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PLP 6404 Epidemiology  of Plant Diseases

Spring 2013

Lecture 11: Disease progress in time: simple models

EPI

Prof. Dr. Ariena van Bruggen
Emerging Pathogens Institute and 
Plant Pathology Department, IFAS
University of Florida at Gainesville

Overview

 Review of lecture 3 (disease progress curves)

 Linear and exponential growth of capital (simple 
interest and compound interest)

 The monomolecular equation

 The logistic equation

 The Gompertz equation

 Summary
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Review of lecture 3: progress curves

 The most commonly considered disease progress 
curves: 
 linear (rare and only early on)

 exponential (common in the beginning)

 saturation or monomolecular curve (common)

 logistic curve (common).

 Saturation in the monomolecular and logistic 
curves is caused by;
 a lack of healthy plant tissue

 unsuitable conditions for further infection in midseason. 
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Review: progress curves
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Review: progress curves

 The monomolecular curve is close to linear in the 
very beginning and then curves down; it is similar 
to a curve for an enzymatic reaction described by 
Michaelis-Menten or Monod

 The logistic curve consists first of an exponential 
phase, followed by a very brief linear phase at the 
inflection point and then a saturation phase. 
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Review: simple interest, linear growth

 If interest = 5% annually, the annual rate of 
increase r equals 0.05

 If interest is put in a drawer at the end of the year, 
the total capital grows at a constant rate over 
years

 Kt = K0 * (1+ r*t)   [N]

 The average growth rate is constant.

 dK / dt = r [N.T-1] 
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Review: compound interest, exponential growth

 If the interest is added to the capital annually, 
the interest earned will itself earn interest in 
subsequent years

 The growth of the capital accumulates stepwise 
at payment dates with compound interest

 Kt = K0 * (1+r)t [N]

 When the time unit is much smaller than a year

 Kt = K0 * e r.t [N]  

 e = base of natural logarithm (    2.7) 

 r = interest rate expressed as fraction
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Review: compound interest, exponentail growth

 The growth rate of the capital is:

 dK / dt = r*K   [N.T-1]

 Taking logarithms on both sides of the equal 
sign:

 loge Kt = r*t + loge K0 or loge Kt = loge K0 + rt

 Loge Kt – loge K0 = rt

 r = 1/t * loge Kt /K0 [T-1]

 r is relative growth rate = a constant
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Linear disease progress curves

 Instead of K0 and Kt as used by Zadoks when talking 
about growth of capital, other plant pathologists use Y0

and Yt for disease responses

 Linear equation:

 integrated form: y = y0 + r t

 differential form: dy/dt = r

 constant rate of disease increase
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Monomolecular disease progress curves

 Monomolecular equation:
 integrated form: y = 1- (1-y0) e –rt     

 linearized form: ln[1/(1-y)] = ln[1/(1-y0)] + r t

 differential form: dy/dt = r(1-y)

 The absolute rate of disease increase (dy/dt) is 
proportional to the amount of healthy tissue (1-y)
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Monomolecular equation calculations

 Calculate the values of y1, y2,  rm,  and t using a 
calculator

 Level of disease at time2, y2:

 ln [1/(1-y2)]  =  ln [1/(1 - y1)]  +  rm t

 The monomolecular rate, rm :
 rm =  {ln [1/(1-y2)]  - ln [1/(1-y1)]} / t

 The time interval, t :
 t = {ln [1/(1-y2)]  - ln [1/(1-y1)]} / r
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Exponential disease progress curve

 The exponentail equation (compound interest) is:
 yt =  y0 *  exp (r * t). 

 The “exp” in the equation is for “exponentiation”; the 
inverse is “natural logarithms” (to the base “e”; i.e.,  
2.71828); expressed as loge; or commonly as “ln”.
 integrated form: y = y0 e rt (e is base of natural log)

 linearized form: ln(y) = ln(y0) + r t

 differential form: dy/dt = r y

 absolute rate of disease increase is proportional to the 
amount of disease
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Exponential equation calculations

 Example exponential increase for 10 yr:
 yt =  y0 *  exp (r * t). 

 For y0 = 100, r = 0.10, and t = 10:
 yt = 100 * exp (0.10 * 10)  =  271.83

 Or 271.83 = 100 * exp (0.1*10)

 Log-transformed): ln (yt)  =  ln (y0) + r * t;
 ln (271.83) = ln (100) + 0.1 * 10

 5.60517 = 4.60517 + 1.0
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Exponential equation calculations

 Sometimes we know the beginning amount of disease and 
the amount at a later time, but we may not know the exact 
value of  “r”.

 For y0 = 100, r = 0.10, and t = 10:

 Solve the equation for r: 

 yt =  y0 *  exp (r * t) ->  ln (yt)  =  ln (y0) + r * t

 r =  [ln (yt) - ln (y0)] / t

 r =  [ln (271.83) - ln (100)] / 10

 r =  [5.60517 - 4.60517] / 10

 r =  0.10
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Logistic disease progress curve

 Start with the exponential growth curve, but

the healthy area may become more and more limited until the 
carrying capacity is reached

 Add the correction factor (1-y) for the limit of available host 
tissue to the exponential rate equation 

 The logistic rate equation: 

 dyt/dt =  r yt (1 - yt) 

 The logistic model equation: 

 yt = 1/ [1 + B exp (-r t)]   where B = (1-y0)/ y0

 The logistic transformation equation:    

 Yt =  ln [yt/(1-yt)].  
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Integrated logistic curve and derivative
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Comparison of exponential and logistic equations

 Exponential
 integrated form: 

y = y0 e rt

 linearized form: 
ln(y) = ln(y0) + r t

 differential form: 
dy/dt = r y
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 Logistic
 integrated form: 

 linearized form: 

ln[y/(1-y)] = ln[(y0/(1-y0)] + rt

 differential form: 

dy/dt = ry (1-y)

Logistic equation calculations

 The logistic transformation equation:    

 Yt =  ln [yt/(1-yt)]    is used to:

 calculate epidemic rates (r): 

 r =  [logit (y2) - logit (y1)] /(t2 - t1)

 predict future disease (y2):

 logit (y2)  =  logit (y1) + r (t2 - t1)

 estimate initial disease (y1):

 logit (y1)  =  logit (y2) - r (t2 - t1)

 determine the time interval (t) between disease levels:

 (t2 - t1) = [logit (y2) - logit (y1)] / r
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Logistic disease progress

 There is a limit to how fast an epidemic can go

 the latent period “p” sets the limit. 

 When p is short, r is usually fast; when p is long, r is usually slow.  

 The product of p* r is called the “explosiveness” of the epidemic. 

 The limits of p * r are in the range of 0.0 to 6.0
 Examples: p r p* r Result                        .

Late blight: 4 0.4 1.6 somewhat explosive

Bean rust 10 0.4 4.0 very explosive

Leaf spots 10 0.1 1.0 Not explosive

Wheat rust 10 0.6 6.0 Extremely explosive  .
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Gompertz disease progress curve

 Similar to the logistic curve, but assymmetric

 With a longer ‘tail’ than the logistic curve

 Mostly a better fit to real epidemic data than the logistic curve 

 The Gompertz rate equation (differentiated form): 

 dy/dt = ry [-ln(y)]

 The Gompertz model equation (integrated form): 

 .

 The Gompertz transformation equation:    

 Y = -ln [-ln(y)].
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Comparison of Gompertz and logistic curves

 Gompertz faster in the beginning and longer tail at the end

 The Gompertz rate curve is skewed to the left; the logistic 
rate curve is symmetric
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Comparison of logistic and Gompertz equations

 Gompertz
 integrated form:  

 linearized form:

-ln[-ln(y)] = -ln[-ln(y0)] + r t

 differential form: 

dy/dt = ry [-ln(y)]
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 Logistic
 integrated form: 

 linearized form: 

ln[y/(1-y)] = ln[(y0/(1-y0)] + rt

 differential form: 

dy/dt = ry (1-y)

Calculations with the Gompertz equation

 Epidemic rates for the Gompertz function are 
calculated with gompits, just like with logits.

 With logits (ln[y/(1-y)]) :

 rl = [logit (y2) – logit (y1)] / (t2 – t1).

 With gompits (-ln[-ln(y)]) :

 Rg = [gompit (y2) – gompit (y1)] / (t2 – t1).
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Summary

 Linear and exponential growth of capital (simple 
interest and compound interest)

 The monomolecular equation

 The logistic equation

 The Gompertz equation

 What are the characteristics of the curves?

 How do the equations differ?

 How do you calculate the epidemic rates?
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