PLP 6404 Epidemiology of Plant Diseases Spring 2013 Lecture 11: Disease progress in time: simple models

Prof. Dr. Ariena van Bruggen Emerging Pathogens Institute and Plant Pathology Department, IFAS University of Florida at Gainesville

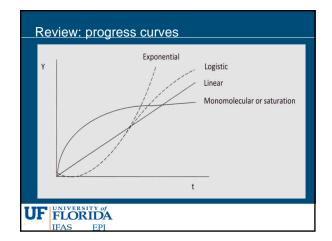
UNIVERSITY of FLORIDA

Overview

- Review of lecture 3 (disease progress curves)
- Linear and exponential growth of capital (simple interest and compound interest)
- The monomolecular equation
- The logistic equation
- The Gompertz equation

EPI

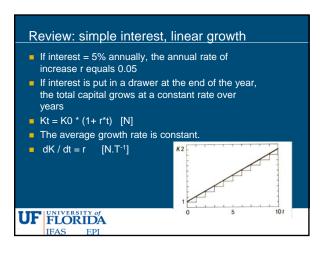
Summary


UF FLORIDA

IFAS

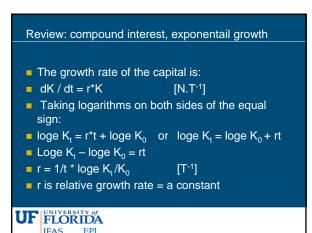
Review of lecture 3: progress curves

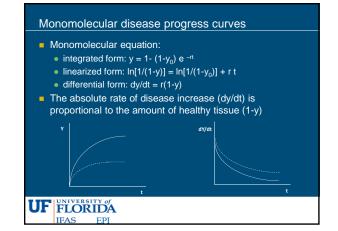
- The most commonly considered disease progress curves:
 - linear (rare and only early on)
 - exponential (common in the beginning)
 - saturation or monomolecular curve (common)
 - logistic curve (common).
- - a lack of healthy plant tissue
 - unsuitable conditions for further infection in midseason.


UNIVERSITY OF FLORIDA IFAS EPI

Review: progress curves

- The monomolecular curve is close to linear in the very beginning and then curves down; it is similar to a curve for an enzymatic reaction described by Michaelis-Menten or Monod
- The logistic curve consists first of an exponential phase, followed by a very brief linear phase at the inflection point and then a saturation phase.


UNIVERSITY OF FLORIDA IFAS EPI

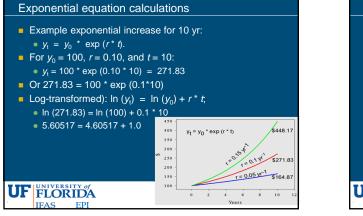

Review: compound interest, exponential growth

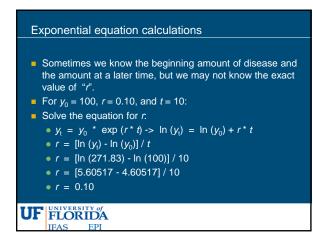
- If the interest is added to the capital annually, the interest earned will itself earn interest in subsequent years
- The growth of the capital accumulates stepwise at payment dates with compound interest
- Kt = K0 * (1+r)^t [N]
- When the time unit is much smaller than a year
- Kt = K0 * e ^{r.t} [N]
- e = base of natural logarithm (\sim 2.7) r = interest rate expressed as fraction

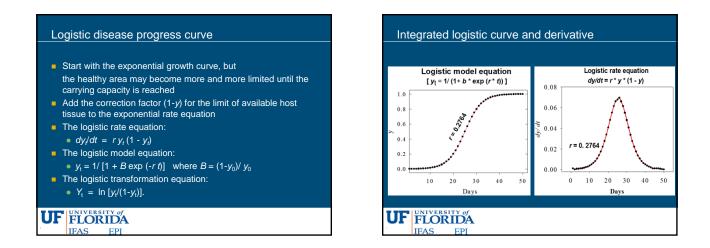
UF FLORIDA IFAS EPI

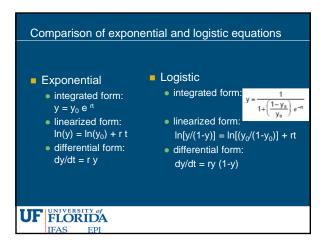
Linear disease progress curves Instead of K₀ and K_t as used by Zadoks when talking about growth of capital, other plant pathologists use Y₀ and Y_t for disease responses Linear equation: • integrated form: $y = y_0 + r t$ • differential form: dy/dt = r constant rate of disease increase dY/dt UF FLORIDA IFAS EPI

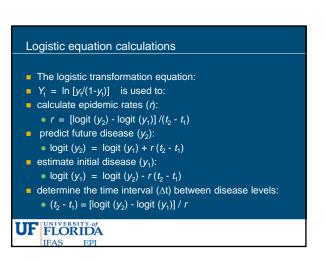
Monomolecular equation calculations

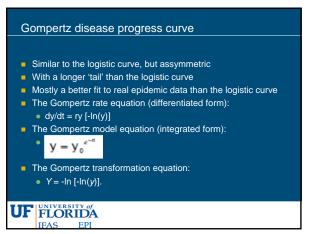

- Calculate the values of y_1 , y_2 , r_m , and Δt using a calculator
- Level of disease at time2, y_{2:} • $\ln [1/(1-y_2)] = \ln [1/(1-y_1)] + r_m \Delta t$
- The monomolecular rate, $r_{\rm m}$:
- $r_{\rm m} = \{ \ln [1/(1-y_2)] \ln [1/(1-y_1)] \} / \Delta t \}$ • The time interval, Δt :
- $\Delta t = \{ \ln [1/(1-y_2)] \ln [1/(1-y_1)] \} / r$

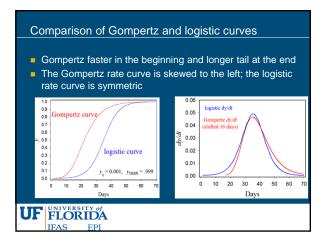

UF FLORIDA FAS EPI

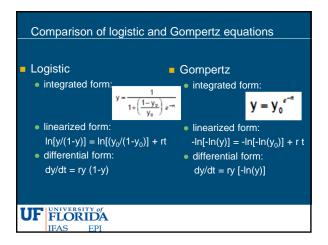

Exponential disease progress curve The exponentail equation (compound interest) is: • $y_t = y_0^* \exp(r^* t)$. The "exp" in the equation is for "exponentiation"; the inverse is "natural logarithms" (to the base "e"; i.e., 2.71828); expressed as log_e ; or commonly as "ln". • integrated form: $y = y_0 e^{rt}$ (e is base of natural log) • linearized form: $ln(y) = ln(y_0) + r t$ differential form: dy/dt = r y absolute rate of disease increase is proportional to the amount of disease UF FLORIDA


IFAS EPI


2







Logistic disease progress				
 There is a limit to how fast an epidemic can go the latent period "p" sets the limit. When p is short, r is usually fast; when p is long, r is usually slow. The product of p* r is called the "explosiveness" of the epidemic. The limits of p * r are in the range of 0.0 to 6.0 				
Examples:	р	r	p*r	Result .
Late blight:	4	0.4	1.6	somewhat explosive
Bean rust	10	0.4	4.0	very explosive
Leaf spots	10	0.1	1.0	Not explosive
Wheat rust	10	0.6	6.0	Extremely explosive .
UF FLORIDA IFAS EPI				

Calculations with the Gompertz equation

- Epidemic rates for the Gompertz function are calculated with gompits, just like with logits.
- With logits (ln[y/(1-y)]) :
- $r_1 = [\text{logit } (y_2) \text{logit } (y_1)] / (t_2 t_1).$
- With **gompits** (-ln[-ln(y)]) :
- $R_{g} = [\text{gompit } (y_{2}) \text{gompit } (y_{1})] / (t_{2} t_{1}).$

UF FLORIDA

IFAS EPI

Summary

- Linear and exponential growth of capital (simple interest and compound interest)
- The monomolecular equation
- The logistic equation
- The Gompertz equation
- What are the characteristics of the curves?
- How do the equations differ?
- How do you calculate the epidemic rates?

UF FLORIDA IFAS EPI