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Introduction: a neuron model

ρ

Figure: Anatomy (left) and a mathematical model (right) of a neuron.

x = (x1, . . . , xm) is an input signal

ω = (w1, . . . ,wm) is the vector of input weights

b is a threshold

ρ is an activation function
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Introduction: activation function

x = (x1, . . . , xm) 7→ ρ
(
〈x , ω〉+ b

)

Our assumptions: g ∈ L1(R) ∩ L2(R) (plus some piecewise continuity)
OR g differentiable with g ′ ∈ L1(R) ∩ L2(R)
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Introduction: activation function

x = (x1, . . . , xm) 7→ ρ
(
〈x , ω〉+ b

)

ρ

Sigmoid ρ(z) = 1
1+exp(−z)

ReLU ρ(z) = max{0, z}
Sine ρ(z) = sin(z)

Hardlim ρ(z) = 1
2 (1 + sin(z))

Radbas ρ(z) = exp(−z2)

Our assumptions: g ∈ L1(R) ∩ L2(R) (plus some piecewise continuity)
OR g differentiable with g ′ ∈ L1(R) ∩ L2(R)
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Introduction: neural nets

ρ

a1

a2

an

∑

Figure: Single neuron: F1 =
{
f1(·) = ρ(〈·, ω〉+ b) : b ∈ R, ω ∈ Rm

}
.

Single layer neural net: Fn =
{
fn(·) =

∑n
j=1 ajρ(〈·, ωj〉+ bj) : aj , bj ∈ R, ωj ∈ Rm

}
.

Question
What class F of functions can be approximated by Fn so that ∀f ∈ F there
exists (fn)n∈N, fn ∈ Fn, s.t. limn→∞ ||f − fn|| = 0?
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Neural nets as universal approximators

Theorem (Barron, 1993)

Single layer neural net is a universal approximator for F = Cc(R). More precisely,

∀f ∈ Cc(R) there exists (fn)n∈N, fn ∈ Fn, s.t. ||f − fn||2 = O
(

1√
n

)
.

But: How do we find the parameters aj , bj ∈ R, ωj ∈ Rm, j ∈ {1, . . . n}?

given T = {(xi , f (xi ))}Ni=1

find fn(·) =
n∑

j=1

ajρ(〈·, ωj〉+ bj)

subject to ||f − fn||2 < ε,

slow convergence, algorithms get stuck in local minima

highly sensitive to training data
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Neural nets as universal approximators

Idea: optimize only a part of parameters, while keeping the others fixed.

given bj ∈ R, ωj ∈ Rm

find fn(·) =
n∑

j=1

ajρ(〈·, ωj〉+ bj)

subject to ||f − fn||2 < ε,

Theorem (Barron, 1993)

For n ∈ N, let us fix bj ∈ R, ωj ∈ Rm, j ∈ {1, . . . , n}. Then, ∀f ∈ Cc(R) there
exists (aj)

n
j=1, such that for fn(·) =

∑n
j=1 ajρ(〈·, ωj〉+ bj),

||f − fn||2 = O

(
1

n
2
m

)
.

Note: As limm→∞ n
2
m = 1, the bound is not useful for large dimensions.
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Random vector functional link network (RVFL)

Better idea: optimize only (aj)
n
j=1, choose bj ∈ R, ωj ∈ Rm at random.

find distribution for bj ∈ R, ωj ∈ Rm

and fn(·) =
n∑

j=1

ajρ(〈·, ωj〉+ bj)

subject to ||f − fn||2 < ε,

used in time-series data prediction, handwritten word recognition,
visual tracking, and other signal classification and regression problems

show similar performance to the classical SLFN (with all parameters
learned), but with much faster and more efficient learning process

to date, luck of theoretical analysis
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RVFL as a uniform approximator (on average)

Theorem (Igelnik and Pao, 1995)

Let f ∈ Cc(Rm). There exist distributions for parameters bj , ωj , j ∈ {1, . . . , n}
and weights {aj}nk=1 such that the sequence

{
fn(·) =

∑n
j=1 ajρ(〈·, ωj〉+ bj)

}∞
n=1

of RVFL networks satisfies

lim
n→∞

E
∫
supp(f )

|f (x)− fn(x)|2dx = 0,

with convergence rate O(1/n).

Distribution: there exist constants α(ε), Ω(ε) large enough, so that

ωj ∼ U([−αΩ, αΩ])m;

yj ∼ U(supp(f ));

uj ∼ U([−π2 (2L + 1), π2 (2L + 1)]), where L := d 2m
π rad(K )Ω− 1

2e;
bj = −〈ωj , yj〉 − αuj ,
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RVFL as a uniform approximator (on average)

Theorem (Igelnik and Pao, 1995)
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RVFL as a uniform approximator (on average)

Theorem (Needell, Nelson, Saab, S.)

Let f ∈ Cc(Rm). There exist distributions for parameters bj , ωj , j ∈ {1, . . . , n}
and weights {aj}nk=1 such that the sequence

{
fn(·) =

∑n
j=1 ajρ(〈·, ωj〉+ bj)

}∞
n=1

of RVFL networks satisfies

lim
n→∞

E
∫
supp(f )

|f (x)− fn(x)|2dx= 0,

(but with no convergence rate guarantees).

Distribution: there exist αn →∞, Ωn →∞ as n→∞, so that for fn

ωj ∼ U([−αnΩn, αnΩn])m;

yj ∼ U(supp(f ));

uj ∼ U([−π2 (2Ln + 1), π2 (2Ln + 1)]), where Ln := d 2m
π rad(K )Ωn − 1

2e;
bj = −〈ωj , yj〉 − αuj ,
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RVFL: non-asymptotic probabilistic bounds

Theorem (Needell, Nelson, Saab, S.)

Let f ∈ Cc(Rm) with K = supp(f ). For any ε > 0 and η ∈ (0, 1), there exist
distributions (as above) for parameters bj , ωj , j ∈ {1, . . . , n} and weights {aj}nk=1

such that if

n &
αm2Ωm+1rad(K )(3m+2)/2||f ||∞||ρ||∞ log(η−mδ−1m1/2rad(K ))

ε log(1 + ε||ρ||∞
αmΩm+1rad(K)(m+2)/2||f ||∞||ρ||22

)
,

then the RVFL network fn(·) =
∑n

j=1 ajρ(〈·, ωj〉+ bj) satisfies

P
(∫

K

|f (x)− fn(x)|2dx < ε

)
≥ 1− η.

Note: for small ε > 0, the requirement on the number of nodes behaves like

n & ε−2 log(η−1N (δ,K )).
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Idea of the proof

Goal: for a function f ∈ Cc(Rm), construct a random approximation

f (x) ≈ fn(x) =
n∑

j=1

ajρ

(
m∑
i=1

xiωji + bj

)

Step 1: Construct a limit-integral representation of f using convolution
identity.

Step 2: Use the Monte Carlo method to approximate the integral in the
constructed limit-integral representation of f using a linear combination of
random realizations of the activation function ρ.

Note: As a byproduct, we obtain an explicit formula for parameters {aj}nj=1 in
terms of function f and random parameters ωj , bj .
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Limit-integral representation

Assume wlog that
∫
R g(x)dx = 1 and consider approximate δ-functions

hw (y) =
m∏
j=1

w(j)ρ
(
w(j)y(j)

)
y ,w ∈ Rm.

Lemma

Let f ∈ C0(Rm). Then for all x ∈ Rm we have

f (x) = lim
Ω→∞

1

Ωm

∫
[0,Ω]m

(f ∗ hw )(x)dw

= lim
Ω→∞

1

Ωm

∫
[0,Ω]m

∫
Rm

f (y)

( m∏
j=1

w(j)ρ
(
w(j)

(
x(j)− y(j)

)))
dydw .

Problem: Need to replace the product with a sum.

Idea: Use 2 cos(a) cos(b) = cos(a− b) + cos(a + b) iteratively to obtain
m∏
j=1

cos
(
w(j)z(j)

)
=

1

2m

∑
±

cos
(
± w(1)z(1)

)
± · · · ± w(m)z(m)

)
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Limit-integral representation

Assume wlog that
∫
R g(x)dx = 1 and consider approximate δ-functions

hw (y) =
m∏
j=1

w(j)ρ
(
w(j)y(j)

)
y ,w ∈ Rm.

Lemma

Let f ∈ C0(Rm). Then for all x ∈ Rm we have

f (x) = lim
Ω→∞

1

Ωm

∫
[0,Ω]m

(f ∗ hw )(x)dw

= lim
Ω→∞

1

Ωm

∫
[0,Ω]m

∫
Rm
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( m∏
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Limit-integral representation

Let L = d 2m
π
rad(K)Ω− 1

2
e and define

cosΩ(x) :=

{
cos(x), x ∈ [− 1

2
(2L + 1)π, 1

2
(2L + 1)π],

0, otherwise.

Then f (x) = limΩ→∞
1

(2Ω)m

∫
K×[−Ω,Ω]m

f (y) cosΩ

(
〈w , x − y〉

)∣∣∣∏m
j=1 w(j)

∣∣∣dydw .

We have cosΩ(z) = limα→∞(cosΩ ∗hα)(z), where hα(y) = αρ
(
αy
)
.

Lemma
Let f ∈ Cc(Rm) with K := supp(f ). For all Ω ∈ Rm and α ∈ R, define

Fα,Ω(y ,w , u) :=
α

(2Ω)m

∣∣∣ m∏
j=1

w(j)
∣∣∣f (y) cosΩ(u),

bα(y ,w , u) := −α(〈w , y〉+ u)

Then, for any x ∈ K and K(Ω) := K × [−Ω,Ω]m × [−π
2

(2L + 1), π
2

(2L + 1)], we have

f (x) = lim
Ω→∞

lim
α→∞

∫
K(Ω)

Fα,Ω(y ,w , u)ρ
(
α〈w , x〉+ bα(y ,w , u)

)
dydwdu.
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Monte-Carlo approximation

ωj ∼ U([−αΩ, αΩ])m;

yj ∼ U(supp(f ));

uj ∼ U([−π
2

(2L + 1), π
2

(2L + 1)]), where L := d 2m
π
rad(K)Ω− 1

2
e;

bj = −〈ωj , yj〉 − αuj ,

Lemma

For f ∈ Cc(Rm) define fn(x) =
∑n

j=1 ajρ
(
〈wj , x〉+ bj

)
, where

aj =
vol(K(Ω))

n
Fα,Ω

(
yj ,

wj

αm
, uj
)
, j ∈ {1, . . . , n}.

Then we have, for Cf ,ρ,α,Ω,m := α2‖f ‖2
∞Ω2mπ2(2L + 1)2vol(K)2‖ρ‖2

2,

lim
n→∞

E
∫
K

∣∣∣∣∣
∫
K(Ω)

Fα,Ω(y ,w , u)ρ
(
α〈w , x〉+ bα(y ,w , u)

)
dydwdu − fn(x)

∣∣∣∣∣
2

dx ≤ Cf ,ρ,α,Ω,m

n
.

As I (x) =
∫
K(Ω)

Fα,Ω(y ,w , u)ρ
(
α〈w , x〉+ bα(y ,w , u)

)
dydwdu → f (x) as α,Ω→∞,

can choose α,Ω→∞ large enough, so that |I (x)− f (x)| < ε′. Then∣∣f (x)− fn(x)
∣∣ < ε′ +

∣∣I (x)− fn(x)
∣∣
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RVFL on Manifolds

How does the bound depend on the ambient dimension m?

lim
n→∞

E
∫
K

|I (x)− fn(x)|2 dx ≤ α2‖f ‖2
∞Ω2mπ2(2L + 1)2vol(K )2‖ρ‖2

2

n
.

The constant Cf ,ρ,α,Ω,m (and, hence, the number n of hidden nodes) scales
with vol(K )2.

If K = supp(f ) is full-dimensional in Rm, Cf ,ρ,α,Ω,m (and, hence, n) is
exponential in m.

Question

Can we improve Cf ,ρ,α,Ω,m and the lower bound on n if K = supp(f ) has a lower
dimensional structure, e.g., lies on a d-dimensional manifold M⊂ Rm?
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Detour - Smooth, Compact Manifolds

Let M⊂ Rm be a smooth, compact, d-dimensional manifold with

atlas {Uj , φj}j∈A
partition of unity {ηj}j∈A s.t.

∑
j∈A ηj(x) = 1 and supp(ηj) ⊂ Uj .

Theorem

Any function f : M→ R may be represented by a (compactly supported)
partition of unity:

f (x) =
∑

{j∈A : x∈Uj}

(f̂j ◦ φj)(x)

f̂j(z) :=

{
f (φ−1

j (z)) ηj(φ
−1
j (z)) z ∈ φj(Uj)

0 otherwise,

so that f̂j are supported on compact subsets φj(supp(ηj)) of Uj ⊂ Rd .
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RVFL on manifolds

To approximate f : M→ R by lower dimensional RVFL:

Step 1: Approximate f̂j by a RVFL on φj(supp(ηj)) ⊂ Rd :

f̂j(z) ≈ f̂nj (z) =

nj∑
k=1

vkρ(〈wk , z〉+ bk)

Step 2: Approximate f by summing RVFLs over M:

f (x) ≈
∑

{j∈A : x∈Uj}

(f̂nj ◦ φj)(x)

Theorem (Needell, Nelson, Saab, S.)

Let ε > 0. For each j ∈ J there exist a sequence of RVFL networks{
f̃nj (·) =

∑nj
k=1 v

(j)
k ρ
(
〈w (j)

k , ·〉+ b
(j)
k

)}∞
n=1

such that

lim
{nj}j∈J→∞

E
∫
M

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}

(f̃nj ◦ φj)(x)

∣∣∣∣2dx < ε.
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RVFL on manifolds: non-asymptotic result

Theorem (Needell, Nelson, Saab, S.)

Let M⊂ RN be a smooth, compact, d-dimensional manifold with atlas
{Uj , φj}j∈J , f ∈ Cc(M), ε > 0, and η ∈ (0, 1). There exists {δj}j∈J such that if

n &
|J|
√
vol(M) log(|J|η−1N (δj , φj(Uj)))

ε log(1 + ε

cdj |J|
√

vol(M)vol(φj (Uj ))2
)

,

then for each j ∈ J there exist RVFL networks f̃nj (·) =
∑nj

k=1 v
(j)
k ρ
(
〈w (j)

k , ·〉+ b
(j)
k

such that, with probability at least 1− η,∫
M

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}

(f̃nj ◦ φj)(x)

∣∣∣∣2dx < ε.

Note: (Shaham et. al , 2018) can choose |J| . 2dd log(d)vol(M)δ−d .
Then the total number n of the hidden layer nodes has exponential dependence
on d (instead of the m).
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Numerical results

Figure: Log-scale plot of average relative RVFL error as a function of the number of
nodes n in each RVFL. Geometric multiresolution analysis manifold approximations with
resolution levels j = 12, j = 9, and j = 6. For each j , reconstruction error decays as a
function of n until reaching a floor due to error in the GMRA approximation of M.
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Numerical results

Figure: Log-scale plot of average relative RVFL error as a function of the number of
nodes n in each RVFL. GMRA manifold approximations with resolution levels j = 12,
j = 9, and j = 6. For each j , we fix α = 2 and vary w = 10, 15 (solid and dashed lines,
resp.). Reconstruction error decays as a function of n until reaching a floor due to error
in the GMRA approximation of M.
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Questions?

Thank you for your attention!

P. Salanevich (UCLA) RVFL Network as Approximator 09/23/2019 21 / 21


