
represented in the figure by open triangles. Clusters of free synaptic vesicles that were not clearly part of a nerve ending remnant 
were not included in the count. The total number of ferritin particles and the total number of synaptic vesicles were counted for 
each nerve terminal. The ratios of these two numbers for individual nerve endings are presented in the figure. All values plotted 
in the stippled area are zeros. Data reported in columns A, B, D, and E were obtained from four agarose blocks cut out from a 
single synaptosome-agarose gel. The two blocks used for the data reported in columns C and F were also obtained from a single 
gel. 

the detergent treatments indicated that a large proportion of 
these endings were still poorly accessible or not accessible to 
free ferritin, even though their membranes had been permea- 
bilized (not shown). Lack of immunolabeling or poor immu- 
nolabeling in these endings could, therefore, be attributed even 
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in this case to poor penetration of marker molecules rather 
than to an absence of synapsin I. The lack of penetration by 
macromolecules, together with the dense cytoplasmic matrix 
visible in these endings, suggests the presence of a tight network 
of fLxative-cross-linked cytosolic proteins. Such cross-linking 
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Fig. 13: Localization of synapsins on synaptic vesicle surface in a vertebrate synapse 

by immunoferritin labeling. In the left image, arrow heads mark the synapsins and 

arrow points to the vesicle and in the right image, dark spots mark the synapsin and 

the arrowhead marks the synaptic cleft. Scale bar on the right image 0.37 µm. 

(modified from De Camilli et al., 1983b)

 In humans, the synapsin III gene locus codes for atleast 6 different transcripts 

(synapsin IIIa–IIIf) by alternative splicing (Porton et al., 1999). The synapsin isoforms 

IIIa-IIId are brain specific and the IIId isoform is only expressed in the human fetal brain 

(Porton et al., 1999). The synapsin isoforms IIIe and IIIf are expressed only in non-

neuronal tissues by the presence of an alternative promoter in an intron of the synapsin III 

gene locus (Porton et al., 1999).

 Recently, vertebrate synapsins have also been found in non-neuronal cells, e.g. 

chromaffin cells, pancreatic β cells, epithelial cells etc. (see review Cesca et al., 2010).

Introduction

30



1.7.2 Structural analysis of synapsins

 All the different isoforms of vertebrate synapsins have a highly conserved central 

domain known as the C-domain and a fairly conserved NH2-terminal A-domain and a 

COOH-terminal E-domain (Sudhof et  al., 1989; Kao et  al., 1999) (Fig. 14). The domain E 

is present in ‘a’-type synapsin isoforms (Ia, IIa and IIIa) but not in the ‘b’-type isoforms 

(Ib and IIb) (Sudhof et al., 1989; Kao et al., 1999). Domain D is composed of basic and 

neutral non-polar residues like glycine and proline (see review De Camilli et al., 1990).Synapsin domains

•   Only ‘A’, ‘C’ and ‘E’ domain are conserved in 
Drosophila.
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Fig. 14: Conserved domains of vertebrate synapsins. Domains A, C and E are highly 

conserved across different isoforms.

 Human synapsin IIIa has A, B, C, J and E domains whereas IIIb and IIId have 

only the A, B and C- domains and the IIIc isoform has A, B, C and a short J-domain. The 

isoforms IIIe and IIIf have no conserved domains (Porton et al., 1999).

1.7.3 Biochemical properties of vertebrate synapsins

 In vitro experiments with different isoforms of vertebrate synapsins demonstrate 

that the central  C-domain of synapsins binds to ATP with high affinity and with different 

prerequisites, synapsin I-ATP interaction is dependent on Ca2+; for synapsin II, interaction 

with ATP is independent of Ca2+ and for synapsin III, presence of Ca2+ is inhibitory for 

interaction with ATP (Esser et al., 1998; Hosaka and Sudhof, 1998a, b). Structural 

analysis of recombinant protein consisting of domain C of vertebrate synapsin I has 

revealed that it has high structural similarities to ATPase enzymes like glutathione 
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synthetase. These enzymes breakdown ATP to ADP and in the process release 

orthophosphate and energy which drives other biochemical reactions. 

 Isoforms of vertebrate synapsins form multimers by  interacting through their C 

and E domains (Hosaka and Sudhof, 1999; Monaldi et  al., 2009). The formation of 

synapsin I, II and III heteromultimers is essential for synapsin III protein stability and in 

the synapsin I/II double knock-out mouse the levels of synapsin III is reduced by  50% 

(Hosaka and Sudhof, 1999). In vitro analysis of recombinant synapsin domain E 

containing peptide demonstrates their involvement in interaction with synapsin isoforms I 

and II and formation of dimers (Monaldi et al., 2010). 

 Vertebrate synapsins have an isoelectric point around 6 to 8 (basic) (John et al., 

2007; Kang et al., 2009).

 

1.7.4 Role of vertebrate synapsins at the synapse

 In vertebrates, it has been demonstrated that  synapsins are required for constant 

release of vesicles during conditions of high neuronal activity, a mechanism related to 

short-term plasticity  (Pieribone et al., 1995). It was shown by video-microscopy that 

dephosphorylated synapsins anchor synaptic vesicles to the actin-based cytoskeleton 

thereby maintaining a reserve pool of vesicles near the release sites (Ceccaldi et  al., 

1995). Synapsins have also been implicated in other forms of short-term plasticity, such 

as post-tetanic potentiation (Rosahl et al., 1995; Humeau et al., 2001), and in modulating 

a post-docking step of the release process (Hilfiker et al., 1998; Humeau et al., 2001). 

Vertebrate synapsin I is preferentially  expressed in inhibitory synapses whereas synapsin 

II is mainly expressed in excitatory synapses (Mandell et al., 1992). Vertebrate synapsin I 

is exclusively found on the surface of small SVs but absent from the surface of large 

dense core vesicles (De Camilli et al., 1983b; Huttner et al., 1983; Navone et al., 1984).

 Vertebrate synapsins have been shown to bind lipid and protein components of 

synaptic vesicles in a phosphorylation-dependent manner (Schiebler et al., 1986; 

Benfenati et al., 1989a; Benfenati et al., 1989b). Synapsins also bind to various 

Introduction

32



cytoskeletal proteins, including actin, spectrin, and microtubules (see review Cesca et  al., 

2010; Baines and Bennett, 1985; Bennett et al., 1985; Baines and Bennett, 1986; Bennett 

et al., 1986; Bahler and Greengard, 1987; Petrucci and Morrow, 1987; Benfenati et al., 

1992; Hurley et al., 2004). Biochemical approaches have shown that domains C and E 

bind to a presynaptic actin scaffold and thus maintain a synaptic vesicle pool in the 

periphery of the plasma membrane, whereas the domain A regulates neurotransmitter 

release in a phosphorylation-dependent manner (Hilfiker et al., 2005). 

 

 Phosphorylation of vertebrate synapsin I changes its confirmation and plays a role 

in synapsin function as vesicle tethering proteins (Benfenati et al., 1990). Synapsin I 

interacts with Rab3A, an effect  that is weakly dependent on phosphorylation by PKA or 

MAPK/Erk at site 1 and sites 4-6, respectively. The interaction stimulates GTP binding, 

GTPase activity and association of Rab3A with synaptic vesicles (Giovedi et al., 2004a; 

Giovedi et al., 2004b). Rab3A on the other hand, inhibits the interactions of synapsin I 

with actin and the synapsin-induced phospholipid vesicle aggregation (Giovedi et al., 

2004a; Giovedi et al., 2004b). 

1.7.4.1 Phosphorylation dependent interaction and function of vertebrate synapsin

 

 Synapsin is a substrate for several protein kinases like PKA, CaMKs, Src, cdk and 

MAPK/Erk, which modulate its biochemical properties. One of the first reported substrate 

of Ca2+/Calmodulin dependent protein kinase was synapsin I (Schulman and Greengard, 

1978). Protein kinase A (PKA) and Ca2+-calmodulin-dependent protein kinase-I or IV 

(CaMK-I/IV) phosphorylate at Ser-9 in domain A of rat, mouse and human synapsin I, II 

(Ser-10) and III (P-site 1; Hosaka et al., 1999; Fiumara et al., 2007). CaMK-II 

phosphorylates Ser-566 and Ser-603 (P-sites 2 and 3) in domain D of rat synapsin I. 

Synapsin II is phosphorylated only at P-site 1 and not at P-site 2 and 3 as it does not 

posses the consensus motif (Sudhof et al., 1989). P-sites 4 and 5 (Ser-62 and Ser-67 

respectively) in domain B of rat, human and mouse synapsin I are phosphorylated by 

extracellular signal-regulated kinases Erk-1(p44) and Erk-2(p42) of the mitogen-activated 

protein kinase (MAPK) superfamily  (Jovanovic et al., 1996). P-site 6 (Ser-549 in rat 

synapsin I or Ser-551 in mouse, human and bovine synapsin I) in domain D is 
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phosphorylated by MAPK, as well as by cyclin-dependent kinase cdk-1 and cdk-5 

(Jovanovic et al., 1996). P-site 7 (Ser-551) in domain D is phosphorylated only by 

cdk-5 (Jovanovic et al., 1996). P-site 8 (Tyr-301) in domain C of human, rat and bovine 

synapsin I is phosphorylated by Src kinase (Onofri et al., 2007). P-site 9 in domain E of 

rat synapsin Ia is phosphorylated by phosphoinositide 3-kinase, ATM (Li et  al., 2009) (see 

Fig. 15a, b and c). Phosphorylation sites apart from the ones discussed above have been 

identified and verified in large scale proteome analyses by mass spectrometry  (Ballif et 

al., 2004; 2006; 2008; Trinidad et al., 2005; 2006; 2008; Munton et al., 2007; Tweedie-

Cullen et al., 2009). As a general scheme, the phosphorylation sites were identified from 

tissue homogenates of mouse, rat or bovine samples by MS and subsequently  verified by 

treating the samples with alkaline phosphatase and again performing MS to determine a 

shift in mass equivalent to that of a phosphate group (79 Da).

 

1.7.4.2 Phosphorylation dependent interaction of vertebrate synapsins with synaptic 

vesicles and components of the cytoskeleton

 Vertebrate synapsin I interacts with protein components of the vesicles via domain 

C and this interaction is susceptible to phosphorylation (Benfenati et  al., 1989a). It also 

interacts in an phosphorylation dependent manner with several components of the 

cytoskeleton like F-actin and microtubules (Bahler and Greengard, 1987; Petrucci and 

Morrow, 1987, 1991). Phosphorylation of synapsin I at sites 1, 2 and 3 causes complete 

dissociation of synapsin I from actin whereas dephosphorylation at site 2 and 3 causes 

strong interaction and bundling of F-actin (Petrucci and Morrow, 1987). Synapsin I 

mediated G-actin polymerization and bundling of actin filaments is altered by MAP 

kinase-dependent phosphorylation of synapsin I (Jovanovic et al., 1996). 

 Phosphorylation specifically at site 2 and 3 and not at site 1 causes conformational 

changes in synapsin I (Benfenati et al., 1990) and reduces the affinity  of synapsin towards 

synaptic vesicles by approximately 5 fold whereas phosphorylation at  site 1 reduces the 

affinity only  slightly (Schiebler et al., 1986). Biochemical and optical studies suggest that 

dephosphorylated synapsins cage synaptic vesicles and prevent the release of 

neurotransmitter, while synapsin phosphorylation initiates vesicle mobilization and 
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priming (Greengard et al., 1993; Chi et al., 2001). Phosphorylation at site 8 (Y301) of 

synapsin I by  Src kinase increases synapsin dimer formation and the interactions with 

SVs and actin are also enhanced (Messa et al., 2010).

0 75 150 225 300 375 450 525 600 675

S91

S39
,

S55
, T

56
, 

S62
4 , S

67
5 ,

 S70
, S

71

T87 S10
3

Y30
18 , 

Y31
2

T33
7, 

T33
9 

S34
1 S39

0, 

S39
1

S42
7, 

S43
2 S

43
4, 

S43
6-4

38
,

T44
8, 

S44
9

S51
0, 

S51
2, 

S52
0, 

T52
6

S54
96 , S

55
17 , 

S56
62 , 

S60
33

S66
4, 

S66
6, 

T66
8

S68
29 , S

69
9, 

S70
5

SYN I

A B C D E

F

Fig. 15a: Mammalian synapsin I has 9 characterized phosphorylation sites as shown 

in red, the superscripts refer to the order of identification and charachterization of 

these sites (see review Cesca et al., 2010). By mass spectrometry (MS) 30 more sites 

have been identified (Ballif et al., 2004; 2006; 2008; Trinidad et al., 2005; 2006; 2008; 
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(Hosaka et al., 1999; Trinidad et al., 2006; 2008; John et al., 2007; Onofri et al., 

2007).
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Fig. 15c: Mammalian synapsin III has only 1 phosphorylation site characterized so 

far, as shown in red. The 6 sites shown in blue are uncharacterized and inferred 

from sequence similarity with synapsin I. The rest 11 sites have been identified by 

MS. Synapsin III is demonstrated to have 6 different isoforms but only isoforms a-d 

are expressed in neuronal cells (Kao et al., 1998; Hosaka et al., 1999; Porton et al., 

1999; 2004; Ballif et al., 2006; Trinidad et al., 2006; 2008; Munton et al., 2007).
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 Phosphorylation at sites 1-3 in vertebrate synapsin is selectively dephosphorylated

by phosphatase PP2A. The sites 4-7 are dephosphorylated by PP2B or calcineurin. The 

influx of Ca2+ causes the inactivation of PP2A but activation of PP2B. Phosphorylation at 

sites 1-3 rapidly  increases upon Ca2+ influx on depolarization. It has been suggested that 

the dephosphorylation at sites 4-7 can play a role in SV endocytosis as the situation is 

comparable to the phosphorylation/dephosphorylation cycle of dynamin I, synaptojanin 

and amphiphysin I and II proteins which are involved in SV endocytosis (see review 

Cesca et al., 2010).  

1.7.5 Other PTMs in vertebrate synapsin

Fig. 16: PTMs in vertebrate synapsin (see review Cesca et al., 2010). 

 Vertebrate synapsin I and II are shown to contain several other PTMs apart from 

phosphorylation. The second major PTM  of vertebrate synapsin I and II after 

phosphorylation is O-linked N-Acetylglucosamine which is usually  clustered around the 

serine and threonine residues which are phosphorylated. Fucosylation is another PTM 

observed in vertebrate synapsin Ia and Ib. Isoaspartate formation is spontaneous and 

ubiquitous process, this PTM is kept under check by  the action of l-Isoaspartyl 

Methyltransferase (PIMT). Mouse homozygous mutants of PIMT have increased amount 

of isoaspartate synapsin and a selective expression of PIMT in neuronal cells rescues this 

phenotype (Fig. 16) (see review Cesca et al., 2010).
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1.7.6 Analysis of synapsin mutants

 Loss or disruption of synapsin I function in mouse increases synaptic depression, 

indicating that synapsins are required to sustain neurotransmitter release during high 

levels of neuronal activity (Li et al., 1995; Rosahl et al., 1995; Takei et al., 1995; Hilfiker 

et al., 1998; Chi et al., 2001; Humeau et al., 2001; Gitler et al., 2008). Synapsin I KO also 

decreases the number of vesicles in the periphery  of the active zone, suggesting that 

synapsins participate in transmitter release by regulating a reserve pool of synaptic 

vesicles. Synapsin I KO mouse show increased propensity for epileptic seizures (Li et al., 

1995). Synapsin II KO and synapsin I and II double KO have normal paired pulse 

facilitation (PPF) and lowered potentiation after tetanic stimulation (PTP) whereas only 

synapsin I KO have increased PPF but  normal PTP (Silva et al., 1996). Synapsin II KO 

and synapsin I, II double KO mice have impaired learning and short  term plasticity in fear 

conditioning experiments (Silva et al., 1996). Also, the levels of synaptotagmin (I and II), 

synaptophysin I, synaptoporin II, synaptobrevin II, SV2 and synapsin II are reduced 

significantly in synapsin I and synapsin I/II double KO mouse. In synapsin II KO only the 

levels of synaptophysin I, synaptobrevin II, SV2 and synapsin I are reduced (Rosahl et 

al., 1995). The levels of Rab5a are increased significantly  in synapsin I, II and double KO 

mice (Rosahl et al., 1995). Rab3A deletion rescues epileptic-like seizures in mouse, 

typical for synapsin II KO animals, as observed in a double KO mouse for synapsin II and 

Rab3A (Coleman and Bykhovskaia, 2010).

1.7.7 Synapsin related human disorders

 Synapsin I content is altered in hippocampus of Alzheimer patients (Perdahl et al., 

1984; Qin et al., 2004). In patients with bipolar disorder and schizophrenia a reduction in 

levels of synapsins II and III in hippocampus is observed (Vawter et  al., 2002). 

Polymorphisms in human synapsin III gene locus in certain population (from Italy) can 

lead to multiple sclerosis (MS) and has led to the speculation that synapsin III plays a role 

in MS (Liguori et al., 2004; Akkad et al., 2006). A family with history  of epilepsy was 

found to have a nonsense mutation in the synapsin I gene which is likely to cause 

synapsin mRNA degradation (Garcia et al., 2004). The synapsin II gene locus is found to 

Introduction

38



be highly susceptible to variations in sporadic cases of epilepsy (Lakhan et al., 2010; 

Cavalleri et al., 2007).

1.7.8 Drosophila synapsin

 In Drosophila, a single synapsin (Syn, CG3985) gene codes for atleast 5 different 

isoforms which are divided into two groups: the shorter (70-80 kDa) and the longer 

isoforms (~143 kDa) (Klagges et al., 1996). The longer isoform which is generated with 

an efficiency  of 20-25% by read through of an in-frame amber stop codon codes for a 

proline rich region (see Results section). As in vertebrate synapsin, the domains A, C and 

E are conserved with highest  degree of conservation in the central C-domain (Fig. 17)

(Klagges et al., 1996). Apart from the ubiquitous expression in the larval and adult  brain, 

synapsin is localized in type I but not in type II and III synaptic boutons at larval 

neuromuscular junctions (Godenschwege et al., 2004).

 In mammals and other vertebrates the domain ‘A’ of synapsin contains the P-site 1 

(consensus amino acid sequence RRXS) that has been identified as a target site for PKA/

CaMK-I/IV. In Drosophila, this motif is encoded in the genome, but the enzyme 

adenosine deaminase acting on RNA (ADAR) edits the majority  of RNAs such that the 

conserved kinase recognition motif in domain ‘A’ is modified (Diegelmann et  al., 2006). 

ADAR catalyzes the conversion of a single base (A to G) and thus alters the predicted 

phosphorylation site to RGFS. In an in vitro phosphorylation experiment with an undeca-

peptide containing the genome-encoded motif (RRFS) is readily  phosphorylated by 

bovine PKA but the edited motif (RGFS) is not (Diegelmann et al., 2006). The majority 

of synapsins in Drosophila is not phosphorylated by  PKA in the ‘A’ domain. Whether a 

second RRXS site in Drosophila synapsin is accessible to PKA, and whether the protein 

is a substrate for other kinases is not known.
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Fig. 17: Conserved domains of Drosophila synapsin. The shorter isoforms are 

around 70-80 kDa whereas the longer isoforms are ~143 kDa. The proline rich 

region is coded by amber codon read through (Klagges et al., 1996).

depression, and inhibitory postsynaptic currents are greatly reduced
(Feng et al., 2002). Recent real-time imaging experiments using
cultured neurons expressing GFP-labelled synapsin I showed that
during nervous activity this fluorescent construct dissociates from
synaptic vesicles and disperses into axonal compartments at a rate
proportional to the rate of vesicle fusion, and that vesicle
mobilization by synapsin I is controlled by multiple signalling
pathways involving synapsin phosphorylation by different kinases
(Chi et al., 2001, 2003).
We have previously cloned and characterized an invertebrate

synapsin gene in Drosophila melanogaster (Klagges et al., 1996).
Here we determine the N terminus of the protein, present further
details on the Drosophila synapsin locus, and for the first time report
the consequences of the elimination of all synapsin isoforms from an
otherwise intact animal by the generation and characterization of
Drosophila synapsin null mutants.

Materials and methods

Preparation of immunoaffinity column

Hybridoma supernatants were diluted 1 : 1 with 50 mm Na2HPO4 ⁄
NaH2PO4 pH 6.7 and applied to a protein G-Sepharose column.
After extensive washes the column was eluted with 100 mm Na-
citrate pH 2.5 and the antibodies applied to a PD-10 column, eluted
with 50 mm Tris-HCl, pH 7.9, bound to a MonoQ Column and
eluted with 50 mm Tris-HCl, pH 7.9, 0.5 m NaCl. The purified
antibodies were again bound to a protein G-Sepharose column and
cross-linked with 20 mm dimethyl pimelimidate, according to
Schneider et al. (1982).

Purification of Drosophila synapsins

Roughly 560 000 Drosophila heads (56 g) were prepared by
mechanical agitation of frozen flies ()70 !C) to dislodge heads from
thoraces, followed by sieving to separate heads from other body parts.
Heads (100 mg ⁄mL) were homogenized on ice using a motor-driven
Teflon-on-glass homogenizer in homogenization buffer (50 mm
Na2HPO4 ⁄NaH2PO4 pH 6.7, 5 mm EDTA, 0.5% Brij 35, 1 mm
PMSF). Homogenates were centrifuged at 3000 · g for 1 h at 4 !C.
The supernatant was then centrifuged at 100 000 · g for 1 h at 4 !C.
The resulting supernatant was loaded onto the affinity column,
washed, and the bound material eluted with 100 mm Na-citrate,
pH 2.5 and analysed on a 10% SDS-gel.

Transposon mutagenesis, remobilization of P-element
transposon and generation of jump-out mutants

The mutagenesis procedure employing the P-element transposon
P(w+) (Bier et al., 1989) has been reported in detail elsewhere (Walter,
1992; Eberle et al., 1998). Briefly, nonautonomous marked P-trans-
poson constructs [P(w+)] are remobilized by crossing the flies with a
transgenic line containing a source of active transposase. Due to
bacterial plasmid elements in P(w+), genomic sequences flanking the
insertion site can be amplified and hybridized to a labelled probe of the
gene of interest thus identifying insertions in this gene. By this
mutagenesis the P-insertion strain SynP1 was isolated, which carries a
P(w+) transposon 5¢ of the synapsin gene (Fig. 1; Klagges, 1995).
Remobilization of P-elements and screening for insertions in nearby
chromosomal sites has been described previously (Tower et al., 1993).
In Southern blots genomic DNA of 1300 strains digested with EcoRI
were screened for a new insertion with probes from the synapsin locus.
One strain (SynP1+P2) carrying a replicative insertion of the P-element
in intron 9 of the synapsin gene was found (Fig. 1). As neither
P insertion affected the open reading frame of the synapsin gene, a
‘jump-out’ mutagenesis was performed. In a fraction of transposition
events sequences adjacent to a remobilized P element are deleted from
the chromosome. By subjecting the strain SynP1+P2 to this procedure
deletions in the synapsin gene were generated. A screen of 453
double-jump-out lines in Western blots with the monoclonal antibody
SYNORF1 (Klagges et al., 1996) for altered or absent synapsin
expression resulted in 77 strains with deletions in regulatory and ⁄ or
coding regions of the Syn gene. In several strains other genes are also
affected.

Immunhistochemistry

The procedure used for immunostaining frozen sections of Drosophila
has been described elsewhere (Buchner et al., 1986). Briefly, flies were
fixed for 3 h in 4% paraformaldehyde and washed overnight in 25%
sucrose solution. Sections were cut on a cryostat mircrotome at 10 lm
thickness and incubated at 4 !C with the monoclonal antibody (MAB)
SYNORF1 at a dilution of 1 : 100. The staining procedures followed
the protocol of the biotin-avidin-peroxidase system (Vector Laborat-
ories). Larval neuromuscular staining essentially follows the proce-
dure given by Budnik et al. (1990). Late third instar larvae were
dissected in Ca+-free saline (130 mm NaCl, 36 mm sucrose, 5 mm
KCl, 5 mm HEPES, 4 mm MgCl2, 0.5 mm EGTA), fixed for 90 min
in ice-cold 4% paraformaldehyde in PEM buffer (0.1 m PIPES, 2 mm

Fig. 1. Genomic organization of the synapsin locus of wild-type and mutant Drosophila. The P1-element is inserted upstream of nucleotide 28968 of the BDGP
contig AE003686, which contains a transposon insertion (hatched). The P2-element is located in intron 9 of the Syn gene and in intron 1 of the Timp gene. In the
Syn97, Syn79, and Syn168 mutants 1397 bp, c. 10 000 bp, and 10 bp, respectively, are deleted. Also shown is the new exon-intron structure of the Syn gene and the
location and orientation (arrow) of the Timp gene. Syn79 contains an unrelated EcoRI – EcoRI fragment of unknown origin.

612 T. A. Godenschwege et al

ª 2004 Federation of European Neuroscience Societies, European Journal of Neuroscience, 20, 611–622Fig. 18: Syn gene of Drosophila, comprises of 14 exons. The null alleles Syn97 and 

Syn79 were generated by mobilizing the P1 P-element (from Godenschwege et al., 

2004).

 As in vertebrates, the precise mode of action of synapsin is unknown in flies. The 

Drosophila Syn97 null mutants were generated by remobilizing a P-element (P1, Fig. 18). 

The Syn97 deletion obtained by this P-element mutagenesis does not affect the coding 

region but has a deletion of 1397 bp, which disrupts the predicted promotor and the 

transcription start site, the first exon (207 bp), and part of the first  intron (841 bp) 

(Godenschwege et al., 2004). The Syn79 deletion line has ~7 kb deletion which spans the 

first seven exons (Godenschwege et  al., 2004). The Syn97 null mutant adult flies do not 

show any immediately visible phenotypes but, adult locomotor activity and complex 

behavior like optomotor responses at high pattern velocities, wing beat frequency, and 

visual pattern preference are modified (Godenschwege et al., 2004). In Drosophila larvae, 

Syn97 null mutants have ~50% reduced olfactory associative learning when compared to 

wild-type CS (Michels et al., 2005). Recently it has been shown that the anesthesia 

sensitive component of olfactory  associative memory of adult Syn97 mutants is impaired  

while the anesthesia resistant memory component is unaffected (Knapek et al., 2010).
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 The distribution and morphology of vesicles is unaltered in type I synaptic 

boutons of Syn97 null mutants (Godenschwege et al., 2004) (Fig. 19). A recent FM1-43 

dye uptake study on third instar larval NMJs of Drosophila Syn97 and Syn97CS (cantonized 

Syn97 , by outcrossing with CS) has revealed that stimulation of motor neuron by light K+ 

concentration or 15 min electrical stimulation at 3 Hz, the dye taken up is homogeneously 

spread over the presynaptic bouton and not localized to the periphery  as observed in WT 

boutons thus implying that the localization of vesicles in recycling pool at Drosophila 

presynaptic boutons of NMJs is disrupted in the absence of synapsin (Akbergenova and 

Bykhovskaia, 2007). When NMJ preparations were treated with cyclosporin A which 

increases endocytosis by inhibiting calcineurin the dye loading was not as prominent in 

Syn97 and Syn97CS mutants as in WT suggesting that the quantity of vesicles in the reserve 

pool is diminished in the mutants (Akbergenova and Bykhovskaia, 2007). 

 

 

  
 

7 

active zone, and the exocytosis of SVs appeared to be unimpaired [15]. 

As determined electrophysiologicaly, the major phenotype in the triple 

knockout mice consisted of changes in short-term synaptic plasticity [14, 

15]. Long-term synaptic plasticity, however, was unaffected [17]. These 

results indicate that the primary function of synapsins is to maintain a 

stable pool of SVs that can be rapidly recruited during the processes of 

synaptic plasticity. These findings in intact vertebrates correlate well with 

the in vivo imaging data of redistributed GFP-labelled Synapsin during 

stimulation obtained from cultured neurons [18, 19]. 

 

In the case of flies, when the EM preparations of synaptic terminals 

at the neuromuscular junction (NMJ) of larval Syn97 null mutants [20]  

were analysed, no obvious structural differences to wild type preparations 

were observed.  

 

    

Fig. 5: Synaptic vesicle distribution in wild type and synapsin null mutant [20] 
 
 

The Drosophila Syn97 null mutants [20] do not show any visible 

phenotypes but have been shown to be impaired in complex behaviour 

[20, 21], Adult locomotor activity, optomotor responses at high pattern 

velocities, wing beat frequency, and visual pattern preference are 

modified [20]. On the other hand, in flies a similar redistribution 

phenotype as seen in vertebrates is yet to be observed. A recent report 

suggests that, in Drosophila larvae, synapsin has a major role in 

associative olfactory conditioning but is not required for the general function are not significantly modified by the lack of synapsins we
conducted an extensive search for systemic defects in nervous system
function as revealed by behavioural abnormalities of the mutants.
Synapsin function in larval olfactory learning is analysed in a separate
investigation (B. Michels and B. Gerber, unpublished observations). In
adults we tested basic phenomena related to flight and walking,
responses to visual stimuli, simple forms of plastic modifications, and
learning and memory in several different paradigms. First, we noted
that wing beat frequency during tethered flight is significantly
increased in the ‘cantonized’ (see below) synapsin null mutant
Syn97CS compared to the wild-type Canton-S (Fig. 5A). This indicates
that a central pattern generator or sensory feedback loops involved in
regulating wing beat frequency are affected by loss of synapsins. As a

second motor paradigm we recorded walking activity of individual
flies in a small dark chamber equipped with a light gate (Martin et al.,
1998) for 4.5 h and compared the control strain SynP1 (wild-type
synapsin expression) and the synapsin null mutant Syn97. The total
number of light gate crossings taken as a measure of total walking
activity is significantly higher in the synapsin mutant than in wild-type
(P < 0.0005, one-way anova) (Fig. 5B inset). Control experiments
showed that this difference is robust against changes in genetic
background or expression levels of the white gene (data not shown).
To further investigate the increase in total activity, the time course was
plotted by determining walking activity separately for each successive
10-min period. It was previously shown that the time course consists
of two components, an early phase lasting 60–120 min in which the

Fig. 3. Synapsin is localized in type I synaptic boutons but their number and ultra-structure are not disturbed in synapsin null mutants. (A and B)
Immunohistochemical double staining of a preparation of larval body wall muscles 12 ⁄ 13 with antisynaptotagmin antiserum (A) and antisynapsin monoclonal
antibody (MAB SYNORF1; B) shows that all bouton types are identified by the antisynaptotagmin antibody but boutons of type II and III (arrows in A) do not
contain detectable amounts of synapsin. (C and D) The total number of synaptic boutons on muscles 12 ⁄ 13 (C) and 6 ⁄ 7 (D) in body segments 1 (left 3 columns)
and 2 (right 3 columns) was determined for wild-type (WT) and Syn79 and Syn97 mutants. No significant difference between wild-type and the mutants is observed
when bouton numbers are normalized to muscle surface area. Error bars in this and all following figures are standard error of the mean (SEM). The number of larvae
evaluated in each group was n ¼ 9 (P > 0.1, t-test). (E and F) No qualitative differences in the extensive subsynaptic reticulum, the prominent T-shaped synaptic
ribbons (arrows), or the distribution of clear synaptic vesicles are observed in electron micrographs of active zones of wild-type (WT) and Syn97 type Ib synaptic
boutons. Calibration bar, 300 nm. (G) Comparison of synaptic vesicle (SV) counts for wild-type (WT) and Syn79 and Syn97 mutants. The number of SV in the
immediate vicinity of the T–shaped synaptic ribbon (0.25 lm2 circle in inset) (left panel), a larger area (0.5 lm2 circle) (middle panel), and the difference between
the two areas (right panel) are shown. The statistically significant difference between the two Syn mutants for the zone between outer and inner circle cannot easily be
interpreted. The number of active zones evaluated are n ¼ 17, 8, and 35 for wild-type, Syn79 and Syn97, respectively.

616 T. A. Godenschwege et al

ª 2004 Federation of European Neuroscience Societies, European Journal of Neuroscience, 20, 611–622

Fig. 19: The distribution of synaptic vesicles in wild type and Syn null mutant is not 

altered (Godenschwege et al., 2004). The EM image for Syn79 is not shown.

 After bafilomycin treatment which blocks SV refilling, EPSPs from NMJs of 

Syn97 null mutants show faster depression when compared to WT, supporting the 
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conclusion that  Syn97 null mutants have a smaller number of vesicles in the reserve pool 

to replenish the recycling pool (Akbergenova and Bykhovskaia, 2007).

1.8 Synapse associate protein of 47 kD (SAP47)

 

 SAP47 is a novel conserved protein of unknown function which was identified by 

screening a Drosophila cDNA expression library with monoclonal antibody nc46 

(Reichmuth et  al., 1995). This antibody was selected from a hybridoma library generated 

by A. Hofbauer (Hofbauer, 1991; Hofbauer et al., 2009), because it binds to all synaptic 

terminals of the Drosophila nervous system. The MAB nc46 stains a prominent  protein of 

47 kD on Western blots (Fig. 21) and it recognizes a protein of similar size in various 

other diptera (Reichmuth et al., 1995). The gene was cloned and by comparing the 

encoded amino acid sequence with the protein databases SAP47 was found to be 

conserved among various species like mouse, C.elegans etc, but so far no strong 

homology  has been observed to known proteins (Reichmuth et al., 1995). Thus, the 

primary structure of this novel brain protein gives no clue about its functions. The SAP47 

protein does not contain any domains defined by Prosite patterns that could be indicative 

of a specific function or molecular interaction, however SAP47 shares a novel domain 

(termed BSD) with the transcription factors BTF2/TFB1 and DOS2-like proteins of 

various species (Doerks et al., 2002) but the role of this domain remains unclear.

The gene structure of the Sap47 gene as given in flybase (released May 28th, 2010) is 

shown in Figure 20.
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Fig. 20: Sap47 gene (from flybase.org).

 The process of alternative splicing produces 8 different mRNAs encoding five 

predicted proteins (Fig. 20). However, in Western blots at least 9 different  isoforms are 

detected (see Fig. 21 Funk et al., 2004).

 Using a P-element insertion line from the Berkeley  Drosophila Genome Project 

the Sap47156 null mutant was generated by  jump-out mutagenesis. In this mutant the 

deletion comprises 110 base pairs in 3’ UTR of the upstream adjacent gene black pearl 

(blp), 170 base pairs between blp and the Sap47 transcription start site, the entire first 

exon including the 5’ UTR and the translation start site, and 220 base pairs of the 1st 

intron of the Sap47 gene (Funk et al., 2004). Two other alleles from the same 

mutagenesis, Sap47201 and Sap47208, have not been analyzed in detail.

 

 

  
 

4 

Using a P-element insertion line from the Berkeley Drosophila 

Genome Project the Sap47156 null mutant was generated (by jump-out 

mutagenesis technique [4]) and it was found to have a deletion that 

comprises 110 base pairs in 3’UTR of  the upstream adjacent gene black 

pearl (blp), 170 base pairs between blp and the Sap47 transcript start site, 

the entire first exon including the 5’UTR and the translation start site and 

220 base pairs of the 1st intron of the Sap47 gene. 

 

 
Fig.3:SAP47 staining with nc46 

 

In a genome wide yeast-two-hybrid screen 13 potential interacting 

partners of SAP47 were identified. The list of potential candidates is 

tabulated below: 

 

S.no Gene ID Name 
1. CG5605 eRF1 
2. CG11180 N/A 
3. CG17903 Cyt-c-p 
4. CG2960 RpL40 
5. CG3931 Rrp4 
6. CG4104 Tps1 
7. CG4233 Got2 
8. CG4800 N/A 
9. CG5670 ATP-! 
10. CG6455 N/A 
11 CG6685 N/A 
12. CG9654 N/A 
13. CG10578 DnaJ-1 

Fig 4: SAP47 interaction candidates  
(Source: http://www.thebiogrid.org/ViewPublication/13022) 

Fig. 21:Western blot with nc46 antibody (from Funk et al., 2004).

Introduction

43



 Sap47156 null mutant flies are fertile and viable (Funk et al., 2004) but are 

impaired in associative olfactory learning behavior as studied at the larval stage 

(communication from Dr. B. Gerber).

1.9 Tools used in investigating genes and proteins of Drosophila

1.9.1 Gal4-UAS system for transgene expression

Enhancer trap Gal4 UAS transgene 
(reporter like GFP) 

Gal4
enhancer

Genomic
GFP

UAS

Gal4
enhancer

Genomic
GFP

UAS
Tissue specific expression

Gal4

⊗

Fig. 22: GAL4-UAS system. Cell specific promoter/enhancer mediated expression of 

GAL4 yeast transcription factor is used for spatial (and in some cases temporal) 

control of transgene expression which is cloned downstream of the UAS  sequence 

(modified from Brand and Perrimon, 1993). 

 GAL4 is an yeast transcription factor which selectively  binds to cis-regulatory 

sites called upstream activating sequences (UAS) and enhances transcription of the 

downstream gene. This method of bipartite gene expression control has become a 

powerful method for the expression of transgenes in Drosophila. In Drosophila, the two 

components are cloned into separate lines to permit different combinations of expression. 

The ‘driver’ line carries a GAL4 gene expressing in specific tissues and the ‘effector’ line 

has a gene of interest, e.g. a reporter gene like GFP (see Fig. 22), cloned downstream and 

under control of the UAS sites (Brand and Perrimon, 1993). If the GAL4 gene is in a P-
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element cassette which is inserted at specific regions in the genome, e.g. 5’ UTR of a 

gene X, the genomic enhancer influencing the gene X promoter would also influence the 

GAL4 promoter (generally a weak promoter) in the P-element and cause the expression 

of GAL4 similar to gene X. The GAL4 traps the enhancer expression and reflects the 

endogenous gene expression pattern. These P-element insertion lines are known as 

enhancer trap  lines. Two such lines, NP4786 and NP6285 are described in this thesis for 

investigating TBCEL expression in Drosophila.  

1.9.2 Microarray technology for transcriptome analysis

 DNA microarrays extend conventional hybridization techniques as large numbers 

of DNA fragments are attached to a substrate by  an automated process and are then 

probed by sequences of interest for complementarity  (see Fig. 23). The use of microarrays 

for gene expression profiling was first  reported in 1995 (Schena et al., 1995). The 

complete genome of yeast was the first to be assembled on a microarray chip (Lashkari et 

al., 1997), this paved the way for developing genome chips of other organisms like 

mouse, Drosophila etc. In this thesis we have used short  oligonucleotide arrays or gene 

chips from Drosophila melanogaster for analyzing differences in gene expression 

between synaptic protein null mutants and the wild-type with respect to the complete 

genome. Some facts about Drosophila gene chips obtained from (http://

www.affymetrix.com) are given below:

A. Number of transcripts: 18,953

B. Number of probe sets: 18,880

C. Feature size: 11µm

D. Probe length: 25 nucleotides

E. Probe pairs/gene: 14

F. Hybridization controls: bioB, bioC, bioD from E. coli and cre from P1 bacteriophage

G. Poly-A controls: dap, lys, phe, thr, trp from B. subtilis

H. Housekeeping/Control genes: Actin (Actin42A), GAPDH (Glyceraldehyde 3 phosphate 

dehydrogenase 2), Eif-4a (Eukaryotic initiation factor 4a)
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Fig. 23: Flow chart for a microarray experiment (from Leroy and Raoult, 2010). We 

used one color hybridization for our experiments and the two sets of samples were 

WT and mutants (in collaboration with S. Kneitz and N. Nuwal). 

1.9.3 Mass spectrometry for analysis of posttranslational modifications (PTMs)

 Prior to mass spectrometry, Edman degradation method was used for detection 

and verification of PTMs like phosphorylation. The process was very cumbersome and 

had limitations like-

A. insolubility of the phosphoamino acid products and 

B. the necessity to obtain highly purified phosphopeptides.

 Recent technological advances like coupling of HPLC with mass spectrometer/s  

for selective and controlled injection of complex peptide mixtures have made MS or 

tandem MS an ideal choice for detection and analysis of post-translational modifications 

Introduction

46



like phosphorylation. In a given protein or peptide mixture, the amount of proteins/

peptides with a specific PTM  like phosphorylation are lesser in quantity when compared 

to the total amount of protein/peptide. Thus, it becomes imperative to enrich the proteins/

peptides with the desirable PTM or begin with a larger amount of crude sample.  

 Several approaches have been reported to enrich proteins/peptides with 

phosphorylated residues (Reinders and Sickmann, 2005) :

A. Affinity enrichment of phosphorylated species, e.g., by immobilized metal-affinity 

chromatography (IMAC) on Fe3+, ZrO2 or TiO2 matrices. 

B. P-Ser/P-Thr/P-Tyr antibodies can be used to enrich phosphorylated proteins by 

immunoprecipitation. However, for Drosophila phosphorylated residues specific 

antibodies do not work well.

 In mass-spectrometric analysis, the protein sample is digested by an enzyme (e.g., 

Trypsin) or by a cocktail of several enzymes to produce short peptides (mass preferably 

lesser than 7-10 kD). The peptides are introduced into the MS in an ionized state and  

these ionic species are analyzed by the first analyzer and this produces the precursor ion 

spectrum. Through collision-induced dissociation (CID) with an inert gas like argon these 

ionic species are fragmented to produce product  ions, which are analyzed using a second 

mass analyzer. Under these conditions, a phosphopeptide produces two types of product 

ions namely  PO3- and PO2- with masses of 79 Da and 63 Da respectively. The presence of 

these phosphorylations is further verified by running the sample again but  after treatment 

with alkaline phosphatase to remove all phosphorylation and thus in this sample we 

practically  do not observe product ions at 79 Da and 63 Da (Annan et al., 2001; Steen et 

al., 2001; Zappacosta et al., 2002). The Figure 24 describes a nano-LC-MS/MS method 

(direct coupling of a high performance liquid-chromatography system to a mass 

spectrometer) for determining phosphorylation sites from a peptide mixture generated by 

in-gel digestion.
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Drosophila heads

1-D

Fig. 24: LC-ESI MS/MS  method for determining phosphorylation sites from a 

peptide mixture generated by in-gel digestion (modified from John et al., 2007). We 

performed the nano-LC-ESI-MS/MS  after multienzyme digestion of gel extracted 

immunoprecipitated sample. The PTMs obtained were validated by MASCOT 

software.
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2. MATERIALS

2.1 Fly rearing

 The flies were grown in large or medium sized vials containing yeast, agar and 

corn meal media. The vials were maintained at 25°C, 60%-70% relative humidity, with a 

14/10-h light/dark cycle. 

Fly strains used for different experiments are as given below:

2.2 Fly strains

• Canton S        In lab

• w1118; +; +        In lab

• w-; +; Sap47156 CS       Funk, N.

• w-; +; Syn97 CS       Funk, N.

• w-; +; TM3/TM6       In lab

• w-; +; Tri/Sap47156 CS, Syn97 CS     Funk, N.

• w-; +; Sap47156 CS-V, Syn97 CS-V/Sap47156 CS-V, Syn97 CS-V  Albertowa, V.

        (V1, V2, V3)

• w-; +; Sap47156 CS-NF, Syn97 CS-NF/Sap47156 CS-NF, Syn97 CS-NF Nuwal, T.

        (NS17, NS62)

• w-; +; ∆2-3ki       Bloomington

• w-; Actin-Gal4/CyO; +      Bloomington

• elav-Gal4; +; +       Sigrist, S. 

• w- , elav Gal4; +; + (Syn null background)   Godenschwege, T.

• w1118; Sco/CyO; +       Bloomington

• w-; UAS CG12214 RNAi; +     VDRC

• w-; +; UAS Sap RNAi      Funk, N.

• w1118; Df(2R) BSC350/CyO; +     Bloomington

• w1118; Df(2R) BSC281/CyO; +     Bloomington

• w-; +; UAS Syn PKA1 non-edited, PKA2 mutated  Virstyuk, O.
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• w-; +; UAS Syn PKA1 and PKA2 mutated   Virstyuk, O.

• w-; +; UAS Syn PKA1 non-edited, PKA2 WT   Chen, Y.

• w-; +; UAS Syn cDNA PKA1 mutated, PKA2 WT  Husse, J.

• w- ,UAS DCR2; +; elav Gal4     Sigrist, S.

• w-; NP4786/CyO; +      Kyoto

• w-; G18151/CyO; +      Bloomington

2.3 Buffers and reagents

2.3.1 DNA and RNA analysis

2.3.1.1 Primers

• GH13040-not1-fw: 5’-CATT GCGGCCGC ATG CCT TCC CTT TTG G-3’

• GH13040-not1-rw: 5’-GATT GCGGCCGC TCA CTT CTT GGC ATC G-3’

• RpLP0 sense:  5’-CAG CGT GGA AGG CTC AGT A-3’

• RpLP0 antisense:  5’-CAG GCT GGT ACG GAT GTT CT-3’

• G6PD left:   5’-CGA GGC CCT GTA CTT TAA GAT G-3’

• G6PD right:  5’-GCC GGA GTA CTT GAA ATT GTT C-3’

• 1, 1r, 2f:   5’-CGA CGG GAC CAC CTT ATG TTA -3’

• 1f:   5’-CGT AAA GTC ATT GGG CAG GT-3’

• 5r:   5’-AAC CCC CAC AGC AGT CTA TCT-3’

• XP5’:   5’-AAT GAT TCG CAG TGG AAG GCT-3’

• RB3’:	

 	

 	

 5’-TGC ATT TGC CTT TCG CCT TAT-3’

• 4, 2r:	

 	

 	

 5’-CCA ACG TAA CGG CAC TTT AT-3’

• 3r:	

 	

 	

 5’-CGA GCG ACC TAC ACA CAA AA-3’

• 3f:   5’-TTT CAG GCT CAC ATT GAC CA-3’

• 2:   5’-CGT AAA GTC ATT GGG CAG GT-3’

• 3, 4r:   5’-CAA CCC CAG CAG TCT AT-3’

• 5:   5’-GAT CCA AAA CCA ATC CCA.TCT. A-3’

• 6:   5’-AAA TTC TTC AGC AGG GTA TCC A-3’

• 7:   5’-CTG CTC TAA AGA CCC TGC ATT T-3’
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• 8:   5’-GTA GGT GAA CAG GAC CTT GAC C-3’

• 9, 4f:   5’-TCA CTG GCC AGA ACG TGA TA-3’

2.3.1.2 Reagents for RT-PCR

• First strand buffer (5x)   Invitrogen

• Oligo(dT)18 Primer   Fermentas

• dNTP set     Bioline

• Homogenization buffer   10 mM Tris (pH 8.2)

      1 mM EDTA

      25 mM NaCl

      added ddH2O upto 10ml

      added Proteinase K before use.

• GelPilot Loading Dye, 5x   QIAGEN 

•  TBE (10x)    151.4 ml of Tris

      77.3 g of boric acid

      23.3 g of EDTA

      dissolved in 2.5 l of ddH2O.

• Agarose gel 1%    4 g Agarose

      400 ml TBE buffer

      added 20 µl of EtBr after the 

      temperature reached 65 °C.

• PCR Master Mix    Thermo Fisher and Finnzymes

2.3.2 Protein analysis

2.3.2.1 SDS-PAGE and Western blotting

Reagents for SDS-Polyacrylamide gel (1 large gel of dimension 20x15 cm)

Running gel 

Reagents 8% (ml) 10%(ml) 12.5%(ml)

Materials

51



30%Acrylamide bisacrylamide (29:1) 10.66 13.33 16.60 

1.88 M Tris/HCl, pH 8.8 8.00 8.00 8.00

Distilled Water 13.10 10.44 7.30

0.5% SDS buffer 8.00 8.00 8.00

10% Ammonium persulfate (APS) 0.20 0.20 0.20

TEMED 0.05 0.05 0.05

 Stacking gel

Reagents 5.0% (ml)

30%Acrylamide bisacrylamide (29:1) 1.60 

0.635 M Tris/HCl, pH 6.8 2.00

Distilled Water 4.30

0.5% SDS buffer 2.00

10% Ammonium persulfate (APS) 0.06

TEMED 0.01

• SDS buffer (5X)    30 g Tris

      144 g glycine

      5 g SDS

      added 1 l of dH2O, the pH was adjusted to

       8.9 and stored at room temperature.

• Laemmli buffer (2X)   1.25 ml Tris (125 mM, pH 6.8)

      0.6 ml glycerine (6.0%)

      1.0 ml SDS (2.0%)

      0.25 ml Bromophenol blue (0.025%)

      0.5 ml β-Mercaptoethanol (5.0%)

      added 6.4 ml ddH2O for final volume of 

      10 ml.

• Transfer buffer (1X)   3.02 g Tris 25mM

      11.26 g glycine 150 mM

      100 ml methanol (10%)

  added 900 ml of dH2O, 

Materials

52



  the pH was adjusted to 8.3 and stored at 4°C.

• Washing buffer (10X TBST)  12.11 g Tris 100 mM

      87.66 g NaCl 1.5 M

      5.0 ml Tween-20 (0.5%)

      added 1 l of dH2O, the pH was adjusted to

       7.6 and stored at room temperature.

• Blocking buffer (5%)   5 g Non fat dry milk powder dissolved in 

      100 ml of 1X TBST,

      warmed the buffer to 50°C and cooled it

      back to room temperature prior to use.

• MOPS SDS running buffer (20x)  209.2 g MOPS 1.0 M

      121.2 g Tris base 1.0 M

      20 g SDS 69.3 mM

      6.0 g EDTA free acid 20.5 mM

      ddH2O for final volume of 1 l. 

      1x buffer pH 7.7

• MES SDS running buffer (20x)  195.2 g MES 1.0 M

      121.2 g Tris base 1.0 M

      20 g SDS 69.3 mM

      6.0 g EDTA free acid 20.5 mM

      added ddH2O to 1 l. 

      1x buffer pH 7.3

• LDS Sample Buffer (4x)   Invitrogen

• Sample Reducing Agent   Invitrogen

• Antioxidant    Invitrogen

2.3.2.2 Buffers and reagents for Blum Silver staining (modified for Mass

Spectrometry)

• Gel fixative    80 ml ethanol (100 %)

      20 ml acetic acid (100%)

      100 ml ddH2O
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• Washing buffer    60 ml ethanol (99.8%)

      140 ml ddH2O.

• Sensitising solution   0.04 g Na2S2O3

      200 ml ddH2O.

• Silver stain    0.4 g AgNO3

      40 µl formaldehyde 37%

      200 ml ddH2O.

• Developer     6.0 g.Na2CO3

      100 ml formaldehyde 37%

      200 ml ddH2O.

• 5% Acetic acid    2.5 ml acetic (100%)

      50 ml ddH2O.

• 1% Acetic acid    500 µl acetic acid (100%)

      50 ml ddH2O.

2.3.2.3 Buffers and reagents for 2D-PAGE

• Homogenisation buffer   303 µl protein solubilizer 1 or 2

      (Invitrogen), 1 µl Tris base 1 M

      3 µl protease inhibitor cocktail (100x)

      3 µl DTT 2 M

      6 µl ddH2O.

• Reducing Solution    0.5 ml DTT (0.5 M)

      4.5 ml 1x NuPAGE® LDS sample buffer

      (Invitrogen).

• Alkylating Solution   28 µl N,N-Dimethylacrylamide 

      5 ml 1x NuPAGE® LDS sample buffer

      (Invitrogen).

• Quenching Solution   50 µl DTT (0.5 M)

      1 ml ethanol (100%)

      4 ml 1x NuPAGE® LDS sample buffer

      (Invitrogen).
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2.3.2.4 Buffers and reagents for Native PAGE

• NativePAGE™ Running Buffer (20x) Invitrogen

• NativePAGE™  Anode Buffer (1x) 50 ml NativePAGE™ running

      buffer (20x)

      950 ml ddH2O.

• NativePAGE™ Cathode Buffer (1x)  10 ml NativePAGE™ running

      buffer (20x) (Invitrogen)

      1 ml NativePAGE™ cathode 

      additive (20x) (Invitrogen)

      189 ml ddH2O.

• NativePAGE Sample Buffer (4x)  Invitrogen

• NuPAGE Transfer Buffer (20x)  Invitrogen

• Coomassie staining   1.25 g Coomassie Brilliant blue R250

      450 ml methanol

      450 ml H2O

      100 ml acetic acid 

      filtered the solution after complete mixing.

• Destaining solution   30% methanol

     10% acetic acid

     made up to 1 l with ddH2O.

2.3.2.5 Buffer and reagents for Enzyme Linked Immunosorbent Assay (ELISA)

• PBS (10X)     14.8 g Na2HPO4

      4.3 g KH2PO4

      72.0 g NaCl

      added 1 l H2O and adjusted the pH to 7.4.

• Blocking buffer (1X)   1.0 g Bovine Serum Albumin (BSA)

      dissolved in 100 ml of 1X PBS

• Detection buffer (1X)   12.11 g Tris 100mM

      0.2 g MgCl2
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      added 1 l H2O and adjusted the pH to 9.5.

2.3.2.6 Buffers and reagents for Immunohistochemistry

• Normal Saline (1x)   4.08 g NaCl

      4.08 g MgCl. 6 H2O

      0.36 g KCl

      1.2 g HEPES

      0.84 g NaHCO3

      39.2 g Sucrose

      40 ml EGTA (0.5 M)

      added ddH2O to 1 l.

• Fixative (4% PFA in PBS)  4 g paraformaldehyde (PFA)

      20 µl 10N NaOH

      90 ml ddH2O

      heated to and held at 65°C for

      15 min , add 10 ml PBS (10x).

• PBS (10x)     80 g NaCl

      2 g KCl

      14.4 g NaHPO4

      2.4 g NaH2PO4

      ddH2O to 1 l and pH to 7.4.

• Blocking solution    0.2% Triton X-100

      5% Normal Horse Serum

      2% Bovine Serum Albumin (BSA)

      dissolved in PBS.

• Washing buffer PBST (1x)  10 ml PBS (10x)

      100 µl Triton X-100

      ddH2O to 1 l and pH to 7.3.
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2.4 Proteins and Inhibitors

• Aprotinin     Roche

• Leupeptin     Roche

• Phenylmethylsulfonylfluorid (PMSF) Roche

• Pepstatin     Roche

• Avidin-Alkaline Phosphatase   Sigma

• Complete Mini, EDTA-free   Roche

• DNase     Roche

• Protein A-Agarose    Roche

• Protein G-Agarose    Roche

• Proteinase K    Roche

• SuperScript® II Reverse Transcriptase Invitrogen

• RNase (DNase-free)   Roche 

2.5 Ladders

PageRuler™ Pre-stained Protein Ladder (Fermentas)

      

GeneRuler™ 1kb DNA Ladder (Fermentas)
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2.6. Antibodies

• Mouse MAB nc46    A. Hofbauer

• Mouse MAB nb200   A. Hofbauer

• Mouse MAB 3C11   A. Hofbauer

• Mouse MAB ab49    A. Hofbauer

• Mouse MAB nc82    A. Hofbauer

• Polyclonal anti-TBCE-like  T. Nuwal

• β-tubulin rabbit polyclonal IgG  Santa Cruz Biotech

• IgG HRP conjugated (Mouse, Rabbit) Biorad

• Biotin conjugated (Mouse, Guinea pig) Biorad

• Rabbit HRP anti-guinea pig IgG  Invitrogen

• Alexa Fluor 488 

(Mouse, Guinea pig, Rabbit)  Invitrogen

• Cy3 (Mouse, Guinea pig, Rabbit)  Invitrogen

• Mouse MAB anti-GFP   Invitrogen

2.7 Kits

• ECL Western blotting detection reagent Amersham, Millipore

• Alkaline Phosphatase Yellow (pNPP)

 Liquid Substrate system for ELISA Sigma

• One-Step Complete Western Kit  Genscript
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3. METHODS

3.1 Protein analysis

3.1.1 1D-SDS-PAGE (Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis) 

analysis

3.1.1.1 Non-pre-cast SDS-PAGE system

 The glass plates and the spacers were washed thoroughly and dried prior to use. 

The running gel solution (10%) was prepared in a falcon tube (50 ml) by mixing the 

components described in the materials section. Prior to the addition of TEMED the glass 

plates were set up. The glass plates were clamped to each other with spacers at the bottom 

and the sides. To seal the bottom, 0.8% agarose was poured along the inner edges of the 

plates. The agarose was allowed to solidify  (about 30 minutes). TEMED was added to the 

running gel solution and the mixture was vortexed. Immediately after, the solution was 

poured gently  in between the plates from the top. The top surface of the gel was overlaid 

with layer of water to avoid oxidation of the topmost gel layer.

Fig. 25: SDS-PAGE setup and working (Source: World wide web)

 The running gel was allowed to polymerise completely (~60 minutes). The 

stacking gel was prepared in a similar way as running gel but  with minor changes (see 

Materials). After the polymerisation of running gel, the stacking gel solution was poured 
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on top of it  and the comb was carefully placed to avoid any air bubbles in between and 

under the comb teeth. The gel was allowed to polymerize (~60-80 minutes). After 

polymerization, the clips clamping the glass plates and the bottom spacers were removed. 

The cassette (glass plates and gel) was then placed in the buffer as shown above. Proper 

electrical connections were made and the set up was placed in the 4°C room to dissipate 

the heat  produced during the run. The sample was loaded (70 µl per well) after mixing 

with 2X Laemmli buffer (1:1 ratio) and boiling at 95°C for 5 minutes. The gel was run at 

50 mA for 3 to 4 hours to get optimum resolution of proteins.

 The protein ladder was observed as a reference. After achieving desired 

separation, the power supply was switched OFF and the cassette was carefully removed 

from the setup. The glass plates were separated and the gel was carefully removed to 

perform a Western blot (3.1.2) or a Coomassie staining procedure (3.1.3).

3.1.1.2 Pre-cast SDS-PAGE (from Invitrogen)

 The samples were mixed with NuPAGE® LDS sample buffer (Invitrogen) and 

boiled at 70°C for 10 minutes before loading on a pre-cast gel placed in running buffer 

(MOPS-/MES-SDS buffer). The running conditions were: 200 V constant; 100-125 mA/

gel (start), 60-80 mA/gel (end); 50 minutes (MOPS Buffer) or 35 minutes (MES Buffer) 

respectively. For further analysis, Western Blotting (3.1.2) or silver staining (3.1.4)

techniques were performed.

3.1.2 Western blotting 

 The Western blot technique is an analytical method to transfer and identify 

proteins separated by SDS-polyacrylamide gel electrophoresis. “Blotting” is the actual 

transfer of polypeptides from the acrylamide gel to a nitrocellulose or polyvinylidene 

difluoride (PVDF) membrane in an electric field. The proteins are immobilised on the 

membrane through hydrophobic interactions. The membrane is then incubated with 

specific antibodies after appropriate blocking to detect proteins of interest.
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Two types of blotting: A. Wet blotting 

   B. Semi-dry blotting

3.1.2.1 Wet blotting

Methods 
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move in direction to the cathode since all proteins contain high negative charges as a result of 

SDS treatment.  

   
Figure 3.3: Mini Trans-Blot® ElectrophoreticTransfer Cell (Bio-Rad) 
 

 The power supply was adjusted to a constant current of 100V for 1h. 

 To check the effectiveness of the transfer, the membrane was stained with Ponceau S 

dye which could easily be removed due to its water solubility. Unspecific binding sites on the 

membrane were masked by incubation with 5% Non Fat Dry Milk solution (in 1x TBST-

washing buffer) either for 2h at Room Temperature or over night at 4°C depending on the 

quality of the primary antibody used for identification of the protein. Then the incubation with 

the primary antibody followed. It was either performed for 2h at RT or over night at 4°C 

again depending on the quality of the antibody. After the incubation the membrane was 

washed with 1x TBST 3 times for 10 minutes. The detection of this primary antibody was 

then carried out using an appropriate secondary antibody which is directed against the Fc- 

domain of the primary. The membrane was incubated for 2h at RT with the secondary 

antibody and afterwards washed again 3 x 10 minutes. The chemiluminescent solutions in the 

ECL Kit were first mixed in the ratio 1:1 and then poured over the membrane for an 

incubation of 1 minute. The secondary antibody is HRP (horseradish peroxidase) coupled, 

which catalyzes the transfer from Luminol in its oxidized state. This reaction causes 

chemiluminescence which leads to blackening of the disposed X-Ray film. The membrane 

Fig. 26: Wet blotting procedure (Source: BioRad website)

 

 Electric current is used to transfer the proteins from gel to the nitrocellulose 

membrane which is kept completely immersed in a chamber filled with transfer buffer. A 

transfer stack, as seen in Figure 26 was set  up in a “Mini” trans-blot  system (Bio-Rad). 

Sponges and Whatman filter paper were soaked in the transfer buffer and the membrane 

was placed between the gel and the cathode, the power supply was switched ON (100 V 

constant) and the protein samples due to the high negative charge(due to SDS binding) 

moved towards the cathode and on to the membrane.
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3.1.2.2 Semi-dry blotting

 On completion of SDS-PAGE, the gel was incubated in transfer buffer for 15 

minutes to remove the salt and other traces of impurities. Filter papers and nitrocellulose 

membrane were cut according to the size of the gel. Filter papers and the membrane were 

soaked in transfer buffer for 10-15 minutes. Gel, filter papers and the membrane were 

arranged as shown in Figure 27.

 

Fig. 27: Semi dry blot setup and working (Source: world wide web)

The electrophoretic transfer was done using semi-dry method. The power pack 

was adjusted so as to constantly deliver 4 W (400 mA and 10 V) of power. The transfer 

procedure took about 2-3 hours.After the completion of transfer, the membrane was 

incubated in 5% Non Fat Dry Milk (NFDM) in washing buffer (1X TBST) for 12 hours 

on a shaker at 4°C in order to block unspecific protein binding sites on the membrane.

On completion of membrane blocking, the membrane was then incubated with the 

primary antibody (3C11, nc46 etc) for 2 hours at room temperature. The primary antibody 

dilution was done in washing buffer (see Materials). The dilutions of various antibodies 

used in this thesis are as mentioned below:

Primary antibody Dilution

3C11 1:50

Methods

62



nc46 1:200

nb200 1:50

ab49 1:50

Anti-β-Actin 1:3000

Anti-TBCEL 1:4000

On completion of Western blotting (end of 2 hours), the antibody solution from 

the membrane was removed and 3 washes (10 minutes each) with the washing buffer 

were performed on a shaker at room temperature, the membrane was then incubated with 

the secondary  antibody (anti-mouse HRP-conjugated) diluted (1:7500) in the washing 

buffer, for 1 hour at room temperature. On completion, the antibody solution was 

removed and stored at 4°C. Non-specifically  bound secondary  antibody was removed by 

washing the membrane 3 times (10 minutes each) with washing buffer on a shaker at 

room temperature. The detection and visualisation of protein band was done using ECL 

(Enhanced Chemiluminescence) kit. The chemiluminescent reagents were mixed in the 

ratio 1:1 just prior to use. The nitrocellulose membrane was laid on a clean dry surface 

with the side with the bound antibody facing up. The chemiluminescent solution was 

poured over the membrane, covering it completely. The solution was allowed to stand on 

the membrane for 1 minute and then drained. 

The membrane was covered with a thin plastic film and placed in a cassette. The 

membrane was then exposed to a X-Ray film in a dark room for 1-15 minutes and then 

the film was developed and fixed. Finally, the X-Ray film was washed with copious 

amounts of water and allowed to dry.

3.1.3 Coomassie Staining

 This technique of protein detection and visualisation can detect  upto 100 ng of 

proteins. After SDS-PAGE, the apparatus was disassembled and the gel was removed 

from the glass plates and soaked in water for 30 minutes. The water was drained and the 
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gel was covered with the colloidal coomassie stain. The proteins were fixed by incubating 

with fixative (see Materials) overnight at room temperature with gentle agitation. The gel 

was covered during this process to avoid contamination and to prevent the evaporation of 

the solution. The stain was then removed and the destaining solution was added to the gel. 

The destaining procedure was carried out till a sufficient contrast was observed between 

the background and the protein bands. The procedure was accelerated by adding kimwipe 

tissues to the destaining solution and allowing the gel to destain with gentle agitation, the 

kimwipes were changed several times to increase the effectiveness. The destaining was 

continued until the protein bands were seen with minimal background staining of the gel. 

3.1.4 Silver staining

 This technique of protein detection and visualisation can detect upto 5-10 ng of 

proteins. The SDS-PAGE was performed using 10% precast Bis-Tris gels at constant 

voltage of 200 V in a MOPS running buffer (Invitrogen, Germany). On completion of the 

run, the gel was transferred to a glass chamber for silver staining according to modified 

Blum silver staining protocol for mass spectrometry (Mortz et al., 2001). Briefly, the gel 

was fixed in a solution containing 40% ethanol, 10% acetic acid at room temperature for 

1 hour on a shaker. The gel was washed with 30% ethanol for 20 min on a shaker and this 

step was repeated two more times with the final wash being with ultra pure water. 

Sensitisation of the gel was performed by incubation in 0.02% sodium thiosulfate (Sigma, 

Germany) for 1 min and the gel was immediately washed 3 times with ultra pure water 

for a total of 1 min. Cold staining solution containing 0.2% silver nitrate (Sigma, 

Germany) and 0.007% formalin (Sigma, Germany) was added and the gel was incubated 

at 4°C for 20 min on a shaker. The gel was washed with ultra pure water 4 times for a 

total of 1 min and then transferred to a new glass chamber. Briefly washed the gel for 1 

min with ultra pure water and then proceeded to visualisation of signal. For visualisation 

of the proteins the gel was incubated with developer solution containing 3% sodium 

carbonate and 0.05% formalin until sufficient  signal to background contrast  was obtained. 

The reaction was terminated by addition of 5% acetic acid. The gel was washed and 

stored in 1% acetic acid until further analysis.
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3.1.5 2D-SDS-PAGE analysis

 The two-dimensional polyacrylamide gel electrophoresis is a method to separate 

mixtures of proteins according to their charge (pI) in the first dimension through 

isoelectric focusing (IEF) and according to their size (M) by SDS-PAGE in the second 

dimension (Fig. 28). The 2D PAGE was performed using the ZOOM® IPG runner system 

by Invitrogen.

Fig. 28: 2D SDS-PAGE protocol (Source: world wide web)

3.1.5.1 Sample preparation for 2D-SDS-PAGE

 12 fly heads of a given genotype where collected and homogenised in the sample 

buffer (303 µl ZOOM 2D Protein solubilizer 1 or 2, 1 µl Tris Base, 3 µl Protease inhibitor 

cocktail, 3 µl of 2 M DTT and 6 µl ddH2O).

 The samples were incubated at room temperature for 15 minutes on a rotary 

shaker. Alkylation was carried out by adding 1.6 µl Dimethylacrylamide (DMA) and 

incubating on a shaker at room temperature (RT) for 30 minutes. The excess DMA was 
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quenched by  adding 3.5 µl of 2 M DTT and centrifugation at 13,000 rpm for 20 minutes 

at 4°C. The supernatants were transferred into fresh eppendorf tubes and centrifuged 

again for 10 minutes at 4°C. 140 µl of the supernatant from each sample was transferred 

to a clean tube and mixed with 15 µl ZOOM® 2D Protein solubiliser, 1 µl DTT (2 M), 1.6 

µl of the ampholytes (3-10), 1.4 µl ddH2O and trace amounts of bromophenol blue dye.

 The IPG strips were incubated in the sample buffer prepared above in a special 

cassette from Invitrogen. The cassette was sealed using the provided sealing tape and left 

overnight at 18°C. On the next day, the sealing tape and the sample loading device were 

removed from the cassette. An electrode wick was first wet with 600 µl of water and 

placed at each end of the cassette over the adhesive using the black alignment marks to 

align the wicks. The cassette was then placed in a running chamber designed for 

isoelectric focussing (Invitrogen). The outer chamber was filled with 600 ml of deionized 

water without pouring any  liquid into the inner chamber. The chamber was closed with 

the lid and connected to the power supply (ZOOM® Dual Power by Invitrogen).

3.1.5.2 First dimension: Isoelectric focussing

 The isoelectric focussing was performed using the broad pH and the narrow pH 

range ZOOM® strips. Running conditions: 2000 V; 0.05 mA/strip; 0.1 W/strip; 1600 Vh.

3.1.5.3 Second dimension: SDS PAGE

 On completion of isoelectric focussing the cassette was removed from the 

chamber and the gel strips were prepared for second dimension of the 2D PAGE as 

follows:

1. Reducing step (Incubated the strip in 0.05 M  DTT at room temperature for 20 

minutes). 

2. Alkylating step (Incubated the strip in 125 mM iodoacetamide at room temperature for 

20 minutes).
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The buffer recipes for each step are provided in the materials section.

 The plastic ends of the IPG strips were cut off and the strips were carefully  placed 

in the wells of precast 4-12% Bis-Tris gels (Invitrogen). The strips were overlaid with 60 

µl of LDS sample buffer (1x) and the protein marker was loaded into the marker well. 

The chamber was filled with MOPS-/MES-SDS running buffer and 500 µl of NuPAGE® 

antioxidant/β-mercaptoethanol was added to the inner buffer chamber. The chamber was 

closed firmly  and connected to the power supply. The running conditions were as follows: 

200 V constant; 100-125 mA/gel (start), 60-80 mA/gel (end); 50 minutes (MOPS Buffer) 

or 35 minutes (MES Buffer) respectively.

 On completion of the electrophoresis the gel was transferred on to a nitrocellulose 

membrane using the Western blot Protocol (see above).

3.1.6 Native PAGE analysis

3.1.6.1 BN-PAGE

 The blue native polyacrylamide gel electrophoresis is a method for separation of 

native proteins and multiprotein complexes (MPCs) (Schagger and von Jagow, 1991; 

Swamy et al., 2006; Wittig and Schagger, 2008) (Fig. 29). It  is highly useful in 

determination of the size, subunit composition, and relative abundance of different MPCs.

 The blue native polyacrylamide gel electrophoresis relies on binding of the 

Coomassie blue G250 dye which provides the negative charge to the protein. In an 

electric field, during migration to the anode, protein complexes are separated according to 

molecular mass and/or size and high resolution is obtained by the decreasing pore size of 

the polyacrylamide gradient gel.
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Fig. 29: BN-PAGE (modified from Eubel et al., 2005)

3.1.6.2 BN-SDS-PAGE

 On completion of the gel electrophoresis under native condition the lanes which 

contained the sample were cut out  of the gel using a sharp  knife. The gel strips were 

prepared for the second dimension as described below:

1. Reduction (Incubated the gel strip in 4.5 ml of 1X LDS sample buffer with 0.5 M  DTT 

at RT for 20 minutes).

2. Alkylation (Incubated the gel strip in 5 ml of 1X LDS sample buffer with 28 µl of 

DMA at RT for 20 minutes).

3. Quenching (Incubated the gel strip in 4 ml of 1X LDS sample buffer with 1 ml of 

ethanol (100%) and 0.5 M DTT at RT for 15 minutes).

 The gel strip was carefully placed in the well of a precast 4-12% Bis-tris gel 

(Invitrogen) (Fig. 30). Further steps were similar to second dimension of 2D-SDS-PAGE 

(3.1.5). On completion of the electrophoresis the gel was transferred on to a nitrocellulose 

membrane using the Western blot protocol (see above).
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Fig. 30: BN-SDS-PAGE (modified from Eubel et al., 2005)

3.2 Immunochemistry procedures

 3.2.1 Immunoprecipitation

Immunoprecipitation is a technique to enrich and isolate a protein of interest from 

a crude protein mixture. The protein specific antibody is coupled to a substrate or matrix 

by high affinity interaction or in some cases by  formation of covalent bonds (e.g., Cross-

linking of antibody by DSS cross linker). This matrix coupled antibody is added to and 

incubated with the crude protein mixture allowing specific protein to be bound to the 

antibody and subsequently enriched from the mixture. Either polyclonal or monoclonal 

antibodies from various animal species can be used in immunoprecipitation protocols and 

in our case the antibodies used (3C11, nc46 etc) were all mouse derived. Antibodies were 

bound non-covalently to immunoadsorbents such as protein A– or protein G–agarose 

(Fig. 31).

Methods

69



Fig. 31: Immunoprecipitation procedure (Source: world wide web)

3.2.1.1 Small scale lysate preparation

 25-50 Drosophila heads of required genotypes were manually collected by 

severing adult Drosophila with surgical scalpel. The heads were transferred to fresh 

eppendorf tubes and 20µl of lysis buffer per head was added to the tubes. The 

homogenisation was done on ice using plastic or glass pestles and the homogenate was 

incubated at 4 °C for an hour. The tubes were centrifuged at 13,000 rpm for an hour at 

4°C, the pellet was discarded and the supernatant was transferred to a fresh eppendorf 

tube. About 30-40 µl of the supernatant was taken in a separate eppendorf and mixed with 

equal amount of (1:1) 2X Laemmli buffer and stored at -20°C to be used as a lysate 

control in SDS-PAGE analysis. Rest of the sample was used for immunoprecipitation by 

specific antibody.

3.2.1.2 Large scale lysate preparation

 375 mg of Drosophila heads (approximately 2500 heads) were homogenised using 

pre-cooled glass homogenisers (Hartenstein, Germany) in homogenisation buffer 

consisting of 150 mM NaCl (chemicals from AppliChem, Germany, unless otherwise 

noted), 0.1 % Nonidet P-40 (NP-40), 20 mM  Tris-HCl pH 7.6, 10 mM  sodium fluoride 

(NaF), 10 mM β-glycerol phosphate, “mini”-EDTA free protease inhibitors (Roche, 

Switzerland), 2 tablets in 10 ml of buffer. The homogenate was cleared by centrifugation 
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at 16,000g at 4°C. The cleared homogenate was transferred to a fresh tube suitable for 

ultracentrifugation (Beckman, USA) and ultracentrifuged (L8-70M, Beckman, USA) at 

100,000g for 60 min at 4°C. The final cleared lysate was transferred to fresh 15 ml falcon 

tubes and kept  on ice until used for further analysis. After the collection and 

homogenisation of the fly heads, the buffers for the immunoprecipitation were prepared. 

3.2.1.2.1 Immunoprecipitation protocol without cross-linking of antibody to beads

 50 µl of protein G-agarose beads (Roche, Switzerland) were added to 2 ml of  

hybridoma supernatant in two polyethylene filter attached centrifuge columns (pore size 

30 µm) and incubated on a rotator for 4 hours at 4° C. The columns were placed in a 15 

ml falcon tube and centrifuged at 300g for 1 min to remove unbound antibody. The 

columns were washed 3 times with wash buffer containing 500 mM NaCl, 0.1 % NP-40, 

20 mM  Tris-HCl pH 7.6, 10 mM  NaF, 10 mM  β-glycerol phosphate, EDTA free protease 

inhibitors, 2 tablets in 10 ml of buffer. The wash buffer was completely  removed from the 

columns by centrifugation at 300g for 5 min. The cleared lysate from CS and Syn97 were 

added to the antibody-coupled beads in two columns and incubated overnight on a rotator 

at 4°C. The columns were centrifuged at 300g for 1 min and the flow-through was 

discarded. The columns were washed 7 times with 2 ml of wash buffer each. The columns 

were centrifuged at 300g for 1 min after each wash to remove the wash buffer and the 

centrifugation after the last wash was carried out for 5 min to remove any traces of the 

buffer. The beads were incubated in 50 µl of 4X LDS sample buffer (Invitrogen, 

Germany) for 30 min. The columns were centrifuged at 500g and the flow-through was 

collected in fresh Eppendorf tubes. To the tubes, 6 µl of 0.5 M  DTT (Sigma, Germany) 

was added and the tubes were incubated in a heat block at 70°C for 10 min. The tubes 

were cooled on ice and 15 µl per lane were loaded on a 10 % precast Bis-Tris gels  

(Invitrogen, Germany) for further analysis.

3.2.1.2.2 Immunoprecipitation protocol with cross-linking of antibody to beads

 The IP procedure mentioned above is modified to further limit  antibody 

contamination in the sample by coupling the 3C11 antibody  covalently to protein G-
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agarose beads using disuccinimidyl suberate (DSS). The elution was performed 

competitively by using the 3C11 epitope containing peptide (60 µg/ml of the peptide was 

used for each elution). 

 

 Disuccinimidyl suberate (DSS) is a membrane permeable cross-linker. It contains 

amine-reactive N-hydroxysuccinimide (NHS) ester groups at both ends. NHS esters react 

with primary  amines at pH 7-9 to form stable amide bonds. DSS was first dissolved in 

DMSO, then added to the aqueous cross-linking reaction mix containing the antibody 

(MAB 3C11) and the protein G-agarose beads. Antibody and protein G have several 

primary amines in the side chain of their lysine (K) residues that are cross-linked through 

the NHS-ester in DSS.

3.2.2 Enzyme Linked Immunosorbent Assay (ELISA)

 The ELISA technique is widely  used to detect antibody or antigen quantitatively 

and/or qualitatively  as per the need. In this thesis the ELISA technique is used to detect 

the presence of antigen (protein) in Drosophila tissue homogenates (Fig. 32). The various 

steps involved in the technique are as follows: The antigen was obtained in PBS buffer by 

homogenizing the fly  heads using mortar and pestle. About 50 µl of antigen was loaded in 

each well of the ELISA plate. The plate was kept at  room temperature on a shaker for 2 

hours. After 2 hours of incubation, the plate was washed once with water. Blocking 

solution (see Materials) was added to each well (300 µl/well). The plate was kept on a 

shaker for about 2 hours at room temperature. On completion of the blocking step  the 

primary antibody was added to each well (100 µl / well) and incubated at 4°C on a shaker 

for 12 hours. The primary antibody solution was prepared by diluting the antibody in 

blocking solution. 

Fig. 32: ELISA procedure (Source: world wide web)
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PBS washes (3 times) were performed for 10 minutes duration each. In the next 

step the secondary antibody (anti-mouse biotin conjugated, diluted in blocking solution 

(1:400)) was added to each well (100 µl/well) and the plate was incubated at room 

temperature for 2 hours. Three washes with PBS were performed for 10 minutes duration 

each. In the next  step, avidin alkaline phosphatase (diluted in blocking solution 

(1:10000)) was added to each of the wells (100 µl/well) and the plate was incubated at 

room temperature for 1 hour. Two washes with PBS were performed for 10 minutes 

duration each followed by the third wash using detection buffer (Tris/HCl, MgCl2 pH 9.5) 

for 10 minutes duration. The substrate (pNPP) was added (100 µl/well) and the plate was 

kept in the dark until colour development was observed. The developed colour was 

measured at 405 nm using the ELISA reader and the data was analysed using statistical 

software (Origin Version 7.5).

3.2.3 Cryosections and dissections of adult Drosophila tissues

 Flies were anaesthetised and glued to a plastic stick with their thorax. The stick 

was dipped in freshly prepared ice cold fixative buffer containing 4% paraformaldehyde. 

Proboscis and air sacs were removed with the help of a tweezer and a sharp blade. Flies 

were fixed at  4°C for 3-4 hours and then the solution was replaced with Drosophila saline 

containing 25% sucrose and incubated overnight. Fly heads were immersed in 3% 

carboxymethylcellulose (CMC) gel on a peg and frozen in liquid nitrogen after orienting. 

Cryosections were collected on pre-chilled SuperFrostTM  Plus (Menzel-Glaser GmBH) 

slides and left at  –20°C for 20 minutes prior to drying them at RT. Slides were marked 

with a grease pen around the sections. Sections were blocked with normal serum 

(Vectastatin ABC kit, Vector laboratories) at RT. Primary antibody was applied for 

overnight incubation at  4°C. After washing in PBST 2 times, 10 minutes each, 

appropriately diluted secondary antibody (Vectastatin ABC kit, Vector laboratories) was 

added to the sections for 1 hour at 37°C.

 ABC complex was added to the sections for 1 hour at 37°C after washing the 

secondary  antibody away with PBST 2 times, 10 minutes each. After monitoring the 

colour development, and obtaining the desired staining, sections were washed with 1X 
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PBST and dH2O to stop the reaction and were mounted in the vectashield mounting 

medium.

 For whole mount stainings, adult Drosophila heads or testis were dissected in ice-

cold calcium-free saline. The preparations were fixed in ice cold buffered 4% 

paraformaldehyde pH 7.4 for 30 min on ice. After fixation the preparations were washed 

3 times for 10 minutes each in PBST (PBS containing 0.1% Triton-X 100) at room 

temperature. Non-specific binding was blocked by incubating with a blocking solution 

(2% BSA (Sigma-Aldrich), 5% normal serum (Vector Laboratories, Burlingame, USA) in 

PBST) for 2 hour at room temperature. Incubation with the primary antibody was 

performed over night at 4 °C. Before incubation with the secondary antibody, unbound 

primary antibody was removed by washing with PBST (5 times, 15 minutes each) at 

room temperature. Incubation with the fluorophore coupled secondary antibody was 

performed at room temperature in the dark for 1 h. Secondary antibodies were diluted 

1:1000 in 1X PBST. Then unbound secondary antibody  was removed by  washing in 

PBST for 5 times, 20 minutes each in the dark. Finally, preparations were mounted in 

Vectashield (Vector Laboratories) mounting medium. Scans were performed with a 

confocal laser scanning microscope and the images were processed using ImageJ 

software.

3.3 Peptide analysis by nano-LC-ESI-(CID/ETD)-MS/MS  (in collaboration with S. 

Heo and G. Lubec)

3.3.1 In-gel trypsin digestion of proteins and peptides for MS analysis

 

 The gel pieces from SDS-PAGE gels were cut into small pieces and transferred to 

a 1.5 ml tube. They were incubated with 100 µl of destaining solution (50 mM potassium 

hexacyanoferrate/300 mM sodium thiosulfate) for 10 min with vortexing. Destained gel 

pieces were washed 4 times with washing solution (50% methanol/40% water/10% 

glacial acetic acid) for 5 min each with vortexing. The gel pieces were completely 

covered with 100 µl of 100% acetonitrile and incubated for 10 min. The gel pieces were 

dried completely using a SpeedVac concentrator. Cysteine residues were reduced by 
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treatment with a 10 mM dithiothreitol (DTT) solution in 100 mM ammonium bicarbonate 

pH 8.6 for 60 min at 56°C. To perform alkylation, the DTT solution was discarded and 

the same volume of a 55 mM iodoacetamide (IAA) solution in 100 mM ammonium 

bicarbonate buffer pH 8.6 was added and incubated in darkness for 45 min at 25°C. The 

IAA solution was replaced by washing buffer (50% 100 mM ammonium bicarbonate/50% 

acetonitrile) and washed twice for 15 min each with vortexing. Gel pieces were washed in 

100% acetonitrile followed by drying in a SpeedVac.

 

 The dried gel pieces were re-swollen by incubating for 16 h (overnight) at 37°C 

with 12.5 ng/µl trypsin (Promega, Germany) solution reconstituted in 25 mM ammonium 

bicarbonate. The supernatant was transferred to fresh 0.5 ml tubes, and the peptides were 

extracted with 50 µl of 0.5% formic acid / 20% acetonitrile for 20 min in a sonication 

bath, repeated the step  three times. Samples in extraction buffer were pooled in 0.5 ml 

tubes and concentrated (SpeedVac concentrator). 15 µl HPLC grade water (Sigma, 

Germany) was added to approximately 15 µl of concentrated sample and proceeded to 

nano-LC-ESI-(CID/ETD)-MS/MS analysis (HCT; Bruker, Germany).

3.3.2 In-gel alkaline phosphatase treatment for MS analysis

 Gel pieces spots were destained, reduced, alkylated and dried as described above. 

The dried gel pieces spots were incubated in a solution of 0.5 µl of calf intestine alkaline 

phosphatase (New England Biolabs, Ipswich, MA, USA) in the presence of 100 mM 

ammonium bicarbonate for 1 h at 37°C. Washed the gel pieces with washing solution 

(50% 100 mM ammonium bicarbonate/50% acetonitrile), dried in 100% acetonitrile and 

subsequently  dried in a SpeedVac followed by in-gel digestion and extraction for nano-

LC-ESI-(CID/ETD)-MS/MS analysis (HCT; Bruker, Germany).

 Trypsin digested peptides were separated by biocompatible Ultimate 3000 nano-

LC system (Dionex, Sunnyvale, CA, USA) equipped with a PepMap100 C-18 trap 

column (300 µm id × 5 mm long cartridge, from Dionex) and PepMap100 C-18 analytic 

column (75 µm id × 150 mm long, from Dionex). The gradient consisted of (A) 0.1% 

formic acid in water, (B) 0.08% formic acid in ACN: 8–25% B from 0 to 195 min, 80% B 
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from 195 to 200 min and 8% B from 200 to 205 min. An HCT ultra-PTM  discovery 

system (Bruker Daltonics, Bremen, Germany) was used to record peptide spectra over the 

mass range of m/z 350–1500 Da, and MS/MS spectra in information-dependent data 

acquisition over the mass range of m/z 100–2800 Da. Repeatedly, MS spectra were 

recorded followed by  three data-dependent collision induced dissociation (CID) MS/MS 

spectra and three electron transfer dissociation (ETD) MS/MS spectra generated from 

three highest intensity precursor ions. The voltage between ion spray  tip  and spray shield 

was set to 1500 V. Drying nitrogen gas was heated to 150°C and the flow rate was 10 l/

min. The collision energy  was set automatically  according to the mass and charge state of 

the peptides chosen for fragmentation. Multiple charged peptides were chosen for MS/

MS experiments due to their good fragmentation characteristics. MS/MS spectra were 

interpreted and peak lists were generated by DataAnalysis 4.0 (Bruker Daltonics).

 Searches were performed by using the MASCOT v2.2.06 (Matrix Science, 

London, UK) against latest UniProtKB database for protein identification. Searching 

parameters were set as follows (i) MASCOT: enzyme selected as used with four 

maximum missing cleavage sites, species limited to Drosophila, a mass tolerance of 0.2 

Da for peptide tolerance, 0.2 Da for MS/MS tolerance, fixed modification of 

carbamidomethyl (C) and variable modification of methionine oxidation (M) and 

phosphorylation (S, T, Y). Positive protein identifications were based on significant 

MOWSE scores. After protein identification, an error-tolerant search was performed to 

detect unspecific cleavage and unassigned modifications. Protein identification and 

modification information returned from MASCOT were manually inspected and filtered 

to obtain confirmed protein identification and modification lists of CID MS/MS and ETD 

MS/MS.

 Posttranslational modification searches were done using Modiro v1.1 software 

(Protagen AG, Germany) with following parameters: enzyme selected as used with four 

maximum missing cleavage sites, species limited to drosophila, a peptide mass tolerance 

of 0.2 Da for peptide tolerance, 0.2 Da for fragment mass tolerance, modification 1 of 

carbamidomethyl (C) and modification 2 of methionine oxidation. Searches for unknown 

mass shifts, amino acid substitution and calculation of significance were selected on 
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advanced PTM explorer search strategies. A list of 172 common modifications including 

phosphorylation, methylation and hydroxylation was selected and added to virtually 

cleaved and fragmented peptides searched against experimentally obtained MS/MS 

spectra. Positive protein identification was first of all listed by  spectra view and 

subsequently  each identified peptide was considered significant based on the 0.2 Da delta 

value, ion-charge status of peptide, b- and y- ion fragmentation quality, ion score and 

significant scores. The Modiro software is complementary  to the MASCOT software, 

using already identified sequences, and has the advantage that  also unknown mass shifts 

can be handled. Protein identification and modification information returned were 

manually inspected and filtered to obtain confirmed protein identification and 

modification lists.

3.4 Generation of anti-TBCEL antiserum

 The antisera for Drosophila TBCEL was generated by cloning the complete 

cDNA clone GH13040 (from BDGP Gold cDNAs collection) downstream of an in-frame 

His-tag in a pET 28a expression vector and expressing it in E.coli to generate large 

amount of His-TBCEL. The His-TBCEL was injected in Guinea pigs (in collaboration 

with G. Krohne) and the animal was sacrificed after sufficient antisera was produced 

against the immunised TBCEL and the serum was collected.

3.4.1 Cloning of Tbcel cDNA in expression vector

 Not I restriction sites were linked to the GH13040 cDNA clone using GH13040-

not1-fw and GH13040-not1-rw primers by  a linker PCR (refer to Materials section). The  

PCR product and the vector was digested with Not I restriction enzyme (2-3 hours at 

recommended temperature). The fragments were ligated by incubating overnight at 18°C 

with DNA ligase enzyme. The presence of right insert in proper orientation was verified 

by restriction digestion with Sac I and Kpn I. Sac I and Kpn I cut in the vector and 

inserted fragment, respectively. The cloning was further verified by sequencing. The 

ligated product was used to transform competent E.coli cells. 
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3.4.2 Expression of protein in E.coli and immunisation of Guinea pig for antisera 

production (in collaboration with G. Krohne)

 E.coli BL21 cells were transformed for expression of His-TBCEL. The 

transformed E.coli cells were used to inoculate 500 ml culture media for large scale 

production of His-TBCEL on induction by IPTG. The culture was monitored for growth 

at 37°C and after sufficient growth was obtained the cells were precipitated and the 

protein was extracted after lysis according to the protocol (Qiagen; Hilden; Germany). 

The His-TBCEL protein was purified by using nickel-chelate affinity chromatography 

following the protocol (Qiagen; Hilden; Germany). 1 µg of His-TBCEL in 50 µl urea 

buffer (8 M urea in PBS (137 mM NaCl, 70 mM Na2HPO4, 30 mM NaH2PO4) was mixed 

with 600 µl ddH2O and incubated on ice for 10 minutes. 700 µl of Freund’s adjuvant was 

added to the above solution and thoroughly mixed. The mixture of Freund’s adjuvant and 

His-TBCEL was used for immunising the guinea pigs. Incomplete Freund’s adjuvant 

were used for subsequent booster dosages. Whole blood was collected after sacrificing 

the animal, and the serum was separated for antibody purification (in collaboration with 

G. Krohne).

3.5 DNA analysis

3.5.1 Isolation And Purification Of Genomic DNA

3.5.1.1 Large amount of genomic DNA isolation

 The desired number of flies were collected and kept on ice. 50 flies/preparation 

were homogenised in 1 ml of homogenisation buffer (100 mM NaCl, 100 mM  Tris 50 

mM, EDTA (pH 8.0), 0.5% SDS). Homogenate was incubated at 68 °C for 30 minutes. 

The homogenate was then incubated on ice for 30 minutes after the addition of 125 µl of 

8 M calcium acetate. A centrifugation for 10 minutes at 14,000 rpm followed this step  and 

was repeated once after transferring the supernatant to a fresh tube. The DNA was 

precipitated with 2.5 volumes of 100% ethanol for 10 minutes at RT. The pellet was 

washed with 70% ethanol, dried and dissolved in the appropriate amount of 10mM  Tris 
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pH- 8.0 or dH2O. This procedure typically yields 15 µg DNA/100 µl. The DNA was 

stored at –20 °C in elution buffer.

3.5.1.2 Single fly genomic DNA isolation

 One adult fly was homogenised in 50 µl of the homogenisation buffer with 0.5 µl 

Proteinase K pre-added. The homogenate was incubated for 30 min at 37°C to digest all 

proteins in the sample. The enzymatic activity  of the Proteinase K was then inhibited by 

heating the sample for 2 minutes at 97°C.

3.5.2 Polymerase chain reaction (PCR)

 PCR was used to amplify DNA (including cDNA) sequences by using specific 

primers. It was also used for linking restriction sites to sequences (linker PCR).

 Primers were designed using primer3 software available online at (http://

frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). CG concentration was set at 50%. 

Melting temperatures of the primer pairs were adjusted to be similar within an interval of 

1-2°C and primer length was usually restricted to 18–22 bases. Melting temperatures 

were kept around 57°C. Primer stocks (100 pmol/µl) were prepared by  re-suspending 

lyophilised primer in ultrapure water. The primers were diluted 1:10 prior to usage. For 

linker PCR restriction sites were added to the primers along with few bases to have the 

restriction site ‘in’ the sequence and not at the terminal. Master mix with premixed buffer, 

dNTPs and DNA polymerase was added upto 50% of the total PCR reaction volume.  

PCR Conditions

Denaturation: 5 minutes at 95°C for the first time and then 30 s denaturation at  the 

beginning of each cycle.

Annealing : Annealing temperature was 3-5°C less than the average Tm of forward and 

reverse primer. Usually, a PCR with gradient temperature was performed to determine the 

optimum annealing temperature.
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Extension: 1-2 minute (1 minute/1000 bp) at 72°C at the end of each cycle and then final 

extension for 10 minutes. 

Number of cycles : Typically of 35 to 45 cycles yielded detectable amount of product for 

most of the reactions.

At the end of the PCR reaction the samples were mixed with 6X loading dye and kept at 

4°C until further analysis.

3.5.3 PCR product purification and gel extraction

 PCR and RT-PCR products were purified using commercially available silica gel 

based QIAquick PCR Purification Kit (QIAGEN). Purification procedure as 

recommended by the manufacturer was followed with slight modifications at the elution 

step. DNA was eluted in small amounts of ultrapure H2O or elution buffer (10 mM  Tris 

pH 8.5), columns were incubated at 68°C for 5 minutes and centrifuged for 2 minutes in a 

tabletop  centrifuge at maximum speed. For gel extraction the DNA was fractionated on an 

agarose gel (using lowest possible concentration of agarose in the gel for the given 

species of DNA), visualised under UV light, excised with a clean blade and subjected to 

gel extraction using the QIAquick Gel Extraction Kit from QIAGEN. 

3.6 RNA analysis

3.6.1 RNA isolation

 RNeasy® Mini Kit (50) from QIAGEN was used for isolating RNA from 

Drosophila tissues (head and whole flies). Prior to isolation, the working place was 

thoroughly cleaned with 100% ethanol. Sterile filter tips were used to avoid 

contamination of the sample. 40 whole flies were homogenised on ice in 600 µl RLT 

buffer (QIAGEN, RNeasy® Mini Kit) with 6 µl β-Mercaptoethanol using sterile 

homogenizers. The homogenate was transferred to a fresh eppendorf tube. 1 µl of DNase 

was added to the tubes and incubated at  37°C for 45 minutes. The digestion process was 

stopped by  heating the sample for 10 minutes at 95°C. Concentration and purity  of the 

RNA was measured using spectrophotometer.
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3.6.2 Reverse transcription

 Reverse transcription is the mechanism of reverse transcribing RNA to cDNA 

using reverse transcriptase enzyme. The cDNA obtained can be amplified using routine 

PCR protocols.

 11 µl of total RNA (3.6.1) was incubated with 1 µl of oligo-dT-primers and 1 µl 

dNTPs for 5 minutes at 65°C. The sample is then incubated with 5 µl of 5x first-strand 

buffer and 2 µl of 0.1 M DDT for 2 minutes at 42°C. Immediately, 1 µl of the superscript 

II (reverse transcriptase) was added to the reaction tube and incubated at 42°C for 90 min. 

The elongation step was performed by incubating the reaction tube at 70°C for 10 

minutes. To remove the RNA template, 1 µl of RNase was added to the tubes and 

incubated at  37°C for 30 minutes. Amplification of the cDNA was achieved by 

performing PCR (3.5.2) with sequence specific primers.

3.6.3 Microarray analysis (for detailed protocol refer to PhD thesis of N. Nuwal, 

2010)

 

 RNA was isolated from 400 adult Drosophila heads according the protocol 

mentioned in section 3.6.1. Purity of the isolated RNA was checked by  running an aliquot 

on an agarose gel with formaldehyde, all subsequent steps were done by S. Kneitz. RNA 

was retested by Capillary electrophoresis (Bioanalyzer 2100; Agilent). An aliquot of 

highly  pure RNA was used for reverse transcription and subsequently labelled by 

fluorescence dye (Cy3 or Cy5). This labelled cRNA was used for hybridisation to 

Drosophila genome arrays 2.0 from Affymetrix. The gene chips were scanned by 

GeneChip  Scanner 3000 (IZKF, Wuerzburg). The signal intensities were normalised by 

variance stabilisation. Open source program ‘R’, bioconductor package of pre-compiled 

statistical analyses and limma (Linear Models for Microarray  Analysis) package were 

used to test  the quality  of all data sets, and perform statistical analysis to select 

differentially expressed genes. Candidate genes from microarray analyses were confirmed 

by quantitative PCR of cDNA obtained from reverse transcription of poly-A+ RNA 

isolated from 400 adult Drosophila heads of WT and mutants.
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3.6.4 Quantitative PCR (for detailed protocol refer to PhD thesis of N. Nuwal)

 RNA was isolated from 400 adult Drosophila heads of WT and mutants, and 

reverse transcribed to cDNA (3.6). Transcript levels of RpLP0 (Ribosomal protein LP0) 

was used as an internal control or reference gene. The samples were run in triplicates. To 

perform the quantitative PCR the following reaction was set up in PCR tubes compatible 

with ROTOR Gene-Q (QIAGEN):

Component Quantity

Template ~100 ng in 1 µl

Master mix (Rotor-Gene 
Q SYBR Green) 10 µl

Primers
1 µl each sense and 

antisense

Total H2O to 20 µl

The PCR conditions were as follows-

Step Temperature Time Cycles

Hot start 95 °C 5 minutes 1

Denaturation 95 °C 10 seconds 45

Annealing 60 °C 15 seconds 45

Extension 72 °C 20 seconds 45

Melt
72 °C-95°C 

ramp

 In principle, the amount of amplified DNA is directly  proportional to the SYBR 

green fluorescence as the dye fluoresces only on binding to double stranded DNA and 

thus the plot of fluorescence intensity  (Y axis) against the number of cycles (X axis) 

reflects the exponential increase in transcript copy number. However, this is true only in 
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the low fluorescence range which avoids saturation phenomena, the intensities were 

plotted online by the Rotor Gene Q software (QIAGEN). Ct values (X-intercept) for 

transcript t  were determined for each sample by setting a threshold (0.04008) for the 

normalised fluorescence intensity  in the linear range of the semi-log plot of the PCR 

reaction (Fig. 33). ΔΔCt method of analysis was used and further analyses were performed 

using Microsoft excel (spreadsheet package) and Origin 7.5.

ΔΔCt for a given transcript t is calculated as follows (CS = wild type; GOI = genotype of 

interest)

Δ Ct,CS = Ct,CS - CRpLP0,CS

Δ Ct,GOI = Ct,GOI - CRpLP0,GOI

Log2 fold change = (Δ Ct,GOI - Δ Ct,CS) if  > 0, down regulation

                                                             < 0, up regulation
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Fig. 33: An example qPCR traces and Ct values.
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3.7 Behavioural assays

3.7.1 Negative geotaxis

 Males of the required genotype were collected 3-5 days after eclosion. The 

animals were anaesthetised on ice and their wings were clipped. An empty  food vial with 

scale drawn was used for the experiment. A single fly was taken in a vial of 10 cm height  

and tapped to the bottom by banging the vial to the table. As soon as the fly recovered and 

started climbing up  the wall of the vial, the stopwatch was started. The time taken by the 

fly to cross the first  centimetre from the bottom was recorded. The assay was repeated 

three times for each animal.

3.7.2 Longevity assay

 Approximately  500 male flies (divided into 11 large sized vials) of a given 

genotype were tested. The flies were transferred to fresh food vials on every third or 

fourth day and the number of dead flies in the old vials were noted. This procedure 

continued until all the flies in the vials were dead. The time (days) taken for 50% of the 

total number of flies to be dead was calculated.

3.7.3 Fertility assay

 10 mass crosses (10 males and 10 females) of 3-5 days old flies in medium sized 

food vials were made and transferred on every  second day (Three times). The total 

number of progenies were counted from each vials and statistical analysis were 

performed using Origin 7.5.
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4. RESULTS

4.1 Analysis of SAP47 and Synapsin protein interactions

4.1.1 Higher levels of phospho-synapsin in Sap47 null mutant flies but no obvious 

change in synapsin distribution

 Drosophila SAP47 is a synaptic vesicle associated presynaptic protein (Funk et 

al., 2004) and is enriched in brain and synaptic boutons. In a Western blot  of head 

homogenate from Sap47 null mutant (Sap47156) flies an extra band not seen in wild-type 

homogenate is detected by anti-synapsin antibody 3C11 (Fig. 34) (also observed by N. 

Funk, unpublished).

CS Sa
p1
56
CS

Sy
n9
7C
S

72

143

kD

Fig. 34: Presence of shifted synapsin band in Sap47156CS flies. Western blot of head 

homogenates (equivalent of 2 heads per lane) of the indicated genotypes was 

developed with anti-synapsin monoclonal antibody (MAB 3C11, dilution 1:50) and 

an extra upper shifted band for synapsin was detected in Sap47 null mutants, 

Sap47156CS (indicated by arrow).

 The shifted band (arrow in Fig. 34) for synapsin is unique to Sap47 null mutants. 

Such a shift  could be due to altered posttranslational modification, like phosphorylation 

and/or due to increased expression of a larger synapsin isoform in Sap47 null mutants. 

 To determine if the shift is due to altered phosphorylation of synapsin, aliquots of 

fresh head homogenates of wild-type CS and three different alleles of Sap47 null mutants 
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were treated with shrimp  alkaline phosphatase (AP) (Promega) prior to SDS-PAGE, 

corresponding aliquots were sham treated (only buffer). The shifted band observed in 

sham treated samples (Fig. 35, AP- lanes) was absent in AP treated samples (Fig. 35, AP+ 

lanes) and thus the result is suggestive that the shifted band is alkaline phosphatase 

sensitive and represents phospho-synapsin (Fig. 35). This effect was independent of the 

genetic background of the null mutants (w1118 in the original jump-out mutants, CS in the 

outcrossed lines (Funk et al., 2004)).
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Fig. 35: Presence of phosphorylated synapsin in different alleles of Sap47 null 

mutants. Western blot of head homogenates (2 head of each genotype was 

homogenised and divided into two groups alkaline phosphatase (40U of SAP) treated 

(AP+) and sham treated with buffer only (AP-), equivalent to 1 head per lane). The 

arrow indicates the presence of phospho-synapsin on the left and on the right it 

points to the loss of phosphorylation by alkaline phosphatase treatment. (Blot was 

cut horizontally and the upper part was incubated with anti-synapsin (MAB 3C11, 

1:50), and the bottom part was incubated with anti-CSP (MAB ab49, 1:50) as 

loading control)

 To test any  changes in synapsin localization in Sap47156CS mutant, sections of 

brain from WT, Sap47156CS, and Syn97CS mutants were immunohistochemically  stained 

with anti-SAP47 and anti-SYN antibodies (Fig. 36). No obvious differences were 

detected.
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Negative-Geotaxis Assay

CS Sap156 Syn97 NS17 NS62 CS Sap156 Syn97 V1 V2 V3

n=25 for each genotype 

***
***

‘Y’ Axis is identical in both plots

A.Schneider

Fig. 16: Negative Geotaxis, Homozygous double mutants NS17, NS62,V1,V2 and V3 are 

defective in this behaviour.
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Fig. 17: Walking behaviour, Homozygous double mutants NS17, NS62 are defective in this 

behaviour.

Sap1563c11 1:50

nc46 1:200 Syn97Sap156nc46 1:200 nc46 1:200 WT

3c11 1:50 Syn97 3c11 1:50
WT

No obvious differences observed when SAP47 null mutants are stained for 
Synapsin or vice versa.

Difference in staining pattern for Syn in SAP47 
null mutant flies 

Fig. 36: No obvious differences in the staining pattern of synapsin between Sap47156 

and CS flies. Cryosections of frozen heads of indicated genotypes were stained with 

anti-SAP47 (MAB nc46, 1:200, upper row) and anti-SYN (MAB 3C11, 1:50, bottom 

row).

 The Western blots also suggest that  the total amount of synapsin is increased in 

the Sap47 null mutants. To verify that, the amount of synapsin was altered along with the 

phosphorylation state in Sap47 null mutants, the levels of synapsin in CS and Sap47156CS 

were quantified using enzyme linked immunosorbent assay (ELISA). The results (Fig. 

37) demonstrate that the levels of synapsin were about 2.5 folds higher in Sap47156CS 

when compared to CS while the amount of SAP47 in Syn97CS flies is unaltered in 

comparison to CS. 
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Fig. 37: The amount of SAP47 and SYN present in mutant and wild-type flies. The 

ELISA reading of the null mutants (Syn97CS in α-SYN and Sap47156CS in α-SAP47) 

due to unspecific reaction (background) has been subtracted from the data. (n=12, 

students t-test, p< 0.05). Actin and CSP are used as controls.

 Since the levels of the control proteins actin and CSP are approximately  the same 

in all the genotypes tested, these results suggest that there is an up-regulation of synapsin 

in Sap47 null mutants and this increased amount of synapsin is largely present in 

phosphorylated form (see Discussion).

Results

88



4.1.2 Partial rescue of synapsin phosphorylation in Sap47 null mutants 

 To confirm that the higher levels of phospho-synapsin in Sap47 null mutants are 

due to the absence of SAP47, a “rescue” experiment was performed. SAP47 protein was 

expressed pan-neuronally  in the Sap47156CS null mutant using the UAS-Gal4 system. The 

UAS-Sap47 cDNA line (only the 47 kD isoform is expressed by this line) was kindly 

provided by T. Saumweber, elav-gal4 was used as the driver line.
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Fig. 38: Synapsin hyperphosphorylation in Sap47 null mutants is partially abolished 

upon pan-neuronal expression of the 47 kDa SAP47 isoform (rescue). A partial 

rescue of synapsin hyperphosphorylation (compared to band marked with asterisk) 

is observed in elav-gal4 driven UAS-Sap47 cDNA  (Loading: 2 heads per lane, blot 

developed with anti-SYN (MAB 3C11, dilution 1:50), anti-SAP47 (MAB nc46, 

dilution 1:200) and anti-CSP (MAB ab49, dilution 1:50) as loading control.

 In the Western blot of the rescue flies (Fig. 38), the shifted band for synapsin in 

Sap47156CS null mutants is present at reduced intensity when compared to the levels in 

driver (elav-gal4) and the effector (UAS-Sap47 cDNA) fly lines, both of which are in 

Sap47156CS background. The rescue of SAP47 in Sap47156CS null mutants partially restored 

the wild type synapsin signal as seen in CS. The total amount of SYN protein in the 

rescue flies was quantified by an ELISA experiment (Fig. 39).
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Fig. 39: Synapsin up-regulation in Sap47 null mutants is abolished upon pan-

neuronal expression of the 47 kDa SAP47 isoform (rescue). The ELISA reading of 

the null  mutants (Syn97CS in α-SYN and Sap47156CS in α-SAP47) due to unspecific 

binding (background) has been subtracted from the data. CSP levels served as a 

control (detection by anti-CSP (MAB ab49, dilution 1:200)). (n=10, students t-test, *: 

p< 0.05).

 In the rescue flies which express near-WT levels of SAP47 (Fig. 38 and 39), the 

increased levels of synapsin in Sap47156CS null mutants, as also seen in the driver (elav-

gal4) and the effector (UAS-Sap47 cDNA) fly lines, both of which are in Sap47156CS 

background, are reverted to levels comparable to CS. Again, there is no effect of the 

Syn97CS mutation on the SAP47 levels. Thus, the results of Western blot and ELISA show 

that the higher levels of synapsin in Sap47 null mutants are due to the lack of SAP47 and 

is independent of genetic background and the Sap47 null allele under investigation. This 

phenomenon can be due to several reasons (see Discussion), the most obvious possibility 

being relatively higher transcript levels of Syn in Sap47156CS null mutants when compared 
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to wild-type CS. To test this hypothesis we determined the mRNA levels for Syn in 

Sap47156CS mutants.

4.1.3 Synapsin transcript levels in Sap47156CS mutant and wild-type CS flies

 Semi-quantitative polymerase chain reactions of reverse transcribed cDNAs (SQ-

RT-PCRs) were performed to determine the relative levels of Syn transcript in Sap156CS 

and CS flies. The experiment is designed to determine the levels of Syn transcript relative 

to the housekeeping reference gene coding for Zwischenferment (Zw) also known as 

glucose-6-phosphate dehydrogenase. 

Semi-quantitative RT-PCR

Detection of Synapsin transcript content in wild type(CS) 
and SAP47 null mutants.

No significant difference is observed in Syn transcript 
content of SAP47 null mutants and wild type CS. 
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Fig. 40: Content of Syn transcript is comparable in CS and Sap47 null mutants. 4 

replicate PCR reactions each of CS and Sap47 null mutants were used to perform 

the PCR for different numbers of cycles (25, 28, 31 and 34 cycles). The product of 

the reference gene PCR was mixed with the experimental PCR product prior to 

loading the gel. Transcript levels of G6PD served as control.

 

 Syn transcript content was not dramatically different in Sap47156CS from wild-type 

CS level (Fig. 40). However, a 2.5 fold increase in transcript content (to account for the 

2.5 fold in protein content) might have escaped detection in our experimental design. 

Therefore, transcript levels in Sap47156CS and Syn97CS null mutants were quantified by 

microarray analysis (see 4.5, refer to PhD thesis of N. Nuwal, 2010). 
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4.1.4 Investigating direct protein interactions of SAP47 and synapsin by co-

immunoprecipitation experiments

 The increased levels of synapsin in Sap47 null mutants suggests an interaction 

between the two proteins. The interactions can be direct or indirect involving a multitude 

of proteins. The interaction can also be genetic (this possibility has also been investigated 

in section 4.2).

 Immunoprecipitation (IP) of SAP47 and synapsin was performed as described in  

the methods section. The precipitated proteins were eluted under denaturing and reducing 

conditions and tested by SDS-PAGE and Western blotting (Fig. 41).
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Fig. 41: IP of SAP47 and synapsin. In the left panel, the lysates/input for IP were 

positive for SAP47 (detection with MAB nc46, dilution 1:200) and synapsin 

(detection with MAB 3C11, dilution 1:50) but no co-IP of SAP47 with synapsin or 

vice-versa was observed. The shifted band for synapsin in Sap47 null mutant is 

shown (arrow, lysate 3C11). The faint bands beneath the heavy chain of MAB 3C11 

in IP 3C11/nc46 are probably the proteins from foetal  calf serum (FCS) in the MAB 

supernatant. The panel on the right shows the IP of SYN (IP and blot development 

using MAB 3C11) and SAP47 (IP and blot development using MAB nc46) under 

these conditions.

 To determine if SAP47 and synapsin bind to each other or are part of the same 

molecular complex, proteins precipitated from CS head lysate with anti-SAP47 (MAB 
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nc46) were probed with anti-SYN (MAB 3C11). In the reciprocal experiment the 

precipitate obtained with 3C11 was probed with nc46. Only  the precipitated proteins (Fig. 

41, right panel) and immunoglobulin chains were detected in the IP sample lanes but no 

co-immunoprecipitation of SAP47 with SYN or vice versa was observed (Fig. 41, left 

panel). The failure of this co-immunoprecipitation experiment suggests that SAP47 and 

synapsin under the IP conditions used do not interact in a stoichiometric manner (see 

Discussion). Different experimental approaches were tried and are mentioned below. 

4.1.4.1 Competitive elution of immunoprecipitated synapsin by peptides containing 

the 3C11 epitope and analysis by 1D-SDS-PAGE

 When a monoclonal antibody is used for IP an alternative to denaturing buffers for 

eluting the immunoprecipitated samples from the beads can be employed. For 

competitive elution the beads are incubated with excess of a peptide containing the 

epitope of the MAB in order to displace the antigen from the beads. This strategy has 

several advantages including the recovery of the beads due to the mild elution conditions 

and the specificity  of elution which reduces or eliminates co-elution of the antibody and 

other components unspecifically bound to the solid matrix. 

 The MAB 3C11 epitope had been determined earlier by  spotting sequential 

synapsin decapeptides on nitrocellulose membranes (Munch et al., 1999; Godenschwege 

et  al., 2004). The peptide used for the elution therefore had the sequence:                                 

    

    NH2-LFGGMEVCGL-COOH
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Fig. 42: Competitive elution of SYN from an IP with a peptide containing the 3C11 

epitope. Peptide concentrations ranging from 15-500 µg/ml were used. The optimal 

peptide concentration was concluded to be 60 µg/ml due to minimal contamination 

of antibody proteins in the eluted sample and a strong signal for SYN (detection by 

anti-SYN (MAB 3C11, dilution 1:50)).

 Immunoprecipitation from head homogenates of 50 CS, or 50 Syn97CS flies was 

performed using anti-SYN monoclonal antibody (MAB 3C11). The sample was eluted by 

incubating the loaded beads with different concentrations of the peptide containing the 

3C11 epitope. The eluted samples were tested by SDS-PAGE and subsequent detection by 

Western blotting. The optimal peptide concentration at which the level of non-specific 

signal (from antibody heavy/light chains and serum proteins) is minimal and the specific 

signal (MAB 3C11, synapsin) is maximal was found to be at 60 µg/ml (Fig. 42). This 

elution protocol was used for SYN isolation for mass spectrometric analysis of 

posttranslational modifications (see 4.4).

4.1.5 Blue Native-PAGE analysis of synapsins

 An interaction between synapsin and SAP47 was not observed by conventional 

co-immunoprecipitation (co-IP) technique. A possible reason for this could be a weak 

interaction (see Discussion). To overcome the limitation of co-IP in case of weak 

interactions between proteins, the Blue Native Polyacrylamide Gel Electrophoresis (BN-

PAGE) technique for the separation of protein complexes under mild conditions was 

used. BN-PAGE is useful for analysing and characterising protein complexes (Schagger 

and von Jagow, 1991).
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Fig. 43: Western blot after BN-PAGE. Synapsin protein is observed at a molecular 

weight around 700-900 kD and SAP47 is observed around 200-250 kD in fresh head 

homogenates of the genotypes mentioned. SAP47 and SYN are observed at different 

molecular weights and are not part of the same complex. (Loading: 10 heads/lane, 

detection with anti-SYN, MAB 3C11 (dilution 1:50) and anti-SAP47, MAB nc46 

(dilution 1:200)).

 In a Western blot following BN-PAGE (Fig. 43) the synapsin signal was detected 

at around 700-900 kD suggesting an involvement of synapsin in a multi-protein complex. 

SAP47 was not detected in the same molecular weight range as synapsin, suggesting that 

SAP47 and synapsin are not components of a common stable protein complex. However, 

this does not exclude the possibility that they interact transiently (see Discussion).

 In order to further characterise the synapsin complex observed in Figure 43, BN-

SDS-2D-PAGE technique was used (see Methods section). Briefly, after the first 

dimension of native electrophoresis is complete, the CS and Syn97CS lanes were cut out 

with a sharp  knife, equilibrated in SDS solution, and used as input for a second dimension 

discontinuous SDS gel. During this process the synapsin complexes fell apart  into their 

components (subunits) to form protein-SDS micelles that separated in the SDS gel 

according to their molecular weight. The gels were analysed by Western blotting and 

silver staining (Fig. 44). 
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Fig. 44: BN-SDS-2D-PAGE and Western blot of fresh head homogenates of CS and 

Syn97CS flies. SAP47 and synapsin are not found in the same complex as they are 

detected at different vertical axes. (Loading: 10 heads equivalent; detection by anti-

SYN, MAB 3C11 (dilution 1:50) and anti-SAP47, MAB nc46 (dilution 1:200)). 

 The interpretation of 2D-BN-SDS-PAGE results is different from conventional 2D 

-SDS gels. Vertically  aligned spots indicate that the proteins could be components of a 

larger protein complex. Larger complexes are located on the left hand side of the image.

 

 Synapsin and SAP47 signals are detected at  two different horizontal axes (Fig. 

44). The control experiment using Syn97CS mutants demonstrate the specificity of the 

MAB 3C11 signal in the CS blot. This result confirms that SAP47 and synapsin are not 

part of a same stable complex (see Discussion). It  was also observed that in the first 

dimension both synapsin and SAP47 are located in the higher molecular weight range 

suggesting that they  are individually  involved in protein complexes (see Discussion). Our 
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experiments revealed no direct protein-protein interaction of SAP47 and synapsin. 

However, an interaction could also be indirect involving other proteins, dissociating the 

interactions spatially and/or temporally. We attempted to identify  the unknown co-IPed 

proteins by mass spectrometry (see 4.4.3).

4.2 Functional interaction between Sap47 and Syn genes

 A possible mechanism that might explain the up-regulated phospho-synapsin in 

Sap47 null mutants could be a functional interaction between Sap47 and Syn at genetic 

level.

4.2.1 Generation of the Sap47 and Syn double null mutants NS17 and NS62

 A first step to look into the possibility of a genetic interaction of the Sap47 and 

Syn genes was taken by generating a Sap47156CS, Syn97CS double mutant in homozygous 

condition (Fig. 45). Two such double mutants, Sap47156, Syn97, l(3) blp/TM3 and 

Sap47156, Syn97, l(3) (NF)/TM3 had already been generated (S. Becker and N. Funk, 

unpublished). In both stocks only balanced flies and the trans-heterozygotes Sap47156, 

Syn97, l(3) blp/Sap47156, Syn97, l(3) (NF) were viable, indicating that both recombinant 

chromosomes contained a homozygous lethal mutation independent of the Sap47 and Syn 

genes.

 In an attempt to obtain double mutants without lethal mutation flies of cantonised 

Sap47 null mutants (Sap47156CS) and Syn null mutants (Syn97CS) were used to generate 

independent double mutants by homologous recombination as both genes Sap47 and Syn 

are present on the third chromosome at 3R (flybase). A mass cross of Sap47156CS (9 virgin 

females) and Syn97CS (12 males) flies was performed. Virgin females from the F1 

generation were crossed to males (in a ratio of 1:3) of TM3Sb/TM6Tb (cantonised stock 

provided by V. Albertowa). The progenies of the above cross were sorted on the basis of 

Tubby (Tb) and Stubble (Sb) phenotypes.
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 Only the virgin females were selected in order to obtain 3rd chromosomes that had 

received both the Sap47156CS and Syn97CS mutant alleles due to homologous recombination 

during meiosis. Each individual female was crossed to males of the stock of Sap47156CSNF, 

Syn97CSNF, l(3) (NF)/TM3Sb (short: Sap-, Syn-, l(3)NF (N. Funk, unpublished) which is 

homozygous lethal. The non balanced progeny  of this cross was analysed using ELISA 

(see Methods). 

P

F1

F2

F3

Fig. 45: Crossing strategy for generating Sap47 and Syn double null mutant. 

 The ELISA was performed using both the monoclonal antibodies 3C11 and nc46 

simultaneously  on a single ELISA plate. From each of the 200 F3 vials a non-balanced 

progeny was anaesthetised and the head was severed from the body using a surgical 

blade. The head was homogenised in PBS buffer and the homogenate was divided into 

two aliquots and loaded into separate wells of the ELISA plate. One set of wells was 

assayed with MAB nc46 to test  for the absence of SAP47 and the other set  of wells was 

assayed with 3C11 to test for the absence of synapsin. The lines NS17 and NS62 were 

found to be double null mutants, a result  that was verified by  Western blot (see Fig. 46). 

Interestingly, the parental lines of NS17 and NS62 were also homozygous lethal. The 

recombination chromosomes are therefore designated as Sap-, Syn-, l(3)NS17 and Sap-, 

Syn-, l(3)NS62.
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Fig. 46: Confirmation of absence of SAP47 and SYN for Sap47156CS, Syn97CS double 

mutants (two lanes at the right most). Coomassie staining of the gel after transfer 

showed the presence of other protein bands and this served as a loading control.

 NS17 and NS62 double mutants are homozygous for Sap-, Syn- but are still trans-

heterozygous for third site lethality.

NS17: Sap-,Syn-,l(3)NS17/Sap-,Syn-,l(3)NF

NS62: Sap-,Syn-,l(3)NS62/Sap-,Syn-,l(3)NF

 In a similar manner as described above, yet another homozygous double mutant of 

Sap47 and Syn was generated by V. Albertowa. Again the recombinant chromosomes 

carried a third site lethality. Three homozygous viable stocks (SapSynV1, SapSynV2 and 

SapSynV3) were established after outcrossing the balanced lines for 6 generations with CS. 

Apparently, in these stocks the lethality had been removed by recombination (V. 

Albertowa, unpublished, see Discussion). 

 The next step after the generation of homozygous double mutants was to 

investigate and compare the phenotypes of the double mutants with those of the 

individual null mutants and CS. If the double mutants showed an additive phenotype this 

would suggest that SAP47 and synapsin might be functional in different pathways 

whereas a phenotype comparable to that of each individual mutants would suggest that 

the two proteins could be functional in a single pathway.
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4.3 Behavioural analysis of Syn97CS, Sap47156CS and double null mutants

4.3.1 Locomotor assays

 

CS

NS17

NS62

Larval crawling pattern

Fig. 47: Reduced locomotion in 3rd instar larvae of NS17 and NS62 (Sap47-Syn 

double null  mutants). The larvae were placed at the centre of 1% agarose filled 9 cm 

⌀ petri-dishes and after an acclimatization period of 3 minutes the larvae was again 

placed at the centre of the plate and a video of their activity was recorded for the 

next 3 minutes. The whole experiment was done under red light (for the camera to 

function). n=4 for each genotype.

 In a preliminary  crawling test 3rd instar larvae of NS17 and NS62 double null 

mutants were found to have reduced locomotor activity as they moved less from their 

original position on an agarose filled petri-dish. The activity was not quantified and 

would need further investigation (Fig. 47).

 The negative geotaxis assay as previously described (Benzer, 1967) was modified 

to calculate the time taken by the fly to climb the first centimetre from the bottom of the 

vial (see Methods).

Results

100



Fig. 48: Modified negative geotaxis. The double null mutants NS17, NS62 (left 

panel), V1, V2 and V3 (right panel) take longer to climb the first one centimetre. 

Two-sample students t-test and Bonferroni correction was performed (n=15 for left 

panel and n=10 for right panel). (*: p<0.05) (Diploma thesis A. Schneider, 2008).

 All tested double mutants (NS17, NS62, V1, V2 and V3) were found to have a 

defect in their negative geotaxis (Fig. 48). However, this defect was restricted to the first 

few seconds of the response as the total distance climbed by the double null mutants in 30 

s was not significantly different from CS and the single mutants Sap47156CS and Syn97CS 

(see Discussion, Diploma thesis A. Schneider, 2008). 
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4.3.2 Longevity assay

Fig. 49: Life expectancy (t50 , in days). Homozygous double mutants V1, V2, V3, 

NS17 and NS62 have reduced life span. Life expectancy of 500 males of CS, Sap156CS, 

Syn97CS, NS17, NS62, V1, V2 and V3 flies was determined by calculating the time 

taken for half the initial  number of flies to be dead. Two-sample students t-test and 

Bonferroni correction was performed (n=15 for left panel and n=10 for right panel). 

(*: p<0.05) (Diploma thesis A. Schneider, 2008).

 The double null mutants V1, V2 and V3 (provided by V. Albertowa) and NS17 and 

NS62 were found to have reduced life span (Diploma thesis A. Schneider, 2008). The 

number of double mutant flies reduces to half the initial number in significantly  shorter 

time when compared to the wild type flies as observed in CS. Interestingly, only Sap47 

null mutant flies show a significant defect in life expectancy whereas the Syn null mutants 

are  comparable to wild-type CS (Fig. 49).

 On the other hand, if left undisturbed the double mutants appear to be more 

lethargic and having reduced locomotion, they  prefer to stay  at the bottom of vial and do 

not make efforts to climb the walls.
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4.4 Characterization of synapsin posttranslational modifications (PTMs)

 

 2D-PAGE is a standard method to obtain information about PTMs of any  protein. 

In order to characterise the PTMs of SYN, we performed 2D-PAGE of 

immunoprecipitated SYN samples (using MAB 3C11). The aim of this experiment was to 

immunoprecipitate SYN isoforms and separate them using the 2D-PAGE to produce 

series of spots and then analyse each spot by mass spectrometry (MS). In order to detect 

the proteins from the gel spot by MS, we loaded a large amount of SYN protein on the 

gel. We standardised the conditions for IP in order to have minimal contamination from 

serum proteins and the monoclonal antibody (3C11). The first dimension of the 2D-PAGE 

(isoelectric focussing) produces best results only at  optimal protein concentration (less 

than 50 µg of crude protein for broad range strip, pH 3-10 and less than 200 µg of crude 

protein for narrow range strips). The loading can be increased (to 400 µg) if the sample is 

highly enriched by fractionation or by IP.

4.4.1 Analysis of synapsins by 2D-PAGE 

 Characterization of Drosophila synapsins by  2D-PAGE of head homogenates and 

Western blotting (Fig. 50A) had indicated that the three short isoforms of 70, 74 and 80 

kDa observed in 1D-SDS gels actually consist of multiple isoforms differing by 

isoelectric point. In agreement with this result several synapsin spots were identified by 

silver staining of a second dimension gel from 2D-PAGE analysis of synapsin IP samples 

(competitive elution protocol with DSS (see Methods), Fig. 50B). The spots were excised 

from the gel and an analysis by nano-LC-ESI MS/MS technique was attempted. However, 

the protein content in the gel pieces was too low such that no significant hits were 

obtained from MS/MS analysis (see Discussion, in collaboration with S. Heo).
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Fig. 50: (A) 2D-PAGE and Western blot of fresh head homogenates of w1118 by anti-

SYN antibody (MAB 3C11, dilution (1:50), Loading: ~12 heads per gel strip) 

(Diploma thesis S. Racic, 2009) (B) Silver stained gel of synapsin competitively 

eluted after IP with wild-type head homogenate (see Methods). A parallel 

experiment using the synapsin null mutant (Syn97CS) did not show comparable spots 

(gel image not shown).

 Due to this failure, we performed 1D-SDS-PAGE of the IP sample. 1D-SDS-

PAGE is less efficient in the separation of isoforms with different PTMs but protein 

content in gel pieces is higher (due to higher loading) compared to 2D-SDS-PAGE. 

4.4.2 Immunoprecipitation of synapsin from head homogenates and detection by MS 

compatible silver staining 

 In order to detect PTMs of Drosophila synapsin, and possibly  co-

immunoprecipitated binding partners of synapsin, an IP of synapsin was performed from 

180 mg (~2500 Drosophila heads) of brain tissue (IP protocol without  DSS). Eluted wild-

type (CS) and null mutant (Syn97CS) samples were separated by  SDS-PAGE and visualized 

by MS compatible silver staining (Mortz et al., 2001) (see Materials and Methods). 
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Fig. 51: Silver stained SDS gel after immunoprecipitation using anti-SYN 

monoclonal antibody (MAB 3C11). MS compatible silver staining revealed several 

bands in the CS lane out of which only 5 (those numbered) were unique (3 similar 

bands between CS and Syn97CS lane). In total 11 gel pieces were picked from unique 

bands in the CS lane (numbered 1-11). Gel pieces 1-10 showed the presence of SYN. 

On MS analysis, protein from gel piece 11 did not produce a significant hit. 

 Several bands unique to CS and absent in Syn97CS lane were observed. On analysis 

by nano-LC-ESI-MS-MS (see 4.4.3, MS analysis of synapsin) only  synapsin proteins 

were detected from all the bands except band 11. Under the IP conditions used, we were 

able to precipitate large amount of SYN but no stable interaction partner was co-

precipitated. This supports the finding of BN-SDS-PAGE analysis that synapsins are 

possibly present in the form of stable homo-multimers (see Discussion). 

4.4.3 nano-LC-ESI-MS-MS  analysis of synapsin (in collaboration with S. Heo and G. 

Lubec)

 Gel pieces were excised from the bands observed in Figure 51 and were subjected 

to MS analysis (in collaboration with S. Heo and G. Lubec). Proteins trapped in the gel 

pieces were digested by the indicated enzymes (see Table 2) and subsequently extracted 

peptides were analysed by nano-LC-ESI-MS/MS. MS/MS spectra were interpreted and 

peak lists were generated by DataAnalysis 4.0. Data searches were performed via 
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MASCOT and Modiro against latest UniProtKB and NCBI database for protein 

identification and PTM search. 

Tables 2: Enzyme conditions used and the synapsin sequence coverage obtained by 

collision-induced dissociation (CID) and electron-transfer dissociation (ETD) based 

MS/MS  fragmentation and MASCOT or MODIRO based data analysis. Trypsin 

digestion produced the highest sequence coverage by CID method and MASCOT 

(uses mass spectrometry data to identify proteins from primary sequence databases) 

analysis (in collaboration with S. Heo). 

A. CID/ETD based fragmentation and MASCOT/MODIRO based sequence analysis

Enzyme Conditions

Identified 
protein

(Swissprot 
Nr.)

Mascot v2.2.06Mascot v2.2.06 ModiroTM v1.1
(Min. Sig. 90 / 80)

ModiroTM v1.1
(Min. Sig. 90 / 80)Enzyme Conditions

Identified 
protein

(Swissprot 
Nr.) CID ETD CID ETD

Trypsin 25mM NH4HCO3 (pH 7.8). 37°C 
overnight.

Synapsin
(Q24546)

80.00 71.22 73.07 / 
78.63

62.24 / 
70.15

Chymotrypsin 25mM NH4HCO3 (pH 7.8). 25°C 
overnight.

Synapsin
(Q24546)

52.78 40.78 45.56 / 
43.70

22.92 / 
25.85

AspN 25mM NH4HCO3 (pH 7.8). 37°C 
overnight. Synapsin

(Q24546)

52.39 26.83 18.34 / 
22.73

6.82 / 
12.29

Subtilisin 50mM NH4HCO3 (pH 7.8). 37°C for 
1h.

Synapsin
(Q24546) 26.44 25.46 36.29 / 

30.24 3.51 / 2.44

ProteinaseK 50mM NH4HCO3 (pH 7.8). 37°C for 
1h.

Synapsin
(Q24546)

21.27 Not 
identified

12.20 / 
11.22 1.46 / 1.46

Pepsin 100 mM HCl. 37°C for 4 h.

Synapsin
(Q24546)

33.85 Not 
identified

40.20 / 
34.93

3.02 / 
10.24

B. Sequence data pooled from two different enzymatic digestions to obtain higher 

sequence coverage.

EnzymeEnzyme
Identified protein

(Swissprot 
number)

Mascot v2.2.06 (%)Mascot v2.2.06 (%) ModiroTM v1.1
[Min. Sig. 90 / 80] (%)

ModiroTM v1.1
[Min. Sig. 90 / 80] (%)EnzymeEnzyme

Identified protein
(Swissprot 
number) CID ETD CID ETD

Trypsin Chymotrypsin

Synapsin
(Q24546)

85.17 75.02 81.17 / 83.71 71.12 / 78.83
Trypsin AspN

Synapsin
(Q24546)

90.83 76.49 75.32 / 85.66 63.41 / 72.20
Trypsin Subtilisin Synapsin

(Q24546) 84.29 78.73 81.76 / 84.59 62.54 / 70.15
Chymotrypsin AspN

Synapsin
(Q24546)

77.17 47.32 54.73 / 56.68 27.90 / 35.61
Chymotrypsin Subtilisin

Synapsin
(Q24546)

63.41 58.83 66.63 / 66.05 24.98 / 28.10

C. Sequence data pooled from MASCOT and MODIRO analysis to obtain higher 

sequence coverage.

Identified protein
(Swissprot number) Enzyme Analyzing condition Sequence 

coverage (%)
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Synapsin
(Q24546)

Trypsin
MASCOT CID + Modiro CID (Min. Sig. 90) 84.68

Synapsin
(Q24546)

Trypsin
MASCOT CID + Modiro CID (Min. Sig. 80) 85.95

Synapsin
(Q24546)

Chymotrypsin
MASCOT CID + Modiro CID (Min. Sig. 90) 55.71

Synapsin
(Q24546)

Chymotrypsin
MASCOT CID + Modiro CID (Min. Sig. 80) 58.93Synapsin

(Q24546)
AspN

MASCOT CID + Modiro CID (Min. Sig. 90) 58.83
Synapsin
(Q24546)

AspN
MASCOT CID + Modiro CID (Min. Sig. 80) 57.46

Synapsin
(Q24546)

Subtilisin
MASCOT CID + Modiro CID (Min. Sig. 90) 51.80

Synapsin
(Q24546)

Subtilisin
MASCOT CID + Modiro CID (Min. Sig. 80) 47.22

 A maximum sequence coverage of 90.83% was obtained from combinations of 

different endopeptidases. The largest coverage was obtained from peptides generated by 

Trypsin and AspN enzymes. The sequences deduced from the peptides revealed  

methionine as the N-terminal amino acid encoded by CUG (Fig. 54) and lysine 

substituted for the in-frame amber codon (Fig. 52A), which is read through during 

translation with about 20-25% efficiency (Klagges et al., 1996).
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Figure 4

Fig. 52: Mass spectrometric determination of the sequence of synapsin peptide 

fragments with a lysine (MASCOT v2.2.06 (A) and MODIRO v1.1 analysis (B)) 

residue at the position corresponding to the amber stop codon. The substitution by 

lysine (K) is highly significant based on the ion score (in collaboration with S. Heo).
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Fig. 52C: Representative mass spectra demonstrating S464 phosphorylation of 

Drosophila synapsin. Proteins from silver stained SDS-PAGE bands marked in 

Figure 51 were digested by the indicated enzymes and extracted peptides were 

analyzed by nano-LC-ESI-MS/MS (high capacity ion trap). MS/MS spectra were 

interpreted and peak lists were generated by DataAnalysis 4.0. Data searches were 

performed via MASCOT v2.2.06 (A) and ModiroTM v1.1 (B) against latest 

UniProtKB database for protein identification and PTM search. An asterisk marks 

the phosphorylated serine (in collaboration with S. Heo). 
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Figure 3D-FFig. 52D: Representative mass spectra demonstrating S464 dephosphorylation of 

Drosophila synapsin. Samples were treated with alkaline phosphatase resulting in 

dephosphorylated peptides.

 Several PTMs were detected after analysing the MS/MS spectra with MASCOT 

and Modiro software. Most of the PTMs identified were phosphorylation, methylation, 

deamidation, hydroxylation, methionine oxidation, sulfonation etc. Only the 

phosphorylation sites were confirmed by  alkaline phosphatase treatment of corresponding 

gel pieces and re-analysis by nano-LC-ESI-MS-MS. Mass spectra of untreated and 

phosphatase treated samples are shown in Fig. 52C and D, respectively. A total of five 
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phosphorylation sites were detected and verified by phosphatase treatment (Table 3). The 

positions of these sites with respect to the domain structure of Drosophila synapsins is 

shown in Fig. 53. The PTMs apart from phosphorylation were not verified as they 

frequently are predicted based on mass shifts caused by artifacts of sample preparation 

and handling (Table 4). Figure 54 summarizes sequence coverage (indicated in red), 

methionine at N-terminal, domain structure (highlighted) and PTMs of the present 

analysis. The complete data set of this analysis can be found in Nuwal et al. (submitted).

Table 3: Identified and verified phosphorylations in synapsin (in collaboration with 

S. Heo). Coloured residues are the identified phosphorylated residues

Type of 
modification Residue Position

Phosphorylation  RGVSAPT*SPAKS 86

Phosphorylation RAES*PTDEGVAPTPPLPAGPRP 464

Phosphorylation RRDSQTSQS*STISSSVSRA 538

Phosphorylation KS*MSMTSGGVGSGNGSGSGLGGYKI 961

Phosphorylation KSMSMTSGGVGSGNGSGSGLGGY*KI 982

Drosophila synapsin

1 205 410 615 1025810

A C E? ? Proline rich region

pT
86

pS
46
4

pS
53
8

1-26 A domain;133-442 C domain; 538-581 E domain

pS
96
1

pY
98
2

Fig. 53: Domains and identified phosphorylation sites in synapsin. The black arrow 

head refers to the amber stop codon read-through with efficiency of 20-25% 

(Klagges et al., 1996). The scale drawn below the domain structure with the 

phosphorylation sites refers to the amino acid residues.
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Table 4: Several PTMs were identified in Drosophila synapsin. The PTMs marked in 

red are significant (score greater than 200 and significance above 80), PTMs marked 

in blue have low scores less than 200 and or significance less than 80 (in 

collaboration with S. Heo) .

Type of modification Residue Position

Sulfonation RGVSAPT*SPAKS 86

Hydroxylation RDITVVSSAD*TGPVVTMAAYRS 178

Dioxidation (Sulfones) KTNQGSAM*LEQITLTEKY 365

Triple oxidation 
(Kynurenin) KYKSW*VDEISELFGGMEVCGLSVVVAKD 378

Methylation RMQ*NVCRPSMAQTGPGKLPSRS 437

Methylation RMQNVCRPS*MAQTGPGKLPSRS 443

Methylation RMQNVCRPSMAQ*TGPGKLPSR.S 446

Pyrophosphorylation RPSMAQT*GPGKLPSRS 447

Pyrophosphorylation R.PSMAQTGPGKLPS*R.S 454

Hydroxylation RPAP*MGGPPPIPERT 484

Deamidation RAGQRPPQTQ*NSVVEDAEDTMKN 556

Methylation KGEGVIS*TQPTQRP 635

Methylation KGEGVISTQPT*QRP 639

Methylation RPSYSR*SESNASKH 900

Methylation RPSYSRSESNAS*KH 906

Methylation RFGAS*KS 959

Triple oxidation 
(Kynurenin) RW*SASKE 1012
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  1        MKRGFSSGDL    SSEVDDVDPN    SLPPAARPIQ    DQPTKPPVAG    GPPNMPPPPA
  51       PGQPAGAAPE    LSLSFGAGKT    PATAAPAPPR    GVSAPTSPAK    SRESLLQRVQ 

  101      SLTGAARDQG    ASILGAAVQS    ATQRAPAFSK    DKYFTLLVLD    DQNTDWSKYF 
  151      RGRRLHGDFD    IRVEQAEFRD    ITVVSSADTG    PVVTMAAYRS    GTRVARSFRP 

  201      DFVLIRQPPR    DGSSDYRSTI    LGLKYGGVPS    INSLHSIYQF    QDKPWVFSHL 
  251      LQLQRRLGRD    GFPLIEQTFF    PNPRDLFQFT    KFPSVLKAGH    CHGGVATARL 

  301      ENQSALQDAA    GLVSGAGNDS    HCYCTIEPYI    DAKFSVHIQK    IGNNYKAFMR 
  351      KSITGNWKTN    QGSAMLEQIT    LTEKYKSWVD    EISELFGGME    VCGLSVVVAK 

  401      DGREYIISAC    DSTFALIGDT    QEEDRRQIAD    LVSGRMQNVC    RPSMAQTGPG 
  451      KLPSRSSVSS    RAESPTDEGV    APTPPLPAGP    RPAPMGGPPP    IPERTSPAVG 

  501      SIGRLSSRSS    ISEVPEEPSS    SGPSTVGGVR    RDSQTSQSST    ISSSVSRAGQ 
  551      RPPQTQNSVV    EDAEDTMKNL    RKTFAGIFGD    MXEIANKKRG    RTASETSSGS 

  601      GPGSVPSSAG    PGSGFSSSFL    GKQFSFAGKG    EGVISTQPTQ    RPSEEPPAIP 
  651      TTASSAVRPE    SSVSVSDSRN    TDTLTERAGA    GYQPVTNYEQ    QERVNPFDKE 

  701      PSKSGSAASI    HTSSSSSISS    SSISSRINRN    GNAIQSPPPP    AGPPPPPPTN 
  751      VTAVGSNANS    SSGYRNSFSS    SLSKDKTSYG    NYGSTTSVET    ITRMDTNTTN 

  801      IGATATEAGE    ASGVTAITNI    SNSDGIVAPT    TGTITTSVTT    NDWRSAIGMR 
  851      SASVYSAPAA    VTTVLPGDTS    GYDSNSIASQ    GEGLNNPSDL    PSYTRPSYSR 

  901      SESNASKHSD    LDVIFGDSKT    TPASYGNGKY    TRAAGSISDA    DMIFGGPPSN 
  951      YKTDRFGASK    SMSMTSGGVG    SGNGSGSGLG    GYKIYDSIQN    AAFSDFSDSG 

  1001     SMSSIGSHTK    RWSASKEEDD    ELDLK 

K
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Fig. 54: Sequence coverage of synapsin by multi-enzyme digestion and nano-LC-

ESI-MS/MS. MASCOT and Modiro analysis identified the N-terminal methionine, 

and revealed that the stop codon at position 582 is read through and in most cases is 

represented by lysine (K) in the protein, and determined PTMs (in collaboration 

with S. Heo).
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4.5 Genome wide transcript analysis of Sap47156CS, Syn97CS and Sap47-Syn double 

mutants (in collaboration with N. Nuwal, and S. Kneitz)

 The total mRNA (poly A+) of Sap47156CS, Syn97CS and double mutants V2 and V3 

were analysed and compared to total mRNA of two different wild-types (CSNF and CSV) 

using microarray  technique. The aim of this experiment was to determine the genes which 

have significantly  altered gene expression in the mutants when compared to the wild-

types. The identified genes could be the functional interaction partners of the mutants and 

could compensate for the loss of function in null mutant lines Sap47156CS, Syn97CS and 

double mutants (V2 and V3) as they do not  show obvious defects (in collaboration with N. 

Nuwal, and S. Kneitz).

 Prior to starting with microarray analysis, the transcripts of Sap47 and Syn in the 

null mutants was verified by  RT-PCR and it was found that the 5’ end of Sap47 and Syn 

gene was absent whereas the 3’ end was intact in the respective individual and double 

mutants (Fig. 55 A and C, refer to PhD thesis of N. Nuwal, 2010). An essential step  in the 

analysis of any  microarray data was to check the quality of the data from the arrays and 

this was checked by  plotting log2 (intensity ratio) vs mean  (log2 intensities). Long comet-

like pattern of non-differentially expressed probes and a small proportion of highly 

differentially expressed probes were obtained (data not shown, refer to PhD thesis of N. 

Nuwal, 2010). The genes which were significantly altered in the mutants (p<0.01) were 

selected and verified by quantitative real time PCR (refer to PhD thesis of N. Nuwal, 

2010).

 Microarray analysis and qPCR results showed that the transcript levels of Cirl 

(calcium independent receptor for α-latrotoxin) gene was found to be consistently altered 

(down-regulated) only in the Syn97CS mutant (Fig. 55 B, refer to PhD thesis of N. Nuwal, 

2010). The transcripts of Sap47 and Syn in the null mutants Sap47156CS, Syn97CS, V2 and 

V3 were verified by qPCR (Fig. 55 A and C). The 3’ end of the transcripts of Sap47 in 

Sap47156CS, V2 and V3, and Syn in Syn97CS, V2 and V3 were detected at lower levels in 

qPCR and microarray, this is because the probes in microarray are designed against the 3’ 

region of the gene and this region is intact in the null mutants. The 5’ end of the transcript 
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was absent in the Syn97CS, V2 and V3 mutants and this served as a negative control for our 

experiments (refer to PhD thesis of N. Nuwal, 2010).

A.

B. C.
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Fig. 55: Transcript analysis of Sap47, Syn and Sap-Syn double mutants (V2 and V3). 

(A) The 3’ transcripts of Sap47 and Syn are present at lower levels in the respective 

individual and double mutants (V2 and V3) when compared to two different wild-

types (CSNF and CSV). (B) Cirl is significantly down-regulated only in Syn97CS and 

unchanged in Sap156CS, V2 and V3 mutants. (C) 5’ end of Syn transcript is absent in 

Syn97CS, V2 and V3 mutants thus the columns for these genotypes are broken in the 

plot. Note: Average intensities of V2 and V3 were used for microarray analysis 

(black bars are identical for V2 and V3 in all panels) (Standard deviations of means 

are shown for qPCR results, refer to PhD thesis of N. Nuwal, 2010).

 The microarray  analysis and the qPCR results as shown above also verified our 

previous observation that Syn transcript is not altered in Sap47 null mutants (see 4.1.3)
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4.6 Analysis of Tubulin binding chaperone E-like

 The Drosophila Tbce-like or Tbcel (CG12214) gene is located on the chromosome 

arm 2R (www.flybase.org). It  has only  one exon and is nested in an intron of the KCNQ 

gene (CG33135). Tbcel has two different transcripts RA and RB due to alternative 

transcription start  sites (see Fig. 56) and is highly expressed in brain and other tissues 

(Table 5, flybase.org). In a yeast-two-hybrid screen performed by N. Funk to identify 

interacting partners of Drosophila SAP47, TBCEL was the only interacting partner 

obtained (PhD thesis N. Funk, 2003).

Fig. 56: Drosophila Tbcel (CG12214) gene structure. The gene is nested in an intron 

of the KCNQ gene and codes for two transcripts RA and RB. The coding region of 

two transcripts are identical. The G18151 insertion (P-element, highlighted in green) 

is located 403 bp downstream of the ATG (translation start site), NP4786 (P-element, 

highlighted in pink) is inserted 504 bp upstream of the ATG. (Source: Flybase).

4.6.1 TBCE and TBCEL have conserved domains

 Amino acid sequences of TBCE and TBCEL proteins of Drosophila (Flybase, 

genes CG7861 and CG12214, respectively), human (TBCE: GenBank accession 

AAH08654.1; TBCEL: GenBank accession AAI20990.1) and mouse (TBCE: GenBank 

accession AAL92570.1; TBCEL: GenBank accession AAI39388.1) were obtained from 

NCBI database. The sequences were aligned using ClustalW 2.0 software available online 
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(see Appendix). Two major domains identified in Drosophila TBCEL protein were 

leucine rich repeats (LRRs) and ubiquitin-like domain (UBL). A schematic of the domain 

structure of TBCE and TBCEL is shown in Fig. 57.

 TBCEL is not predicted to have a glycine-rich cytoskeletal attached domain 

(CAP-Gly) (see Discussion).

600525450375300225150751

CAP-GLY LRR UBL

LRR UBL

CAP-GLY LRR UBL

CAP-GLY D.melanogaster

M.musculus

H.sapiens

LRR UBL

LRR UBL

N-term C-term

D.melanogaster

M.musculus

H.sapiens

TBCE

TBCE-like

Fig. 57: TBCE and TBCEL domain homology. CAP-Gly is a glycine-rich 

cytoskeleton-associated protein domain involved in interactions with the cytoskeletal 

structure; LRR are leucine-rich repeat sequences involved in protein-protein 

interactions; UBL is a ubiquitin-like domain that may play a role in proteosomal 

mediated degradation. The CAP-Gly domain is not present in TBCEL. Coloured 

boxes indicate amino acid sequence homology. Prediction by fold recognition 

algorithm (http://motif.genome.jp/).

Results

118



Table 5: Expression of Tbcel transcript in different tissues of adult Drosophila. The 

enrichment score defines the tissue-specificity of Tbcel, scores above 1.4 indicate 

high enrichment in particular tissue (Source: http://flyatlas.org/, (Chintapalli et al., 

2007)).

Tissue Enrichment 

Brain 2.60

Head 1.40

Eye 1.66

Thoracic ganglion 2.10

Crop 2.70

Ovary 0.80

Testis 1.90

Salivary gland 1.73

Mated spermatheca 1.06

Virgin spermatheca 1.05

 In order to investigate further the TBCEL protein and its functions, we generated a 

polyclonal antiserum (in collaboration with G. Krohne) against His-tagged TBCEL in 

Guinea pig. 

4.6.2 Generation of anti-TBCEL antiserum 

 Cloning and expression of the Tbcel cDNA in the His-tag plasmid and purification 

of the protein has been described in Methods section. TBCEL antiserum was obtained 

from the final bleed of a Guinea pig immunised with 1 µg of bacterially expressed 

Drosophila His-tagged TBCEL. The antiserum was tested on Western blots of fresh head 

homogenate from adult CS flies and purified His-tagged TBCEL and was found to 

recognise a band at around 55-59 kD in both the bacterially expressed His-tagged TBCEL 

and the endogenous TBCEL in wild-type (CS) flies (see Fig. 58).
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Fig. 58: Drosophila TBCEL is a 55-59 kD protein. Western blot of lysate from 

bacteria expressing His-tagged TBCEL (left two lanes) and of homogenate from 2 

wild type fly heads (rightmost lane, Note: The image is taken from a different blot 

with anti-CSP as loading control (Diploma thesis S. Racic, 2009)). The anti-TBCEL 

antiserum recognises the induced His-tagged TBCEL (also recognised by anti-His 

antibody) and the endogenous TBCEL at around the same size (55-59 kDa). 

(antibody dilutions, anti-His 1:400, anti-TBCEL 1:4000, anti-CSP 1:50).

 The generation of anti-TBCEL antibody was important for our investigation of 

TBCEL protein localization and expression in Drosophila. The availability  of a null 

mutant for TBCEL would serve as a negative control for our qualitative and quantitative 

studies of TBCEL. 

4.6.3 Analysis of NP4786 and G18151 P-insertion stocks 

 In order obtain a null mutant for the Tbcel gene we checked the list of available 

transposon insertion stocks for the Tbcel gene (CG12214) in flybase. When we started 

our experiments no insertion in the coding region of the gene was available. We therefore 

chose the NP4786 line which at that time represented the P-element insertion in the 5’ 

UTR closest to the translation start site. This insertion may disrupt transcription and is 

very likely to affect the transcription efficiency of the coding region. With this line we 
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started an extensive P-element jump-out mutagenesis described below (4.6.6) in order to 

generate a deletion in the gene as a reliable null mutant. More recently, however, the 

G18151 insertion stock has been added to the flybase repository. The G18151 P-element 

is inserted in the open reading frame (ORF) and is putatively a null mutant for the Tbcel 

gene (Fig. 56).

 The NP4786 stock (short name: NP) is homozygous lethal (maintained over CyO 

balancer). Its P-element cassette contains a weak promoter in front of the yeast 

transcription factor gal4 encoding cDNA. Thus, the NP4786 line can reflect the 

expression pattern of a neighbouring enhancer (enhancer trap) when crossed to flies 

having a UAS (upstream activating sequence) construct with a reporter gene (e.g GFP). 

 To determine if the lethality is due to the insertion in Tbcel gene we crossed the 

NP/CyO flies to a deficiency stock, Df(2R)BSC281/CyO (short name: Df/CyO). The F1 

progenies (NP/Df) of this cross were viable, suggesting that the lethality is most likely 

due to a second site mutation on the 2nd chromosome outside the Df region.

 

 The NP4786 insertion was verified by PCR using primer pair 1 (inverted repeats 

of the the P-element) and 2 (3’ flanking genomic region) and pair 1 and 4 (5’ flanking 

genomic region) and the G18151 insertion was verified by using primer pairs 1 and 4 (5’ 

flanking genomic region) Figure 59, respectively, and sequencing of the PCR products 

(Diploma thesis I. Montalban, in preparation).The insertions were found to be as reported 

in the database (www.flybase.org).

4.6.3.1 Transcript analysis of the NP4786 line

 Prior to beginning with the P-element mutagenesis we investigated whether the 

NP insertion line by itself was a null/strong hypomorph mutant. The 5’ UTR of a gene can 

play  several regulatory  roles like modifying mRNA stability (Oliveira and McCarthy, 

1995) and localization (see review Jansen, 2001). Efficiency  of translation can also be 

affected by  disruption of the 5’ UTR of the gene (see review Gray and Wickens, 1998; 

van der Velden and Thomas, 1999; Pesole et al., 2001). The NP4786 line has a P-element 
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insertion in the 5’ UTR region of Tbcel gene such that it could be a null mutant or a 

hypomorph for the gene function. We determined the presence and level of transcripts in 

NP/Df flies by RT-PCR (Fig. 59 and 60).

Fig. 59: The primers (pair 2 and 4) across the P-element produced no signal from 

reverse transcribed template and from the genomic template from NP/Df flies. 

G6PD transcript levels served as an internal control and WT as a positive control. 

The genomic region including the P-element was too large to be amplified under the 

conditions used and no detectable product was formed.

 PCR with primer pair 2 and 4 (Fig. 59) across the P-element produced no 

detectable product from reverse transcribed cDNA. As an internal control, the G6PD 

transcript was detected from the same cDNA samples of WT and NP/Df and was found to 

be normal.
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Fig. 60: Presence of reduced transcript downstream of the NP4786 P-element. G6PD 

transcript levels served as an internal control and WT as a positive control. 
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 PCR with two different primer pairs downstream of the P-element produced  

normal genomic product and reduced but detectable product from reverse transcribed 

cDNA from NP/Df flies. As an internal control, G6PD transcript was detected from the 

same cDNA samples of WT and NP/Df and was found to be normal (Fig. 60).

 The results in Figure 59 and 60 prove that the P(GawB) element in the NP4786 

line disrupts the Tbcel transcript. The reduced amount of transcripts observed with primer 

pairs downstream of the NP4786 has not been further characterised but it may lead to 

reduction or complete loss of TBCEL protein. The absence/down-regulation of TBCEL 

protein in NP/CyO flies was verified by Western blotting using the anti-TBCEL 

antiserum.

4.6.3.2 Protein analysis of the NP4786 and G18151 stocks

 

 In a semi-quantitative Western blot of adult  head homogenates NP/CyO flies were 

found to have approximately half the amount of protein when compared to CS flies (Fig. 

61 compare the WT lane with 1 head loading to 2 head loading of NP/CyO). Since the 

CyO chromosome can be assumed to produce normal amounts of TBCEL,

 

Fig. 61: Semi quantitative Western blot of NP4786 line. TBCEL protein is 

approximately reduced to half the expression in wild type CS. SAP47 protein levels 

served as loading control (anti-SAP47, MAB nc46 (dilution, 1:200), anti-TBCEL,

(dilution, 1:4000)).
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this result suggests that the NP insertion results in a null mutation or a strong hypomorph 

for the Tbcel gene. To confirm this finding we tested the NP/Df flies on a Western blot. 

The result  (Fig. 62) shows that the NP line, the line e00818 (see Fig. 56) and the line 

G18151 are null mutants or strong hypomorphs for the Tbcel gene. 

Fig. 62: Western blots for different insertion mutants of the Tbcel gene. In the upper 

blot, the bands detected in the NP/Df lane at about the same position as the signal in 

WT and NP/CyO are due to unspecific cross-reactivity of the anti-TBCEL 

antiserum. The bottom blot demonstrates that NP/Df, e00818 and G18151 

homozygous flies are null mutants or strong hypomorphs for the Tbcel  gene. SAP47 

protein levels served as loading control (anti-SAP47, MAB nc46 (dilution, 1:200), 

polyclonal antiserum, anti-TBCEL, (dilution, 1:4000))

 As mentioned above, the G18151 fly line was not  listed in the flybase when we 

started with our P-element mutagenesis using the NP4786 line (the obvious choice would 

have been to use the G18151 stock). The G18151 line is homozygous viable and has a P-

element insertion in the coding region of the gene such that an intact TBCEL protein 

cannot be formed. Thus, this line can safely  be assumed to represent a true null mutant for 

the Tbcel gene. We tested G18151 line on a Western blot and found no detectable TBCEL 

protein in homozygous flies (Fig. 62 and 63). No TBCEL was detected in males or 
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females of this line whereas in wild-type CS, TBCEL was detected in heads and bodies

(Fig. 63).

Fig. 63: Loss of TBCEL in G18151 insertion mutants, asterisk marks the TBCEL 

signal. Note: From the abdomen of males the gut had been removed (Anti-TBCEL, 

(dilution, 1:4000)). (Diploma thesis I. Montalban, in preparation)

 Since NP/Df and G18151 homozygous flies are viable this confirms our finding 

that the lethality in NP line is due to a second site mutation. The NP/Df and G18151 lines 

will serve as null mutants for further experiments.

Results

125

W
ho

le 
fly

W
ho

le 
fly

Ab
do

m
en

+T
ho

ra
x

Ab
do

m
en

+T
ho

ra
x

Ab
do

m
en

+T
ho

ra
x

Ab
do

m
en

+T
ho

ra
x

He
ad

He
ad

He
ad

He
ad

TBCEL (55-59 kD)*

CS ! CG12214G18151  !

CS " CG12214G18151 " 



4.6.4 Expression of TBCEL in Drosophila testes

 The expression analysis for TBCEL was concentrated on adult testes because it 

has been reported that the human homologue of TBCEL is highly  enriched in testis 

(Bartolini et al., 2005) and also Drosophila Tbcel transcript is enriched in testis (see Table 

5). Since the null mutants required to demonstrate specificity of immunohistochemical 

staining became available only  towards the end of the thesis, this study requires further 

analysis.

 A schematic of Drosophila spermatogenesis is shown in Fig. 64 for better 

understanding of results that follow:

 

Fig. 64: Spermatogenesis in Drosophila melanogaster (Source: http://www.fly-

ted.org/images/Spermatogenesis_diagram.png).
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4.6.4.1 Expression and localization of TBCEL in adult testis

 

Fig. 65: (A) An overview of TBCEL detection in testis (10X objective). The TBCEL 

protein is enriched in the investment cone (arrow heads) (B) Details at higher 

resolution (40X objective). NP/Df and G18151 testes show only background staining. 

In WT (wild-type, w1118) TBCEL staining is present in spermatid bundles (see also 

Fig. 66). The actin-rich investment cones are stained with phalloidin. Investment 

cones are dispersed in NP/Df and G18151 testes (Phalloidin 1:200; anti-TBCEL 

1:1000).
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 In wild-type flies, uniform staining with anti-TBCEL antiserum was observed in 

the spermatid bundles enclosed by  the cyst cells. This reflects the TBCEL expression 

because it was not seen in the null mutants NP/Df and G18151. We observed an 

enrichment of TBCEL staining at the actin cones (investment cones) of wild-type flies 

(Fig. 66) suggesting that TBCEL is present in the cytoplasm or the investment cone 

complex, these details need to be investigated further (Fig. 66).

TBCEL is enriched around the actin cones

Viable

A B C

D E

F G H

I J K
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Fig. 66: TBCEL is enriched around the actin cones. Actin cones were stained by 

Phalloidin (in red, A and F), TBCEL was detected by anti-TBCEL (in green, B and 

G), the phase contrast images (C and H) were obtained using Leica confocal 

microscope with 40X phase contrast objective. Actin and TBCEL colocalize at the 

investment cones (shown in J and D). The phase contrast images provide the 

structural information. NP/Df and G18151 stocks have no detectable TBCEL 

staining (see Fig. 65) (Phalloidin 1:200; anti-TBCEL 1:1000). Scale bar 10 µm

4.6.4.2 Overexpression of TBCEL in testis

 The Gal4 expression of the NP4786 enhancer trap  line was revealed by crossing 

the NP line to the UAS-Tbcel line generated by  S. Wegener (see Master thesis S. 

Wegener, 2008). Dissected testes were co-stained with TBCEL and propidium iodide 

(nuclear stain). It was observed that the two signals do not co localize and thus TBCEL is 

not a nuclear protein (see Fig. 67). The expression pattern of enhancer trap line and 

endogenous protein was identical and more intense in over-expression flies when 

compared to the endogenous levels.
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Fig. 67: TBCEL is absent in nuclei. Nuclear stain propidium iodide (PI, red) and 

TBCEL (green) do not overlap. Enhancer trap expression of NP4786 revealed by 

detecting TBCEL (Panel A). Enhancer trap expression and the endogenous TBCEL 

is detected around the spermatid bundle (compare panel A and B) (PI was present in 

the mounting medium; anti-TBCEL 1:1000).
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4.6.4.3 Expression of gal4 in adult brain and testis of the NP enhancer trap line

Fig. 68: NP4786 enhancer trap expression revealed by crossing P(GawB)NP4786 line 

to UAS-mCD8::GFP. The median cells along with the bundle and the subesophageal 

ganglion are strongly stained (mouse anti-GFP, dilution (1:1000), anti-mouse alexa 

488, dilution (1:1000); anti-HRP Cy3 coupled (cross-reacts to Na+/K+ ATPase in the 

plasma membrane), dilution (1:1000)).

 The enhancer trap expression of the NP4786 line on crossed to UAS-mCD8::GFP 

(cell surface GFP reporter) showed strong and selective GFP expression in the brain (Fig. 

68). In some brain cells, the enhancer trap expression seems to co-localize with the 

endogenous TBCEL (Fig. 69, upper panel), suggesting that the NP line reflects at least 

partially the expression pattern of TBCEL by trapping the enhancer acting on Tbcel gene 

(Fig. 69).
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w- ; CG12214P(GawB)NP4786/UAS-TBCEL

MergeTBCELGFP

mCD8GFP
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Fig. 69: NP4786 enhancer trap expression revealed by crossing P(GawB)NP4786 line 

to UAS-mCD8::GFP and co-localization with endogenous TBCEL in the brain (top 

panel) and in the cyst cells of testis (A-D, white arrow heads mark the cyst cells). 

Panel C is a merge of phase contrast image and GFP signal (Panel A) (mouse anti-

GFP, dilution (1:1000), anti-mouse alexa 488, dilution (1:1000); anti-TBCEL, 

dilution (1:1200), anti-guinea pig Cy3, dilution (1:1000)).

4.6.5 Fertility assay

 The human homologue of TBCEL is highly  expressed in testis (Bartolini et al., 

2005). In Drosophila we found TBCEL also to be expressed in testis (see 4.6.4). The 

presence of TBCEL in testis could indicate its involvement in spermatogenesis. A defect 

in qualitative or quantitative aspects of spermatogenesis could lead to sterility in males 

(for e.g., oligospermia- few spermatozoa in semen; aspermia- complete lack of semen; 

azoospermia- absence of living sperm cells in semen; teratospermia- sperm with 

abnormal morphology; asthenozoospermia- reduced sperm motility).

 Males of NP/Df and G18151 were found to be sterile when mated with WT (w1118) 

virgin females (Fig. 70A)
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Fig. 70: (A) Males of NP/Df and G18151 are sterile when crossed to w1118 females. 10 

males (2-3 days old) of w1118 , NP/Df and G18151 were crossed to 10 virgin females 

(2-3 days old) of w1118 in individual medium sized vials (10 vials for each cross). The 

parents were transferred after sufficient egg laying (5 days). Progenies were counted 

in each vial until no more flies emerged. (B) Females of NP/Df and G18151 in the 

reciprocal cross were fertile.The average number of flies from each vial is plotted 

and S.E.M is marked.

4.6.6 P-element mutagenesis of Tbcel gene

 

  In parallel to the characterization of NP4786 and G18151 line we performed a P-

element jump-out mutagenesis of Tbcel gene using the NP4786 line in order to generate a 

deletion mutant for the Tbcel gene (see Fig. 56 and 71).

NP47
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5‘ UTR 3‘ UTRCDS
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CG12214-transcript RA

CG12214-transcript RB

5‘ UTR 3‘ UTRCDS

CG12214

Fig. 71: NP4786 P-element insertion is in 5’ UTR and G18151 has P insertion in the 

ORF region of the gene (Source: flybase.org)

 The crossing scheme is shown in Figure 72. The progenies from the single fly 

crossings were tested by PCR for presence of deletions in the Tbcel gene. As a first  step 

the transposase and the P-element  had to be brought together in the same fly for 

transposition to occur. 245 mass crosses between 25 virgin females of the NP line and 25 

males of the transposase line (Δ2-3Ki) were set up (Stage II in Fig. 72). The male 

progenies of the cross with red eye colour and kinked bristles (to select the Δ2-3Ki 

chromosome) were selected (NP/CyO; Δ2-3Ki) and crossed to Sco/CyO virgin females in 
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612 mass crosses (Stage III in Fig. 72). Non-Sco, CyO flies with white eyes were selected 

(absence of mini-white gene indicate jump-out of the P-element) and 273 fly lines were 

established by crossing them individually  to Sco/CyO flies (Stage IV and V in Fig. 72). 

The white eyes could also result from a deletion in the mini-white gene during 

transposition, leaving the rest of the P-element intact. To confirm the presence of any 

deletions, PCRs were performed in two stages. In stage 1, the absence of the P-element 

was determined by having primers in the P-element and the flanking genomic region 

(primer pair 1f/1r, see Materials).

4.6.6.1 First attemptP element mutagenesis first attempt

                   w- ; Sco/CyO ; +           !          w- ; + ; !2-3ki/!2-3ki      

��������������25������������������������25���������(20 mass cross)

w- ; CG12214NP4786/CyO ; +           !          w- ; CyO/+ ; !2-3ki/+    

                                        25�                                                                      25���������(245 mass cross)

                  w- ; Sco/CyO ; +           !          w- ; CG12214NP4786/CyO; !2-3ki/+    

                                       25�                                                                      25���������(562 mass cross)

w- ; CG12214NP4786/CyO ; +           !           w- ; Sco/CyO ; +
                         1����������������������������
w- ; CG12214NP4786/CyO ; +           !           w- ; Sco/CyO ; +
                         1������������������������������������
         
         
         w- ; CG12214!/CyO ; +         !           w- ; CG12214!/CyO ; +
                                                                                                          (10 Mass cross)

}{ (273 Single fly crosses)
CG12214!NP4786

CG12214!NP4786

(30 mass cross)

(612 mass cross)

(35 mass cross)

I

II

III

IV

V

Fig. 72: Crossing scheme for P-element jump-out mutagenesis (First trial).

Single fly crosses in total 273

Total single fly  lines 
screened (white eyes) 135

Dead/Infertile 138

Total lines with P-element 
Jump out 35
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 Only 35 lines were obtained in which the P-element had jumped out. The rest 

(100, as 138 were dead/infertile) which had suffered an internal deletion within the P-

element disrupting the mini-white gene were discarded. These 35 flies were subjected to a 

second round of PCR with primer pairs around the P-element (primer pair 1f/5r, see 

Materials). 

Homozygous viable flies 11

Homozygous lethal flies 24

Revertants 35

 All the 35 fly lines were revertants as PCR with genomic DNA from neither the 

homozygous viable flies nor the homozygous lethal flies produced a shorter product when 

compared to the wild-type flies (a shorter product would correspond to a deletion). The 

reason for homozygous lethality  could be the presence of the second site lethality in the 

original NP4786 line described above (4.6.3).

 Since we failed to obtain any  deletion mutants from this first mutagenesis we 

performed the mutagenesis for the second time with a larger number of singly fly 

crossings and using a modified technique involving a deficiency chromosome to prevent 

recombination mediated repair of any deleted segment (within the deficiency region).

  

 The NP4786 line was backcrossed to w1118 flies for 2 generations to clear the 

background of lethal mutations. The backcrossed flies were still homozygous lethal and 

were used for P-element mutagenesis.

4.6.6.2 Second mutagenesis (with kind help from B. Muehlbauer, G. Gramlich and I. 

Montalban)

 In the second attempt, the NP4786 line was used for the mutagenesis and the 

crossing scheme is as shown in Figure 73 and 74. The jump-out was induced in flies 

heterozygous for the deficiency chromosome (Df) which lacks the region of the Tbcel 

gene. In these flies recombination mediated repair of deletions generated by P-element 

jump-out was less likely.
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                          w- ; Sp/CyO ; TM2/TM6               !            w- ; Df (2R) 281/CyO ; +     

����������������������25����������������������������25���������(20 mass cross)

                                                          w- ; Df (2R) 281 (or) Sp/CyO ; TM2/+                                                                

       

                          w- ; CG12214NP4786/CyO ; +        !            w- ; Df (2R) 281/CyO ; +     

����������������������25����������������������������25���������(120 mass cross)

                                                          w- ; Df (2R) 281 /CG12214NP4786 ; +                                                                

       

Fig. 73: Fly crossings to obtain the NP4786 line in Df background.P element mutagenesis Second attempt

                          w- ; Sp/CyO ; TM2/TM6                 !             w- ; + ; !2-3ki/!2-3ki      

����������������������25����������������������������25���������(10 mass cross)

                w- ; Df (2R) 281 (or) Sp/CyO ; TM2/+     !            w- ; Sp/+ ; !2-3ki/TM6    

                                                                 25�                                                                                   25���������(245 mass cross)

        w- ; CG12214NP4786/Df (2R) 281 ; +                 !            w- ; Sp/Df (2R) 281 (or) CyO ; !2-3ki/TM2    

                                                                 25�                                                                                   25���������(562 mass cross)

w- ; CG12214NP4786/Df (2R) 281 (or) CyO ; !2-3ki/+!            w- ; Sco/CyO ; +
                                                                 25�                                                                                    25���������(300 mass cross)

w- ; CG12214!NP4786 (or) Df (2R) 281/CyO ; +         !           w- ; Sco/CyO ; +
                         1�����������������������������������������
w- ; CG12214!NP4786 (or) Df (2R) 281/CyO ; +         !           w- ; Sco/CyO ; +
                         1�������������������������������������������������
         
         
       
                           w- ; CG12214!NP4786/CyO ; +         !           w- ; CG12214!NP4786/CyO ; +
                                                                                                          (187 Mass cross)

}{ (963 Single fly crosses)

Screen for non-hybrid 
element using PCR

I

II

III

IV

V

VI

Fig. 74: Crossing scheme for P-element jump-out mutagenesis (Second trial).

 The parents of the single fly crosses from the second mutagenesis attempt (Fig. 

74) were first  tested by PCR (Primers XP5’ and RB3’, see Materials) for presence of the 

hybrid element (see Fig. 75a) which is characteristic for the Df chromosome 

(flybase.org). A positive signal in this PCR implies that the white eyes are from the Df 

chromosome and not from a jump-out event. 
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Fig. 75a: Screen for presence of hybrid element from deficiency line.

 The flies that tested positive for the presence of this hybrid element were 

discarded.

Total single fly  lines 
screened (white eyes) 923

Positive for hybrid element 
and P-element 204

Total lines screened for 
deletion 719

 The flies which were white eyed but did not have the hybrid element were either 

flies which had suffered an internal deletion of the mini-white gene in the P-element or 

had experienced a jump-out of the P-element from the locus. In order to select  only the 

flies with a P-element jump-out event we performed two PCRs with primer pairs 1f/1r 

and 2f/2r (Fig. 75b). The lines with positive signals from both the PCRs indicated the 

presence of the P-element (both ends intact) and were discarded.

Fig. 75b: Screen for absence of P-element (5’ and 3’ ends of the P-element)

Total lines screened for 
presence of P-element 

(Stage 2 and 3)
719
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Positive for P-element 
(intact 5’ and 3’ ends) or 

dead
523

Total lines screened for 
deletion (Stage 4) 196

	

 The absence of both signals implies that the lines are either revertants or have 

suffered a deletion in the flanking region of the P-element. The 22 homozygous viable 

lines were tested by PCR with primer pair 3f/3r. A signal similar to wild-type indicates 

that the coding region is not affected or that the lines are revertants.

Fig. 75c: Screen for absence of P-element and deletions in the gene

 The homozygous flies (22 in number) were all revertants. The rest 174 flies were 

tested by PCR using primer pair 4f/4r (Fig. 75c) and only 2 fly lines produced a signal 

larger than the wild-type signal indicating the presence of a residual part of the P-element. 

These two lines need to be characterised further to determine the extent of Tbcel gene 

disruption. The rest 172 fly lines were discarded.
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5. DISCUSSION

5.1 Up-regulated and hyper-phosphorylated synapsin in Sap47 null mutants

 In section 4.1 we verified earlier observations (N. Funk, unpublished) that the 

synapsin protein is present at higher levels and hyper-phosphorylated in Sap47 null 

mutants. We quantified this observation using ELISA and found synapsin levels in Sap47 

mutants to be ~2 fold increased when compared to wild-type CS flies. The hyper-

phosphorylation and up-regulation was independent of the particular Sap47 null allele  

tested and was partially rescued by pan-neuronal expression of Sap47-cDNA using elav-

gal4 (rescue flies generated by  T. Saumweber). The rescue was only  partial, possibly due 

to the following reasons:

• The expression of SAP47 in the Sap47 null mutant under the control of elav-gal4 is 

somewhat weaker than in WT, as suggested by the Western blot of Fig. 38. 

• The expression profile by elav-Gal4 is not the same as that  of SAP47. For example, 

elav-gal4 drives expression of UAS constructs in almost all neurons and additionally  in 

embryonic glial cells (Berger et al., 2007) whereas SAP47 is expressed in most but not all 

neurons (Reichmuth et al., 1995). Also, mis- and over- expression could cause SAP47 to 

be targeted for degradation (see review Hershko and Ciechanover, 1982).

 The results from section 4.1 suggests that:

• either the Syn gene in WT is down regulated by SAP47 (SAP47 has a transcription 

factor like BSD domain (Doerks et al., 2002)). Thus when the Sap47 gene is mutated the 

down regulation is lost. No biochemical evidence exits for an interaction between SAP47 

and DNA or RNA.

• or synapsin and SAP47 are involved in a co-regulated pathway and the absence of 

SAP47 protein is compensated by  increased levels of synapsin. The possible cause of this 

increase might be as follows:

1. Due to an increase in the transcription rate of the Syn gene. However, the transcript 

levels of Syn were determined by semi-quantitative RT-PCR (see Fig. 40), qPCR and 

microarray  technique (see Fig. 55). No significant difference was observed between 
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WT and Sap47 null mutants with respect to Syn transcript. It is known that mRNA 

levels and protein levels do not always correlate (Gygi et al., 1999). 

2. Up-regulation of Syn expression without changes in Syn transcript levels can occur if 

synapsin half-life is decreased due to SAP47 in wild-type conditions. However, there 

are no reports so far about such an inhibitory  effect, and to substantiate this speculation 

would require further investigations.

3. Synapsin is destabilized through protein-protein interaction with SAP47. It is known 

that in vertebrates the synapsin III isoform is stabilized by interaction with synapsin I 

and II isoforms (Hosaka and Sudhof, 1999). In wild-type conditions, synapsins might 

be prevented by SAP47 from forming large and stable homo-multimers and in the 

absence of SAP47 (in Sap47 null mutants) these stable interactions are predominant. 

Interactions between SAP47 and synapsin were investigated by co-

immunoprecipitation (co-IP) experiments (see Fig. 41) but a stable interaction was not 

detected. The interaction, if it exists, is not very  stable as was evident from the BN-

SDS-PAGE analysis of native complexes (see Fig. 43 and 44). Also, elution of IP 

sample competitively with an epitopic peptide and analysis by Western blot and mass 

spectrometry did not reveal an interaction between SAP47 and synapsin.

 There is a possibility that the interaction could be transient and could not be 

captured with our experimental procedure (see Fig. 41). An interesting observation from 

the BN-SDS-PAGE analysis was that Drosophila synapsins under non-denaturing 

conditions are part of a large complex detected around 700-900 kDa. The fact that no 

interaction partner at stoichiometric concentration was found by  immunoprecipitation and 

MS/MS suggests that Drosophila synapsins may be involved in formation of homo-

multimers which is also observed in vertebrates (Hosaka and Sudhof, 1999). 

 The ELISA data obtained with MAB ab49 directed against the integral SV 

membrane protein cysteine-string protein (CSP) indicates that the concentration of 

synaptic vesicles in the brain probably is not altered by either the Sap47156CS or the 

Syn97CS null mutations. The actin control in addition show that head sizes are not 

significantly different for the genotypes studied. Also, the expression pattern of synapsin 

in Sap156CS is not different from in wild-type (see Fig. 36).
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5.2 Functional genetic interaction between Sap47 and Syn genes

 Sap47-Syn double null mutants NS17 and NS62 were generated by homologous 

recombination (see 4.2.1). These mutant lines are homozygous lethal but are viable as 

trans-heterozygotes with other homozygous lethal Sap47-Syn double mutation. Also, in 

another independent homologous recombination experiment by V. Albertowa, a 

homozygous lethal double mutant was generated. After backcrossing this line to CS flies 

for six generations in order to cantonise (homogeneous wild-type background) the stock, 

Sap47-Syn double mutant fly lines V1, V2 and V3 were obtained which were homozygous 

viable. Both groups of viable double mutants are weak and have reduced locomotor 

activity and life expectancy (see Fig. 48 and 49). 

 The behavioral experiments clearly  suggest that the phenotype of double mutants 

(NS17 and NS62 or V1, V2 and V3) is different or more severe (negative geotaxis, life 

expectancy, larval locomotion) when compared to individual null mutants. Thus, there is 

a genetic interaction between the two genes or there are different polymorphisms in the 

double mutants selected during the recombination experiment or accumulated over the 

subsequent several generations of inbreeding. It has been demonstrated in different 

species that alleles of a gene may have different phenotypes in different inbred strains or 

genetic backgrounds (Threadgill et al., 1995; Frankel and Schork, 1996; Gibson et al., 

1999). 

 The different effects of combining Sap47 and Syn mutations on locomotion and 

learning/memory  could lead to the hypothesis that the synapses governing locomotion 

have a parallel mode of action for the two genes, i.e. they act in two parallel pathways 

involved in neurotransmission. At synapses which are involved in learning, the two 

proteins possibly  have a linear mode of action, i.e. one acts upstream or downstream of 

the other. Different isoforms of SAP47 could be present in different types of synapses and 

these isoforms will probably  serve different functions. Pan-neuronal expression (by elav-

gal4) does not completely  rescue the Sap47 null mutant learning defect in an appetitive 

learning paradigm using 3rd instar larvae (Saumweber T. et  al., submitted). The rescue 

experiment with the longer isoform needs to be performed to verify the hypothesis of 
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isoform specific functions (in progress T. Saumweber). Similarly, Syn cDNA rescues the 

learning defect (PhD thesis B. Michels, 2009). 

 

 Suppressor or enhancer type of genetic interaction can serve as a model for 

Sap47-Syn interaction in the double null mutants at the synapses involved in locomotor 

behavior. The two individual null mutants have wild-type levels of locomotor activity 

whereas the double mutants are impaired in locomotion (enhancement of phenotype).

5.3 Posttranslational modifications of synapsin and their implications

 The availability  of a monoclonal antibody (3C11) specific for Drosophila 

synapsin and a null mutant (Syn97CS) provided the basis for detection of synapsin by  nano-

LC-ESI-MS/MS in immunoprecipitated samples from adult head homogenates of wild-

type (WT) Drosophila (CS) (see Fig. 51). To obtain high sequence coverage and identify 

posttranslational modifications and the amino acid/s at the position X582 (stop codon), 

immunoprecipitated proteins were separated by SDS-PAGE and bands differing between 

wild type and Syn null mutant lanes were excised as shown in Figure 51. The gel pieces 

were subjected to a combination of multienzyme digestion (trypsin, chymotrypsin, Asp-

N, proteinase-K, pepsin and nonspecific enzyme subtilisin) summarized in Table 2. Mass 

spectrometric analysis showed the presence of synapsin protein in 5 bands from WT but 

not from Syn97CS null mutant lanes of silver stained 1D-SDS gels. We isolated and 

detected the shorter (~72 kD) and the read-through isoforms (~143 kD). We also detected 

few peptides of the longer isoform from the band around 72 kD, which could possibly be 

the degraded products of the longer isoform.

 It is surprising to note that only synapsin proteins were immunoprecipitated and 

detected and no other protein was co-precipitated, as it is known that synapsin interacts 

with cytoskeletal and synaptic vesicle associated proteins (Cesca et al., 2010). This 

observation suggests that different isoforms of Drosophila synapsins form 

homomultimers in vivo as discussed above.
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 So far most published experiments in proteomics depend on affordable “high 

sequence coverage” for many  purposes, such as identification of splice variants, isoforms, 

amino acid substitutions, and PTM  analysis. To achieve high sequence coverage of 

Drosophila synapsin we applied multi-enzyme digestion and used different analyzing 

tools called MASCOT and Modiro to complement each other. By summing up the 

peptides identified from different enzyme applications and analyzing tools, the total 

synapsin sequence coverage obtained via combination of all conditions was 90.83% (see 

Table 2). A series of sequence conflicts were identified in Drosophila synapsin (see Table 

6 below) from the two different search engines. Some of these sequence conflicts may be 

due to mutations or single nucleotide polymorphisms. An interesting observation was 

made, the first amino acid was found to be a methionine in spite of the fact that the start 

codon is CUG and not AUG. Use of different start  sites on the basis of context and the 

presence of certain sequence features (Touriol et  al., 2003) or by a leaky-scanning process 

(Kozak, 1995, 1997) for generating several isoforms of a given protein has been reported 

earlier with first reports from studies in Sendai (Curran and Kolakofsky, 1988) and 

Moloney murine leukaemia viruses (Prats et al., 1989). This process can be responsible 

for generating different isoforms of Drosophila synapsin with possibly different 

functions. The conserved PKA site in the N-terminal domain A is upstream of the first 

methionine encoded by the transcript (Klagges et al., 1996; Godenschwege et al., 2004) 

and thus isoforms initiated at this downstream methionine would not contain this PKA 

site and would not have the same conserved function as reported for vertebrate synapsin. 

It has been observed in mammals that under in-vitro and in-vivo conditions non-AUG 

codons can initiate translation with methionine (Peabody, 1987, 1989). In certain cases 

like MHC class I presented peptides and the murine leukemia virus-coded group-specific 

antigen gp85gag, a CUG codon can initiate translation with leucine (Prats et al., 1989; 

Malarkannan et al., 1999). 
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Table 6: Sequence conflicts in Drosophila synapsin, identified using MASCOT and 

Modiro search softwares.

Protein name
(Swissprot 
accession 
number)

Spot

Sequence conflict
Identified with MASCOT v2.2.06

Sequence conflict
Identified with MASCOT v2.2.06

Sequence conflict 
Identified with ModiroTM v1.1

Sequence conflict 
Identified with ModiroTM v1.1Protein name

(Swissprot 
accession 
number)

Spot

CID ETD CID ETD

Synapsin
(Q24546)

1 D178V, A364S, R461K, 
R589H, R1011D, S1015D

D108H, Y188F, D178V, 
A364S, R461K, I847F, 

A1014D, S1015N

G81R, D178H, L221V, 
D260N, H290Q, N360I, 

I502N, S617R

G81C, N143D, R955C, 
S975A

Synapsin
(Q24546)

2

D131G, D178V, D178H, 
P181L, Y188F, N360I, 
S363A, A364S, E902G, 
S903G, A958D, A1014P

D131G, D170H, D178V, 
Y188F, A364S, E902G, 
S903G, A958D, A1014P

T122K, D170N, I171N, 
D178H, S190I, L221V, 
D260N, N360I, E367K, 
I502N, E513K, S542G, 
T786S, I791K, L884R, 

S971P,

D170N, D178H, E913K, 
S949G

Synapsin
(Q24546)

3 R210P, N360I, D430N, 
R504S, N904I, R955M

R210P, D430N, N904I, 
R955M

G68R, A72P, G81R, 
T122K, Q123P, I171N, 
G191R, N360D, N360I, 
Y405N, S459R, I502N, 
I511N, S538G, I723K, 

F956C, L979M, G981C, 
D1023G

N360I, T447P, I511N, 
S903Y, D912N, F956S, 

Synapsin
(Q24546)

4
Y188F, S363A, E367K, 
R461G, E902G, S903N, 
S903W, A958S, G957D, 

W1012G

Y188F, R461G, E902G, 
S903N, G957D, A958S, 

Q1012G

T73K, T73N, T184S, 
S213P, L221V, L223V, 
E367K, D380G, I502N, 

S709N, S971A, 

R98S, I231K, N360I, 
I502N, Y982C

Synapsin
(Q24546)

5 S363A, E902G, S903R, 
N904I, S1013A

R461K, E902G, S903R, 
N904I

N20D, V99E, L186R, 
L221V, F247C, D260N, 
I265N, N343S, L385R, 
D401V, D401G, S443G, 
S496C, I502N T673K, 

N750K, L979P

Q119H, I353F, D380G, 
I943S, S897W, S903Y, 

S938G
Synapsin
(Q24546)

6 S903C, S904N S903N

P71R, D108V, F128C, 
L136R, L221V, S363R, 
E367K, S454Y, I502N, 
E564A, T818K, L884R

S112P, Q691E, Y898S

Synapsin
(Q24546)

7 L96M, N360I, R504S, 
E902K, S903A, S1013N S903A

Q119E, E167Q, L221V, 
F247C, E367K, S456G, 

I502N, F993C

A75P, Q123H, N360I, 
P917R, N990T

Synapsin
(Q24546)

8
P200A, L221V, N360I, 
E902D, S903P, S903G, 

A958E, S1013I
S903C, A958Q

I171N, L221V, L223V, 
N360I, T447A, T473N, 
A478E, I502N, S506N, 
Q556E, G590E, V605G, 
S607C, I710N, S906A, 

V969G, S975R

N360I, P602R, I710N, 
T921R, R955C

Synapsin
(Q24546)

9

D108N, D108H, E164K, 
L221V, D260N, E266K, 
N360I, S363A, A364S, 

L366Q, D430N, D532N, 
D580V, N586I, S903A, 

S903N, G957D, K919Q, 
A1014D, S1015N

N586I, E902D, E902G, 
S903N, S903G, G957D, 

A1014D

G81R, Q119E, I171N, 
T172P, D178N, V194D, 
E266K, N360I, S383G, 
L385H, V432A, L476R, 
G479E, I502N, S543F, 

S546N, Q735K, G972C, 
G974C, Q989R

S112P, R124K, D260N, 
N360I, T447M, T495S, 
I541K, Q735K, P896S, 
S903C, S903Y, R955S, 

L979R, G981R,
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10
S363A, D430N, R504S, 
D580N, D580V, S903G, 

E902G, A1014D
D430N, D580N, S903G

G81R, D108N, I171N, 
F386C, I502N, L505M, 
N557K, I634T, S971R

I171N, D430N, N557K, 
S558A, S899W

 Single use of MASCOT or Modiro MS data analysis software was not  able to 

reveal higher sequence coverage. This is because representative amino acid sequence 

must be uploaded to the Modiro program. Thus, if there are sequence conflicts in the 

peptides (e.g. a stop codon), Modiro will ignore these peptides. In addition, Modiro 

would have accepted peptides with a mass (MS) and fragment (MS/MS) tolerance higher 

than ± 0.2 Da.The use of two different analyzing tools was also helpful in identifying 

several PTMs which would have been missed from a single search engine application.

 Our findings support the hypothesis that the in-frame amber (UAG) stop codon of 

the Syn-RA transcript is read-through to produce the higher isoform of Drosophila 

synapsins. Our mass spectrometric analysis reveals that this amber stop codon is 

translated to lysine with a high ion score (see Fig. 52). Other amino acids, such as 

asparagine, glutamic acid, histidine, threonine and serine, were also identified at the 

position X582 but with lower ion scores. The function of nonsense suppressor tRNAs 

(sup+ tRNAs) has been well characterized in bacteria (Steege, 1983) and yeast (Capecchi 

et al., 1975). We have previously  demonstrated that GST-synapsin fusion proteins 

generated from the RA isoform cDNA in sup- and sup+ E. coli strains have different read-

through efficiencies of the in-frame stop codon (X582) (Klagges et al., 1996). There are 

possibilities of suppression of stop codon by the presence of secondary structure in the 

vicinity, upstream or downstream that may directly interfere with the ribosome, release 

factors and tRNAs and facilitate suppression of the termination process (Bossi, 1983). 

Alternative hypothesis for eliminating the stop  codon by duplicate translational frame-

shifting or differential splicing (Godenschwege et al., 2004) are not supported by the 

present findings.

 Vertebrate synapsins are substrate for several protein kinases like PKA, CaMKs, 

Src, cdk and MAPK/Erk, which modulate their biochemical properties. In mammals and 
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other vertebrates the domain ‘A’ of synapsin contains the P-site 1 (RRXS) that has been 

identified as a target site for cAMP-dependent protein kinase (PKA) and calcium/

calmodulin dependent protein kinase I/IV. In Drosophila, this motif is conserved in the 

genome, but at the transcript level, the enzyme adenosine deaminase acting on RNA 

(ADAR) edits the genomic site (RRFS) to RGFS (Diegelmann et al., 2006) in the 

majority  of transcripts. The edited site is not phosphorylated significantly in vitro by 

bovine PKA (Diegelmann et  al., 2006). There is a second RRXS site (S533, according to 

the cDNA sequence) in Drosophila synapsin (Klagges et al., 1996; Diegelmann et al., 

2006). The accessibility  of this site to PKA, or to other kinases, is not known and needs to 

be investigated further. In the current study we did not observe phosphorylation at either 

of these PKA sites. The reason for the absence of phosphorylation at these sites could be 

low abundance of these phosphorylations when compared to the phosphorylation events 

we identified. The phosphorylation could be an activity dependent phenomenon occurring 

only at higher levels of activity. As a first step towards understanding the roles of PKA 

sites I and II in Drosophila, UAS-Syn cDNA (PKA I and II mutated; PKA I mutated and 

II wild-type; PKA I non-edited and II mutated; PKA I non-edited and II wild-type)  

transgenic flies (in Syn97 mutant background) were generated (PhD thesis B. Michels, 

2009). Under the control of elav-gal4, these transgenes express synapsin pan-neuronally 

with modified sites (I and II) for PKA (see Fig. 76). In associative learning experiments 

with 3rd instar larvae having ectopic expression of UAS-Syn cDNA (PKA I and II 

mutated), they have significantly reduced learning when compared to the wild-type and is 

comparable to the learning in Syn null mutants (Syn97CS) (PhD thesis B. Michels, 2009). 
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Results 

 

 

67 

4.1.3.1. Alkaline phosphatase (AP) treatment 

 

 The progenies of the cross, as well as the parental control lines (UAS, elav Gal4 and 

w1118) were further analyzed on Western blot after 1D PAGE with the sample being treated 

with/without the AP enzyme (figure 4.16). Additionally the SAP47 null mutant line Sap156CS 

was checked again to recapitulate previous experiments and thus verify the hypothesis, that 

the SAP47 protein is involved in regulating the phosphorylation of synapsin in the Drosophila 

nervous system (compare figure 4.1). 

 

 

Figure 4.16: Western blot analysis of the fresh head samples without (upper blot) and with (lower blot) AP 

treatment. The immunodetection was performed with 3c11 primary antibody (1:50) and the nc46 (1:200) for 

detection of SAP47 as a loading control and the secondary anti-mouse IgG HRP-conjugate (1:7000). Each lane 

contains the equivalent of 2 adult fly heads. 

 The lanes which were loaded with untreated samples show the usual synapsin signal 

compared with the SAP47 loading control whereas AP-treated sample lanes have a reduced or 

no signal for the protein. In figure B a shift of SAP47 bands is noticed in the lanes 8-11 due to 

a possible overlap of an unknown abundant protein. 

Fig. 6a: PKA site modified transgenic fly lines tested for Synapsin phosphorylation.
Co-Immunoprecipitation

No detectable interaction was observed at the protein level.

 

 

  
 

32 

and the primary antibody used for the detection was MAB nc46, whereas 

another set of sample was pulled down with MAB nc46 and the primary 

antibody used was MAB 3c11. 

 

 
Fig. 13: IP of Sap47156 null mutant and Syn97 null mutant flies. The heavy chain and 
the light chain of MAB 3c11 and MAB nc46 are observed in the IP3c11/nc46 and 
IPnc46/3c11 lanes respectively (shown by black arrows). The faint bands beneath the 
heavy chain of MAB 3c11 in IP3c11/nc46 are probably the proteins from foetal calf 
serum (FCS) in the MAB supernatant. 

 

Thus, this experiment was designed to detect any synapsin bound 

to SAP47 that could be precipitated with nc46 antibody and labelled by 

!-synapsin (3c11) antibody (right half of the blot),  vice versa SAP47 

bound to synapsin precipitated with 3c11 antibody and labelled by !-

SAP47 (nc46) antibody (left half of the blot). Figure 13 illustrates that no 

interaction could be observed. All signals in the IP lanes derive from the 

antibodies used for the IP as they are independent of the presence of both 

SAP47 and synapsin. This negative result however, does not disprove the 

hypothesis of SAP47 and synapsin interaction because: 

 

• the force of interaction between the two proteins might be too weak 

to be detected by this procedure. 

1°Ab HC

1°Ab LC

55 kD

72 kD

nc46 1:200
3c11 1:50

Fig. 6b: IP of Sap47 null mutant and Syn null mutant flies. The faint bands beneath the heavy 

chain of MAB 3c11 in IP3c11/nc46 are probably the proteins from foetal calf serum (FCS) in 

the MAB supernatant.

Fig. 76: Expression of mutated synapsin revealed by Western blots of head 

homogenates from transgenic flies of the indicated genotypes. A clear effect of 

dephosphorylating the homogenate by alkaline phosphatase (AP) treatment in B and 

D is seen only in lane 2 (compare with Fig. 35). C and D are enlarged images of lanes 

1 and 2 from A and B respectively. In lanes 8-11 of B the shift in SAP47 signal 

(arrow around 60 kDa) is due to the presence of high amount alkaline phosphatase 

enzyme at that position (Diploma thesis S. Racic, 2009).

 In a phosphoproteome analysis, Zhai et al. reported synapsin phosphorylation at 

serine 509, 510 and 539 in Drosophila embryos (Zhai et al., 2008). From the present 

study, five novel phosphorylation sites were identified and verified via phosphatase 

treatment, T86 near the domain A, S464 and S538 near the domain E, S961 and Y982 in 

the read-through proline rich region. In vertebrate synapsin I, phosphorylation at the PKA 

site in domain A leads to a slight loss of affinity to vesicles. The domains C and E are 

involved in direct interactions with cytoskeletal components like actin and thus enable 

synapsins to maintain a synaptic vesicle pool in the periphery of the plasma membrane in 
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a phosphorylation dependent manner (Cesca et al., 2010). The detection of 

phosphorylation sites near domain E of Drosophila synapsin suggests that they could be 

involved in regulating the binding of synapsin to vesicles or components of cytoskeleton. 

However, this requires further in-depth analysis.

 We have obtained large sequence coverage for Drosophila synapsin and the 

analysis indicated a number of sequence conflicts. Novel phosphorylation sites were 

identified and verified. A Lysine tRNA specific suppression of amber stop codon to 

produce a read-through isoform of synapsin was determined. These findings provide a 

basis for further characterization of Drosophila synapsins. Knowledge about kinases 

involved in phosphorylation of synapsin will shed light on its role at the synapse and its 

function like learning and memory which so far remain elusive.

5.4 Whole genome microarray analysis of Sap156CS, Syn97CS and V2 and V3 null 

mutants (the experiments were performed by S. Kneitz and N. Nuwal, and were 

evaluated in collaboration with N. Nuwal, refer to PhD thesis of N. Nuwal, 2010)

 

 The 3’ transcript of Sap47 and Syn are intact in the null mutants Sap156CS and 

Syn97CS, respectively and are detected at low levels in the microarray and qPCR analysis 

(see PhD thesis of N. Nuwal, 2010). This suggests that the mutants have an internal 

transcription start site. The presence of a functional protein albeit truncated could account 

for a weak phenotype associated with the respective null mutants (Godenschwege et al., 

2004; Michels et al., 2005) but this is highly  unlikely. On detection, absence of the 5’ end 

of the Syn transcript served as a negative control for our experiment as the P-element 

mutagenesis disrupted the first  exon and intron of the Syn gene (Godenschwege et al., 

2004). 

 The Cirl gene was down-regulated specifically in Syn null mutants by at least 2 

fold but was not significantly altered in other genotypes tested by microarray and qPCR 

(see 4.5). CIRL protein is reported to be a G-protein coupled receptor for α-latrotoxin 

(Krasnoperov et al., 1997; Bittner et al., 1998; Brody and Cravchik, 2000). On application 

of α-latrotoxin at synapses, CIRL interacts with neurexins (Tobaben et al., 2002) and 
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other synaptic proteins like synaptotagmin and syntaxin (Krasnoperov et al., 1997) 

leading to vesicle exocytosis in a Ca2+ independent manner. Drosophila mutants of Cirl 

have 50% reduced locomotor activity and reduced evoked potentials at NMJs (Song et al., 

2003). Application of α-latrotoxin and measuring the evoked release at  the NMJs would 

be an intuitive experiment to study  defects in latrotoxin mediated vesicle release in the 

Syn97CS mutants. The double mutants do not show a reduction of Cirl transcript possibly 

because of polymorphisms masking the gene effect. An alternative explanation would be 

the suppression of the phenotype by the Sap47 mutation. Both these hypotheses need 

further investigation and validation by using Cirl mutants and RNAi lines. Kindly  refer to 

the PhD thesis of N. Nuwal, 2010 for the list of genes which are significantly altered in 

the individual and the double mutants.

5.5 Tbcel expression in Drosophila testis and brain

 

 The Drosophila Tbcel gene (CG12214) was identified in a yeast-two-hybrid 

screen as a potential interaction partner of SAP47 (N. Funk, unpublished). Based on the 

high sequence similarity to its vertebrate homologue it was named Tbce-like (Tbcel). 

Drosophila TBCE functions at the NMJs and is involved in MT assembly (Jin et al., 

2009). Vertebrate TBCEL is involved in destabilisation of MTs, targeting them for 

degradation via a ubiquitin mediated pathway (Bartolini et al., 2005). 

 The Tbcel gene is nested in a large intron of the KCNQ gene (source: Flybase). 

Two completely  sequenced cDNAs (GH13040 and MIP04546) are known and reported in 

flybase. The GH13040 clone was used for the generation of UAS-Tbcel flies (Master 

thesis S. Wegener, 2008) and the anti-his-tagged-TBCEL antiserum (this thesis). Flybase 

reports several expressed sequence tags (ESTs) for the Tbcel gene, and based on these 

ESTs a gene model was predicted and is shown below (see Fig. 77). The correctness of 

the gene model (Fig. 56) was verified by  performing an RT-PCR which provided no 

evidence for the model DMG2 or DMG4 of Fig. 77 (data not shown).
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Fig. 77: The CG12214-RB transcript is specific for or highly enriched in males when 

compared to females (Source: RNA-seq data from flybase). The intron shown in the 

DMG 2 and 4 gene models is not detected by RT-PCR from adult flies (data not 

shown).

 NP/CyO flies have a P-element insertion in the 5’ UTR of the Tbcel gene and are 

homozygous lethal due to second site lethality  on the second chromosome outside the 

deficiency regions of Df(2R)BSC281 and Df(2R)BSC350 as they are viable over these 

deficiencies spanning the gene. Another fly line NP6285/CyO with a P-element insertion 

upstream of NP4786 is also homozygous lethal but again is viable over the deficiency. 

RT-PCR for NP/Df with two primer pairs downstream of the P-element insertion 

demonstrates that the mRNAs containing the intact coding region of the gene is present in 

these flies, albeit at reduced concentration (Fig. 60). In the P-element insertion line 

G18151, the insertion is downstream of the translation start and thus disrupts the ORF. In 

a Western blot  of fresh head and testis homogenates of NP/Df and G18151 flies, TBCEL 

protein is not detected by an anti-TBCEL antiserum suggesting that these lines are indeed 

null mutants for Tbcel. The two insertions NP6285 and NP4786 over the deficiency 

chromosome are male sterile. This suggests that the correct amount of RB-transcript and 

possibly the 5’ UTR region is crucial for functioning of TBCEL in males. 
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 It is known that UTRs may play a role in mRNA stability, localisation and 

translational efficiency. Insertions in the coding region as in the G18151 usually  are 

assumed to eliminate the functioning of the encoded protein. Surprisingly, however, the 

G18151 homozygous males have only  severely impaired fertility  whereas NP/Df males 

are sterile. This leads to the speculation that the G18151 insertion possibly causes an 

interrupted transcript to be made which could produce a truncated protein, with partial 

functions. Thus in the G18151 stock, the flies could generate an intact N-terminal domain 

of the protein which codes for the CAP-Gly domain and might be able to rescue the 

phenotype. Alternatively, transcription might be initiated downstream of the mini-white 

gene in the P-element and lead to a transcript  which is producing a truncated protein 

containing the C-terminal domains of TBCEL. Although there is no predicted ATG start 

site downstream of the G18151 insertion, suggesting that such a downstream translation 

is unlikely, it still could occur using an unconventional start site. As a third hypothesis,  

the G18151 stock could have acquired a polymorphism that prevents complete male 

sterility. All three hypotheses need to be tested by further investigations.

 Spermatogenesis is a well studied developmental process (reviewed in Fuller, 

1993). The primary hub cells undergo mitotic division to produce several spermatogonia. 

Each spermatogonium undergoes 4 mitotic divisions to produce 16 premature 

spermatocytes in each cyst, and these spermatocytes undergo 2 more meiotic divisions to 

form 64 syncytial spermatids in each cyst. The nuclei of the premature spermatids are 

aligned with mitochondrial derivatives which fuse to form the major and minor 

derivative. These derivatives coalesce together to form a dense structure which is 

encapsulated in several layers of mitochondrial membrane, also known as the Nebenkern 

stage. In the elongation stage, the cysts move towards the basal end, the sperm tails or the 

axonemes elongate along with the associated Nebenkern structure in a polarised manner 

with the head of the sperm containing the nucleus positioned at the basal end and the tail 

growing towards the apical end. The nucleus also undergoes dramatic change in shape 

becoming thin and flattened (Cross and Shellenbarger, 1979). After the completion of 

axoneme elongation and the change in nuclear morphology, the disruption of the syncytial 

organisation and the individualisation of each of the spermatid in the cysts begins. The 

Individualisation complex (IC) with an actin cone is assembled at  the basal end of the 
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spermatid (Fabrizio et al., 1998). The IC moves towards the apical end in the form of a 

cystic bulge and eliminates excess cytoplasm in spermatids at the apical tip in the form of 

a waste bag. The individualised mature spermatids are coiled and transferred to the 

seminal vesicle (see Fig. 64 and 78).

Fig. 78: Spermatid bundle organisation in testis of adult Drosophila male (Source: 

http://www.bio.umass.edu/vidali/web/cell_motil/myosin_vi_6.jpg)

 

 In Drosophila spermatogenesis, different structures utilise different forms of β-

tubulins but the same α-tubulin. The head of the spermatid (basal region) has β1-tubulin, 

the cyst cell has β3-tubulin and the axoneme has β2-tubulin (Kemphues et al., 1982; 

Kimble et al., 1989). We checked for the expression of TBCEL protein in Drosophila by 

immunocytochemistry and found specific staining of spermatid bundles in the testes of 

adult males which was localised within the β-tubulin staining (data not shown). The 

staining was not  observed in the null mutants (see Results section) though spermatids 

were present and observed under a dark-field microscope. The presence of spermatids in 

the null mutants G18151 and NP/Df testes was verified by staining for actin in the ICs. 

The phalloidin staining was dispersed in null mutants and not tightly bundled as seen in 

wild-type testis (Fig. 65 and 66). Our results also show that the assembly of investment 

cones is intact in the null mutant  testes but as the IC complex proceeds along the testis 

walls the investment cones get dispersed as observed by dispersed actin staining. Proper 

IC organisation at the nucleus but dispersed IC along the testis walls is also observed in 

male sterile mutants mulet (mlt) (Fabrizio et al., 1998). The chromosomal location of mlt 
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mutation has been reported as 46F but the gene has not been identified and characterised 

(Fabrizio et al., 1998). Our complementation experiments and sequencing of the mlt P-

element insertions have now demonstrated that mlt is an allele of the Tbcel gene.

 The expression pattern of Tbcel transcript in embryonic central nervous system 

and testis is shown in the online databases fly-ted.org by in-situ hybridisation (ISH) (see 

Fig. 79).

Fig. 25: TbceL transcript expression in embryonic VNC.TBCEL  expression in testis

wt meiotic arrest mutant aly

NP4786/Df  males are sterile and 
the in-situ data supports the fact.

(http://www.fly-ted.org/986/)

Fig. 26: TbceL transcript detection in testis

Fig. 25: TbceL transcript expression in embryonic VNC.TBCEL  expression in testis

wt meiotic arrest mutant aly

NP4786/Df  males are sterile and 
the in-situ data supports the fact.

(http://www.fly-ted.org/986/)

Fig. 26: TbceL transcript detection in testis

Fig. 79: TBCEL expression in embryonic ventral nerve cord, and adult testis 

detected by in situ hybridisation. (Source: ISH database, Fly-ted.org)

5.6 P-element mutagenesis of Tbcel gene

 We performed two jump-out mutageneses of Tbcel gene using the NP4786 line 

which has a P-element insertion in the 5’ UTR of the Tbcel gene. In the first  attempt the 

jump-out was induced in flies carrying the P-element over the CyO balancer 

chromosome. This attempt to generate deletion mutants of the gene failed, only flies with 

a presumably  precise jump-out (revertants) or carrying a P-element  with intact inverted 

repeats but  a disrupted mini-white gene were obtained. Possible reasons for the failure to 

obtain deletion mutants are :

• Homologous recombination mediated repair of the double stranded DNA break caused 

by the P-element excision. Thus, the mutant is reverted to wild-type. Apart from the 

homologous chromosome acting as repair template, it  has been shown that the repair can 

be mediated by the sister chromatid during the S-phase of the cell cycle if the jump 

occurs after DNA replication (Engels et al., 1990).

Discussion

154



• It is likely that the Tbcel gene locus is highly critical and is thus efficiently  repaired to 

wild-type condition (revertant) or not highly accessible to the transposase.

• The deletions caused by the jump-out are large enough to cause dominant lethality. 

However, this is not very likely as deficiencies spanning this region are viable over a 

balancer.

• The excised P-element re-integrates elsewhere in the genome which causes dominant 

lethality. 

 We did not obtain any deletion mutants from our first jump-out screen so we 

performed the second mutagenesis in flies with P-element (NP4786) over a deficiency 

chromosome (Df(2R)BSC281) to prevent homologous recombination mediated repair. In 

this situation only the sister chromatid mediated repair was possible in case the jump-out 

occurred after the DNA replication. This mutagenesis has produced a single jump-out line 

which has to be verified and investigated further. The results of P-element mutageneses 

suggest that the locus is under the control of high fidelity repair mechanisms.
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6. SUMMARY

 In this thesis we have used Drosophila melanogaster as a model organism to 

investigate proteins and their putative interacting partners that  are directly or indirectly 

involved in the release of neurotransmitters at the synapse. We have used molecular 

techniques to investigate conserved synaptic proteins, synapsin and synapse associated 

protein of 47 kD (SAP47), and a putative interaction partner of SAP47, tubulin binding 

chaperone E-like (TBCEL).

 SAP47 and synapsins are highly conserved synaptic vesicle associated proteins in 

Drosophila melanogaster. To further investigate the role and function of Sap47 and Syn 

genes, we had earlier generated the null mutants by  P-element mutagenesis (Funk et al., 

2004; Godenschwege et al., 2004). Western blots and ELISA of brain homogenates from 

Sap47156 null mutants showed the presence of up-regulated phospho-synapsin in 

comparison to wild-type (CS) and the presence of up-regulated phospho-synapsin was 

partially abolished when a pan-neuronal rescue of SAP47 was performed by the Gal4-

UAS technique. Thus, the results suggest  a qualitative and quantitative modulation of 

synapsin by  SAP47. At the transcript  level, we did not observe any difference in content 

of Syn transcript in Sap47156 and wild-type CS flies. The question of a direct  molecular 

interaction between SAP47 and synapsin was investigated by  co-immunoprecipitation 

(Co-IP) experiments and we did not find any stable interactions under the several IP 

conditions we tested. The possibility  of Sap47 as a modifier of Syn at the genetic level 

was investigated by  generating and testing homozygous double null mutants of Sap47 and 

Syn. The Syn97, Sap47156 double mutants are viable but have a reduced life span and 

decreased locomotion when compared to CS. 

 In 2D-PAGE analysis of synapsins we identified trains of spots corresponding to 

synapsins, suggesting that synapsin has several isoforms and each one of them is 

posttranslationally  modified. In an analysis by Blue native-SDS-PAGE (BN-SDS-2D-

PAGE) and Western blot we observed synapsin and SAP47 signals to be present at 

700-900 kDa and 200-250 kDa, respectively, suggesting that they are part of large but 
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different complexes. We also report the possibility  of Drosophila synapsin forming homo- 

and heteromultimers, which has also been reported for synapsins of vertebrates.

 In parallel to the above experiments, phosphorylation of synapsins in Drosophila 

was studied by IP techniques followed by 1D-SDS gel electrophoresis and mass 

spectrometry  (in collaboration with S. Heo and G. Lubec). We identified and verified 5 

unique phosphorylation sites in Drosophila synapsin from our MS analysis. Apart from 

phosphorylation modifications we identified several other PTMs which have not been 

verified. The significance of these phosphorylations and other identified PTMs needs to 

be investigated further and their implications for synapsin function and Drosophila 

behavior has to be elucidated by further experiments.

 In a collaborative project with S. Kneitz and N. Nuwal, we investigated the effects 

of Sap156 and Syn97 mutations by performing a whole Drosophila transcriptome 

microarray  analysis of the individual null mutants and the double mutants (V2 and V3). 

We obtained several candidates which were significantly altered in the mutants. These 

genes need to be investigated further to elucidate their interactions with Sap47 and Syn. 

 In another project, we investigated the role and function of Drosophila tubulin-

binding chaperone E-like (Tbcel, CG12214). The TBCEL protein has high homology  to 

vertebrate TBCE-like (or E-like) which has high sequence similarity to tubulin-binding 

chaperone E (TBCE) (hence the name TBCE-Like). We generated an anti-TBCEL 

polyclonal antiserum (in collaboration with G. Krohne). According to flybase, the Tbcel 

gene has only one exon and codes for two different transcripts by alternative transcription 

start sites. The longer transcript  RB is present only in males whereas the shorter transcript 

RA is present only in females. In order to study the gene function we performed P-

element jump-out mutagenesis to generate deletion mutants. We used the NP4786 (NP) 

stock which has a P(GawB) insertion in the 5’ UTR of the Tbcel gene. NP4786 flies are 

homozygous lethal due to a second-site lethality as the flies are viable over a deficiency 

(Df) chromosome (a deletion of genomic region spanning the Tbcel gene and other 

upstream and downstream genes). We performed the P-element mutagenesis twice. In the 

first trial we obtained only revertants and the second experiment is still in progress. In the 
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second attempt, jump-out was performed over the deficiency chromosome to prevent 

homologous chromosome mediated double stranded DNA repair.

 During the second mutagenesis an insertion stock G18151 became available. 

These flies had a P-element insertion in the open reading frame (ORF) of the Tbcel gene 

but was homozygous viable. Western blots of fresh tissue homogenates of NP/Df and 

G18151 flies probed with anti-TBCEL antiserum showed no TBCEL signal, suggesting 

that these flies are Tbcel null mutants. We used these flies for further 

immunohistochemical analyses and found that TBCEL is specifically  expressed in the 

cytoplasm of cyst  cells of the testes and is associated with the tubulin of spermatid tails in 

wild-type CS, whereas in NP/Df and G18151 flies the TBCEL staining in the cyst cells 

was absent and there was a disruption of actin investment cones. We also found 

enrichment of TBCEL staining around the actin investment cone. These results are also 

supported by the observation that the enhancer trap  expression of the NP4786 line is 

localised to the cyst cells, similar to TBCEL expression. Also, male fertility of NP/Df and 

G18151 flies was tested and they were found to be sterile with few escapers. Thus, these 

results suggest that TBCEL is involved in Drosophila spermatogenesis with a possible 

role in the spermatid elongation and individualisation process.
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7. ZUSAMMENFASSUNG

 In dieser Arbeit benutzte ich Drosophila melanogaster als Modellorganismus für 

die Untersuchung von Proteinen und ihren möglichen Interaktionspartnern, die direkt 

oder indirekt an der Freisetzung von Neurotransmittern an der Synapse beteiligt sind. Für 

die Untersuchung der konservierten synaptischen Proteine Synapsin (SYN) und 

Synapsen-assoziertes Protein von 47 kDa (SAP47), sowie ihrer möglichen 

Interaktionspartner, bediente ich mich molekularer Methoden.

 SAP47 und SYN sind hoch konservierte Proteine von Drosophila melanogaster, 

die mit synaptischen Vesikeln assoziert sind. Um die Rolle und Funktion der Sap47- und 

Syn-Gene näher zu beleuchten, wurden bereits früher mit Hilfe von P-Element 

Mutagenesen Null Mutanten generiert (Funk et al., 2004; Godenschwege et  al., 2004). 

Western Blots und ELISA der Gehirnhomogenate der Sap47156 Nullmutanten zeigten im 

Vergleich zum Wildtyp (CS) das Vorhandensein von hochreguliertem phospho-Synapsin. 

Dieser Effekt  ließ sich durch ein panneuronales Rescue wieder partiell rückgängig 

machen. Diese Ergebnisse lassen eine qualitative sowie quantitative Modulation von SYN 

druch SAP47 vermuten. Auf der Transkriptebene konnte ich keinen Unterschied im 

Gehalt von Syn Transkript zwischen den Sap47156 und wildtypischen CS Fliegen 

feststellen. Das Vorhandensein einer direkten molekularen Interaktion zwischen SAP47 

und SYN wurde in Co-Immunopräzipitations-Experimenten (CO-IP) untersucht. Ich 

konnte unter diversen getesteten IP Bedingungen keine stabilen Interaktionen finden. Die 

Möglichkeit, dass Sap47 auf der molekularen Ebene modifizierend auf das Syn-Gen 

wirkt, wurde durch das Erzeugen und Testen homozygoter doppelter Nullmutanten für 

Sap47 und Syn untersucht. Syn97, Sap47156 Doppelmutanten sind lebensfähig, zeigen 

jedoch eine im Vergleich zu CS reduzierte Lebensspanne und Lokomotion. 

 In einer 2D-SDS-PAGE Analyse der Synapsine identifizierte ich Reihen von 

Synapsin-Signalen, die darauf schließen ließen, dass Synapsin über mehrere Isoformen 

verfügt, von denen jede mehrfach posttranslational modifiziert ist. In einer Blue native-

SDS-PAGE (BN-SDS-2D-PAGE) mit anschließendem Western Blot konnte ich Synapsin 

und SAP47 Signale bei 700-900 kDa beziehungsweise 200-250 kDa feststellen, was 
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darauf schließen ließ, dass sie als Komponenten von unterschiedlichen größeren 

Komplexen fungieren. Ich zeigte außerdem die Möglichkeit auf, dass Drosophila 

Synapsin Homo- und Heteromultimere bilden kann, was bereits für Synapsine von 

Wirbeltieren gezeigt wurde.

Gleichzeitig mit den obigen Experimenten untersuchte ich durch IP Methoden, gefolgt 

von 1D SDS Gelelektrophorese und Massenspektroskopie (in Zusammenarbeit mit  S. 

Heo und G. Lubec), die Phosphorylierung der Synapsine in Drosophila. In der MS  

Analyse konnte ich 5 distinkte Phosphorylierungs-Stellen des Drosophila Synapsins 

identifizieren und verifizieren. Zusätzlich zu den Modifikationen durch Phosphorylierung 

konnte ich einige andere posttranslationale Modifikationen zeigen, die jedoch nicht 

verifiziert wurden. Die Bedeutung dieser Phosphorylierung, sowie anderer identifizierter 

Modifikationen, sollte durch weitere Experimente beleuchtet werden.

 In einem Kollaborationsprojekt mit  S. Kneitz und N. Nuwal untersuchte ich die 

Auswirkungen der Sap47156 und Syn97 Mutationen mithilfe einer Microarray Analyse des 

gesamten Drosophila Transkriptoms der individuellen Nullmutanten sowie 

Doppelmutanten (V2 und V3). Es wurden einige Kandidaten gefunden, die in den 

Mutanten signifikante Änderungen aufweisen. Diese Gene sollten weiterhin auf ihre 

Interaktionen mit Sap47 und Syn untersucht werden.

 In einem weiteren Projekt untersuchte ich die Rolle und Funktion des Drosophila 

tubulin binding chaperon E-like-Gens(Tbcel, CG12214). Das TBCEL Protein weist  eine 

hohe Homologie zum Vertebraten TBCE-like (oder E-like) auf, welches über eine 

namensgebende hohe Sequenzähnlichkeit zum Tubulin bindenden Chaperon E (TBCE) 

verfügt. Ich erzeugte ein polyklonales anti-TBCEL Antiserum (in Kollaboration mit G. 

Krohne). Laut Flybase besitzt das Tbcel-Gen nur ein Exon und kodiert für zwei 

unterschiedliche Transkripte durch alternative Orte des Transkriptionsstarts. Das längere 

Traskript RB ist nur in Männchen vorhanden, während das kürzere Transkript RA sich 

nur in Weibchen finden lässt. Um eine Untersuchung der Genfunktion zu ermöglichen, 

führte ich eine P-Element jump-out-Mutagenese durch, mit  der Deletions-Mutanten 

generiert werden sollten. Ich benutzte dazu den Stamm NP4786 (NP), welches eine P

(GawB) Insertion in der 5´ UTR des Tbcel-Gens aufweist. NP4786 Fliegen sind aufgrund 
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einer second-site Lethalität homozygot letal, da sie über einer chromosomalen Defizienz 

(Df) (einer Deletion der genomischen Region, die das Tbcel-Gen sowie benachbarte Gene 

umfasst) lebensfähig sind. Die P-Element jump-out-Mutagenese wurde von mir zweimal 

durchgeführt, wobei ich beim ersten Mal nur Revertanten erhielt, während der zweite 

Durchgang sich momentan noch in Arbeit befindet. Beim zweiten Versuch wurde der 

jump-out über dem Defizienz-Chromosom durchgeführt, um eine doppelsträngige DNA 

Reparatur durch das homologe Chromosom zu verhindern.

 Während der zweiten Mutagenese wurde ein Stamm G18151 verfügbar, bei 

welchem die P-Element Insertion im offenen Leseraster (Open reading frame: ORF) des 

Tbcel-Gens erfolgt war. Western Blots von frischem Gewebehomogenat der NP/Df und 

G18151 Fliegen zeigten nach dem Testen mit anti-TBCEL Antiserum kein Signal, was 

darauf schließen lässt, dass diese Fliegen Tbcel Nullmutanten sind. Ich verwendete diese 

Fliegen für weitere immunhistochemische Analysen und fand heraus, dass TBCEL im 

Wildtyp spezifisch im Zytoplasma der Cysten-Zellen der Hoden exprimiert wird, sowie 

mit dem Tubulin der Spermatidenschwänze assoziert  ist, während es in den NP/Df und 

G18151 Fliegen keine TBCEL-Färbung der Cysten-Zellen gab. Des weiteren konnte eine 

Störung der Actin Kegel und eine Anreicherung von TBCEL um diese herum gezeigt 

werden. Diese Ergebnisse werden zusätzlich durch die Beobachtung unterstützt, dass die 

Enhancer-trap  Expression der NP4786 Linie analog zu dem TBCEL in den Cysten-Zellen 

lokalisiert ist. Zusätzlich wurde die Fertilität der NP/Df und G18151 Männchen getestet 

und gezeigt, dass diese Tiere nahezu vollständig steril sind. Die Ergebnisse lassen daher 

vermuten, dass TBCEL an der Spermatogenese bei Drosophila beteiligt ist, sowie eine 

mögliche Rolle bei der Elongation und Individualisierung der Spermatiden spielt.
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8. APPENDIX

8.1 pET 28a vector map for expression of His-Tagged proteins 

Novagen • ORDERING 800-526-7319 • TECHNICAL SUPPORT 800-207-0144
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pET-28a-c(+) cloning/expression region

TB074  12/98

The pET-28a-c(+) vectors carry an N-terminal His•Tag®/thrombin/T7•Tag® configuration plus
an optional C-terminal His•Tag sequence. Unique sites are shown on the circle map. Note that the
sequence is numbered by the pBR322 convention, so the T7 expression region is reversed on the
circular map. The cloning/expression region of the coding strand transcribed by T7 RNA poly-
merase is shown below. The f1 origin is oriented so that infection with helper phage will produce
virions containing single-stranded DNA that corresponds to the coding strand. Therefore, single-
stranded sequencing should be performed using the T7 terminator primer (Cat. No. 69337-3).

pET-28a(+) sequence landmarks

T7 promoter 370-386
T7 transcription start 369
His•Tag coding sequence 270-287
T7•Tag coding sequence 207-239
Multiple cloning sites
(BamH I - Xho I) 158-203
His•Tag coding sequence 140-157
T7 terminator 26-72
lacI coding sequence 773-1852
pBR322 origin 3286
Kan coding sequence 3995-4807
f1 origin 4903-5358

The maps for pET-28b(+) and pET-28c(+)
are the same as pET-28a(+) (shown) with
the following exceptions: pET-28b(+) is a
5368bp plasmid; subtract 1bp from each site
beyond BamH I at 198. pET-28c(+) is a
5367bp plasmid; subtract 2bp from each site
beyond BamH I at 198. 
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8.2 Alignment of 6 different types of tubulin- α, β, γ, δ, ε and ζ (modified from 

Vaughan et al., 2000) from protozoan parasite Trypanosoma brucei.
CLUSTAL 2.0.12 multiple sequence alignment

alpha           -MREAICIHIGQAGCQVGNACWELFCLEHGIQPDGAMPSDKTIGVEDDA----------F 49
beta            -MREIVCVQAGQCGNQIGSKFWEVISDEHGVDPTGTYQGDSDLQLER------------I 47
gamma           MPREIITLQVGQCGNQVGSEFWRQLCAEHGIRHDGVVESFASGGDDR------------K 48
epsilon         MPREVVTVQVGQCGNQLGLKWWDVLLQEHKANPQFTDARDALFDVSGSAP--------LA 52
delta           --MACVHVLVGQCGNQLGAHFLTALTDEARRCSDEDYASQISADHFRPAPTQKGIRRGGV 58
zeta            --MAIVVVQVGQCGNQLGEELWRQLSIATDKG---------------------------- 30
                     : :  **.* *:*      :                                   

alpha           NTFFSETGAGKHVPRAVFLDLEPTVVDEVRTGTYR---QLFHPEQLISGKED--AANNYA 104
beta            NVYFDEATGGRYVPRSVLIDLEPGTMDSVRAGPYG---QIFRPDNFIFGQSG--AGNNWA 102
gamma           DVFFYQADDDHYIPRALLVDLEPRVINAIQRGSMQ---RLFNPENVYIHSEGGGAGNNWA 105
epsilon         SVGDKACRAGSLKARCVAVDMEEGVLRAMLRGPLG---HLFDATFFVSDVSG--AGNNWA 107
delta           SNGNSGHHDEPPLPRSVMIDMEPKVVESVVTGVNDGGAFQVRAEQCVTRDEG--SGNNWA 116
zeta            -AVRSPFFTSNRKARCVMVDSEPKVVQTVYNRYAD----IMRAENVVCGHSG--RGNHWA 83
                             .*.: :* *  .:  :           . .       ..   .*::*

alpha           RGHYTIGKEIVDLCLDRIRK------------------------------LADNCTGLQG 134
beta            KGHYTEGAELIDSVLDVCCK------------------------------EAESCDCLQG 132
gamma           HG-YEMGDTVQETLFDMIER------------------------------EAENSDSLEG 134
epsilon         VGHMEYGDKYIDSITETVRE------------------------------QVERCDSIQS 137
delta           FGYYEQGSR-CDEIVESLRR------------------------------QSEARGAAHS 145
zeta            LGYYGLNNPKSSRCAEKAAASRPFQVTKDQRRGDNFVVRDALRAIYAETRRTDDTEEFEA 143
                 *    .    .   :                                    :     ..

alpha           FLVYHAVGGGTGSGLGALLLERLSVDYGKKSKLGYTVYPSPQ---VSTAVVEPYNSVLST 191
beta            FQICHSLGGGTGSGMGTLLISKLREQYPDRIMMTFSIIPSPK---VSDTVVEPYNTTLSV 189
gamma           FVLTHSIAGGTGSGMGSYLLENLNDRFPKKLIQTYSVFPNQSRGGDSDVIVQPYNSLLAI 194
epsilon         FLIMHSLSGGTGAGLGTRVLGMLEDEFPHVFRICPVVMPSAI----DDVVTAPYNTAFAV 193
delta           FHIVHSVAGGTGSGVGCLVSDAIRVEFPRALLLHTAVWPFAT----GEVVTQWYNCVLAM 201
zeta            ILVLHSLAGGTGSGMASLLLEKIRYYFIEPTEDELANADEKA---EADMMWNDGLDGMLM 200
                : : *::.****:*:.  :   :   :                      :       :  

alpha           HSLLEHTDVAAMLDNEAIYDLTRRNLDIERP----------------------------- 222
beta            HQLVENSDESMCIDNEALYDICFRTLKLTTP----------------------------- 220
gamma           KRLTLHADCVVVLDNTALNRIATDNLHISSP----------------------------- 225
epsilon         RELIEHADAVLPLDNDALARMADSALGQKTIGQAAGERKEPQTTLGAPAARGYSVAQPTQ 253
delta           SALRESADAVFVAHNDDFDVSARPLQKAVNG---------------------------RT 234
zeta            HKRRALFLISIAVAPQSIGEISTQSLNAALT----------------------------- 231
                                 :                                          

alpha           ---TYTNLNRLIGQVVSSLTASLRFD-----------GALNVDLTEFQTNLVPYPRIHFV 268
beta            ---TFGDLNHLVSAVVSGVTCCLRFP-----------GQLNSDLRKLAVNLVPFPRLHFF 266
gamma           ---TVEQMNGLVSTVMAASTATLRYP-----------GYMNNDLMSMLASLIPTPRCHFV 271
epsilon         TKLPYDSMNALVAQLLSNLTCAMRFP-----------GPLNMDINEITTNLVPYPRLLFL 302
delta           SEVSFDTINHEIGRLLLDLHLPKKLYPV---------PSTAPEKKPHPQSTFPASRTTSS 285
zeta            ----LHALRIVDAVLLLRNDDCLRARDDRAAGPRGAGGKETISSSSSLSLLKPCATFTEV 287
                       :.   . ::       :                  .         * .     

alpha           LTSYAPVISAEK---AYHEQLS-----VSEISNAVFEPAS-MMTKCDP----RHGKYMAC 315
beta            MMGFAPLTSRGS---QQYRGLS-----VPELTQQMFDAKN-MMQAADP----RHGRYLTA 313
gamma           CTGYTPTTLDTSNIQSSVQKTS-----VHDVMRRLLMPKN-MMVSTSM----KSGCYISL 321
epsilon         TSAIAPLSVARHAAASAPRSVDTMIAACLDKNHQFVDVSNGLSSALTH----EAGTCLAT 358
delta           TGAMASLRCGGLTDVVEAVALDPALKFFSGLALPVTPPDNRVVAPEAT----SWYPLLCE 341
zeta            NEVFVTLLMPVLLYGVGESPICNLVLSCSPSHRKMNNILTIVPTPQRHYLRFKESSILSR 347
                    ..                            .    . :               :  

alpha           CLMYRG-DVVPKDVNAAVATIKTKRTIQFVDWSPTGFKCGINYQPPTVVPGGD--LAKVQ 372
beta            SALFRG-RMSTKEVDEQMLNVQNKNSSYFIEWIPNNIKSSVCDIPP----------KGLK 362
gamma           LNLIQG-DVDPAQVHRSLERIR-ERSPNFIPWGPASIQVILSKKSP-----YL--DTRHR 372
epsilon         AIVARGPQITVGDLTRNIPRIR--ERQKLVYWNEDGCKTALCSVSP----------LGHR 406
delta           ASRRTGELFVPAPSGDNNTSNN--LSTAFIEQRP--LLWSLRGPAACSEGLAH--LREVL 395
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zeta            FYCITGAKSHLPSVCPTVPVELLHTSRSLQSTDPVHSREEVKIPKPLYLSFVQPGSKKRS 407
                     *                      :           :    .              

alpha           RAVCMIANSTAIAEVFARIDHKFDLMYSKRAFVHWYVGEGMEEG---EFSEAREDLAALE 429
beta            MAVTFIGNNTCIQEMFRRVGEQFTLMFRRKAFLHWYTGEGMDEM---EFTEAESNMNDLV 419
gamma           VSGLVMANHTSISSLFQRTLKQFDLLFNRGVFLEQYKRYGPIKDNLDEFKHSRDVVESLV 432
epsilon         NSVLMLANHCSIAQKLQSAHERFMRLYSVRSHVHHYEPYLEQAY----FDDTCDTVLTVV 462
delta           SRSTPTHDGRELYVPPSALLLHEERLLGRRAHVSVFGPTHNIGLRLASALERAEDLLRVS 455
zeta            PAATLLTEIEGVLVMNQARELNAQLLFPLLRTAAVKVKAGAFMS---TFLDSGVAAERIQ 464
                       :   :         .   :                        .       : 

alpha           KDYEEVGAESADMDGEEDVEEY----------- 451
beta            SEYQQYQDATIEEEGEFDEEEQY---------- 442
gamma           SEYKACESSDYIRNF------------------ 447
epsilon         DDYNYLNTVQMPADVPRSMRDLVYF-------- 487
delta           AYVHHFSRYGVGEEELRDAVVRMWDTAAAYGAA 488
zeta            LAIKSVALKLADAEED----------------- 480
                   .         :                   
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8.3 Alignment of TBCEL from different species

NP_610562.1        293   HWPLWESLEC-TEHERRQLLIARLPNVEMLNGGGKISSDERVDSERAFVR   341
XP_309507.4        320   YWPLWARTDSTTEHERRQLLIARLPNISILNGGDTIGAVEREDAERSFIR   369
NP_741764.1        253   NIPLLDAL---TNEERLHLIIGRLHHLRVLNGS-KISSEQREQSERFFIR   298

NP_689928.3        307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
XP_001166986.1     307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
XP_546476.2        357   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   404
XP_001253382.1     307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
NP_766626.1        307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
NP_001014111.1     307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
XP_427094.2        307   YYMEFPEEEVPFRYHELITKYGKLEPLAVVDLRPQSS--VKVEVHFQDKV   354
XP_001919357.1     309   YHLDCPEDELPQ--------------------------------------   320
NP_610562.1        342   YYMDKPEEERPARYQELLQIHGKLDPLVNVSLKPDKR--VKVLFTYNDVS   389
XP_309507.4        370   HYLDKPDAERPRRYYELIGVHGQLDPLVNIDLRPERK--VKVRFTFEDKA   417
NP_741764.1        299   YYQE--QKEKPLQYKTLIDKHGNLEKLVTIDLTPKKEAVVKILCEEKEVN   346

NP_689928.3        355   EEMSIRLDQTVAELKKQLKTLVQLPTSNMLLYYFDHEAPF--GPEEMKYS   402
XP_001166986.1     355   EEMSIRLDQTVAELKKQLKTLVQLPTSNMLLYYFDHEAPF--GPEEMKYS   402
XP_546476.2        405   EEMSIRLDQTVAELKKQLKTLVQLPTSNMLLYYFDHEAPF--GPEEMKYS   452
XP_001253382.1     355   EEMSIRLDQTVAELKKQLKTLVQLPTSNMLLYYLDHEAPF--GPEEMKYS   402
NP_766626.1        355   EEMSIRLDQTVAELKKQLKTLVQLPTSSMLLYYFDHEAPF--GPEEMKYS   402
NP_001014111.1     355   EEVSIRLDQTVAELKRQLKTLVQLPTSSMLLYYFDHEAPF--GPEEMKYS   402
XP_427094.2        355   EEMSIRLDQTVAELKKHLKTVVQLSTSNMLLFYLDQEAPF--GPEEMKYS   402
XP_001919357.1           --------------------------------------------------
NP_610562.1        390   ESRFVDIYLTVNDLKVKLEKLVGLAPNKMRLYYLDQDYKEF-GPEEMRYP   438
XP_309507.4        418   IERTVDVNRTVSDLKSRLERLFDVPAARMRLYYVDQDFRDLQGLEEMKYP   467
NP_741764.1        347   QEITISLEPTVLDFMKILDPKVGVKFTRMKLFLLREDGRTD-DFSSSDY-   394

NP_689928.3        403   SRALHSFGIRDGDKIYVESKTK----------------   424
XP_001166986.1     403   SRALHSFGIRDGDKIYVESKTK----------------   424
XP_546476.2        453   SRALHSFGIRDGDKIYVESKTK----------------   474
XP_001253382.1     403   SRALHSFGIRDGDKIFVESKTK----------------   424
NP_766626.1        403   SRALHSFGIRDGDKIFVESKTK----------------   424
NP_001014111.1     403   SRALHSFGIRDGDKIFVESKTK----------------   424
XP_427094.2        403   SRALHSYGIRDGDKIYVEPRMK----------------   424
XP_001919357.1           --------------------------------------
NP_610562.1        439   NKQLYSYNIQSGDEIIIDAKK-----------------   459
XP_309507.4        468   HKVLYSYNIRSGDEIIIERKVKS---------------   490
NP_741764.1        395   NMPLHYFKIEDGDSFLVQEKIIVTRRRRPPSSTSSSSS   432

Protein Acc. Gene Organism

NP_689928.3 TBCEL Homo sapiens
XP_001166986.1 TBCEL Pan troglodytes
XP_546476.2 TBCEL Canis lupus familiaris
XP_001253382.1 TBCEL Bos taurus
NP_766626.1 Tbcel Mus musculus
NP_001014111.1 Tbcel Rattus norvegicus
XP_427094.2 TBCEL Gallus gallus
XP_001919357.1 LOC561554 Danio rerio
NP_610562.1 CG12214 Drosophila melanogaster
XP_309507.4 AgaP_AGAP011141 Anopheles gambiae
NP_741764.1 coel-1 Caenorhabditis elegans

HomoloGene Results - Print Preview http://www.ncbi.nlm.nih.gov/sites/entrez
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Select 16120

1: HomoloGene:16120. Gene conserved in Bilateria Download ,

Multiple Sequence Alignment
Generated by MUSCLE [see reference] version 3.6 (using option: -maxiters 2).

NP_689928.3              --------------------------------------------------
XP_001166986.1           --------------------------------------------------
XP_546476.2          1   MPSGYQVEQRVIKQEDKKARDETGKFSRVPDQESLEEHVNHCGFTLREKK   50
XP_001253382.1           --------------------------------------------------
NP_766626.1              --------------------------------------------------
NP_001014111.1           --------------------------------------------------
XP_427094.2              --------------------------------------------------
XP_001919357.1       1   ------------------------------------------------ME   2
NP_610562.1              --------------------------------------------------
XP_309507.4              --------------------------------------------------
NP_741764.1              --------------------------------------------------

NP_689928.3          1   MDQPSGRSFMQVLCEKYSPE-NFPYRRGPG--------------------   29
XP_001166986.1       1   MDQPSGRSFMQVLCEKYSPE-NFPYRRGPG--------------------   29
XP_546476.2         51   MDQPSGRSFMQVLCEKYSPE-NFPYRRGPG--------------------   79
XP_001253382.1       1   MDQPSGRSFMQVLCEKYSPE-NFPYRRGPG--------------------   29
NP_766626.1          1   MDQPSGRSFMQVLCEKYSPE-NFPYRRGPG--------------------   29
NP_001014111.1       1   MDQPSGRSFMQVLCEKYSPE-NFPYRRGPG--------------------   29
XP_427094.2          1   MDQPSGRSFMQVLCEKYSPE-NFPYRRGPG--------------------   29
XP_001919357.1       3   SEETEGRTLVQVISEKYSPD-NFPYCRGPG--------------------   31
NP_610562.1          1   -----MPSLLEALERKYFAECEFENAHQPELHKRSDLPNDFTVTKCGGRM   45
XP_309507.4          1   -----MPTLLEALEEKYGMEPDEKEEHVEE------------------EV   27
NP_741764.1          1   -MEEGCSTLVRSLEQKYLDD-DEDIVQ---------------------DI   27

NP_689928.3         30   -MGVHVPATPQGSPMKDRLNLPSVLVLNSCGITCAGDEKEIAAFCAHVSE   78
XP_001166986.1      30   -MGVHVPATPQGSPMKDRLNLPSVLVLNSCGITCAGDEKEIAAFCAHVSE   78
XP_546476.2         80   -MGVHVPATPQGSPMKDRLNLPSVLVLNSCGITRAGDEKEIAAFCAHVSE   128
XP_001253382.1      30   -MGVHVPATPQGSPMKDRLNLPSVLVLNSCGITCAGDEKEIAAFCAHVSE   78
NP_766626.1         30   -VGVHVPATPQGSPMKDRLNLPSVLVLNSCGITCAGDEREIAAFCAHVSE   78
NP_001014111.1      30   -MGVHVPATPQGSPMKDRLNLPSVLVLNSCGITCAGDEREIAAFCAHVSE   78
XP_427094.2         30   -MGVHVPATPQGSPMKDRLNLPSVLVLNSCGITCAGDENEIAAFCAHVSE   78
XP_001919357.1      32   -VGVVIRSSPQGSPVKDRLNLPSILVLDGCGITEAGDEEEVATFCAHVVE   80
NP_610562.1         46   EFSIFIPRLSP------LTSVPALLVLNDCDIDSAGDFDSIREKCQRVRE   89
XP_309507.4         28   LVSIFVPKLPP------RQSTPQLLILNDCNIDRAGEPEDLKKKCRIVKE   71
NP_741764.1         28   IFTGFTGCSPCKMA---SQRALELLVLNNMNIDTIGDSEKLATLASHVSE   74

NP_689928.3         79   LDLSDNKLEDWHEVSKIVSNVPQLEFLNLSSNPLNLSVLERTCAGSFSGV   128
XP_001166986.1      79   LDLSDNKLEDWHEVSKIVSNVPQLEFLNLSSNPLNLSVLERTCAGSFSGV   128
XP_546476.2        129   LDLSDNKLEDWHEVSKIVSNVPQLEFLNLSSNPLNLSVLERTCAGSFSGV   178
XP_001253382.1      79   LDLSDNKLEDWHEVSKIVSNVPQLEFLNLSSNPLNLSVLERTCAGSFSGV   128
NP_766626.1         79   LDLSDNKLQDWHEVSKIVSNVPQLEFLNLSSNPLSLSVLERTCAGSFSGV   128
NP_001014111.1      79   LDLSDNKLQDWHEVSKIVSNVPQLEFLNLSSNPLSLSVLERTCAGSFSGV   128
XP_427094.2         79   LDLSDNKLEDWHEVSKIVSNVPHLEFLNLSSNPLSLSVLERRCAGSFAGV   128
XP_001919357.1      81   LDLSHNQLKDWGEISKILSNIPNLDFLNLSMNPLHGSSLEPCLAEAFSGL   130
NP_610562.1         90   LDLAQNKLSDWSEVFSILEHMPRIEFLNLSKNQLASPIGTLPTA-PTINL   138
XP_309507.4         72   LDLAQNKLNNWNEVFVILSHMPRVEFVNLSLNHLTGPIQKPPVT-KMDHL   120
NP_741764.1         75   ADLGWNQISKWSDIACILKNLPHLRVLNIGHNPLN-PVIDHEL--PVSTL   121

HomoloGene Results - Print Preview http://www.ncbi.nlm.nih.gov/sites/entrez

1 of 3  May 5,Wednesday  11:47 AM

Appendix

165



NP_689928.3        129   RKLVLNNSKASWETVHMILQELPDLEELFLCLNDY-ETVSCPSI------   171
XP_001166986.1     129   RKLVLNNSKASWETVHTILQELPDLEELFLCLNDY-ETVSCPSI------   171
XP_546476.2        179   RKLVLNNSKASWETVHTILQELPDLEELFLCLNDY-ETVSCPSI------   221
XP_001253382.1     129   RKLVLNNSKASWETVHTILQELPDLEELFLCLNDY-ETVSCPSI------   171
NP_766626.1        129   RKLVLNNSKASWETVHTILQELPELEELFLCLNDY-ETVSCPSV------   171
NP_001014111.1     129   RKLVLNNSKASWETVHTILQELPDLEELFLCLNDY-ETVSCPSV------   171
XP_427094.2        129   RKLVLNNSKASWETVHTILQELPDLEELFLCLNDY-ETVSCSPV------   171
XP_001919357.1     131   RRLVLNNTHVTWDMVHTLTREIPDLEELFLCLNEY-ESVNASSM------   173
NP_610562.1        139   KSLVLNGTYLDWACVDTLLKNLPVLQELHLSLNNY-RQVLIDAEEAEQRL   187
XP_309507.4        121   RNLVLNNTKLEWCSVEKLLRLLPALEELHLSLNEY-THVLIDTVNPTDRS   169
NP_741764.1        122   HTIILNGTHLPFKTLQSFLSVLPKVTELHMSDNQFNDDDDCDEP------   165

NP_689928.3        172   ---------------------------------------------CCHSL   176
XP_001166986.1     172   ---------------------------------------------CCHSL   176
XP_546476.2        222   ---------------------------------------------CCHSL   226
XP_001253382.1     172   ---------------------------------------------CCHSL   176
NP_766626.1        172   ---------------------------------------------CCHSL   176
NP_001014111.1     172   ---------------------------------------------CCHSL   176
XP_427094.2        172   ---------------------------------------------CCQSL   176
XP_001919357.1     174   ---------------------------------------------PCPSL   178
NP_610562.1        188   QE------------------------------TETPEETERRITKAHPAL   207
XP_309507.4        170   NSANSERGSTDEGSQGTATDASSNNNTHDGSATSQTKEQQQKETDPHGGV   219
NP_741764.1        166   ---------------------------------------------ISTTV   170

NP_689928.3        177   KLLHITDNNLQDWTEIRKLGVMFPSLDTLVLANNHLNAIE----------   216
XP_001166986.1     177   KLLHITDNNLQDWTEIRKLGVMFPSLDTLVLANNHLNAIE----------   216
XP_546476.2        227   KLLHITDNNLQDWTEIRKLGVMFPSLDTLVLANNHLNAIE----------   266
XP_001253382.1     177   KLLHITDNNLQDWTEIRKLGVMFPSLDTLVLANNHLNAIE----------   216
NP_766626.1        177   KLLHITDNNLQDWTEIRKLGVMFPSLDTLVLANNHLNAIE----------   216
NP_001014111.1     177   KLLHITDNNLQEWTEIRKLGVMFPSLDTLVLANNHVNAIE----------   216
XP_427094.2        177   KLLHITDNNLQDWTEIRKLGIMFPSLDTLILANNNLTTIE----------   216
XP_001919357.1     179   RLLHITDNQLQDWVEVRKLGLMYPGLVSLILSNNSLSSIH----------   218
NP_610562.1        208   KTLHFTGNPVEHWQEICRLGRLFPNLEALVLADCPIKSLQ----------   247
XP_309507.4        220   RKLHLTGNYISEWGEICRIGRVFPQLEALVLADCPLRYVDYMDHTKGTES   269
NP_741764.1        171   RTVHLNRCGFLKWSSVMNVVKRFPNVCSVFVCENPLKDVT----------   210

NP_689928.3        217   ------EPDDSLARLFPNLRSISLHKSGLQSWEDIDKLNSFPKLEEVRLL   260
XP_001166986.1     217   ------EPDDSLARLFPNLRSISLHKSGLQSWEDIDKLNSFPKLEEVRLL   260
XP_546476.2        267   ------EPDDSLARLFPNLRSISLHKSGLQSWEDIDKLNSFPKLEEVRLL   310
XP_001253382.1     217   ------EPDDSLARLFPNLRSISLHKSGLQSWEDIDKLNSFPKLEEVRLL   260
NP_766626.1        217   ------EPADSLARLFPNLRSISLHKSGLQSWEDIDKLNSFPKLEEVRLL   260
NP_001014111.1     217   ------EPADSLARLFPNLRSISLHKSGLQSWEDIDKLNSFPKLEEVRLL   260
XP_427094.2        217   ------ESEDSLARLFPNLRSINLHKSGLHCWEDIDKLNSFPKLEEVKLL   260
XP_001919357.1     219   ------EPEDSLHRLFPNLRSINLHNSGLSRWEDVEKLNFFPKLQEVRVM   262
NP_610562.1        248   -----AEESSETHRYFPSLRLLNLSSAQLDSWAAIDELAKFSELRNLRVK   292
XP_309507.4        270   PATSCNESEEESHKYFQNLKLLNLSNAKIDSWEDIDRLAEFPSLCNVRLQ   319
NP_741764.1        211   --------HCKHFEQLPFWNFLNLAKTSIDSWDSLDQLNRMTSISDLRVP   252

NP_689928.3        261   GIPLLQPY---TTEERRKLVIARLPSVSKLNGS-VVTDGEREDSERFFIR   306
XP_001166986.1     261   GIPLLQPY---TTEERRKLVIARLPSVSKLNGS-VVTDGEREDSERFFIR   306
XP_546476.2        311   GIPLLQPY---TTEERRKLVIARLPSVSKLNGS-VVTDGEREDSERFFIR   356
XP_001253382.1     261   GIPLLQPY---TTEERRKLVIARLPSVSKLNGS-VVTDGEREDSERFFIR   306
NP_766626.1        261   GIPLLQPY---TTEERRKLVVARLPSVSKLNGS-VVTDGEREDSERFFIR   306
NP_001014111.1     261   GIPLLQPY---TTEERRKLVVARLPSVSKLNGS-VVTDGEREDSERFFIR   306
XP_427094.2        261   GIPLLQSY---TTEERRKLLIARLPSIIKLNGS-IVGDGEREDSERFFIR   306
XP_001919357.1     263   GIPLLQPY---TDQERRCLMVAQLPHVTVLNGS-VVTDGEREDAERFFIR   308
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NP_610562.1        293   HWPLWESLEC-TEHERRQLLIARLPNVEMLNGGGKISSDERVDSERAFVR   341
XP_309507.4        320   YWPLWARTDSTTEHERRQLLIARLPNISILNGGDTIGAVEREDAERSFIR   369
NP_741764.1        253   NIPLLDAL---TNEERLHLIIGRLHHLRVLNGS-KISSEQREQSERFFIR   298

NP_689928.3        307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
XP_001166986.1     307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
XP_546476.2        357   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   404
XP_001253382.1     307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
NP_766626.1        307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
NP_001014111.1     307   YYVDVPQEEVPFRYHELITKYGKLEPLAEVDLRPQSS--AKVEVHFNDQV   354
XP_427094.2        307   YYMEFPEEEVPFRYHELITKYGKLEPLAVVDLRPQSS--VKVEVHFQDKV   354
XP_001919357.1     309   YHLDCPEDELPQ--------------------------------------   320
NP_610562.1        342   YYMDKPEEERPARYQELLQIHGKLDPLVNVSLKPDKR--VKVLFTYNDVS   389
XP_309507.4        370   HYLDKPDAERPRRYYELIGVHGQLDPLVNIDLRPERK--VKVRFTFEDKA   417
NP_741764.1        299   YYQE--QKEKPLQYKTLIDKHGNLEKLVTIDLTPKKEAVVKILCEEKEVN   346

NP_689928.3        355   EEMSIRLDQTVAELKKQLKTLVQLPTSNMLLYYFDHEAPF--GPEEMKYS   402
XP_001166986.1     355   EEMSIRLDQTVAELKKQLKTLVQLPTSNMLLYYFDHEAPF--GPEEMKYS   402
XP_546476.2        405   EEMSIRLDQTVAELKKQLKTLVQLPTSNMLLYYFDHEAPF--GPEEMKYS   452
XP_001253382.1     355   EEMSIRLDQTVAELKKQLKTLVQLPTSNMLLYYLDHEAPF--GPEEMKYS   402
NP_766626.1        355   EEMSIRLDQTVAELKKQLKTLVQLPTSSMLLYYFDHEAPF--GPEEMKYS   402
NP_001014111.1     355   EEVSIRLDQTVAELKRQLKTLVQLPTSSMLLYYFDHEAPF--GPEEMKYS   402
XP_427094.2        355   EEMSIRLDQTVAELKKHLKTVVQLSTSNMLLFYLDQEAPF--GPEEMKYS   402
XP_001919357.1           --------------------------------------------------
NP_610562.1        390   ESRFVDIYLTVNDLKVKLEKLVGLAPNKMRLYYLDQDYKEF-GPEEMRYP   438
XP_309507.4        418   IERTVDVNRTVSDLKSRLERLFDVPAARMRLYYVDQDFRDLQGLEEMKYP   467
NP_741764.1        347   QEITISLEPTVLDFMKILDPKVGVKFTRMKLFLLREDGRTD-DFSSSDY-   394

NP_689928.3        403   SRALHSFGIRDGDKIYVESKTK----------------   424
XP_001166986.1     403   SRALHSFGIRDGDKIYVESKTK----------------   424
XP_546476.2        453   SRALHSFGIRDGDKIYVESKTK----------------   474
XP_001253382.1     403   SRALHSFGIRDGDKIFVESKTK----------------   424
NP_766626.1        403   SRALHSFGIRDGDKIFVESKTK----------------   424
NP_001014111.1     403   SRALHSFGIRDGDKIFVESKTK----------------   424
XP_427094.2        403   SRALHSYGIRDGDKIYVEPRMK----------------   424
XP_001919357.1           --------------------------------------
NP_610562.1        439   NKQLYSYNIQSGDEIIIDAKK-----------------   459
XP_309507.4        468   HKVLYSYNIRSGDEIIIERKVKS---------------   490
NP_741764.1        395   NMPLHYFKIEDGDSFLVQEKIIVTRRRRPPSSTSSSSS   432

Protein Acc. Gene Organism

NP_689928.3 TBCEL Homo sapiens
XP_001166986.1 TBCEL Pan troglodytes
XP_546476.2 TBCEL Canis lupus familiaris
XP_001253382.1 TBCEL Bos taurus
NP_766626.1 Tbcel Mus musculus
NP_001014111.1 Tbcel Rattus norvegicus
XP_427094.2 TBCEL Gallus gallus
XP_001919357.1 LOC561554 Danio rerio
NP_610562.1 CG12214 Drosophila melanogaster
XP_309507.4 AgaP_AGAP011141 Anopheles gambiae
NP_741764.1 coel-1 Caenorhabditis elegans

HomoloGene Results - Print Preview http://www.ncbi.nlm.nih.gov/sites/entrez

3 of 3  May 5,Wednesday  11:47 AM

Appendix

167



8.4 Sequence alignment of TBCE (mouse, human, flies) and TBCEL (mouse, human, 

flies)

CLUSTAL 2.0.12 multiple sequence alignment

Mouse_TBCE            ----MSDILPLDVIGRRVEVNGEYATVRFCGAVPPVAGLWLGVEWDNPERGKHDGSHEGT 56
Human_TBCE            ----MSDTLTADVIGRRVEVNGEHATVRFAGVVPPVAGPWLGVEWDNPERGKHDGSHEGT 56
Drosophila_TBCE       MVGIIDEVQLFYPLGTRIKIGDNYGTVRYVGEVSGHMGSWLGIEWDDGLRGKHNGIVDGK 60
Mouse_TBCEL           ------------------------------------------------------------
Human_TBCEL           ------------------------------------------------------------
Drosophila_TBCEL      ------------------------------------------------------------
                                                                                  

Mouse_TBCE            MYFKCRHPTGGSFVRPSKVNFGDDFLTALKKRYVLEDGPDDDE---NSCSLKVGSKQVQT 113
Human_TBCE            VYFKCRHPTGGSFIRPNKVNFGTDFLTAIKNRYVLEDGPEEDR---KEQIVTIGNKPVET 113
Drosophila_TBCE       RYFQTQTPTGGSFIRPGKVGPCATLEDAARERYLNYDSSNVDESLIREAQASLQASLFEV 120
Mouse_TBCEL           ----------------MDQPSGRSFMQVLCEKYSPENFPYRRG---PGVGVHVPATP--- 38
Human_TBCEL           ----------------MDQPSGRSFMQVLCEKYSPENFPYRRG---PGMGVHVPATP--- 38
Drosophila_TBCEL      ------------MPSLLEALERKYFAECEFENAHQPELHKRSD---LPNDFTVTKCGGRM 45
                                       .      :     :.    :               :       

Mouse_TBCE            IGFEHITKKQSQLRALQDISLWNCAVSHAGEQGRIAEACPNIRVVNLSKNLLSTWDEVVL 173
Human_TBCE            IGFDSIMKQQSQLSKLQEVSLRNCAVSCAGEKGGVAEACPNIRKVDLSKNLLSSWDEVIH 173
Drosophila_TBCE       VGMDKIARKQSKFEQLEEVSVDQTPVNAAG----YLKELTHLTTLNVSHTLIWNWEIVAS 176
Mouse_TBCEL           QGSPMKDRLN----LPSVLVLNSCGITCAGDEREIAAFCAHVSELDLSDNKLQDWHEVSK 94
Human_TBCEL           QGSPMKDRLN----LPSVLVLNSCGITCAGDEKEIAAFCAHVSELDLSDNKLEDWHEVSK 94
Drosophila_TBCEL      EFSIFIPRLSPLTSVPALLVLNDCDIDSAGDFDSIREKCQRVRELDLAQNKLSDWSEVFS 105
                             : .        : : .  :  **          .:  ::::.. :  *  *  

Mouse_TBCE            IAEQLKDLEALDLSENKLQFP--SDSPTLTRTFSTLKTLVLNKTGIT-WTEVLHCAPSWP 230
Human_TBCE            IADQLRHLEVLNVSENKLKFP--SGS-VLTGTLSVLKVLVLNQTGIT-WAEVLRCVAGCP 229
Drosophila_TBCE       IAQQLPSLTNLNLSSNRLVLPTSSQITELEPSFRQLKRINLRSCGFSDWKDVMHTALLWP 236
Mouse_TBCEL           IVSNVPQLEFLNLSSNPLSLS--VLERTCAGSFSGVRKLVLNNSKAS-WETVHTILQELP 151
Human_TBCEL           IVSNVPQLEFLNLSSNPLNLS--VLERTCAGSFSGVRKLVLNNSKAS-WETVHMILQELP 151
Drosophila_TBCEL      ILEHMPRIEFLNLSKNQLASP--IGTLPTAPTIN-LKSLVLNGTYLD-WACVDTLLKNLP 161
                      * .::  :  *::*.* *  .          ::  :: : *.      *  *       *

Mouse_TBCE            VLEELYLKSN---------------------NISISERPVNVLQKMRLLDLSSNPSIDES 269
Human_TBCE            GLEELYLESN---------------------NIFISERPTDVLQTVKLLDLSSNQLIDEN 268
Drosophila_TBCE       NILSLGLQENSL-------------------GQLAEVDRTKIFKQLHELDLHRTNIMDFD 277
Mouse_TBCEL           ELEELFLCLNDY---------------------ETVSCPSVCCHSLKLLHITDNNLQDWT 190
Human_TBCEL           DLEELFLCLNDY---------------------ETVSCPSICCHSLKLLHITDNNLQDWT 190
Drosophila_TBCEL      VLQELHLSLNNYRQVLIDAEEAEQRLQETETPEETERRITKAHPALKTLHFTGNPVEHWQ 221
                       : .* *  *                                   :: *.:  .   .  

Mouse_TBCE            QLSLIADLPR-LEHLVLSDIGLSSIHFPDAEIGCKTSMFPALKYLIVNDNQIS-EWSFIN 327
Human_TBCE            QLYLIAHLPR-LEQLILSDTGISSLHFPDAGIGCKTSMFPSLKYLVVNDNQIS-QWSFFN 326
Drosophila_TBCE       QVTKLGNLTT-LRLLNIMENGIEEIKLPDCDSQEKLNIFVSLEQLNLLHNPIWNEADAFN 336
Mouse_TBCEL           EIRKLGVMFPSLDTLVLANNHLNAIEEPADS---LARLFPNLRSISLHKSGLQ-SWEDID 246
Human_TBCEL           EIRKLGVMFPSLDTLVLANNHLNAIEEPDDS---LARLFPNLRSISLHKSGLQ-SWEDID 246
Drosophila_TBCEL      EICRLGRLFPNLEALVLADCPIKSLQAEESSE--THRYFPSLRLLNLSSAQLD-SWAAID 278
                      ::  :. :   *  * : :  :. :.            *  *. : :    :  .   ::

Mouse_TBCE            ELDKLQSLQALSCTRNPLSKADK-----AEEIIIAKIAQLRTLNRCQILPEERRGAELDY 382
Human_TBCE            ELEKLPSLRALSCLRNPLTKEDKEAET-ARLLIIASIGQLKTLNKCEILPEERRRAELDY 385
Drosophila_TBCE       ELDKLPQLKRLSKTPHLKSNFDEMFS-----KAVASIASLQFINKAEVTAEQRRGAEYDI 391
Mouse_TBCEL           KLNSFPKLEEVRLLGIPLLQP--YTTEERRKLVVARLPSVSKLNG-SVVTDGEREDSERF 303
Human_TBCEL           KLNSFPKLEEVRLLGIPLLQP--YTTEERRKLVIARLPSVSKLNG-SVVTDGEREDSERF 303
Drosophila_TBCEL      ELAKFSELRNLRVKHWPLWESLECTEHERRQLLIARLPNVEMLNGGGKISSDERVDSERA 338
                      :* .: .*. :        :             :* : .:  :*     .. .*  .   

Mouse_TBCE            RKAFGNEWRKAGGHPDPDKNRPNAAFLSAHPRYQLLCCKYGAPEDEELKTQQPFMLKKQL 442
Human_TBCE            RKAFGNEWKQAGGHKDPEKNRLSEEFLTAHPRYQFLCLKYGAPEDWELKTQQPLMLKNQL 445
Drosophila_TBCE       WKKYALDWMQATQG----GTDSLREFCRRHRTYPLLVKKYGSPADFVPRSQ-----AKQS 442
Mouse_TBCEL           FIRYYVDVPQEEVP------FRYHELITKYGKLEPLAEVDLRPQS--------------- 342
Human_TBCEL           FIRYYVDVPQEEVP------FRYHELITKYGKLEPLAEVDLRPQS--------------- 342
Drosophila_TBCEL      FVRYYMDKPEEERP------ARYQELLQIHGKLDPLVNVSLKPDK--------------- 377
                         :  :  :               :   :     *      * .               
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Mouse_TBCE            LTLKIKCSNQPERQILEKQLPDSMTVQKVKGLLSRLLKVPVSELLLSYESSKMP-GREIE 501
Human_TBCE            LTLKIKYPHQLDQKVLEKQLPGSMTIQKVKGLLSRLLKVPVSDLLLSYESPKKP-GREIE 504
Drosophila_TBCE       NLINVSIRHQLTGETWEKKVPRMITVQTLQGLVMKRFRLSGDVPQLCYVDALHP-DLVVP 501
Mouse_TBCEL           ---SAKVEVHFNDQVEEMSIRLDQTVAELKKQLKTLVQLPTSSMLLYYFDHEAP-FGPEE 398
Human_TBCEL           ---SAKVEVHFNDQVEEMSIRLDQTVAELKKQLKTLVQLPTSNMLLYYFDHEAP-FGPEE 398
Drosophila_TBCEL      ---RVKVLFTYNDVSESRFVDIYLTVNDLKVKLEKLVGLAPNKMRLYYLDQDYKEFGPEE 434
                           .          .  :    *:  ::  :   . :. .   * * .          

Mouse_TBCE            LENDLQPLQFYSVENGDCLLVRW--- 524
Human_TBCE            LENDLKSLQFYSVENGDCLLVRW--- 527
Drosophila_TBCE       LDNNAKTLDFYSVQEHDTVLVQ---- 523
Mouse_TBCEL           MKYSSRALHSFGIRDGDKIFVESKTK 424
Human_TBCEL           MKYSSRALHSFGIRDGDKIYVESKTK 424
Drosophila_TBCEL      MRYPNKQLYSYNIQSGDEIIIDAKK- 459
                      :    : *  :.:.. * : :     
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