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CIRCULARITY OF THE ERROR CURVE AND SHARPNESS
OF THE CF METHOD IN COMPLEX CHEBYSHEV APPROXIMATION*

LLOYD N. TREFETHEN"

Dedicated to Peter Henrici on the occasion of his 60th birthday

Abstract. Let f(z) be analytic at the origin, and for e >0, let f(ez) be best approximated in the
Chebyshev sense on the unit disk by a rational function of type (m, n). It has been shown previously by
the CF method that the error curve for this approximation deviates from a circle by at most O(e 2m+2n+3)
as e 0. We prove here that this bound is sharp in two senses: the error curve for a given function cannot
be asymptotically more circular than the CF method predicts; moreover there exist functions for which
the near-circularity is of order e

2m+2n+3 but no smaller.
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1. Introduction and statement of results. Let S denote the complex unit circle
{z.. Izl= }, a the closed unit disk {z: and A =A(A) the set of functions
continuous in A and analytic in the interior. Let m, n => 0 be fixed integers, and let
Rm, be the set of rational functions in A of type (m, n) (i.e. no poles in A). Let I1"
denote the supremum norm II ll=supz s which for cA is identical to
SUpza Ib (z)l. Here is the rational Chebyshev approximation problem for f A: find a
best approximation (BA) r R,,, such that Ill- r*ll infrR,,, I1- rll ], 5]. Approxi-
mations of this kind are useful in various contexts in numerical analysis, and have a
particularly important and natural application in the problem of the design of digital
filters [2], [7]. It is known that a BA r* always exists, but that it need not be unique
unless n 0 [3]. We will write E*= I1-r*ll.

The error curve for an approximation r of f is the image (f-r)(S). In typical
examples (see [9], [10]) the error curve for a BA r* often closely approximates a
perfect circle about the origin of winding number m + n + 1. That is to say, if we define

r/* E* min I(f- r*)(z)l,

then often rt* << E*. This near-circularity is an important consideration in the design
of algorithms to compute BAs numerically; for example, it causes the well-known
Lawson algorithm [8] to converge asymptotically very slowly [9]. The following result
justifies the claim rt*<< E* in an asymptotic sense. First we require that f satisfy a
normality condition"

ASSUMPTION A. e Padg approximation to f of type (m, n) has n finite poles,
counted with multiplicity, and its Taylor series agrees with that off exactly through the
term of degree m + n.
Then one has:

THEOREM 1 ([10, Thm. 6.3]). Let f A satisfy Assumption A, and for any
e (0, 1), let r* be a BA to f(z) (ez) on h in R,,,. Then

(1) r* O(e 2"+2"+3

as e .+ O, uniformly for all BAs r*.
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Let us agree to write .f =- O (g (as opposed to f=O(g)) if both f=O(g) and
g Off) hold, that is, if there exist c, C > 0 such that for all sufficiently small e,
clf( )l<lg( )l<flf( )l. It can be seen that Assumption A implies E*--O(e "+"+1)
[10]. Thus Theorem 1 implies r/*/E*= O(e"+"+) as e +0, the error curve for any
BA deviates from a perfect circle in relative radius by no more than O(e"+n+:).

The first purpose of this paper is to establish a bound on near-circularity by
showing that Theorem 1 is sharp in the following sense"

THEOREM 1’. For each pair (m, n ), there exists a function as in Theorem 1. for
which

(2) Tl*---O(e 2m+2n+3)
as e 0, uniformly for all BAs r*.

This result establishes that whereas in real Chebyshev approximation error curves
equioscillate exactly, in the complex case there is a definite limit to the degree to
which they approximate circles.

Our second purpose relates to the analytic procedure for computing near-best
approximations that was developed in [9], [10] and called the Carathodory-Fefr
(CF) method. Based on the calculation of a singular value decomposition of a Hankel
matrix of Taylor coefficients, this procedure delivers a (unique) CF approximant
cfr R,,,, which is near-best in the following sense"

THEOREM 2 ([10, Lemma 5.1, Thm. 6.2]). Let f and f be as in Theorem 1, and
for any e (0, 1), let rcf be the CF approximant to f. Then

cf 2m+2n+3)(3) n =o(e

and

(4) IIr’- r*ll O(e ="+2"+)
as e + O, uniformly for all BAs r*.

cf Ecf(We define quantities / and in the obvious way in analogy to /* and E*.)
Theorem 1 is clearly implied by Theorem 2, and in [10] this is how it is derived.

Here we will apply the same argument as in the proof of Theorem 1’ to establish the
sharpness of Theorem 2, as follows"

THEOREM 2’. For any as in Theorem 1, suppose
cf 2m+2n+3)(5) n =o(e

as e + O. Then one has also

(6) r* O(e 2"+2"+3

as e + O, uniformly for all BAs r*. Moreover whether or not (5) holds, one has

(7) Ea-E* O(e 2+2"+’)
as e - 0, uniformly for all BAs r*.

Note that the estimate (7) is one order in e higher than the more obvious bound
Ea-E* O(e "+"+3) that follows from (4), which was given as [10, Prop. 5.2].

All of these results suggest that the CF method perhaps captures as many terms
in an asymptotic description of r* as can be obtained from any analytic procedure.
For the case n 0, P. Henrici has shown that explicit algebraic formulas for these
terms can be derived systematically [4]. However, at present it is not even known
whether E* and the coefficients of r* depend analytically on e for small e, although
such a result is available in real Chebyshev approximation [5], [6].
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2. Polynomial approximation. In the polynomial case n 0, Theorem 1’ can be
proved by an explicit example. We discuss this case separately because it is so simple,
and because a similar idea forms the basis of the subsequent proofs.

For clarity let us write p, P,, instead of r, R,,o. Given e (0, 1) and m _-> 0, consider

(8) f(Z (eZ)m+l -I- (EZ)2m+3.
We will show that 0 is the (necessarily unique) BA to f in P,,. Obviously this will
imply Theorem 1’ for the case n =0, since this example will then have E*=
m+l 2m+3 2m+3e + e r/ 2e The following argument is based implicitly on the Kol-

mogorov criterion [1], [5].
Suppose that 0 is not the BA, so that II -p*ll< I1 11, or equivalently,

Ilzfll. Now z (z) achieves its maximum modulus at precisely the (m + 2)nd roots of
unity ’k e 2k/("/2), 0 <= k <m= + 1, and at each of these points it is positive and real.
Therefore we must have

(9) Rezp*(z)>0 at z =’k, 0-<k <=m +1.

Since zp*(z) is a polynomial of degree at most rn + 1, it is determined by its values
at any m + 2 points. If these are the roots of unity {rk}, the coefficients of zp*(z) are
given by a discrete Fourier transform of the values kP*(k), and in particular, the
coefficient of degree 0 is the mean of these quantities,

1
(10) (zp*)(0) (kP*((k).

m +2 Eo=
But since (zp*)(0)=0, (9) and (10) are inconsistent, contradicting the assumption
p* # 0. QED.

In this example the CF approximant p is also identically zero, so the results of
Theorem 2’ are verified.

(11)

3. Rational approximation. The obvious generalization of (8) to n > 0 would be

f(z) (z)"+"+l + (z

However, the (m, n) Pad6 approximant to this function is identically 0, so (11) does
not satisfy Assumption A for n > 0. Moreover, it can be shown that for all m _-> 0 and
n -> 1, the BA to (11) is not 0 [3], and what it is is unclear. Nor have we been able to
devise any other function for which an exact BA can be exhibited and satisfies (2).

Therefore we resort to an indirect argument for the proof of Theorem 1’. The
following theorem shows that for a certain function/ the BAs r* must satisfy (2) as
e --> 0, even though we do not know exactly what they are. Theorem 1’ then follows
as a consequence of this result.

THEOREM 3. Let R,, have n finite poles, and define

(12) (z)=(z)+z
and r(z (ez ). Then one has

(13) ,rl * O(e 2m+2n+3)
and

(14) IIf-rlI-E* O(e 2+2"+4)
as e --> 0, uniformly for all BAs r*.
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Proof. For each e (0, 1), the function to be approximated is

f(z) r(z)+(ez)"+’+ +(ez)z’+"+3.

Let {’} and {} denote the (2m +2n +4)th roots of unity, as follows"- =e2ik/(m+n+2), - =e2ri(k+l/2)/(m+n+2), 0<k= <m= +n + 1,

2m+2n+3and for simplicity write F e +"+,
/= e Then f r maps S onto a near-circle

with winding number m + n + 1 about the origin, which attains a maximum (resp.
minimum) modulus of F +/(resp. F-y) at the points r (resp.

(15) (f-r)()

This near-circularity (together with Rouche’s theorem; see [10, 2]) implies that
r is a nearly optimal approximation in R,, to f. The key to our proof is that because
f satisfies Assumption A (trivially), it follows further that r must be nearly equal to
r*. Let r and r* be written as quotients p/q and p*/q*, respectively, normalized by
q(0) q*(O) 1. Then from 1 O, Thm. 6.2, Lemma 6.1] one has

(16) Ilr- r*ll-- o()

and

(17) q, q* 1 +O(e)

uniformly on h as e-*0. ([10, Thm. 6.2] actually shows [[rCf-r*ll=O(), as stated
already in (4), but the same argument given there suffices to establish (16).) Equation
(17) indicates that as e - 0, the Chebyshev approximation problem becomes less and
less nonlinear, a circumstance which depends essentially on Assumption A (el. [3, 4]).

Equations (16) and (17) imply

r-r*
Pq*-P*q. =s+O(e3,)

qq

uniformly on A, where s is a polynomial in P,,+,,. Now apply the discrete mean value
formula as in (10) to zs(z) on both {’[} and {’}, in succession. The results are

1 m+n+l

re+n+2 t,=o
sr: (r- r*)(’:)= O(eT),

or in particular,

(18)
1 .,+,,+x

re+n+2 ,=o
Re {r (r- r*)(r)}

The reason why we are interested in the real part in (18) is that because of (15),
a small correction Ar to r will affect the moduli I(f-r)()l by essentially
+Re{ Ar(’)}. In particular, (16) guarantees that the correction r*-r has magnitude
O(3/F) relative to I1-rll, which for our purposes can be weakened to O(e), and by
simple geometry we obtain

(19) I(f- r*)(r)l F :1: V :1: Re {’ (r r*)(r)}+O(sT).
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Combining this with (18) shows for some indices k/ and k_, one must have

(20) [(f- r*)(’+ )l --> F + 3/- O(ey)

and

(21) [(f r*)(sr;-)l <- F y + O (e,/).

These two bounds, together with (1), yield (13) directly. Equation (20) also implies
E*_->F+y-O(ey), and since E*<-llf-r]l F+7, this implies (14). Q.E.D.

It should be mentioned that it is possible that r is itself a BA to f in this problem,
at least for all sufficiency small e, but we have not been able to establish this.

4. Sharpness of the CF method. The argument of the last proof can be applied
not only to the function f of (12), but to a general function that satisfies Assumption
A. Theorem 2’ is thus established as follows:

Proof of Theorem 2’. In the CF method, ra is obtained by discarding terms of
negative degree in z of a meromorphic function F* defined in 1 _-< Iz] < c whose error
curve is exactly circular and has winding number exactly rn + n + 1, for all sufficiently

m+n+l 2m+2n+3small e see [10] for details. Let us again write F e and y e and also
II - *ll, Then from [10, Lemmas 4.4, 5.1, 6.1] one has

f-f*=aFz "+"+l+O(eF)
and

*--rcf= ’Z -1
if" O(E)

as e--> 0, uniformly on S, where a is a fixed nonzero complex constant and/3 is a
complex number that may depend on e, but by assumption (5), has magnitude fl --- O(1).Following the proof of Theorem 3, let z denote e rg(o/)/(’+"+2), and define
2m +2n +4 equally spaced points {’} and {’} on S by

; ----.re 2"rrik/(m+n+2) - -Te
2"’i(k+l/2)/(m+n+2) O<k <m +n + 1

Thenf- ra maps S onto a near-circle with winding number m + n + 1 about the origin,
and its modulus satisfies

(22) Ea =/* +lilly + O(ev).

Moreover the sets {’} have been defined in such a way that f-f* and f*-ra are in
phase up to O(e,) at {sr} and out of phase up to O (e/) at {’}, and therefore one has

I(f- ra)(’:)[ *+ [fl [’Y + 0 (e7).

As before, we get now

PCfq, ,
q cf

rcf- r* --P
f , s + O (e,/)

q q

for some polynomial s e P,,+,. By the discrete mean value formula there follows in
analogy to (18)

1 m+n+l

2 Re {e -i argB,=(rCf_r,)(=)}= O(e’y),
re+n+2 k=0

and the analogue to (19) is

I(f- r*)(’)l-* +/- Re {e-’ arg/3, (ra r*)(’)} +O (3’).
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Equation (6) follows as before from these two formulas together with (1). They also
imply as before E* =>’* + 1/313’ + O (e3,), which together with (22) and the fact E* -<Ecf

establishes (7) in the case where (5) holds.
If (5) does not hold, the same derivation of (7) is still valid. (If/3 0 for some

cf 2rn +2n.+4)e, arg/3 and - can be defined arbitrarily for these e.) However if rt O(e
(7) can be obtained much more easily by Rouch6’s theorem. Q.E.D.

Acknowledgment. I am indebted to Martin Gutknecht for valuable discussions
related to this work.
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