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Lecture 11: Disease progress in time: simple models
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Overview

 Review of lecture 3 (disease progress curves)

 Linear and exponential growth of capital (simple 
interest and compound interest)

 The monomolecular equation

 The logistic equation

 The Gompertz equation

 Summary
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Review of lecture 3: progress curves

 The most commonly considered disease progress 
curves: 
 linear (rare and only early on)

 exponential (common in the beginning)

 saturation or monomolecular curve (common)

 logistic curve (common).

 Saturation in the monomolecular and logistic 
curves is caused by;
 a lack of healthy plant tissue

 unsuitable conditions for further infection in midseason. 
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Review: progress curves
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Review: progress curves

 The monomolecular curve is close to linear in the 
very beginning and then curves down; it is similar 
to a curve for an enzymatic reaction described by 
Michaelis-Menten or Monod

 The logistic curve consists first of an exponential 
phase, followed by a very brief linear phase at the 
inflection point and then a saturation phase. 
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Review: simple interest, linear growth

 If interest = 5% annually, the annual rate of 
increase r equals 0.05

 If interest is put in a drawer at the end of the year, 
the total capital grows at a constant rate over 
years

 Kt = K0 * (1+ r*t)   [N]

 The average growth rate is constant.

 dK / dt = r [N.T-1] 

EPI



2/9/2015

2

Review: compound interest, exponential growth

 If the interest is added to the capital annually, 
the interest earned will itself earn interest in 
subsequent years

 The growth of the capital accumulates stepwise 
at payment dates with compound interest

 Kt = K0 * (1+r)t [N]

 When the time unit is much smaller than a year

 Kt = K0 * e r.t [N]  

 e = base of natural logarithm (    2.7) 

 r = interest rate expressed as fraction
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Review: compound interest, exponentail growth

 The growth rate of the capital is:

 dK / dt = r*K   [N.T-1]

 Taking logarithms on both sides of the equal 
sign:

 loge Kt = r*t + loge K0 or loge Kt = loge K0 + rt

 Loge Kt – loge K0 = rt

 r = 1/t * loge Kt /K0 [T-1]

 r is relative growth rate = a constant
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Linear disease progress curves

 Instead of K0 and Kt as used by Zadoks when talking 
about growth of capital, other plant pathologists use Y0

and Yt for disease responses

 Linear equation:

 integrated form: y = y0 + r t

 differential form: dy/dt = r

 constant rate of disease increase
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Monomolecular disease progress curves

 Monomolecular equation:
 integrated form: y = 1- (1-y0) e –rt     

 linearized form: ln[1/(1-y)] = ln[1/(1-y0)] + r t

 differential form: dy/dt = r(1-y)

 The absolute rate of disease increase (dy/dt) is 
proportional to the amount of healthy tissue (1-y)
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Monomolecular equation calculations

 Calculate the values of y1, y2,  rm,  and t using a 
calculator

 Level of disease at time2, y2:

 ln [1/(1-y2)]  =  ln [1/(1 - y1)]  +  rm t

 The monomolecular rate, rm :
 rm =  {ln [1/(1-y2)]  - ln [1/(1-y1)]} / t

 The time interval, t :
 t = {ln [1/(1-y2)]  - ln [1/(1-y1)]} / r
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Exponential disease progress curve

 The exponentail equation (compound interest) is:
 yt =  y0 *  exp (r * t). 

 The “exp” in the equation is for “exponentiation”; the 
inverse is “natural logarithms” (to the base “e”; i.e.,  
2.71828); expressed as loge; or commonly as “ln”.
 integrated form: y = y0 e rt (e is base of natural log)

 linearized form: ln(y) = ln(y0) + r t

 differential form: dy/dt = r y

 absolute rate of disease increase is proportional to the 
amount of disease
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Exponential equation calculations

 Example exponential increase for 10 yr:
 yt =  y0 *  exp (r * t). 

 For y0 = 100, r = 0.10, and t = 10:
 yt = 100 * exp (0.10 * 10)  =  271.83

 Or 271.83 = 100 * exp (0.1*10)

 Log-transformed): ln (yt)  =  ln (y0) + r * t;
 ln (271.83) = ln (100) + 0.1 * 10

 5.60517 = 4.60517 + 1.0
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Exponential equation calculations

 Sometimes we know the beginning amount of disease and 
the amount at a later time, but we may not know the exact 
value of  “r”.

 For y0 = 100, r = 0.10, and t = 10:

 Solve the equation for r: 

 yt =  y0 *  exp (r * t) ->  ln (yt)  =  ln (y0) + r * t

 r =  [ln (yt) - ln (y0)] / t

 r =  [ln (271.83) - ln (100)] / 10

 r =  [5.60517 - 4.60517] / 10

 r =  0.10
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Logistic disease progress curve

 Start with the exponential growth curve, but

the healthy area may become more and more limited until the 
carrying capacity is reached

 Add the correction factor (1-y) for the limit of available host 
tissue to the exponential rate equation 

 The logistic rate equation: 

 dyt/dt =  r yt (1 - yt) 

 The logistic model equation: 

 yt = 1/ [1 + B exp (-r t)]   where B = (1-y0)/ y0

 The logistic transformation equation:    

 Yt =  ln [yt/(1-yt)].  
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Integrated logistic curve and derivative
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Comparison of exponential and logistic equations

 Exponential
 integrated form: 

y = y0 e rt

 linearized form: 
ln(y) = ln(y0) + r t

 differential form: 
dy/dt = r y
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 Logistic
 integrated form: 

 linearized form: 

ln[y/(1-y)] = ln[(y0/(1-y0)] + rt

 differential form: 

dy/dt = ry (1-y)

Logistic equation calculations

 The logistic transformation equation:    

 Yt =  ln [yt/(1-yt)]    is used to:

 calculate epidemic rates (r): 

 r =  [logit (y2) - logit (y1)] /(t2 - t1)

 predict future disease (y2):

 logit (y2)  =  logit (y1) + r (t2 - t1)

 estimate initial disease (y1):

 logit (y1)  =  logit (y2) - r (t2 - t1)

 determine the time interval (t) between disease levels:

 (t2 - t1) = [logit (y2) - logit (y1)] / r
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Logistic disease progress

 There is a limit to how fast an epidemic can go

 the latent period “p” sets the limit. 

 When p is short, r is usually fast; when p is long, r is usually slow.  

 The product of p* r is called the “explosiveness” of the epidemic. 

 The limits of p * r are in the range of 0.0 to 6.0
 Examples: p r p* r Result                        .

Late blight: 4 0.4 1.6 somewhat explosive

Bean rust 10 0.4 4.0 very explosive

Leaf spots 10 0.1 1.0 Not explosive

Wheat rust 10 0.6 6.0 Extremely explosive  .
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Gompertz disease progress curve

 Similar to the logistic curve, but assymmetric

 With a longer ‘tail’ than the logistic curve

 Mostly a better fit to real epidemic data than the logistic curve 

 The Gompertz rate equation (differentiated form): 

 dy/dt = ry [-ln(y)]

 The Gompertz model equation (integrated form): 

 .

 The Gompertz transformation equation:    

 Y = -ln [-ln(y)].
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Comparison of Gompertz and logistic curves

 Gompertz faster in the beginning and longer tail at the end

 The Gompertz rate curve is skewed to the left; the logistic 
rate curve is symmetric
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Comparison of logistic and Gompertz equations

 Gompertz
 integrated form:  

 linearized form:

-ln[-ln(y)] = -ln[-ln(y0)] + r t

 differential form: 

dy/dt = ry [-ln(y)]
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 Logistic
 integrated form: 

 linearized form: 

ln[y/(1-y)] = ln[(y0/(1-y0)] + rt

 differential form: 

dy/dt = ry (1-y)

Calculations with the Gompertz equation

 Epidemic rates for the Gompertz function are 
calculated with gompits, just like with logits.

 With logits (ln[y/(1-y)]) :

 rl = [logit (y2) – logit (y1)] / (t2 – t1).

 With gompits (-ln[-ln(y)]) :

 Rg = [gompit (y2) – gompit (y1)] / (t2 – t1).
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Summary

 Linear and exponential growth of capital (simple 
interest and compound interest)

 The monomolecular equation

 The logistic equation

 The Gompertz equation

 What are the characteristics of the curves?

 How do the equations differ?

 How do you calculate the epidemic rates?
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