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M.; Proszek, J.; Nemzer, B.;

Pietrzkowski, Z.; Popenda, Ł.;
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Katarzyna Sutor-Świeży 1, Michał Antonik 1, Justyna Proszek 1, Boris Nemzer 2,3, Zbigniew Pietrzkowski 4,
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Abstract: Betacyanins are a group of water-soluble red-violet compounds containing nitrogen in their
structure. These are biosynthesized in red beetroot (Beta vulgaris L.), a widely consumed vegetable
that contains significant amounts of nutritious and bioactive compounds which are also found in
dietary supplements. This contribution presents results of betacyanin thermal oxidation (resulting in
dehydrogenation) interrelated with decarboxylation in selected acetate/phosphate buffers at pH 3–8
and at 85 ◦C, which may be of particular significance for formulation and performance of foods.
Most of the reaction products were detected at the highest concentrations in the acidic solutions
(pH 3–4). The main dehydrogenation reaction pathways were monitored by LC-DAD-MS/MS
and were associated with decarboxylation of the principal extract pigments, betanin/isobetanin
and neobetanin, at carbon positions C-2 and C-17. Additional reactions are accompanied by the
2,15-decarboxylation processes at different dehydrogenation levels with 15-decarboxy-betanin and
2,15-bidecarboxy-betanin, structurally elucidated by NMR analysis, as the distinct indicators of
this route type. For other novel pigments detected, 2,15-bidecarboxy-xanbetanin, 2,15-bidecarboxy-
xanneobetanin and 2,15,17-tridecarboxy-neobetanin, additional high resolution mass spectrometric
analyses were performed and confirmed their molecular formulas.

Keywords: dehydrogenation; decarboxylation; xanbetanin; neobetanin; red beet root; colorants;
betanin; betalain-rich extract; decarboxy-betacyanins; dehydrogenated betacyanins

1. Introduction

Beetroot (Beta vulgaris L.) is one of the important vegetables and contains significant
amounts of nutritious and bioactive compounds. One group of them are the natural
pigments—betalains from which betanin is present in extracts of B. vulgaris roots at a
level of 300–600 mg/kg of the extract [1]. Betalains are a group of water-soluble colored
compounds containing nitrogen in their structure [2] divided into 2 groups—betacyanins
and betaxanthins. They are synthesized by most plants of the order Caryophyllales [3],
and are also found in some species of fungi of the genera Amanita and Hygrocybe [4,5]. At
present, 187 betacyanins from natural sources have been identified [6].

The chemical synthesis of betalains is difficult [7,8]. That is why their common source
is a natural raw material, especially the roots of B. vulgaris [9,10]. It belongs to the top
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10 vegetables containing antioxidants [10,11] which is the approved source of betalains as
additives used in food in Code of Federal Regulations of United States (21CFR73.40) and
European Union code (E162) [12].

Beetroot extract and its ingredients are used as dietary supplements [13]. In vitro
studies as well as animal models in vivo [14,15] have shown promise for the use of beet-
root extract’s antioxidant and anti-inflammatory properties in the case of chronic inflam-
mation, liver diseases [16], arthritis [17], and even with diseases associated with can-
cer [18,19]. Many independent studies have confirmed the high antioxidant activity of
betacyanins [20–23], and some data suggests a correlation between antioxidant activity and
betacyanin content in beetroot juice [20]. Additionally, via preclinical studies conducted in
rats, it was shown that the consumption of approximately 8 mL of beet juice per 1 kg of
body weight for 28 days ameliorated xenobiotic induced liver DNA damage by reducing
lipid peroxidation and protein oxidation [1].

Compounds of the betalain family may be degraded under the influence of external
factors, including temperature, which is their main disadvantage in terms of their use in
the food or pharmaceutical industry [24]. The stability of betalains in solutions is also
limited by such environmental factors as pH, water activity, light, the presence of oxygen,
the presence of enzymes, compounds with antioxidant activity, or metal cations [25,26].
Betacyanins show greater stability than betaxanthins, both at room temperature and when
heated. Herbach, with his team [26], reported that increasing temperatures generates
betalamic acid and neobetacyanins from betacyanins. In addition, decarboxylation and
cleavage of the glycosidic group may occur [27]. In addition, improvement in stability
after glycosylation is indicated [28]. The literature also points to the low stability of some
acylated betalains [26,29].

Betalains show good stability in the pH range from 3 to 7, but the most optimal
conditions for them are environments with a pH in the range of 4–6, and their stability
increases in anaerobic conditions [29]. Betacyanins are stable during short-term heating (up
to 3 min) at 80 ◦C [30]. Kidoń and Czapski found that during more than 3 min blanching
of beetroot at 90 ◦C there is a 25% reduction in the content of red pigments; however,
extending this time to 10 min does not significantly affect further losses [31]. The thermal
degradation of betacyanins is primarily the result of their breakdown into cyclo-DOPA
derivatives and betalamic acid derivatives, and is in most cases reversible.

The factors improving betalain stability include ascorbic acid [32], isoascorbic
acid [26,33,34], chelating agents such as citric acid, and EDTA [26,35]. β-cyclodextrin
and glucose oxidase, which act by adsorbing free water and removing dissolved oxy-
gen, may also be effective [36]. Phenolic antioxidants and tocopherol did not show any
stabilizing effect [34].

The first report on decarboxylated betacyanin structures in plants can be found in
an article from 1970 [37] supporting the endogenous occurrence of 2-decarboxybetanidin.
The preferred thermic cleavage of the carboxyl group at the C-17 position in betanidin
was indicated by Minale and Piatelli [38]. After 2000, research began to indicate the
possibility of obtaining new decarboxylated betacyanins which was presented, among
others, in our previous publications [39,40]. The development of analytical techniques and
the use of new high-performance liquid chromatographic (HPLC) columns have enabled
the isolation and testing of decarboxylated derivative structures, thanks to which various
thermal degradation products of betacyanins, depending on the reaction environment, have
been observed. These products include mono, bi-, and tri-decarboxy-betacyanins, as well
as their 2,3-(xan) or 14,15-dehydrogenated (neo) analogues. Importantly, in the aqueous
environment, especially at the initial stages of degradation, other products are obtained than
in the case of reactions in ethanolic solutions [33,39,40]. In addition, the physicochemical
conditions of the reaction environment (pH, temperature, or the presence of metal ions)
have an impact on obtained structures [41]. During the heating degradation of betacyanin-
rich red beetroot extract (RBE), depending on the prevailing conditions, compounds such
as 2-, 15-, and 17-decarboxy-betanin, together with their corresponding neo-derivatives
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as well as appropriate isomers, may be formed followed by their bi- or tri- decarboxy
analogues [6,21,42]. Based on these assumptions, it can be concluded that the mechanism
of betacyanin degradation may be different, and its variants were initially presented in our
publications [41,43–45]. In the course of many years of work on decarboxylated compounds,
the above-mentioned and many other structures have been confirmed by LC-MS and/or
NMR methods [6,46,47].

This report presents results of thermal dehydrogenation studies on betacyanins present
in a specifically purified highly concentrated betalain-rich extract (BRE) [45] and focuses
on the possible directions of degradation routes of the pigments in betacyanin-rich red
beetroot extract [45] during heating depending on the process conditions, such as used
buffer, pH, temperature, heating time, and the addition of stabilizing agents. The first
tentative structures formed by decarboxylation of the main pigment in BRE, betanin, and
its diastereomer, were established by means of liquid chromatography coupled to diode
array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI-
MS/MS) [45]. In the extract, two new isomeric bidecarboxylated betanins were tentatively
identified. A high rate of generation of 2-decarboxy-betanin/-isobetanin, which is present
in the BRE extract at a very low level, was observed, which was dependent on the starting
concentration of the BRE substrate. The bidecarboxylated derivatives were generated at a
higher rate mostly from 17-decarboxy-betanin/-isobetanin as well as 15-decarboxy-betanin
by further decarboxylation at carbon C-2 [47].

2. Results and Discussion

Previous studies on betanin degradation in heated red beet extracts resulted in identi-
fication of the principal decarboxy-betanins based on 2- and 17-decarboxylation [26,33,39].
Recent studies have broadened the palette of the compounds and tentatively reported new
bidecarboxylated betanins in heated red beetroot extracts which enabled construction of
first possible decarboxylation routes [47]. However, no deeper research was performed on
oxidation (dehydrogenation) pathways during heating of red beet extracts which could
be combined with the decarboxylation steps, and only several dehydrogenated products
were tentatively detected based on 2,17-decarboxylation routes [26,39]. In this report,
identification of 15-decarboxy-betanin 4 and 2,15-bidecarboxy-betanin 11 by NMR and
high-resolution mass spectrometry enabled further construction of alternative dehydro-
genation pathways. Taking into account that especially 2,15-bidecarboxy-betanin can be
present at higher quantities in processed B. vulgaris juices and extracts [47], the other
pathways became possible to be followed.

In this context, it is necessary to mention that due to previous oxidation structural
studies on betacyanins, with the use of enzymatic [40] and chemical agents [44], several
dehydrogenation pathways have been better recognized. Furthermore, the key oxida-
tion products were isolated and identified by NMR confirming the 2,17-decarboxylation
routes [46]. The initial mechanism of betanin oxidation as well as principal directions of
decarboxylation are presented in Figure 1. The main betanin oxidation mechanism is based
on the formation of the quinone methide which transforms into the xan-derivative with
additional 2-decarboxylation. This reaction can be initiated by autoxidation during the
heating. In addition, after initial decarboxylation of betanin at carbon C-2, the reaction
follows a similar oxidation pathway [42,44]. Another betanin oxidation mechanism is also
possible by catalysis with heavy metal cations, especially Cu2+, resulting in generation of
neobetanin (Figure 1) [46]. As demonstrated previously [46], 2-decarboxylation is accompa-
nied mainly by 17-decarboxylation, however, the impact of initial 15-decarboxylation of
betanin should be also taken into account, as should the formation of high quantities of
2,15-bidecarboxy-betanin during the heating. This pathway seems to be equally important
for considering the whole betanin reaction scheme. Therefore, in this report, the dehydro-
genation steps in heated concentrated betalain-rich extract involving transformations of
the 15-decarboxylated derivatives are presented for the first time.
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“14,15-dehydro”. 

Figure 1. The initial mechanism of betanin autoxidation based on the formation of quinone methide
which transforms into the xan-derivative with additional 2-decarboxylation [42,44]. Another betanin
oxidation possibility by catalysis with Cu2+ resulting in generation of neobetanin [46] as well as
possible positions of decarboxylation are presented.

2.1. Chromatographic and Mass Spectrometric Monitoring of the Products Generated during the
BRE Heating Experiments

The LC-MS selected ion chromatograms present in Figure 2 depict typical betanin
as well as its decarboxylated and dehydrogenated derivative profiles in a betalain-rich
extract/concentrate (BRE) after the 45-min heating experiment in acetate buffers at pH 3
and 85 ◦C.
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Table 1. Chromatographic, spectrophotometric, and mass spectrometric data of detected betanin-
based decarboxylated and dehydrogenated derivatives in the betalain-rich extract (BRE) heated in
acetate/phosphate buffers at 85 ◦C.

No. Pigment Abbreviation
tR λmax m/z

[min] [nm] [M + H]+

1 betanin Bt 6.6 536 551
2 17-decarboxy-betanin 17-dBt 7.1 505 507
1′ isobetanin IBt 7.3 536 551
2′ 17-decarboxy-isobetanin 17-IdBt 7.7 505 507
3 15,17-bidecarboxy-betanin a 15,17-dBt 8.3 494 463
4 15-decarboxy-betanin 15-dBt 8.3 527 507

5/5′ 2-decarboxy-betanin/-isobetanin 2-dBt 8.9 533 507
6 2,17-bidecarboxy-xanbetanin a 2,17-dXBt 9.5 460 461

7/7′ 2,17-bidecarboxy-betanin/-isobetanin 2,17-dBt/-IBt 9.6 507 463
8 2-decarboxy-xanbetanin a 2-dXBt 9.6 446 505
9 2,15,17-tridecarboxy-xanbetanin a 2,15,17-dXBt 9.9 - 417

10 neobetanin NBt 10.3 468 549
11 2,15-bidecarboxy-betanin 2,15-dBt 10.4 532 463
12 2,15-bidecarboxy-xanbetanin a 2,15-dXBt 10.6 478 461
13 2,15,17-tridecarboxy-betanin a 2,15,17-dBt 10.7 503 419
14 2,15,17-tridecarboxy-neobetanin a 2,15,17-dNBt 11.3 442 417
15 2,17-bidecarboxy-xanneobetanin 2,17-dXNBt 11.4 407 459
16 2,17-bidecarboxy-neobetanin a 2,17-dNBt 11.7 459 461
17 2,15,17-tridecarboxy-xanneobetanin 2,15,17-dXNBt 11.9 394 415
18 2-decarboxy-neobetanin 2-dNBt 12.0 480 505
19 2,15-bidecarboxy-xanneobetanin a 2,15-dXNBt 12.3 427 459
20 2-decarboxy-xanneobetanin 2-dXNBt 12.7 422 503

a—Tentatively identified.
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Interpretation of the LC-DAD and LC-MS spectra enabled identification of known as
well as novel betanin derivatives observed during all the experiments (Table 1). Recently,
an important simplification of the naming of betacyanin derivatives was proposed [6] to
substitute the phrase “2,3-dehydro” by “xan” in the trivial name of the 2,3-dehydrogenated
betacyanins in reference to the “neo” prefix used to substitute the phrase “14,15-dehydro”.

All the detected degradation products of the pigments were less polar than their
corresponding precursors. The dominant presence of unreacted betanin 1 and its isoform 1′

with substantial presence of neobetanin 10 resembles the starting betalainic profile from a
previous research [45]. Additional similarities are in distinct signals of very well separated
17-decarboxy-betanin/-isobetanin 2/2′ and 15-decarboxy-betanin 4 (hitherto, detected
only tentatively) as well as 2-decarboxy-xanbetanin 8 and 2-decarboxy-xanneobetanin 20,
the latter pigment being the most hydrophobic product of betanin transformation. In
Section 2.5, the final structural results for 15-decarboxy-betanin 4 obtained by NMR are
presented.

In addition, four highly abundant derivatives, especially at pH 3, were detected in this
study: 2-decarboxy-betanin/-isobetanin 5/5′, 2,17-bidecarboxy-betanin/-isobetanin 7/7′,
2-decarboxy-neobetanin 18, and 2,17-bidecarboxy-neobetanin 16. For the identification of
known derivatives, a series of already known decarboxylated and dehydrogenated betanin
standards was used in the study [33,39,41,42,44–46].

The chemical formulas as well as the proposed reaction pathways starting from
betanin and neobetanin through the main 2,17-decarboxylation routes are depicted in
Figure 3. They are based on the identification of 2/2′, 5/5′, 7, 8, 16, 18, and 20 in the reaction
mixtures, but also on detection of 2,17-bidecarboxy-xanbetanin 6 as well as doubly oxidized
2,17-bidecarboxy-xanneobetanin 15 and completely decarboxylated derivatives, 2,15,17-
tridecarboxy-neobetanin 14 and 2,15,17-tridecarboxy-xanneobetanin 17. Only a minute
signal for non-oxidized 2,15,17-tridecarboxy-betanin 13 was noticed (Table 1), possibly
because of co-occurrance of the oxidation processes [42,44,46].

Interestingly, the presence of 2-decarboxybetanidin was not detected pointing to the
stability of the glucosidic linkage under the acidic conditions.

Further inspection of chromatograms revealed also 2,15-bidecarboxy-betanin 11 (previ-
ously tentatively identified [47]), a key reaction product in further discussion on alternative
betanin oxidation pathways in the following sections. In this contribution, its identity
was confirmed by NMR analysis for the first time (Section 2.5). The lack of the carboxyl
moiety at carbon C-15 implicates the lack of the chirality at this position, therefore, only
single forms of the pigments 4 and 11 as well as all the neo-derivatives were detected in
the chromatograms, which supports the pigment identification.

Other 2,15-bidecarboxylated derivatives: 2,15-bidecarboxy-xanbetanin 12 as well as
doubly oxidized 2,17-bidecarboxy-xanneobetanin 15 and 2,15-bidecarboxy-xanneobetanin
19 were detected in the chromatograms. A very small signal detected for 9 was assigned to
2,15,17-tridecarboxy-xanbetanin—a more polar isomer of 14, based on assumption that the
xan-derivatives of betanin are eluted faster than the isomeric neo-derivatives [40,42,44,46];
however, co-elution with other compounds and low intensity prevented its further deter-
mination (Table 1).

2.2. Influence of pH on Generation of Decarboxylated Betanins during BRE Heating

In Figure 4, the profiles of prominent decarboxylated and dehydrogenated betanin
derivatives detected by LC-MS in selected buffer solutions after 45 min extract heating
at 85 ◦C in dependence on pH are presented. The levels of 15-dBt 4 and 17-dBt 2 tend to
decrease at high pH (7–8) with a distinct peak at pH 6 (Figure 4). In general, the observed
profiles of 15-dBt and 17-dBt in the whole tested pH range confirm their steady generation
from betanin as well as their further transformation. In contrast, 2-decarboxylation effect
takes place at high extent in the more acidic environment (pH 3–4).
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from betanin and neobetanin through the main 2,17-decarboxylation routes.
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Figure 4. LC-MS signal levels of prominent mono- (A) and bidecarboxylated (B) betanin deriva-
tives (2; 4; 5 and 7/7′; 11, respectively) and dehydrogenated betanins (8, 15, 16, and 18) as well as
most hydrophobic xanneobetanins (19 and 20) detected after 45 min extract heating at 85 ◦C in
acetate/phosphate buffer solutions in dependence on pH.

In a previous report [47], the most decisive factor in the preferential generation of
2-dBt/-IBt 5/5′ was the concentration of the substrate (Bt/IBt 1/1′). Another important
factor was a concentration of acetic acid whose lower concentration (1 g/L) promoted the
generation of 5/5′. Earlier studies also confirmed preferential generation of 5/5′ in aqueous
acidic solutions of red beet extract in contrast to ethanolic solutions which enhanced the
generation of 17-dBt/-IBt 2/2′.

Double decarboxylation results mostly in generation of 2,17-bidecarboxy-betanin/
-isobetanin 7/7′ and some lower quantities of 2,15-bidecarboxy-betanin 11 (Figure 4). Simi-
larly to 2-dBt/-IBt 5/5′, the elevated rate of their formation is noticed at pH 3–4.

Very small quantities of 15,17-bidecarboxy-betanin 3 (Tables 1 and 2) were detected
and solely in more acidic solutions. This result confirmed data from the previous study [47]
where the concentration of 15,17-dBt 3 decreased after the heating, therefore, this pigment
was not meaningfully generated. It is possible that its presence resulted only from a
chemical process taking place during production of the BRE extract, but it cannot be formed
by heating.
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Table 2. High-resolution mass spectrometric data obtained by IT-TOF technique for novel decarboxy-
lated and dehydrogenated betacyanins formed during BRE heating experiments in acetate/phosphate
buffer at 85 ◦C.

No. Pigment and Fragmentation Ion
a

[M + H]+

Molecular
Formula

[M + H]+

Observed
[M+ H]+

Predicted Error [mDa] Error [ppm] MS2 Ions

3 15,17-bidecarboxy-betanin C22H27N2O9 463.1722 463.1711 1.1 2.37 301
nl: -Glc C16H17N2O4 301.1194 301.1183 1.1 3.65 257; 255

4 15-decarboxy-betanin C23H27N2O11 507.1603 507.1609 −0.6 −1.18 345

nl: -Glc C17H17N2O6 345.1091 345.1081 1.0 2.90
299; 255; 253; 214;
212; 200; 176; 162;

150; 132

11 2,15-bidecarboxy-betanin C22H27N2O9 463.1720 463.1711 0.9 1.94 301
nl: -Glc C16H17N2O4 301.1192 301.1183 0.9 2.99 257; 255; 202;

164;162; 150; 132

12 2,15-bidecarboxy-xanbetanin C22H25N2O9 461.1547 461.1555 −0.8 −1.73 299
nl: -Glc C16H15N2O4 299.1019 299.1026 −0.7 −2.34 255; 253

14 2,15,17-tridecarboxy-neobetanin C21H25N2O7 417.1669 417.1656 1.3 3.12 255
nl: -Glc C15H15N2O2 255.1138 255.1128 1.0 3.92 237

19 2,15-bidecarboxy-xanneobetanin C22H23N2O9 459.1391 459.1398 −0.7 −1.52 297
nl: -Glc C16H13N2O4 297.0861 297.0869 −0.8 −2.69 253; 251

a nl—neutral losses from [M + H]+.

High concentration of BRE enhanced the formation of 2,17-dBt 7/7′ over 2,15-dBt
11 [47]. During the heating experiments, contents of compounds 7/7′ and 11 successively
differed at different acetic acid as well as BRE concentrations. At a low concentration of
BRE, pigment 11 signal dominated, and this effect was more pronounced at the higher con-
centrations of acetic acid (2.5 g/L); however, those differences were, presumably, attributed
to the matrix effect [47].

In the current study, the presence of 2,15,17-tridecarboxy-betanin 13 before heating but
also after the heating experiments was not acknowledged in accordance with the previous
report [45]. Nevertheless, this is in contrast to the previous complementary experiments at
other conditions [47] in which it was strongly dependent on different acetic acid and BRE
concentrations. Increased concentration of acetic acid enhanced the generation of pigment
13, especially at the higher BRE concentration. However, during the heating experiment,
the content of 13 increased successively at all conditions.

2.3. Influence of pH on Generation of Dehydrogenated Betanins during BRE Heating

Several dehydrogenated betanins are known derivatives [6] which were also detected pre-
viously in the BRE extract [45]. The most hydrophobic is 2-decarboxy-xanneobetanin 20 which,
together with bidecarboxylated derivatives, presumably 2,15-bidecarboxy-xanneobetanin 19
(Figure 4) as well as 2,17-decarboxy-xanneobetanin 15 (Figure 4) are generated at higher
quantities at pH 7–8.

Pigment 15 is the decarboxylated derivative of 20, therefore, this 2-decarboxylation
and dehydrogenation path is clearly deduced (Figure 3). This path starts with the gener-
ation of 2-decarboxy-xanbetanin 8 from betanin 1 and 2-decarboxy-neobetanin 18 from
neobetanin 10 (Figure 3). Generation of both the derivatives is, in general, observed in
acidic solutions (Figure 4); however, there are some distinct differences for the compounds.
The highest rate for 18 is observed at pH 3–4 but for 8 the optimal pH range is shifted to
5–6 (Figure 4).

Another prominent derivative is 2,17-bidecarboxy-neobetanin 16 is especially visi-
ble in the heating products at pH 3–4 and its presence confirms the 2,17-decarboxylation and
dehydrogenation path from betanin 1 but also 2,17-decarboxylation path from
neobetanin 8 (Figure 3).

2.4. High Resolution Mass Spectrometric Determination of Novel Pigment Molecular Formulas

For further confirmation of the 15-decarboxylation pathway during the thermal oxida-
tion of betanin, several 15-decarboxylated derivatives were submitted to the high-resolution
mass spectrometric determination of their molecular formulas. The LC-IT-TOF analyses
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of 4 in the positive mode yielded high-resolution m/z 507.1603 (C23H27N2O11, calculated
mass: 507.1609) supporting identification of a decarboxylated betanin, being 15-decarboxy-
betanin according to a further NMR analysis. Subsequent collision-induced fragmentation
experiments (obtained by the triple quadrupole and the high-resolution IT-TOF mass spec-
trometers) of the protonated ions [M + H]+ of 4 revealed MSn fragmentation pathways
(Table 2) associated with the neutral loss of the glucosyl moiety (507 − 162 = 345) as well as
formic acid (345 − 46 = 299) with additional detachment of carbon dioxide (299 − 44 = 255)
or formic acid (299 − 46 = 253). Further fragmentation of these decarboxylated chro-
mophoric systems was indicated by a loss of acetonitrile and detection of ions at m/z 214
and 212 Da (255 − 41 = 214 and 253 − 41 = 212, respectively) or a neutral loss of C3H5N
(255 − 55 = 200). Further ions detected at m/z 176, 162, 150, and 132, presumably resulted
from a neutral loss of pyridine (255 − 79 = 176), methylated pyridine (255 − 93 = 162) and
4-vinylpyridine (255 − 105 = 150) with subsequent dehydration (150 − 18 = 132) (Table 2).
In the positive mode, the high-resolution m/z values were confirmed for the fragmentation
ion of 4, 345.1091 (C17H17N2O6, calculated mass: 345.1081).

For other novel pigments detected, 15,17-bidecarboxy-betanin 3. 2,15-bidecarboxy-
betanin 11, 2,15-bidecarboxy-xanbetanin 12, 2,15,17-tridecarboxy-neobetanin 14,
2,15-bidecarboxy-xanneobetanin 19, additional high resolution mass spectrometric analy-
ses on an LCMS-IT-TOF system confirming the molecular formula were performed in the
positive ion mode (Table 2).

For pigments 3 and 11, the HRMS analyses yielding m/z 463.1722 and 463.1720,
respectively (C22H27N2O9, calculated m/z: 463.1711), supported the presence of molec-
ular formulas of bidecarboxylated betanins. The observed fragmentation pathway for
3 afforded signals at m/z 301 (Table 2), indicating detachment of the glucosyl moiety
(463 − 301 = 162 Da) as well as at m/z 257 (-CO2) and 255 (-HCOOH).

Subsequent collision-induced fragmentation experiments of the protonated ions [M + H]+

of 11 revealed MSn fragmentation pathways (Table 2) associated with the neutral loss of the
glucosyl moiety (463 − 162 = 301) as well as carbon dioxide (301 − 44 = 257) or formic acid
(301 − 46 = 255). Further fragmentation of these decarboxylated chromophoric systems
was indicated mainly by a neutral loss of C3H5N (257 − 55 = 202) as well as further
ions detected at m/z 164, 162, 150 and 132, presumably resulting from a neutral loss of
methylated pyridine (257 − 93 = 164 and 255 − 93 = 162, respectively) and 4-vinylpyridine
(255 − 105 = 150) with subsequent dehydration (150 − 18 = 132) (Table 2). In the positive
mode, the high-resolution m/z values were confirmed for the fragmentation ion of 11,
301.1192 (C16H17N2O4, calculated mass: 301.1183).

For pigment 12, the HRMS analyses yielding m/z 461.1547 (C22H25N2O9, calculated
m/z: 461.1555) supported a molecular formula of bidecarboxylated xanbetanin or neobe-
tanin. The observed fragmentation pathway afforded signals at m/z 299 (Table 2), indicating
detachment of the glucosyl moiety (461 − 299 = 162 Da) as well as at m/z 255 (-CO2) and
253 (-HCOOH).

Because of the presence of 2,15-bidecarboxy-betanin 11 in the heating products, the
2,15-bidecarboxylation in 12 is suggested. Similar retention of 11 and 12 suggests a presence
of xanbetanin derivative in contrast to more hydrophobic neobetanin derivatives [40,42,44–46].

For pigment 14, the HRMS analyses yielded m/z 417.1669 (C21H25N2O7, calculated
m/z: 417.1656) indicating the presence of 2,15,17-tridecarboxy-neobetanin as the more
hydrophobic isomer from the pair of xan- and neo-derivatives (9 and 14, respectively).
This pigment has never been detected in products of betanin oxidation [40,42,44–46] but,
rather, after heating degradation [39,40]. The fragmentation of the [M + H]+ ion resulted in
detection of signals at m/z 255 (glucosyl detachment) and 237 (-H2O) (Table 2).

Determination of m/z value for 19 observed at 459.1391 (C22H23N2O9, calculated m/z:
459.1398) indicated a presence of a bidecarboxylated xanneobetanin which is a doubly
dehydrogenated derivative. This compound is an isomer of the already well-known 2,17-
bidecarboxy-xanneobetanin 15 generated during oxidation experiments [42,44–46] and its
longer retention time suggests a presence of a more hydrophobic 2,15-decarboxylation
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pattern directly indicating a presence of 2,15-bidecarboxy-xanneobetanin 19. The fragmen-
tation of the [M + H]+ ion resulted in detection of signals at m/z 297 (glucosyl detachment)
as well as at m/z 253 (-CO2) and 251 (-HCOOH) (Table 2).

2.5. NMR Structural Elucidation of 15-Decarboxy-Betanin 4 and 2,15-Bidecarboxy-Betanin 11

The characteristic NMR signals (Figures S1–S4) of the aglycone and glucose moiety
in 4 and 11 confirmed the presence of a mono- and bi-decarboxylated betanin (Figure 5),
respectively, (Table 3) [33,46]. Good solubility of 4 in D2O enabled its analysis in less
destructive environment [43] whereas lower solubility of 11 in D2O required application
of CD3OD acidified with d-TFA. This enabled complete solubilization of 11 as well as
obtaining stable zwitterionic systems with narrowed signals [48] with no degradation of
the pigment detected. The individual coupled 1H-spin systems of the aglycone (H-2 or
H-2ab, H-3ab; H-11, H-12; H-14ab, and H-15ab) were assigned in 1H NMR, COSY, and
TOCSY spectra. The three-spin system observed for H-2/H-3ab in 4 indicated the presence
of the carboxyl moiety at C-2 similar to betanin, this way excluding the decarboxylation at
carbon C-2. In contrast, the three-spin system observed for H-2ab/H-3ab in 11 confirmed
the decarboxylation at carbon C-2.
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Table 3. The NMR Data (Figures S1–S4) of analyzed 15-decarboxy-betanin 4 and 2,15-bidecarboxy-
betanin 11 isolated from the BRE extract as well as generated during its heating. Important HMBC
and NOESY correlations for 3 and 8 are depicted in Figure 5.

15-Decarboxy-Betanin 4
(D2O)

2,15-Bidecarboxy-Betanin 11
(CD3OD/d-TFA)

No. 1H NMR a 13C NMR b,c No. 1H NMR a 13C NMR b,c

2 4.73, bdd, 7.8 64.4 2a/b 4.26, bt, 7.4 51.8

3a/b 3.53 (overlap) 3.14,
dd, 2.6; 16.5 33.1 3a/b 3.25, bt, 5.0 28.0

4 7.01, s 113.6 4 7.21, s 115.7
5 143.0 5 147.7
6 146.0 6 149.8
7 6.84, s 99.0 7 7.15, s 101.2
8 137.5 8 138.4
9 123.2 9 127.3
10 176.9 10d -
11 7.92, bs e 142.0 11 8.41, bs, 12.2 146.3
12 5.71, bs 105.2 12 6.20, bs, 12.1 108.8
13 164.1 13 163.5

14a/b 2.80, bd,
2.70, bd e 22.9 14a/b 3.04, bt e, 7.6 24.8

15a/b 3.49 (overlap) 39.0 15a/b 3.63, bt, 8.2 40.7
17 157.9 17 151.4
18 6.19, bs 106.2 18 6.41, bs 106.2

19 d - 19d -
20 165.2 20 165.7
1′ 4.99, d, 7.5 101.2 1′ 4.80, d, 7.4 104.1
2′ 3.56 (overlap) 72.8 2′ 3.49 (overlap) 77.4
3′ 3.61 (overlap) 75.3 3′ 3.51 (overlap) 74.2
4′ 3.50 (overlap) 69.3 4′ 3.42 (overlap) 71.2
5′ 3.59 (overlap) 76.1 5′ 3.44 (overlap) 78.3

6′a/b 3.91, dd, 1.5; 12.0
3.76, dd, 5.4; 12.4 60.3 6′a/b 3.92, dd, 1.7; 12.1

3.72, dd, 5.1; 12.4 62.4

a 1H NMR δ [ppm], mult, J [Hz]; b 1H NMR δ [ppm]; c 13C chemical shifts were derived from HSQC and HMBC;
d The atom is not present; e bs, bd, or bt—broad singlet, broad doublet, or broad triplet, respectively.

In both the pigments 4 and 11, the doublets for the H-11 and H-12 protons (very broad
for 4) were readily distinguishable by their low- and high-field shifts, respectively. In
contrast to 11, a very broad signal for H-18 in 4 was observed by 1H NMR and was detected
for freshly prepared solution in D2O of the pigment, thus avoiding the fast deuterium
exchange [48]. The four-spin system (H-15ab/H-14ab) showed easily distinguishable cross-
peaks in the COSY and TOCSY spectra; however, in contrast to betanin, the presence of
two protons at carbon C-15 indicated the decarboxylation position at carbon C-15. The
dihydroindolic system was assigned by HSQC correlations of H-2 or H-2ab, H-3ab, H-4 and
H-7 with their respective carbons. In the dihydropyridinic system, correlations of H-14ab,
H-15ab, and H-18 with their respective carbons in the HSQC spectra were visible.

In 4, the correlations of C-3 to H-2/H-4, C-5 to H-4/H-7, C-6 to H-4/H-7, C-8 to
H-3ab/H-4/H-7, C-9 to H-3ab/H-7, and C-10 to H-3ab (the dihydroindolic system) as well
as the correlations of C-13 to H-14/H-15, C-17 to H-14, C-18 to H-12/H-14 and C-20 to H-15
(the dihydropyridinic system) were determined by HMBC (Figure 5, Table 3).

In 11, the correlations of C-2 to H-3/H-11, C-3 to H-2/H-4, C-5 to H-4/H-7, C-6 to
H-4/H-7, C-8 to H-3ab/H-4/H-7/H-11, and C-9 to H-3ab/H-7 (the dihydroindolic system)
as well as the correlations of C-13 to H-18, C-14 to H-12/H-15/H-18, C-15 to H-14, C-17
to H-15, C-18 to H-12/H-14, and C-20 to H-14/H-15 (the dihydropyridinic system) were
determined by HMBC (Figure 5, Table 3).

In 4 and 11, the 1H and 13C chemical shifts for the protons and their corresponding
carbons in the glucose moieties were assigned by the COSY, TOCSY, HSQC, and HMBC
correlations which clearly ascertained the sugar ring systems (Figure 5, Table 3). The
presence of the anomeric proton H-1′ indicating a sugar unit by its characteristic downfield
shifts was readily observed. The position of the glycosidic bond at the phenolic carbon C-5
was confirmed by the HMBC correlation of the anomeric proton H-1′ with carbon C-5 as
well as it was indicated by the downfield shift for the proton H-4 in relation to H-7 [33,48].
The coupling constant via the three vicinal bonds 3J1′-2′ (7.3–7.4 Hz in 4 and 11) indicates
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the presence of a β-glycosidic link between the aglycone and the glucoside moiety of this
pigment. A definitive evidence of the lack of acylation at C-6′ carbon was provided by the
position of the H-6′ab protons signal.

Additional data observed in the NOESY spectra confirmed the key correlations (Figure 5)
between H-7, H-11 and H-14a/b which together with correlations of H-12 with H-2 and
H-18 indicated the (E)-configuration for C(12)=C(13) and s-trans conformation for the
dienyl moiety N(1)=C(11)-C(12)=C(13) in the most abundant stereoisomers in 4 and 11 [48].
Additional correlations were observed between the newly originated methylene protons
H-15a/b (in comparison to betanin) with H-14a/b as well as between H-2, H-3 and H-4 and
between selected H atoms of the glucosyl moiety. Above analysis completed the structure
identification of 15-decarboxy-betanin 4 and 2,15-bidecarboxy-betanin 11.

2.6. Alternative 2,15-Decarboxylation Pathway in Thermal Oxidation of Betanin

The 2,17-decarboxylation path of betanin and neobetanin degradation during heating
is the most probable direction because of additional possibility of simultaneous decarboxy-
lation and oxidation of the molecule at carbon C-2,3 (dehydrogenation) and subsequent
transformations of the intermediate products followed by decarboxylation step at C-17.

However, we can also assign another pathway (Figure 6) starting mainly from the
15-decarboxylation of betanin 1, resulting in generation of the key 15-decarboxy-betanin 4
derivative as well as 2,15-bidecarboxy-betanin 11 (with confirmed structures by NMR in this
study). Subsequent formation of 2,15-bidecarboxy-xanbetanin 12 and especially distinctive
quantities of 2,15-bidecarboxy-xanneobetanin 19 (Figure 4) supports this pathway which
is completed with 2-decarboxylation of neobetanin 10 as well as further dehydrogenation
at carbon C-2,3 (resulting in formation of 2-dXNBt 20) and 15-decarboxylation leading
again to 19 (Figure 6). Final generation of the end chromophoric structure of 2,15,17-
tridecarboxy-xanneobetanin 17 seems to be attained by one-step 17-decarboxylation of 19
but also 15,17-decarboxylation of 18 (Figure 3) leading to 2,15,17-tridecarboxy-neobetanin
14 followed by dehydrogenation at carbon C-14,15.
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3. Materials and Methods
3.1. Reagents

Formic acid, acetic acid, LC-MS grade methanol and water, and HPLC grade acetone
and buffer solutions were obtained from Sigma Chemical Co. (St. Louis, MO, USA).

3.2. Heating Experiments

Betalain-rich extract (BRE) was obtained from FutureCeuticals, Inc. (Momence, IL,
USA) [45]. BRE aqueous stock solution (50 mL) was prepared at a concentration of 0.75 g/L
and was 10x diluted in microplate wells up to 200 µL. Each well contained 20 µL of
acetate/phosphate buffers at pH 3–8 (20 mM). These samples were heated at 85 ◦C in a
thermostat for 1 h and were monitored by spectrophotometry in a microplate reader Tecan
Infinite 200 (Tecan Austria GmbH, Grödig/Salzburg, Austria). During the experiments,
additional aliquots (20 µL) of the heated samples were taken for LC-DAD-ESI-MS/MS
analyses after 20x dilution. All the experiments were performed in triplicate.

3.3. Preparation of 15-Decarboxy-Betanin 4 and 2,15-Bidecarboxy-Betanin 11 from BRE Extract

For the NMR study, 15-decarboxy-betanin 4 and 2,15-bidecarboxy-betanin 11 were
derived directly from the BRE extract by chromatography. Eight grams of the extract was
dissolved in 12 L of water and was initially purified by flash chromatography on a column
40 mm × 50 mm filled with Sepra™ ZT-SAX 30 µm Polymer, 85-Å (Phenomenex, Torrance,
CA, USA). Further separation and isolation of the pigment was performed on a HPLC
semipreparative column Synergi Hydro-RP 250 mm × 30 mm i.d., 10 µm (Phenomenex)
with a 20 mm × 25 mm i.d. guard column of the same material (Phenomenex). A gradient
system consisting of 1% aqueous formic acid (solvent A) and acetone (solvent B) was
used as follows: 0 min, 12% B; increasing to 10 min, 14% B; increasing to 20 min, 16% B;
increasing to 30 min, 18% B; increasing to 40 min; 80% B. The injection volume was 20 mL
with a flow rate of 30 mL/min. Detection was performed using a PDA UV/Vis detector at
538, 505, 480, and 440 nm; at column temperature of 22 ◦C. The eluates were pooled and
concentrated under reduced pressure at 25 ◦C and finally freeze-dried. All the solutions
were concentrated in rotary evaporators at 25 ◦C under reduced pressure to remove the
organic solvent and stored at −20 ◦C for further studies.

3.4. LC-DAD-ESI-MS/MS Analyses

For qualitative as well as quantitative analyses of the samples, a low-resolution LC-MS-
8030 mass spectrometric system (Shimadzu, Kyoto, Japan) coupled to LC-20ADXR HPLC
pumps, an injector model SIL-20ACXR, and a PDA detector (photo diode array) model
SPD-M20A, all controlled with LabSolutions software, version 5.60 SP1 (Shimadzu) was
applied. The samples were eluted through a chromatographic column (150 mm × 4.6 mm
i.d., 5.0 µm, Kinetex C18) preceded by a guard column of the same material (Phenomenex,
Torrance, CA, USA). The injection volume was 50 µL, and the flow rate was 0.5 mL/min.
The column was thermostated at 40 ◦C.

Sample solutions were pumped through the column under the following elution
gradient system (System 1) composed of 2% aqueous formic acid (A) and pure methanol
(B) as follows: 0 min, 10% B; increasing linearly to 12 min, 40% B; increasing linearly to
15 min, 60% B; increasing linearly to 19 min, 90% B. Columns were thermostated at 40 ◦C.
The injection volume was 10 µL, and the flow rate was 0.5 mL/min. The detection was
performed in the full PDA range and at selected wavelengths (440, 480, 505, and 540 nm).
The ionization electrospray source operated in positive mode (ESI+) at an electrospray
voltage of 4.5 kV, capillary temperature at 250 ◦C and using N2 as a sheath gas. The LC-MS
system was controlled with LabSolutions software, version 5.60 SP1 (Shimadzu), recording
total ion chromatograms, mass spectra, ion chromatograms in selected ion monitoring
mode (SIM), and the fragmentation spectra. Argon was used as the collision gas for the
collision-induced dissociation (CID) experiments. The relative collision energies for MS/MS
analyses were set at −35 V.
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3.5. Chromatographic Analyses with Detection by Ion-Trap Time-Of-Flight System
(LCMS-IT-TOF)

The mass spectrometer (Shimadzu) with electrospray ionization method (ESI) was
applied to record all mass spectra. It was coupled to the HPLC Prominence (Shimadzu).
Compounds were separated on a 50 mm× 2.1 mm i.d., 1.9 µm Shim Pack GISS C18 column
(Shimadzu) thermostated at 40 ◦C. Samples were dosed in a volume of 2 µL and the flow
rate was 0.2 mL/min. The separation of the analytes was performed in the same gradient
systems as in the case of LC-DAD-ESI-MS/MS. Parameters of LCMS-IT-TOF spectrometer
were set as follows: curved desolvation line (CDL) and heat block temperature 230 ◦C,
nebulizing gas flow rate 1.5 L/min and capillary voltage 4.5 kV. Positive ion mode with
mass range within 100–2000 Da was applied for recording all mass spectra. Collision
energy was in the range of 12–50% depending on the structure of compounds. The Formula
Predictor within the LCMS Solution software was used for elaboration of results obtained
in high resolution mass spectrometry experiments (HRMS). Only empirical formula with a
mass error below 5 ppm were taken into account.

3.6. NMR Experiments

The NMR data of 4 were recorded on a Bruker Avance III 600 spectrometer (Bruker
Corp., Billerica, MA, USA) equipped with a 5 mm TBI probe head in non-acidified D2O
at temperature of 298 K. The NMR spectra of 11 were acquired on a Bruker Avance III
700 spectrometer (Bruker Corp., Billerica, MA, USA) using a QCI CryoProbe at 295 K in
CD3OD acidified by d-trifluoroacetic acid.

All 1D (1H) and 2D NMR (COSY, HSQC, HMBC, TOCSY, and NOESY (gradient en-
hanced)) measurements were performed using standard pulse sequences and acquisition
parameters. The residual water peak for experiments carried out in D2O was suppressed us-
ing the low-power presaturation. Chemical shifts were referred to internal 3-(trimethylsilyl)-
2,2,3,3-tetradeuteropropionic acid (TMSP-d4) (δH = 0.00 ppm, δC = 0.0 ppm) or residual
CD3OD (δH = 3.31 ppm, δC = 49.0 ppm).

4. Conclusions

This is the first report on the generation of dehydrogenated betanins in a B. vulgaris
betalain-rich extract heated in typical buffered solutions with addition of citrates and EDTA.
The main dehydrogenation reaction pathways are associated with decarboxylation of the
principal extract constituents, betanin/isobetanin and neobetanin, at carbon positions C-2
and C-17. Additional reactions are accompanied by the 2,15-decarboxylation processes
at different dehydrogenation levels with 2,15-decarboxy-betanin as the distinct indicator
of this route type. Generated betanin derivatives might have a strong influence on the
bioactivities of B. vulgaris products and can be used for various food applications with new
health-promoting potentials and colorant properties.
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10. Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the

genotype and root part. J. Funct. Foods 2016, 27, 249–261. [CrossRef]
11. Bastos, E.L.; Schliemann, W. Betalains as Antioxidants. In Plant Antioxidants and Health; Ekiert, H.M., Ramawat, K.G.,

Arora, J., Eds.; Reference Series in Phytochemistry; Springer: Berlin/Heidelberg, Germany, 2021. [CrossRef]
12. Castellar, R.; Obón, J.M.; Alacid, M.; Fernández-López, J.A. Color properties and stability of betacyanins from Opuntia fruits. J.

Agric. Food Chem. 2003, 51, 2772–2776. [CrossRef]
13. Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease.

Nutrients 2015, 7, 2801–2822. [CrossRef]
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