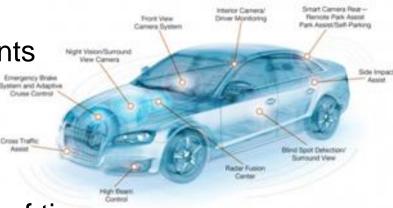


## Implementation and Evaluation of Multi-Mode Real-Time Tasks under Different Scheduling Algorithms

Anas Toma, Vincent Meyers and Jian-Jia Chen TU Dortmund University, Germany

Supported by DFG as part of the Collaborative Research Center SFB876


03.07.2018

## **Introduction - Automotive Systems**

#### **Electronic Control Units (ECUs)**

Control and improve functionalities, performance and safety

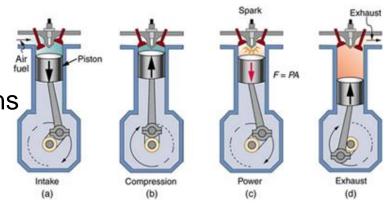
- Continuous interaction with components
  - Doors , lights, engine, etc.



- Should react within a specific amount of time
  - A delayed reaction may affect the safety

[www.autotechreview.com]




# **Engine Control**

- Tasks:
  - Adjusting the fuel flow
  - Calculating the time of the spark signal
  - Minimizing fuel consumption and emissions

### Angular synchronous tasks

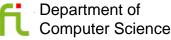
- Linked to the rotation of the crankshaft
- Increasing rotation speed  $\rightarrow$  Shorter period/deadline
  - Drop some non-critical functions to meet the deadline
- Releases jobs depending on the engine's rotation speed
  - Different execution modes → Multi-Mode Task Model
    - » Digraph Real-Time model (DRT)
    - » Variable Rate-dependent Behavior (VRB) task model

[Engine Repair Indianapolis IN 317-876-9890]



3

Anas Toma et al.

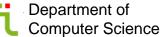

Computer

## Multi-Mode Tasks

An example of a multi-mode task with three different execution modes

| Rotation Speed (rpm) | Mode Type | Executed Functions |
|----------------------|-----------|--------------------|
| [0, 3000]            | А         | f1, f2 and $f3$    |
| (3000, 6000]         | В         | f1 and $f2$        |
| (6000, 9000]         | С         | f1                 |

- Different modes: (C<sup>1</sup>, T<sup>1</sup>, D<sup>1</sup>) (C<sup>2</sup>, T<sup>2</sup>, D<sup>2</sup>) (C<sup>3</sup>, T<sup>3</sup>, D<sup>3</sup>)
  - C<sup>j</sup>: worst-case execution time (WCET)
  - T<sup>j</sup>: period
  - D<sup>j</sup>: relative deadline
- Implicit deadline T<sup>j</sup> = D<sup>j</sup>
- The mode changes based on an external interrupt or any other event






# The FreeRTOS Kernel

- A Real Time Operating System (RTOS) for microcontrollers and small microprocessors
- Supports many different architectures
- Open source RTOS
- Low ROM and RAM usage
- Simple and easy to use
- Can be also used for educational purposes

[https://www.freertos.org]





# Contribution

 Modifying the FreeRTOS real-time operating system to consider the multi-mode real-time tasks

 Implementing the Rate-Monotonic (RM) and the Earliest Deadline First (EDF) scheduling algorithms

- Empirical evaluation of the multimode tasks under EDF and RM algorithms in a real environment
  - FreeRTOS running on Raspberry Pi B+ board



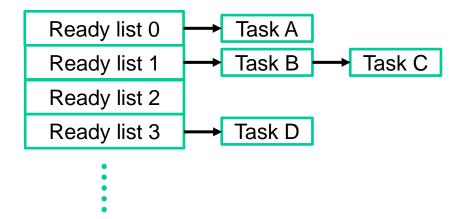




## **Multi-Mode Task Model Implementation**

#### Periodic tasks

- Expanding the task control block (TCB)
  - Period, worst-case execution time, relative deadline and the previous wake time
- vTaskDelayUntil() function to delay the task for the specified period


#### <u>Modes</u>

- TCB fields with array data structure
- Additional attributes
  - number of the modes
  - threshold values for each mode level
- Global variable for the external input
  - Any changes will be applied starting from the next release



# **Rate-Monotonic (RM) Algorithm Implementation**

- Tasks with a shorter period have a higher priority
- Assign priorities before starting the scheduler



- Doubly linked list to sort the tasks according to their periods
- The priorities are assigned for each task for all the modes
  - Array of priorities for each task
- The tasks are moved to their corresponding ready lists



## Earliest Deadline First (EDF) Algorithm Implementation

Assign the highest priority to the job with the earliest absolute deadline

- A doubly linked list for the ready jobs
  - Instead of the array of linked lists provided by FreeRTOS
  - Apply binary heap

- Once a job is added to the ready list
  - The absolute deadline is calculated
  - The job with the earliest absolute deadline is scheduled for execution



# Scheduling in FreeRTOS

- Shared Processor Behavior (round-robin)
  - Context switching for every system tick  $\sim 4\mu s \rightarrow additional overhead!$ 
    - Two tasks with the same priority
    - one ready task

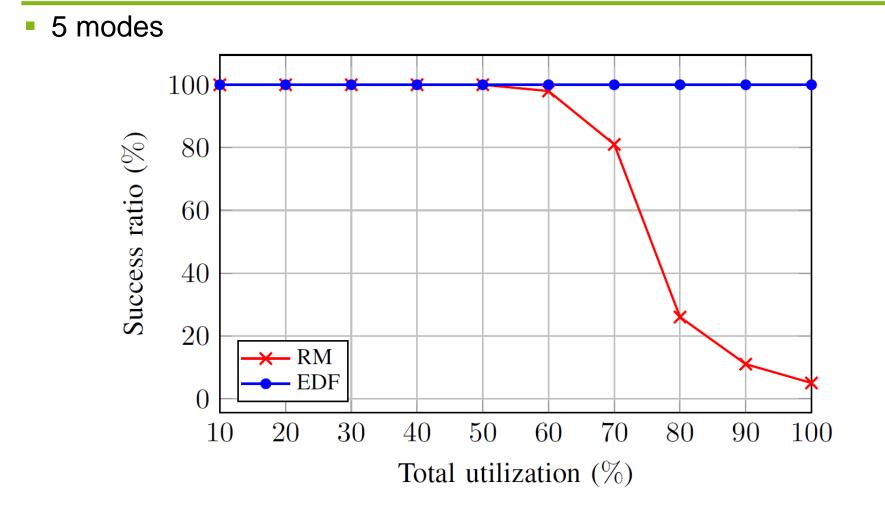
## **Additional Modifications**

 Tasks with the same priority are scheduled according to their insertion order in the ready list

### Perform context switching only if

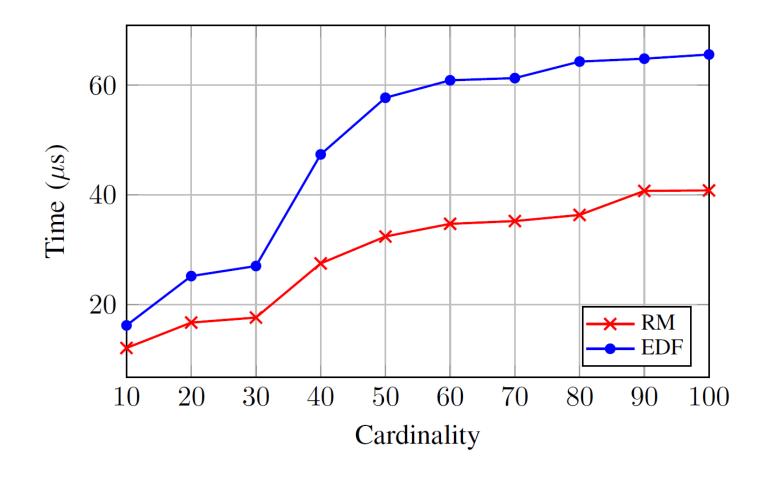
- a new job with a higher priority arrives, or
- the current job under execution is blocked




## **Experimental Evaluation - Synthetic Workload**

- Utilizations and computation segments: [10%-100%]
  - Uniform distribution according to UUniFast \*
- Periods: [1-100ms]
  - Log uniform distribution
- For the multi-mode tasks, the WCET and the period values for the remaining modes were scaled by the factor of 1.5
  - $C_i^{m+1} = 1.5 * C_i^m$
  - $T_i^{m+1} = 1.5 * T_i^m$
- 100 task sets with 50% multi-mode tasks and cardinality of 10

[\*E. Bini and G. C. Buttazzo. Measuring the performance of schedulability tests. Real-Time Systems, 30(1):129–154, 2005]




## **Experimental Evaluation - Synthetic Workload**



Computer

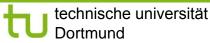
## **Experimental Evaluation – Scheduling overhead**



Cardinality: the number of tasks per a set

technische universität

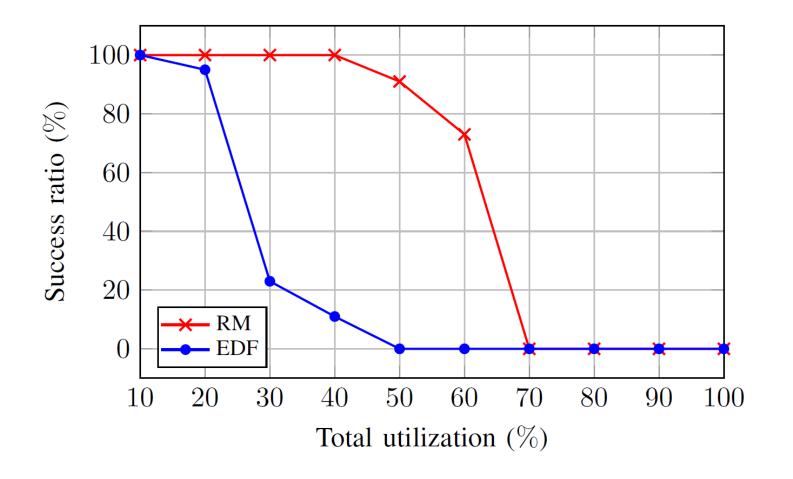
## **Experimental Evaluation – Realistic Workload**


- Shared the characteristics of an automotive software system\*
  - The distribution of the tasks among the periods
  - The typical number of the tasks
  - The average execution time
  - Factors for determining the best- and worst-case execution times

| Task distribution among periods |       |  |  |  |
|---------------------------------|-------|--|--|--|
| Period                          | Share |  |  |  |
| 1 ms                            | 3 %   |  |  |  |
| 2 ms                            | 2 %   |  |  |  |
| 5 ms                            | 2 %   |  |  |  |
| 10 ms                           | 25 %  |  |  |  |
| 20 ms                           | 25 %  |  |  |  |
| 50 ms                           | 3 %   |  |  |  |
| 100 ms                          | 20 %  |  |  |  |
| 200 ms                          | 1 %   |  |  |  |
| 1000 ms                         | 4 %   |  |  |  |
| angle-synchronous ms            | 15 %  |  |  |  |

6 modes ranging from 0 to 6000 rpm with their periods in milliseconds

| Mode   | 0    | 1    | 2    | 3    | 4    | 5    |
|--------|------|------|------|------|------|------|
| Min.   | 0    | 1001 | 2001 | 3001 | 4001 | 5001 |
| Max    | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 |
| Period | 30   | 15   | 10   | 7.5  | 6    | 5    |


[S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive benchmarks for free]



Department of Computer Science



## **Experimental Evaluation – Realistic Workload**



15

Computer

# Conclusion

- Multi-mode tasks were evaluated under the EDF and the RM scheduling algorithms in a real environment
  - FreeRTOS real-time operating system was modified
  - Raspberry Pi B+ board
  - Synthetic and realistic data sets
- <u>Synthetic workload</u>: The EDF algorithm was able to find more feasible schedules than the RM algorithm
  - for high utilization values
- Realistic workload: EDF performed poorly
  - Scheduling overhead of EDF
  - Tasks with shorter periods

Thank you

Computer