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Abstract: Free-space quantum key distribution (QKD) has attracted considerable attention due to its
lower channel loss and link flexibility. It allows two participants share theoretical unconditional secure
keys, and can potentially be applied to air-to-ground quantum communication to establish a global
quantum network. Free-space QKD using modulating retro-reflectors (MRR-QKD) significantly
reduces the pointing requirement and simplifies the structure of the mobile terminal, therefore
making it suitable for lightweight aircraft such as unmanned aerial vehicle and Cubesat, etc. Based
on intensity modulation of two non-orthogonal states and the B92 protocol, we proposed a scheme
to improve the previous work(Optics Express 2018, 26, 11331). Our scheme simplifies the optical
structure and shows more robustness in equipment imperfection. The analysis and simulation show
that the number of multiple quantum well modulators needed in our scheme decreases from eight to
three with similar performance. Additionally, while the previous scheme cannot work due to low
modulator extinction ratio or high optical misalignment, our scheme can still operate.

Keywords: quantum key distribution; free-space; modulating retroreflector; B92 protocol

1. Introduction

Quantum key distribution (QKD) can help two distant parties to realize theoretical
unconditional security communication [1]. QKD can be categorized into fiber-based QKD
and free-space QKD according to different communication channels. The longest transmis-
sion distance that fiber-based QKD can achieve is only hundreds of kilometers because
of the intrinsic loss of the fiber (approximately 0.2 dB/km@1550 nm) [2–4]. Conversely,
free-space QKD can achieve a transmission distance of thousands of kilometers owing
to its lower channel loss, and it is also suitable for mobile communication owing to its
flexible link [5–7]. A worldwide quantum-secured communication network is foreseeable
by integrating free-space and fiber-based QKD [8].

Despite encouraging advances in free-space QKD [9,10], many challenges remain,
for example, the contradiction between the limited payload of satellites and the complex
structure of free-space QKD system [6]. The miniaturization and light weight of QKD
systems has become an important topic [11,12]. Cheaper microsatellites, such as standard-
ized CubeSats, will play a greater role in future quantum networks [13–15]. Free-space
QKD using modulating retro-reflectors (MRR-QKD) significantly reduces the pointing
requirement and simplifies the structure of the mobile terminal, therefore decreasing the
payload greatly, which may be a prospective scheme.

In the MRR-QKD system, two communication parties are defined as the interrogator
and MRR terminal. Compared with the traditional QKD system, the structure of the MRR
terminal in the MRR-QKD system is simpler, and the pointing requirement is reduced sig-
nificantly(more than three orders of magnitude) [16]. The concept of MRR-QKD was first
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proposed by Rarity in 2002 [17]. Vallone demonstrated an imperfect experiment for satellite-
to-ground MRR-QKD between low earth orbit (LEO) satellites and the Matera Laser Ranging
Observatory (MLRO) [18]. Many studies have been conducted recently [16,19,20]. In 2017,
Rabinovich designed a practical MRR-QKD system and achieved a quantum bit error rate
(QBER) of approximately 5% with a modulation rate of 1 MHz in the laboratory [16].

The MRR-QKD system of Rabinovich [16], which we will call RM2018 in this paper,
uses up to eight multiple quantum wells (MQW) [21,22] intensity modulators to realize
polarization modulation. Owing to the finite extinction ratio [23] of MQW modulators,
there is leakage noise in this system, which causes higher QBER. Based on the superposition
of two mutually perpendicular waves [24], we proposed a MRR-QKD system based on
the B92 protocol [25]. Our scheme reduced the complexity of the system structure and
eliminated leakage noise. The remainder of this paper is organized as follows. In Section 2,
we introduce the configuration of our MRR-QKD system and its mathematical model.
In Section 3, the performance of the system under different extinction ratios and optical
misalignment errors is studied and compared with previous works. In Section 4, we discuss
our results. In Section 5, we present our conclusions.

2. MRR-QKD With B92

First, let us review the scheme proposed in RM2018. Four pairs of MQWs were used
to realize polarization modulation, where each pair corresponded to one of the four BB84
states (0, 45, 90, and 135◦). While the transmission loss of the MQW modulator is set to
the lowest (highest), the MQW is in the “on” (off) state. The polarization modulation is
realized by controlling the states of MQWs. For example, when the MRR terminal sends a
horizontal state, the pair of MQWs corresponding to the horizontal state will be “on” and
the others will be “off”. More details are shown in Appendix C.

The extinction ratio of the MQW bewteen the “on” and “off” states is only approximately
7.5 dB, which is too small. Unwanted light will leak from the MQW, which are “off”, resulting
in extra QBER. To decrease the QBER, RM2018 uses a stack of two MQWs packaged together
to achieve an extinction ratio r of 15 dB in every path. However, this will greatly increase the
complexity and cost of the system, and the extinction ratio will remain unsatisfactory.

Our MRR-QKD system, based on the superposition principle of two mutually perpen-
dicular waves, uses only three MQW modulators in total and eliminates unexpected noise
leakage. The configuration of the MRR-QKD system is shown in Figure 1.

Figure 1. Schematic of the modulating retroreflector-quantum key distribution (MRR-QKD) system.
LD: Laser Diode; WP: Wave Plate; BS: Beam Splitter; PBS: Polarizing Beam Splitter; SPD: Single
Photon Detector; RR: Retro-reflector.

The system works as follows. First, the interrogator generates an interrogation beam,
which is a classical light pulse with right-hand circular polarization the same with RM2018,
and sends it to the MRR terminal through a free-space channel. After arriving at the MRR
terminal, the interrogation beam passes through MQW3, which is used to modulate decoy
states. Then, it is split into two beams with the same intensity by a PBS, the horizontal



Entropy 2022, 24, 204 3 of 12

state is transmitted, and the vertical state is reflected. These two beams will pass forward
through an MQW and be reflected by a retroreflector, and then pass backward through the
MQW again. Therefore, the intensity of these two beams are modulated by MQW1 (and
MQW2) twice. Finally, they are combined by the PBS, and the output is a linearly polarized
beam with polarization direction θ (see Appendix A).

|ψout〉 = |βθ〉 = |cos θβH〉|sin θβV〉 (1)

where |βθ〉 is the linearly polarized coherent state. β is the amplitude of the beam, and
θ = arctan(

√
M2/M1) is its polarization direction. M1 and M2 are the modulation efficien-

cies of MQW1 and MQW2, respectively.
The B92 protocol is adopted in our system. Each retroreflected beam is in one of two

linear polarizations with polarization directions of 22.5◦ and 67.5◦ by adjusting the ratio of
the modulation efficiency of MQW1 and MQW2. This is slightly different from the general
B92 protocol.

The beam is attenuated and modulated by MQW3 to generate signal or decoy states.
After the beam is transmitted back and received by the interrogator, it is still linearly
polarized because of the stability of the polarization in free space [26]. However, its
polarization direction is changed because of the relative orientation of the interrogator and
the MRR terminal. A half-wave plate is used for polarization compensation. The incident
beam will be converted to 0◦ (45◦) linear polarization. The following procedures, such as
measurement and post-processing, are the same as those of the general B92 protocol [25,27].

3. Results

We now analyze the performance of our MRR-QKD system proposed in Section 2 and
compare it with RM2018. With two decoy state technology, the secure key rate (SKR) of the
QKD system is [28].

R = q{− f QµH2(Eµ) + QL,ν1,ν2
1 [1− H2(e

U,ν1,ν2
1 )]} (2)

where q is the protocol efficiency, f is the bi-directional error correction efficiency, Qµ is the
gain of the signal state, Eµ is the overall QBER, QL,ν1,ν2

1 and eU,ν1,ν2
1 are the lower bound of

the gain and upper bound of the error rate for single photon state, respectively. H2(·) is the
binary Shannon information function.

In our system, the protocol efficiency of the B92 protocol is q = 1/4, whereas BB84 is
used in RM2018, q = 1/2. The intensity of the signal state is µ. The maximum intensity
range of the decoy state is ν ∈ [µ/r, µ). In the asymptotic case, the smaller the value of
ν1 + ν2, the higher the SKR [28]. Therefore, we chosen the signal state intensity µ = 0.48,
decoy state intensity ν1 = µ/r and vacuum state ν2 = 0. Other simulation parameters are
listed in Table 1.

Table 1. List of Simulation Parameters [29].

Symbol Description Value

λ wavelength 1550 nm
edetect misalignment-error probability 1 3.3%

Y0 background rate 1.7× 10−6

ηd detection efficiency 2 1
f error correction efficiency 1.22

1 Due to imperfect polarization compensation, assembling misalignment, etc.; 2 The detection efficiency is
considered in transmission loss.

In Section 2, we showed that the extinction ratio of the MQW would cause leakage noise
while the MQW is “off” in RM2018. This leakage noise would make the QBER increase.
The smaller the extinction ratio, the higher the leakage noise. In our scheme, the extinction
ratio does not generate leakage noise but only restricts the intensity of the decoy states. We
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demonstrated the extinction ratio effect in our system, the simulation results are shown in
Figure 2.

Figure 2. The relationship between the Secure key rate(SKR) and the transmission loss under different
extinction ratios.

The three curves with extinction ratios of 7.5, 15, and 22.5 dB overlap almost completely.
This indicates that the extinction ratio does not have a significant impact on the SKR of
our scheme. This is because the SKR is not sensitive to the intensity of the decoy state.
Additionally, in contrast to RM2018, which stacks two MQWs to increase the extinction
ratio, our system requires only one MQW in each path.

Under different extinction ratios, we compare the SKR of our system and the RM2018.
The results are shown in Figure 3. Considering the additional QBER resulting from noise
leakage for the finite extinction ratio, the probability of a photon clicks the erroneous

detector should be corrected to e′detect =
r− 1
r + 3

edetect +
2

r + 3
[23]. edetect is the probability

that a photon clicks the erroneous detector due to the optical misalignment and r indicates
the extinction ratio.

Figure 3. The relationship between the SKR and the transmission loss of our system and RM2018
under different extinction ratios. The dotted line represents the RM2018, and the solid line represents
our system. The blue dotted line vanishes because the SKR is lower than zero.
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As shown in Figure 3, the SKR of RM2018 is very sensitive to the extinction ratio. The
SKR decreases as the extinction ratio reduces. When the extinction ratio was less than 15 dB,
the SKR of RM2018 decreased below zero (vanishing blue dotted line). The performance
of our system with only a 7.5 dB extinction ratio could reach at least 70% of RM2018 with
a 22.5 dB extinction ratio, and even higher for the maximum transmission distance. This
means that only one MQW is needed for each path in our system, whereas RM2018 requires
three MQWs.

In RM2018, e′detect is related not only to the extinction ratio, but also the optical mis-
alignment error edetect. As shown in Figure 4, we studied the relationship between the SKR
and transmission loss of both our system and RM2018 under different edetect values. The
dotted line represents RM2018, and the solid line represents our system.

Figure 4. The relationship between the SKR and the transmission loss of our system and RM2018
under different edetect. The dotted line represents RM2018, and the solid line represents our system.

When the extinction ratio is fixed, it is clear that the SKR of the two systems decreases
as edetect increases. We found that the robustness of our scheme countering the increase
in edetect was better than that of RM2018. When edetect = 1% and 3%, the SKR of RM2018
was slightly higher than that of our system in most cases, mainly because the efficiency
of the BB84 protocol was twice that of the B92 protocol. However, when edetect = 5%, the
performance of our system was much greater than that of RM2018. This result shows that
the higher the edetect, the greater the advantage of our system is over the RM2018. This
occurs because the SKR decreases faster as edetect increases. Moreover, the e′detect of RM2018
is always larger than the edetect of our system.

We study the intrinsic maximal tolerance of misalignment error eU
detect at which the

SKR becomes zero. The relationship between the extinction ratio and eU
detect of two systems

is compared in the condition of transmission probability of 100%. The result is shown in
Figure 5. We can see that eU

detect in our system is not sensitive to the change of the extinction
ratio. The change of it is mainly originated in the change of decoy state intensity. When
the extinction ratio is lower than about 13.5 dB, RM2018 cannot operate. This is because
the error rate caused by noise leakage has exceeded the threshold. In other cases, eU

detect
climbs up with the increase of the extinction ratio and the difference between our system
and RM2018 gets smaller. When the extinction ratio is greater than 40 dB, they almost have
similar performance eU

detect ≈ 7.65%.
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Figure 5. The relationship between the extinction ratio and the maximal tolerance of misalignment-
error probability eU

detect in transmission probability of 100%.

4. Discussion

In the previous sections, we analyzed our MRR-QKD scheme with the B92 protocol
and compared it with RM2018. The results are listed in Table 2. Our scheme requires
only three MQW modulators, which is significantly less than the eight in RM2018. Two of
them are used for polarization modulation and the other is used for decoy state generation.
Based on the superposition principle of perpendicular polarization states, we make full use
of each beam to solve the problem of extra QBER on account of the finite extinction ratio.
This could effectively improve the performance of the MRR-QKD system. Although the
protocol efficiency was only half that of RM2018, our scheme could reach a much higher
SKR, while having a high optical misalignment error or low extinction ratio.

Table 2. Comparison of our scheme and RM2018 [16].

Items RM2018 Our Scheme Condition

Complexity high low

Multiple quantum wells 8 3

Protocol BB84 B92

SKR 1

3.21× 10−5 2.65× 10−5 r = 22.5 dB
1.71× 10−5 2.65× 10−5 r = 20 dB

0 2.64× 10−5 r = 17.5 dB
0 2.61× 10−5 r = 15 dB

SKR 2
8.05× 10−5 5.44× 10−5 edetect = 1%
3.79× 10−5 3.00× 10−5 edetect = 3%
1.50× 10−6 9.69× 10−6 edetect = 5%

1 Transmission loss is 30 dB, error probability of optical misalignment is 3.3%. 2 Transmission loss is 30 dB,
extinction ratio of each path is 22.5 dB.

These two systems both modulate the polarization of the beam by means of inten-
sity modulation. The modulation rate of the MQW intensity modulator can be up to
100 MHz [16]. The low extinction ratio of the MQW will cause higher QBER in RM2018.
The protocol efficiency in our system is half that in RM2018 because of the principle of
the modulation method. In the ideal circumstance of the infinite extinction ratio, the
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performance of RM2018 is better than ours. But if the MQW intensity modulator for po-
larization modulation are replaced by phase modulators, it is possible to apply the BB84
protocol in our system [30]. Thus, we can achieve the same performance as RM2018 with
smaller cost. The decoding system of the B92 protocol in our system is the same as that of
RM2018 and very close to the classical free-space QKD system based on the BB84 proto-
col [6,14,31]. This means that it is convenient to fit our system into the current free-space
QKD network [31,32].

The imperfection of the device, such as misalignments and detection efficiency mis-
match, will allow eavesdroppers to attack in side channels. These flaws have been proved
not affecting the security of the system within several counter-measures(temporal, spatial
and frequency filtering and so on) [33]. The signal in the MRR-QKD system makes a round-
trip through atmospheric channels. The transmission process is similar to the “plug-play”
system in fiber channels [34]. The source of such two-way QKD systems is untrusted; its
security has been proven [35,36]. Unlike the “plug-play” system, the MRR-QKD system
based on free-space channels will be subject to the off-axis attack. This attack can be resisted
by monitoring the incident angle of the interrogation beam and using modulators with
pixel units to code beams with authentication. Therefore, those modulators incapable of
pixelated modulation are not suitable to be used in MRR-QKD system, like AOMs modula-
tors with comparable modulation rate and higher extinction ratio [37]. Other attacks, like
photon number splitting, intercept-resend and on-axis attacks, are also explicated [16].

5. Conclusions

We propose an MRR-QKD scheme using the B92 protocol. Based on the superposition
principle of perpendicular polarization states, this system realizes polarization modulation
by means of intensity modulation. Compared with RM2018, our system not only simplifies
the structure, but also improves the tolerance of the MRR-QKD system for extinction ratio
and optical misalignment error. This novel, cheaper and smaller system can be expected
to be widely applied in mobile platforms with limited payloads, such as cube satellites,
unmanned aerial vehicles, automobiles, etc.

Author Contributions: Conceptualization, M.Z.; methodology, M.Z. and M.H.; software, M.Z.;
validation, M.Z., M.H. and B.G.; formal analysis, M.Z. and M.H.; investigation, M.Z.; resources, B.G.;
data curation, M.Z.; writing—original draft preparation, M.Z.; writing—review and editing, M.Z.,
M.H. and B.G.; visualization, M.Z. and M.H.; supervision, B.G.; project administration, B.G.; funding
acquisition, B.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Key-Area Research and Development Program of Guangdong
Province (Grant No.2018B030325002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Special thanks goes to Xi-Ming Hua, Cong Chen, Fan Yang and Peng-Cheng
Wang for their helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

For ease of analysis, we transformed the round-trip MRR terminal in Figure 1 into a
unidirectional transmission model, as shown in Figure A1. MQW3 was omitted because it
does not affect the result.
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Figure A1. Equivalent schematic of the MRR terminal with unidirectional transmission.

The interrogation beam incident on the MRR terminal is a coherent state with right-
handed circular polarization.

|ψ0〉 = |αR〉0 (A1)

where α is the amplitude of the coherent state, and the subscript 0 indicates the transmission
path shown in Figure A1.

Any pure coherent state can be expressed as the direct product state of two coherent
states, whose polarizations are orthogonal to each other.

|ψ0〉 = D(αR)|0〉 =
∣∣∣∣ 1√

2
αH

〉
0

∣∣∣∣ 1√
2

ei π
2 αV

〉
0

(A2)

The right-handed circular polarization coherent state can be expressed as the direct
product of the horizontal and vertical polarization coherent states. Their intensity are equal,
which is half of the interrogation beam, and the phase difference is π/2.

Because the PBS transmits only the horizontal |H〉 and reflects the vertical |V〉 polar-
izations, after passing through PBS1, the interrogation beam will evolve into

|ψ1〉 =
∣∣∣∣ 1√

2
αH

〉
1

∣∣∣∣ 1√
2

ei π
2 αV

〉
2

(A3)

The phase shift generated by PBS has been ignored because it does not influence the
conclusion. The beam transmitted along Paths 1 and 2 will pass through a free-space path,
which is equivalent to a phase shifter. Then the joint state before incident IM1 and IM2 is:

|ψ2〉 = P̂1P̂2|ψ1〉

= eiθ1n̂1 eiθ2n̂2

∣∣∣∣ 1√
2

αH

〉
1

∣∣∣∣ 1√
2

ei π
2 αV

〉
2

=

∣∣∣∣ 1√
2

eiθ1 αH

〉
1

∣∣∣∣ 1√
2

ei( π
2 +θ2)αV

〉
2

(A4)

where P̂1 is the phase shifter operator acting on Path 1, n̂1 is the photon number operator
acting on Path 1.

Afterward, these two beams are modulated by intensity modulator IM1 and IM2
respectively. The output state is as follows(for details, see Appendix B).

|ψ3〉 =
∣∣∣∣ 1√

2

√
M1eiθ1 αH

〉
1′

∣∣∣∣ 1√
2

√
M2ei( π

2 +θ2)αV

〉
2′

(A5)

Then the beam passes through the free-space path again, and we have

|ψ4〉 =
∣∣∣∣ 1√

2

√
M1ei2θ1 αH

〉
1′

∣∣∣∣ 1√
2

√
M2ei( π

2 +2θ2)αV

〉
2′

(A6)

Finally, these two beams are combined by the PBS

|ψout〉 =
∣∣∣∣ 1√

2

√
M1ei2θ1 αH

〉
0′

∣∣∣∣ 1√
2

√
M2ei( π

2 +2θ2)αV

〉
0′

(A7)
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If 2θ1 = π/2 + 2θ2, |ψout〉 is converted to

|ψout〉 =
∣∣∣∣ 1√

2

√
M1αH

〉∣∣∣∣ 1√
2

√
M2αV

〉
(A8)

It is the direct product state of the horizontal and vertical polarization coherent states,
which is linearly polarized. If

√
M1 = C cos θ, and

√
M2 = C sin θ, the state is

|ψout〉 =
∣∣C′cosθαH

〉∣∣C′sinθαV
〉
= |cosθβH〉|sinθβV〉 = |βθ〉 (A9)

where β = C′α is the amplitude and θ is the polarization direction of the output beam.
The polarization of the beam depends on the intensity of two combined beams, sat-

isfying θ = arctan(
√

M2/M1). We can adjust the ratio of M1 and M2 to realize different
linear polarizations. However, only a few polarizations can be achieved in this manner.
While the phase difference is zero, only linear polarizations with axes θ ∈ (0, π/2) are pos-
sible. Therefore, we use the B92 protocol, which requires only two states with polarization
direction θ and θ + 45◦ instead of the BB84 protocol.

When the polarization direction of the output beam is θ, the corresponding modulation
efficiency of MQW1 and MQW2 are

√
M1 = C cos θ and

√
M2 = C sin θ, respectively. While

the polarization direction is θ + 45◦,
√

M1 = C cos(θ + 45◦) and
√

M2 = C sin(θ + 45◦). The
contrast ratio (CR) of MQW1 and MQW2 while modulating the different polarizations are

CR1 =
M1

M′1
=

cos2 θ

cos2(θ + 45◦)
, CR2 =

M′2
M2

=
sin2(θ + 45◦)

sin2 θ
(A10)

As shown in Figure A2, CR1 and CR2 exhibit opposite trends while θ increases. When
θ = π/8, CR1 = CR2 ≈ 7.6 dB, which is approximately equal to the extinction ratio of a
MQW [18]. These correspond to 22.5◦ and 67.5◦ linear polarization, respectively. Therefore,
we used these two polarizations.

Figure A2. The contrast ratios of two paths while modulating different polarizations.

According to the superposition principle of two perpendicular polarization states, we
can see that the polarization state of the retroreflected beam is dependent on the intensity
and phase difference of two beams inputting the PBS. We modulated the intensity of the
beam by adjusting the modulation efficiency of the MQW to obtain the expected polarization
while keeping the phase difference constant over a fixed optical path. Only one MQW
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modulator in every path and two MQW modulators in total for polarization modulation were
required. However, it is worth noting that only a few polarizations can be achieved in this
manner. Therefore, the B92 protocol which uses two nonorthogonal states was adopted in our
system. Additionally, MQW3 was used for the decoy state, and there were only three MQW
modulators in our system, which is less than the eight required by RM2018.

Appendix B

The signal passing through the intensity modulator is equivalent to the signal passing
through the beam splitter. The transmittance t (or reflectivity r) of the beam splitter is equal
to the modulation efficiency M of the intensity modulator, as shown in Figure A3.

(a) (b)

Figure A3. Schematic of beams passing through: (a) intensity modulator; (b) beam splitter.

The beam splitter can be expressed as follows:{
a+in =

√
ra+r +

√
1− ra+t

a+u =
√

1− ra+r −
√

ra+t
(A11)

The coherent state incidents the “in” port of the intensity modulator and exists from
the “t” port. This model is equivalent to the vacuum state incidents the “u” port of the
beam splitter, the coherent state incidents the “in” port and the combined beam exists from
the “t” port.

|α〉in|0〉u = D(α)|0〉in|0〉u = exp
(
αa+in − α∗ain

)
|0〉in|0〉u

→ exp
(
α
(√

ra+r +
√

1− ra+t
)
− α∗

(√
rar +

√
1− rat

))
|0〉r|0〉t

= exp
(√

rαa+r −
√

rα∗ar
)

exp
(√

1− rαa+t −
√

1− rα∗at
)
|0〉r|0〉t

=
∣∣√rα

〉
r

∣∣√1− rα
〉

t

(A12)

The output at the “t” port is coherent state with
√

1− rα amplitude. The reflectivity
of the beam splitter satisfies r + t = 1. In this study, the modulation efficiency M of the
intensity modulator was equal to the transmittance t of the beam splitter.

Appendix C

The MRR-QKD system is divided into the interrogator and MRR terminal, as shown
in Figure A4. The interrogator generates an interrogation signal and sends it to the MRR
terminal. This interrogation signal is a classical light pulse with fixed circular polarization
state (does not carry any information), especially right-hand circular polarization in RM2018.
The MRR terminal receives and modulates the interrogation signal and the output signal is
in one of states in decoy state BB84 protocol. The modulated signal is retro-reflected back to
the interrogator. The interrogator receives and measures the polarization state of the signal.
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Figure A4. Schematic of the MRR-QKD system in RM2018 [16].

The interrogation signal is prepared by means of the classical optical pulse with
vertical polarization passes through a quarter wave plate oriented at 45◦. It is necessary to
select appropriate signal intensity to ensure that each interrogation pulse contains multiple
photons when it reaches the MRR terminal. The interrogation signal is modulated with four
pairs of MQWs, which is composed of two stacked MQW. The number of MQWs is eight in
total, achieving 15dB extinction ratio of each pair. Each polarization state in BB84 protocol
is generated by a set of MQWs and retroreflector in a path respectively, corresponding to
H/V(rectilinear basis) and +/−(diagonal basis). The signal in rectilinear basis is generated
by the signal transmitted through the BS2; the signal in diagonal basis is generated by
the signal reflected by the BS2. It is worth emphasizing that the interrogation signal with
right-handed circular polarization is converted into left-handed circular polarization after
passing through the half wave plate oriented at 22.5°. The modulated signal with H/V
polarization is converted into +/− after passing through the half wave plate.

The transmission loss of each pair of MQWs is controlled independently to realize
different states of MQWs. While the transmission loss of the MQWs modulator is set to the
lowest (highest), the MQWs is in the “on” (off) state. Polarization modulation is achieved
by changing the state of MQWs. For example, if the horizontal polarization(H) is selected,
MQWs1 is set in low transmission loss allowing horizontal signal to pass. The other three
MQWs are set in high transmission loss which blocks the transmission of signal with
unwanted polarization(V/+/−). In this condition, only the horizontal polarization signal
can transmit back to interrogator. The decoy state is realized by accurately controlling
the transmission loss of MQWs1. Finally, interrogator receives retro-reflected signal and
measures its polarization. The measurement process is the same as the traditional QKD
based on BB84 [6].
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