
QUALIFYING EXAMINATION, Part 1

Solutions

Problem 1: Mathematical Methods

(a) Under an infinitesimal transformation a vector shifts as ~v+d~v = U(dθ)~v or d~v
dθ

= −τ~v.
This has the solution ~v(θ) = e−τθ~v. Expanding out the exponential gives

U(θ) =
∞∑
n=0

1

n!

(
0 θ
θ 0

)n
=

(
1 + θ2

2!
+ . . . θ + θ3

3!
+ . . .

θ + θ3

3!
+ . . . 1 + θ2

2!
+ . . .

)

=

(
cosh θ sinh θ
sinh θ cosh θ

)

(b) A group must satisfy closure, associativity, there should be an identity, and every
element should have an inverse. The integers satisfy these conditions under addition with
0 being the identity element and the inverse of n is −n.

The integers are not a group under multiplication because there is no inverse.

(c) We write the integral as∫ ∞
0

1− cos 2x

1 + x2
dx =

1

2
<
∫ ∞
−∞

1− e2ix

(x+ i)(x− i)
and close the contour with a semicircle at infinity in the upper half plane, picking out the
residue of the pole at x = i. This gives

1

2
<
[
2πi

(
1− e2ix

x+ i

) ∣∣∣∣
x=i

]
=
π

2

(
1− e−2

)
.

(d) We start with the first polynomial p1 = c1u0 = c1, which has norm 〈p1|p1〉 =
c21
∫∞
0 xe−xdx = c21, and thus c1 = 1.

An orthogonal polynomial will be given by

p2 = c2(x−
∫ ∞
0

x2e−xdx) = c2(x− 2) ,

and it has norm

〈p2|p2〉 = c22

∫ ∞
0

xe−x(x− 2)2dx = c22(3!− 4 · 2! + 4 · 1) = c22(6− 8 + 4) = 2c22 .

Therefore c2 = 1√
2
, and the two lowest-order normalized orthogonal polynomials are

p1 = 1, p2 =
x− 2√

2
.

1



Problem 2: Classical Mechanics

(a) The horizontal position of the mass is xM = x + L sin θ and the vertical position is
yM = −L cos θ. The Lagrangian is then

L =
1

2
(4M)ẋ2 +

1

2
M(ẋ2M + ẏ2M)−Mg(−L cos(θ))

=
1

2
(4M)ẋ2 +

1

2
M(Lθ̇ cos θ + ẋ)2 +

1

2
M(Lθ̇ sin θ)2 +MgL cos θ

=
5

2
Mẋ2 +

1

2
ML2θ̇2 +MLẋθ̇ cos θ +MgL cos θ .

(b) In the small oscillation approximation around θ = 0, we have

L ≈ 1

2

(
ẋ θ̇

)( 5M ML
ML ML2

)(
ẋ

θ̇

)
− 1

2
MgLθ2

=
1

2

(
ẋ θ̇

)
M

(
ẋ

θ̇

)
− 1

2

(
x θ

)
V
(
x
θ

)
,

where the mass matrix M and the potential matrix V are given by

M =

(
5M ML
ML ML2

)
, V =

(
0 0
0 MgL

)
.

The equations of motion are(
5M ML
ML ML2

)(
ẍ

θ̈

)
= −

(
0 0
0 MgL

)(
x
θ

)
.

(c) For θ = 0, we find from the equations of motion ẍ = 0, whose general solution is

x(t) = x0 + v0t .

The motion has a constant velocity v0.

(d) The normal frequencies ω are found from the roots of

det(V − ω2M) = 0 ,

or

det

(
−5Mω2 −MLω2

−MLω2 MgL−ML2ω2

)
= 0 .
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We find
5ω2(L2ω2 − gL)− L2ω4 = 0 ,

or
ω2(4ω2 − 5

g

L
) = 0 .

Thus, the two normal frequencies are

ω = 0,

√
5g

4L
.

The normal mode vectors ~a are the solutions of

(V − ω2M)~a = 0 ,

or (
−5ω2 −Lω2

−Lω2 gL− L2ω2

)
~a = 0 .

We can also find the normal modes by assuming a solution of the form(
x(t)
θ(t)

)
= Re(~aeiωt) .

(i) ω = 0 (
0 0
0 −gL

)(
ax
aθ

)
= 0,

so aθ = 0 and this solution simply corresponds to

~a =

(
x0
0

)
.

(ii) ω =
√

5g
4L (

25
4L

5
4

5
4

L
4

)(
ax
aθ

)
= 0,

so 5ax + Laθ = 0 and the solution is

~a = c

(
1
− 5
L

)
.

The general solution is a superposition of the two normal modes

x(t) = x0 + v0t+ A cos

√ 5g

4L
t− δ


θ(t) = − 5

L
A cos

√ 5g

4L
t− δ

 .

There are 4 undetermined real parameters: x0, v0, A and δ.
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Problem 3: Electromagnetism I

In the solution below we use SI units.

(a)

~E =
qr̂

4πε0r2
.

(b) We apply Gauss’s Law to a small pillbox across the surface of charge. The electric
field is perpendicular to the charged surface by symmetry arguments, so the electric flux
is

2AE = σA/ε0 .

We obtain

E =
1

2ε0
σ .

(c) The surface charge density of the disk is σ = Q/(πR2). We calculate the potential on
the symmetry axis for rings of radius ρ and width dρ and integrate ρ from 0 to R. The
distance to the point of observation on the z axis is

√
ρ2 + z2. We find

V (z) =
∫ R

0

σ

4πε0

2πρ dρ√
ρ2 + z2

=
σ

2ε0

√
ρ2 + z2

∣∣∣∣R
0

=
σ

2ε0

(√
z2 +R2 − z

)
.

The electric field is given by

E(z) = −dV

dz
=

σ

2ε0

(
1− z√

z2 +R2

)

(d) When z → 0, E → σ
2ε0

, just like the field of an infinite sheet of charge.

When z →∞, we have

E =
σ

2ε0

1− 1√
1 +R2/z2

 ∼ σ

2ε0

(
1− 1 +

1

2

R2

z2

)
=

σπR2

4πε0z2
=

Q

4πε0z2
,

the field of a point charge Q on the axis.

(e) Because of axial symmetry, the potential is independent of the azimuthal angle ϕ and
V = V (r, θ). The general solution of Laplace’s equation for axial symmetry in spherical
coordinates is

V (r, θ) =
∞∑
l=0

[
Alr

l +Blr
−(l+1)

]
Pl(cos θ) .
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For r → ∞, V → 0 and therefore all Al = 0. To determine Bl, we use as boundary
condition the potential V (r, θ = 0) calculated in part (c) along the symmetry axis θ = 0
for z = r. We have

V (r, θ = 0) =
σ

2ε0

[
r
(
1 +R2/r2

)1/2
− r

]
=
∑
l

Bl

rl+1
,

where we have used Pl(1) = 1. Using the binomial expansion

(1 + x)α =
∞∑
k=0

(
α
k

)
xk = 1 + αx+

α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + . . .

for x = (R/r)2, we find
σ

2ε0

∞∑
k=1

(
1/2

k

)
R2k

r2k−1
=
∞∑
l=0

Bl

rl+1
.

The above equation determines the coefficients Bl. The final result is

V (r, θ) =
σ

2ε0

∞∑
k=1

(
1/2

k

)
R2k

r2k−1
P2k−2(cos θ) .

(f) For z � R, a, the plane of disks looks like a plane with a uniform charge density
σ = Q/a2. The field at large distances is then

E =
1

2ε0

Q

a2

in the direction perpendicular to the plane.
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Problem 4: Electromagnetism II

In the solution below we use SI units.

(a)

f = ω/2π, λ = c/f or 2π/k; ~B = E0

c
ẑ cos(kx− ωt).

(b)

~E, ~B are perpendicular and in phase, and B = E/c for an electromagnetic wave. The
time average of cos2(ωt) is 1/2, so that

〈~S〉 =
E2

0

2cµ0

.

(c) The force exerted on the disk in the direction normal to its surface is given by the
total momentum per second transferred by the light in this direction. The momentum
transferred per unit area per second is pnc cos θ where pn = p cos θ is the component
of the momentum density of the wave along the normal to the disk surface. The total
momentum transfer per second to the absorbing disk is then

(pnc cos θ)(πr2) = (pc cos2 θ)(πr2) = (
1

c
S cos2 θ)(πr2) =

1

2c2µ0

E2
0πr

2 cos2 θ .

For the reflecting surface, the corresponding total momentum transfer is twice as much,
and thus the force is twice as large.

(d) The torque is given by the sum of ~r × ~F for all forces in the problem. The reflecting
mirror receives twice the force so the net torque is

τ =
1

2c2µ0

E2
0πr

2R cos2 θ

in the ẑ direction.

Taking an average over one full rotation in θ, 〈cos2 θ〉 = 1/2, and the average torque
is

〈τ〉 =
1

4c2µ0

E2
0πr

2R .

(e)

τ = Iθ̈, where I is the moment of inertia of the rod plus disks. In the limit R � r,
we have I = 2mR2.

We find

〈θ̈〉 =
1

8mRc2µ0

E2
0πr

2 .
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