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Introduction: a neuron model
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Figure: Anatomy (left) and a mathematical model (right) of a neuron.
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Figure: Anatomy (left) and a mathematical model (right) of a neuron.
x=(X1,. ., Xm) —

@ x = (x1,...,Xm) is an input signal
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Introduction: a neuron model
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Schematic of a biological neuron.
Figure: Anatomy (left) and a mathematical model (right) of a neuron.
x=(X1,..., Xm) — (X,w)

@ x = (x1,...,Xm) is an input signal

® w=(wi,...,wn) is the vector of input weights
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Schematic of a biological neuron.

Figure: Anatomy (left) and a mathematical model (right) of a neuron.
x=(X1,...,Xm) — (x,w) + b
@ x = (x1,...,Xm) is an input signal

® w=(wi,...,wn) is the vector of input weights
@ b is a threshold
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Introduction: a neuron model
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Schematic of a biological neuron.

Figure: Anatomy (left) and a mathematical model (right) of a neuron.
x = (x1,...,%xm) — p({x,w) + b)

@ x = (x1,...,Xm) is an input signal
® w=(wi,...,wn) is the vector of input weights
@ b is a threshold

@ p is an activation function
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Introduction: activation function

x = (x1,...,%xm) = p({x,w) + b)
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Introduction: activation function

x = (x1,...,xm) = p({x,w) + b)
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Introduction: activation function

x = (x1,...,xm) = p({x,w) + b)

inputs weights
i agtaton Sigmoid [ p(2) = tropr g
() | ReLU | p(z) = max{0,z}

xJ-—- activation Sine p(Z) = sm( )
: : Fneton Hardlim | p(z) = 3(1 + sin(z))
n thres;lold Radbas ( ) — eXp( 2)

P. Salanevich (UCLA) RVFL Network as Approximator 09/23/2019 3/21



Introduction: activation function

x = (x1,...,xm) = p({x,w) + b)

weights

inputs

K activation Sigmoid p(z) = m
(") _ ReLU p(z) = max{0, z}
xJ-—- activation Sine p(Z) = sm( )

: : Fneton Hardlim | p(z) = 3(1 + sin(z))
n thres;lold Radbas ( ) = eXp( 2)

Our assumptions: g € L}(R) N L?(R) (plus some piecewise continuity)
OR g differentiable with g’ € L}(R) N L?(R)
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Introduction: neural nets
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Figure: Single neuron: F; = {fl() =p((,w)+b):beRwE R"’}.
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Introduction: neural nets
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Figure: Single neuron: F; = {fl() =p((,w)+b):beRwE R"’}.
Single layer neural net: F, = {fn() =11 3p((wj) + by) raj, b R wj € R’"}.
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Introduction: neural
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Figure: Single neuron: F; = {fl() =p((,w)+b):beRwE R"’}.
Single layer neural net: F, = {fn() =11 3p((wj) + by) raj, b R wj € R’"}.

What class F of functions can be approximated by F, so that Vf € F there
exists (fp)nen, fn € Fp, s.t. lim,_ oo ||f — ]| =07
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Neural nets as universal approximators

Theorem (Barron, 1993)

Single layer neural net is a universal approximator for F = C.(R). More precisely,

Vf € C.(R) there exists (fi)nen, fo € Foy it |If — folla = 0 (&)
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Theorem (Barron, 1993)

Single layer neural net is a universal approximator for F = C.(R). More precisely,

Vf € C.(R) there exists (fi)nen, fo € Foy it |If — folla = 0 (&)

But: How do we find the parameters a;, bj € R, wj € R”, j € {1,...n}?

given T = {(xi, F(x)) s

find fa(:) = Z ajp((-,wj) + bj)
=

subject to [|1f —fill2 <e,
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Neural nets as universal approximators

Theorem (Barron, 1993)

Single layer neural net is a universal approximator for F = C.(R). More precisely,

Vf € C.(R) there exists (fi)nen, fo € Foy it |If — folla = 0 (&)

But: How do we find the parameters a;, bj € R, wj € R”, j € {1,...n}?

given T = {(xi, F(x)) s

find fa(:) = Z ajp((-,wj) + bj)
=

subject to [|1f —fill2 <e,

@ slow convergence, algorithms get stuck in local minima

@ highly sensitive to training data

P. Salanevich (UCLA)
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Neural nets as universal approximators

Idea: optimize only a part of parameters, while keeping the others fixed.

given bj € R,wj € R"
n

find fu() =D aip((wj) + by)
=1

subject to [|[f = fill2 <&,

Theorem (Barron, 1993)

Forn € N, let us fix bj € R, wj € R™, j € {1,...,n}. Then, Vf € C.(R) there

exists (aj)f_y, such that for fo(-) = 37, a;p((-,wj) + by),

1
||f—fn|2=0(—2)~
nm

. 2 . . .
Note: As limp_oo nm = 1, the bound is not useful for large dimensions.
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Random vector functional link network (RVFL)

Better idea: optimize only (a;)7

1 choose b; € R, w; € R™ at random.

find distribution for b; € R,w; € R”
and f()—ZaJp ,wj) + bj)

subject to [If — fall2 <e,
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@ used in time-series data prediction, handwritten word recognition,
visual tracking, and other signal classification and regression problems
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Better idea: optimize only (a;)]_;, choose b; € R, w; € R™ at random.

find distribution for b; € R,w; € R”

and f()—ZaJp ,wj) + bj)

subject to [If — fall2 <e,

@ used in time-series data prediction, handwritten word recognition,
visual tracking, and other signal classification and regression problems

@ show similar performance to the classical SLFN (with all parameters
learned), but with much faster and more efficient learning process
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Random vector functional link network (RVFL)

Better idea: optimize only (a;)]_;, choose b; € R, w; € R™ at random.

find distribution for b; € R,w; € R”
and f()—ZaJp ,wj) + bj)

subject to [If — fall2 <e,

@ used in time-series data prediction, handwritten word recognition,
visual tracking, and other signal classification and regression problems

@ show similar performance to the classical SLFN (with all parameters
learned), but with much faster and more efficient learning process

@ to date, luck of theoretical analysis
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RVFL as a uniform approximator (on average)

Theorem (Igelnik and Pao, 1995)
Let f € C.(R™). There exist distributions for parameters b;, wj, j € {1,..., n}

and weights {a;}]_, such that the sequence {f,(-) = >oig aip({wp) + bj)}:il
of RVFL networks satisfies

lim IE/ [f(x) — fo(x)]2dx = 0,
1= Jsupp(f)

with convergence rate O(1/n).
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RVFL as a uniform approximator (on average)

Theorem (Igelnik and Pao, 1995)

Let f € C.(R™). For any € > 0, there exist distributions for parameters b;, wj,
Jj€{1,...,n} and weights {a;}]_; such that the sequence of RVFL networks
{f,,(-) = Z}'Zl ajp((-,wj) + bj)}n=1 satisfies

i E/ I£(x) — Fo(x)Pdx< e,
supp(f)

n—o0

with convergence rate < O(1/n).

Distribution: there exist constants a(e), Q(¢) large enough, so that

U([-af2, a)™,

U(supp(f));

U([-Z(2L+1),Z(2L + 1)]), where L:= [22rad(K)Q — 1];
—(wj

yj) — auj,
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RVFL as a uniform approximator (on average)

Theorem (Needell, Nelson, Saab, S.)
Let f € C.(R™). There exist distributions for parameters b;, wj, j € {1,..., n}

and weights {a;}]_, such that the sequence {f,(-) = >oig aip({wp) + bj)}:il
of RVFL networks satisfies

i ]E/ I£(x) — £i(x)|2dx=0,
n=2° Jsupp(f)

(but with no convergence rate guarantees).

P. Salanevich (UCLA) RVFL Network as Approximator 09/23/2019 9/21



RVFL as a uniform approximator (on average)

Theorem (Needell, Nelson, Saab, S.)
Let f € C.(R™). There exist distributions for parameters b;, wj, j € {1,..., n}

and weights {a;}]_, such that the sequence {f,(-) = >oig aip({wp) + bj)}:il
of RVFL networks satisfies

i ]E/ I£(x) — £i(x)|2dx=0,
n=2° Jsupp(f)

(but with no convergence rate guarantees).

Distribution: there exist o, — 00, Q, — 00 as n — 00, so that for £,

([ andn, a2, ])

U(supp(f));

U([-Z(2L, +1), Z(2L, + 1)]), where L, := [2Zrad(K)Q, — 37;
—(wj»yj) — au;,
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RVFL: non-asymptotic probabilistic bounds

Theorem (Needell, Nelson, Saab, S.)
Let f € C.(R™) with K = supp(f). For any e >0 and n € (0,1), there exist

distributions (as above) for parameters bj, wj, j € {1,...,n} and weights {a;}7_;
such that if

o~ om* QM rad(K)Cm /2| oo ||| log(n~"0 "t m'/2rad(K))

ol )
elog(l + Sramrraar)m A< ToTE)

then the RVFL network fo(-) = 371 ajp(({-,wj) + b;) satisfies

P (/K I(x) — Fo(x)Pdx < g> Sil—p
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RVFL: non-asymptotic probabilistic bounds

Theorem (Needell, Nelson, Saab, S.)

Let f € C.(R™) with K = supp(f). For any e >0 and n € (0,1), there exist
distributions (as above) for parameters bj, wj, j € {1,...,n} and weights {a;}7_;
such that if

o~ om* QM rad(K)Cm /2| oo ||| log(n~"0 "t m'/2rad(K))

)

ol
elog(l + Sramrraar)m A< ToTE)

then the RVFL network fo(-) = 371 ajp(({-,wj) + b;) satisfies

P (/K I(x) — Fo(x)Pdx < g> Sil—p

Note: for small € > 0, the requirement on the number of nodes behaves like

n > e 2log(n N (4, K)).
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Idea of the proof

Goal: for a function f € C.(R™), construct a random approximation

f(X) ~ fn(X) = Z ajp (Z XiWiji + bJ>
=1 i—1
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Goal: for a function f € C.(R™), construct a random approximation

f(X) ~ fn(X) = Z ajp (Z XiWiji + bJ>
=1 i—1

@ Step 1: Construct a limit-integral representation of f using convolution
identity.
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Goal: for a function f € C.(R™), construct a random approximation

f(X) ~ fn(X) = Z ajp (Z XiWiji + bJ>
=1 i—1

@ Step 1: Construct a limit-integral representation of f using convolution
identity.

@ Step 2: Use the Monte Carlo method to approximate the integral in the
constructed limit-integral representation of f using a linear combination of
random realizations of the activation function p.
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Idea of the proof

Goal: for a function f € C.(R™), construct a random approximation

f(X) ~ fn(X) = Z ajp (Z XiWiji + bJ>
=1 i—1

@ Step 1: Construct a limit-integral representation of f using convolution
identity.

@ Step 2: Use the Monte Carlo method to approximate the integral in the
constructed limit-integral representation of f using a linear combination of
random realizations of the activation function p.

Note: As a byproduct, we obtain an explicit formula for parameters {aj}J’?:1 in
terms of function f and random parameters wj, b;.
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Limit-integral representation

Assume wlog that fR dx = 1 and consider approximate d-functions

HW W(_/ y(j)) y,weR™
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Limit-integral representation

Assume wlog that fR dx = 1 and consider approximate d-functions

HW W(_j y(j)) y,weR™

Let f € Go(R™). Then for all x € R™ we have

f(x) = lim i/[OQ]m(f*hW)(X)dW

Q—o00 QM

= gw [ [ F®) (Hw (W) (x) - Y01)) ) v
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Limit-integral representation

Assume wlog that fR dx = 1 and consider approximate d-functions

HW W(_j y(j)) y,weR™

Let f € Go(R™). Then for all x € R™ we have

f(x) = lim i/[OQ]m(f*hW)(X)dW

Q—o00 QM

= gw [ [ F®) (Hw (W) (x) - Y01)) ) v

Problem: Need to replace the product with a sum.
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Limit-integral representation

Assume wlog that fR dx = 1 and consider approximate d-functions

HW W(_j y(j)) y,weR™

Let f € Co(R™). Then for all x € R™ we have

F(x) = lim 1/[09]m(f*hw)(x)dw
= Jm gs [ [ o) (Hw (W) (x) - Y01)) ) v

Problem: Need to replace the product with a sum.

Idea: Use 2 cos(a) cos(b) = cos(a — b) + cos(a + b) iteratively to obtain

Hcos w(j)z = om Zcos (£ w(1)z(1)) £--- £ w(m)z(m))
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Limit-integral representation

Let L = [22rad(K)Q — 1] and define

) cos(x), x € [-3(2L+ 1)m, 3(2L + 1)x],
0, otherwise.
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Limit-integral representation

Let L = [22rad(K)Q — 1] and define

cos(x), x € [-3(2L+ 1)m, 3(2L + 1)x],
0, otherwise.

cosa(x) = {

Then f(x) = limg— 0o ﬁ fo[—Q,Q]’" f(y) cosq ((W,X — y)) ’ HJm:1 W(j)’dydw.
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Limit-integral representation

Let L = [22rad(K)Q — 1] and define

cos(x), x € [-3(2L+ 1)m, 3(2L + 1)x],
0, otherwise.

cosa(x) = {

Then f(x) = lima— oo ﬁ fo[—Q,Q]’" f(y) cosa ((w,x — y)) ’ [, W(j)’dydw.
We have cosq(z) = lima—oo(cosq xha )(z), where ho(y) = ap(ay).
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Limit-integral representation

Let L = [22rad(K)Q — 1] and define

cosa(x) = cos(x), x € [f%(2L + 1)m, 3(2L + 1)x],
0, otherwise.

Then f(x) = lima— oo W fo[—Q,Q]’" f(y) cosa ((w,x — y)) ’ [, W(j)’dydw.
We have cosq(z) = lima—oo(cosq xha )(z), where ho(y) = ap(ay).

Lemma
Let f € C.(R™) with K := supp(f). For all Q € R™ and « € R, define

Faa(y,w,u) (2Q)m’HW(J)‘ ) cosa(u),

ba(y, w,u) == —a((w,y) + u)
Then, for any x € K and K(Q) := K x [-Q,Q]" x [-5(2L 4+ 1), 5 (2L + 1)], we have

Q— o0 a— o0

f(x) = lim lim / Fa.a(y,w, u)p(a{w,x) + ba(y, w, u)) dydwdu.
K(©)

v
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Monte-Carlo approximation

wj ~ U([-a2, aQ])™;
¥j ~ U(supp(f));
ui~ U([-3(@2L+1),3(2L+1)]), where L := [2Zrad(K)Q — 3];

bf = *<Wj,yj> - auj,
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Monte-Carlo approximation

wj ~ U([-a2, aQ])™;
yj ~ U(supp(f));
ui~ U([-3(@2L+1),3(2L+1)]), where L := [2Zrad(K)Q — 3];

bj = *<Wj,yj> - auj,
For f € Cc(R™) define fo(x) = -7 ajp((wj, x) + bj), where
vol(K (2 .
:¥F (yj, uj) je{1,...,n}.

Then we have, for Cr p.o.0.m = 2| |2 Q2™ m%(2L + 1)*vol(K)?

lim IE/
n—oo K

2
/ Foa(y,w, u)p(a(w, x) + ba(y, w, u)) dydwdu — f(x)| dx < M
K(Q)

n
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Monte-Carlo approximation

wj ~ U([-a2, aQ])™;

yj ~ U(supp(f));
ui~ U([-3(@2L+1),3(2L+1)]), where L := [2Zrad(K)Q — 3];

bj = *<Wj,yj> — auj,
Lemma

For f € Cc(R™) define fo(x) = -7 ajp((wj, x) + bj), where

:wl_— (y,, L u), jed{1,...,n}.

Then we have, for Cr p.o.0.m = 2| |2 Q2™ m%(2L + 1)*vol(K)?

lim IE/
n—oo K

As I(x) = fK(Q) Fa.a(y, w, u)p(af{w, x) + ba(y, w, u))dydwdu — f(x) as a, Q — oo,
can choose o, Q — oo large enough, so that |/(x) — f(x)| < &’. Then
}f(x) — f,,(x)| <&+ |I(x) — f,,(x)|

P. Salanevich (UCLA) RVFL Network as Approximator 09/23/2019 14 /21
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RVFL on Manifolds

How does the bound depend on the ambient dimension m?

a? || fI3. Q2w (2L + 1)*vol(K)?|lpll3
- :

lim IEI/K|I(X)— ()2 dx <

n— oo
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How does the bound depend on the ambient dimension m?

a? || fI3. Q2w (2L + 1)*vol(K)?|lpll3
- :

lim IEI/K|I(X)— ()2 dx <

n— oo

@ The constant Cr , o.0,m (and, hence, the number n of hidden nodes) scales
with vol(K)2.
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a? || fI3. Q2w (2L + 1)*vol(K)?|lpll3
- :

lim IEI/K|I(X)— ()2 dx <

n— oo

@ The constant Cr , o.0,m (and, hence, the number n of hidden nodes) scales
with vol(K)2.

o If K =supp(f) is full-dimensional in R™, C¢ , .0,m (and, hence, n) is
exponential in m.
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RVFL on Manifolds

How does the bound depend on the ambient dimension m?

a? || fI3. Q2w (2L + 1)*vol(K)?|lpll3
- :

lim IEI/K|I(X)— ()2 dx <

n— oo

@ The constant Cr , o.0,m (and, hence, the number n of hidden nodes) scales
with vol(K)2.

o If K =supp(f) is full-dimensional in R™, C¢ , .0,m (and, hence, n) is
exponential in m.

Can we improve C¢ , o .0,m and the lower bound on n if K = supp(f) has a lower
dimensional structure, e.g., lies on a d-dimensional manifold M C R™?
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Detour - Smooth, Compact Manifolds

Let M C R™ be a smooth, compact, d-dimensional manifold with
@ atlas {U;, ¢j}jea

@ partition of unity {n;}jea s.t. > ;c 4mi(x) =1 and supp(n;) C U;.
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Detour - Smooth, Compact Manifolds

Let M C R™ be a smooth, compact, d-dimensional manifold with
@ atlas {Uj, ¢j}j€A

@ partition of unity {n;}jea s.t. > ;c 4mi(x) =1 and supp(n;) C U;.

Theorem

Any function f: M — R may be represented by a (compactly supported)
partition of unity:

fx)= Y  (fod)x)

{jeA: xeU;}
Fz) = [T @INE7@) 2 €4(U)
o 0 otherwise,

so that 6 are supported on compact subsets ¢;(supp(n;)) of U; C R€.

v
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RVFL on manifolds

To approximate f: M — R by lower dimensional RVFL:

Step 1: Approximate 7 by a RVFL on ¢;(supp(;)) C R:

fi(2) = fo(2) = D viol{wi, 2) + bi)

k=1

Step 2: Approximate f by summing RVFLs over M:

f)~ > (fyod)x)

{jeA: xeU;}
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RVFL on manifolds

To approximate f: M — R by lower dimensional RVFL:

Step 1: Approximate 7 by a RVFL on ¢;(supp(;)) C R:

fi(2) = Fu(2) = Y viep((wi, 2) + bi)

k=1

Step 2: Approximate f by summing RVFLs over M:

f)~ > (fyod)x)

{jeA: xeU;}

Theorem (Needell, Nelson, Saab, S.)

Let € > 0. For each j € J there exist a sequence of RVFL networks

{7 p 1V;EJ)P(<W;EJ)7 >+b(j))}n such that
2
g = > (o)) dx<e
{nj}jes—o0 /\/( .
{jed: xeU;}
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RVFL on manifolds: non-asymptotic result

Theorem (Needell, Nelson, Saab, S.)

Let M C RN be a smooth, compact, d-dimensional manifold with atlas
{U;, ¢j}jcy, f € Cc(M), e >0, andn € (0,1). There exists {0;};c such that if

> M/ vol(M) log(|Jn~*N (4}, ¢(U))))

~ B )
elog(l + S v )

then for each j € J there exist RVFL networks f, )= v,i”p((w,gj), M b,((j)
such that, with probability at least 1 — n,

2

- Z (fnj 0 ¢j)(x)| dx <e.

M ‘ {jed: xeU;}

Note: (Shaham et. al , 2018) can choose |J| < 29d log(d)vol(M)s—¢.
Then the total number n of the hidden layer nodes has exponential dependence
on d (instead of the m).

P. Salanevich (UCLA) RVFL Network as Approximator 09/23/2019 18 / 21



Numerical results
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Figure: Log-scale plot of average relative RVFL error as a function of the number of
nodes n in each RVFL. Geometric multiresolution analysis manifold approximations with
resolution levels j =12, j =9, and j = 6. For each j, reconstruction error decays as a
function of n until reaching a floor due to error in the GMRA approximation of M.
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Numerical results

Figure: Log-scale plot of average relative RVFL error as a function of the number of
nodes n in each RVFL. GMRA manifold approximations with resolution levels j = 12,
Jj =29, and j = 6. For each j, we fix @ = 2 and vary w = 10,15 (solid and dashed lines,
resp.). Reconstruction error decays as a function of n until reaching a floor due to error
in the GMRA approximation of M.
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Thank you for your attention!
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