AVersiy,

FACULTY OF DIGITAL ENGINEERING @%E m
Computer Graphics Systems Group ?’%

o'a m

Real-Time Rendering Techniques for
Massive 3D Point Clouds

Echtzeit-Rendering-Techniken fiir massive 3D-Punktwolken

Dissertation
in partial fulfillment for the academic degree
“doctor rerum naturalium”
(Dr. rer. nat.)
in Computer Science

Hasso Plattner Institute // Faculty of Digital Engineering // University of Potsdam

submitted by
Soren Discher

Supervision:
Prof. Dr. Jirgen Déllner
Chair: Computer Graphics Systems

Potsdam,
December 6, 2022

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution — NonCommercial — ShareAlike 4.0 International.

This does not apply to quoted content and works based on other permissions.

To view a copy of this licence visit:
https://creativecommons.org/licenses/by-nc-sa/4.0

Supervisor and 1*' reviewer:
Prof. Dr. Jirgen Dollner
Hasso-Plattner-Institut/Universitidt Potsdam

2" reviewer:
Prof. Dr. Raffaele de Amicis
Oregon State University

3" reviewer:

Prof. Dr. Hartmut Asche
Hasso-Plattner-Institut/Universitét Potsdam

Date of final exam: 13.07.2023

Published online on the

Publication Server of the University of Potsdam:
https://doi.org/10.25932 /publishup-60164

https:/ /nbn-resolving.org/urn:nbn:de:kobv:517-opus4-601641

Abstract

Contents

Zusammenfassung

1

Introduction
1.1 Motivation and Goals
1.2 Intellectual Merit and Problem Statement

Foundations and Background

2.1 Terminology e

2.1.1
2.1.2
2.1.3

Point Clouds
Enriched Point Clouds
4D Point Clouds

2.2 Data Acquisition
2.3 Software Architectures for Enriched Point Clouds
2.4 Spatial Data Structures

24.1
2.4.2
2.4.3
244
2.4.5

Uniform Grids
Quadtrees
Octrees e
Kd-Trees
Multi-Layered Data Structures

2.5 Point Cloud Analytics Concepts

2.5.1
2.5.2

Pipeline Architecture.
Memory and Resource Management

2.6 Point Cloud Visualization Concepts

2.6.1
2.6.2

Interactive Visualization of Enriched Point Clouds
Immersive Visualization of Point Clouds using VR Technology

2.6.3 Web-Based Rendering of Enriched Point Clouds

Interactive Visualization of Enriched Point Clouds

3.1 Introduction

3.2 Visualization Concepts for Enriched Point Clouds

3.2.1

Point-Based Rendering Techniques

3.2.2 View-Dependent and Interactive See-Through Lenses

iii

vii

iv Contents
3.3 Out-of-Core Rendering and Image Compositing 36
3.3.1 Layered Multi-Resolution Kd-Tree 38
3.3.2 Layered Kd-Tree Rendering 40
3.3.3 Image Compositingo 41
3.4 Performance Evaluation and Results 43
3.5 Conclusions L 45
4 Immersive Visualization of Point Clouds using VR Technology 47
4.1 Introduction 47
4.2 Rendering Optimization Techniques 49
4.2.1 Performance Optimization 51
4.2.2 Image Optimization 52
4.3 Interaction and Locomotion Techniques 55
4.3.1 Interaction 56
4.3.2 Locomotion 59
4.4 Performance Evaluation and Usability 61
4.4.1 Rendering Performance 61
4.4.2 User Study Setup 62
443 User Study Results 64
4.5 Conclusions and Future Worko 67
5 Web-Based Rendering of Enriched Point Clouds 69
5.1 Introduction e 69
5.2 Requirements and Concepts 70
5.3 Rendering Engine Implementation 75
5.3.1 LoD and Data Subset Selection 75
5.3.2 Rendering and Image Compositing 77
5.3.3 Web-based Rendering 7
5.4 Performance Evaluation 79
5.4.1 Test Setupand Results 80
5.5 Conclusions and Future Work 83
6 Case Studies and Applications 85
6.1 Combined Visual Exploration of GPR Data and Point Clouds for Road
Environmentso 86
6.1.1 System Overview 87
6.1.2 Visualization Techniques 88
6.1.3 Evaluation 90
6.2 Web-Based Management and Monitoring of Large-Scale Urban Develop-
ment Projects Lo 92
6.2.1 First Case Study: Collaborative Interaction with Enriched Point
Clouds« . 93

6.2.2 Second Case Study 93

Contents

6.2.3 Third Case Studyo 95
7 Conclusions and Future Research 99
Acknowledgements 103
List of Publications 105

References 107

Abstract

Today, point clouds are among the most important categories of spatial data, as they
constitute digital 3D models of the as-is reality that can be created at unprecedented
speed and precision. However, their unique properties, i.e., lack of structure, order,
or connectivity information, necessitate specialized data structures and algorithms to
leverage their full precision. In particular, this holds true for the interactive visualization
of point clouds, which requires to balance hardware limitations regarding GPU memory
and bandwidth against a naturally high susceptibility to visual artifacts.

This thesis focuses on concepts, techniques, and implementations of robust, scalable,
and portable 3D visualization systems for massive point clouds. To that end, a number
of rendering, visualization, and interaction techniques are introduced, that extend several
basic strategies to decouple rendering efforts and data management: First, a novel
visualization technique that facilitates context-aware filtering, highlighting, and interac-
tion within point cloud depictions. Second, hardware-specific optimization techniques
that improve rendering performance and image quality in an increasingly diversified
hardware landscape. Third, natural and artificial locomotion techniques for nausea-free
exploration in the context of state-of-the-art virtual reality devices. Fourth, a framework
for web-based rendering that enables collaborative exploration of point clouds across
device ecosystems and facilitates the integration into established workflows and software
systems.

In cooperation with partners from industry and academia, the practicability and
robustness of the presented techniques are showcased via several case studies using
representative application scenarios and point cloud data sets. In summary, the work
shows that the interactive visualization of point clouds can be implemented by a multi-tier
software architecture with a number of domain-independent, generic system components
that rely on optimization strategies specific to large point clouds. It demonstrates
the feasibility of interactive, scalable point cloud visualization as a key component for
distributed IT solutions that operate with spatial digital twins, providing arguments in
favor of using point clouds as a universal type of spatial base data usable directly for
visualization purposes.

vii

Zusammenfassung

Punktwolken gehoren heute zu den wichtigsten Kategorien rdumlicher Daten, da sie
digitale 3D-Modelle der Ist-Realitéit darstellen, die mit beispielloser Geschwindigkeit
und Prézision erstellt werden konnen. IThre einzigartigen Eigenschaften, d.h. das Fehlen
von Struktur-, Ordnungs- oder Konnektivitatsinformationen, erfordern jedoch spezielle
Datenstrukturen und Algorithmen, um ihre volle Prézision zu nutzen. Insbesondere
gilt dies fiir die interaktive Visualisierung von Punktwolken, die es erfordert, Hard-
warebeschrankungen in Bezug auf GPU-Speicher und -Bandbreite mit einer naturgeméaf
hohen Anféalligkeit fiir visuelle Artefakte in Einklang zu bringen.

Diese Arbeit konzentriert sich auf Konzepte, Techniken und Implementierungen
von robusten, skalierbaren und portablen 3D-Visualisierungssystemen fiir massive Punk-
twolken. Zu diesem Zweck wird eine Reihe von Rendering-, Visualisierungs- und In-
teraktionstechniken vorgestellt, die mehrere grundlegende Strategien zur Entkopplung
von Rendering-Aufwand und Datenmanagement erweitern: Erstens eine neuartige Vi-
sualisierungstechnik, die kontextabhangiges Filtern, Hervorheben und Interaktion in-
nerhalb von Punktwolkendarstellungen erleichtert. Zweitens hardwarespezifische Opti-
mierungstechniken, welche die Rendering-Leistung und die Bildqualitit in einer immer
vielfaltigeren Hardware-Landschaft verbessern. Drittens natiirliche und kiinstliche Fort-
bewegungstechniken fiir eine ibelkeitsfreie Erkundung im Kontext moderner Virtual-
Reality-Gerite. Viertens ein Framework fiir webbasiertes Rendering, das die kollaborative
Erkundung von Punktwolken iiber Gerédtedkosysteme hinweg ermdglicht und die Integra-
tion in etablierte Workflows und Softwaresysteme erleichtert.

In Zusammenarbeit mit Partnern aus Industrie und Wissenschaft wird die Praxis-
tauglichkeit und Robustheit der vorgestellten Techniken anhand mehrerer Fallstudien
aufgezeigt, die repriasentative Anwendungsszenarien und Punktwolkendatensétze ver-
wenden. Zusammenfassend zeigt die Arbeit, dass die interaktive Visualisierung von
Punktwolken durch eine mehrstufige Softwarearchitektur mit einer Reihe von doméne-
nunabhéngigen, generischen Systemkomponenten realisiert werden kann, die auf Op-
timierungsstrategien beruhen, die speziell fiir grole Punktwolken geeignet sind. Sie
demonstriert die Machbarkeit einer interaktiven, skalierbaren Punktwolkenvisualisierung
als Schliisselkomponente fiir verteilte IT-Losungen, die mit rdumlichen digitalen Zwillin-
gen arbeiten, und liefert Argumente fiir die Verwendung von Punktwolken als universelle
Art von rdumlichen Basisdaten, die direkt fiir Visualisierungszwecke verwendet werden
koénnen.

ix

Chapter 1

Introduction

This chapter gives an overview of this thesis’ motivation and objective goals, the essence
of its technical contribution as well as the broader impacts the presented research is
expected to have —and already had— on the application domain.

1.1 Motivation and Goals

Technologies for capturing, processing, and visualizing spatial data are key for digitization
in a growing number of application areas as they provide means to quickly and accurately
create, modify, explore, and visualize digital 3D models of spatial objects, environments,
or phenomena. In particular, point clouds are among the most important categories of
spatial data, as they enable us, for example, to captured snapshots of the as-is reality
by a generic representation that consists of a discrete set of three-dimensional points.
Point clouds do not have structure, order, or connectivity information, so specialized data
structures and algorithms are necessary to use point clouds in applications, tools and
systems. For example, interactive visualization of point clouds must take into account
that graphics processors provide limited memory and bandwidth. A commonly applied
and proven strategy to nonetheless render massive data sets with billions of points
is the combined use of level-of-detail (LoD) representations and out-of-core rendering
algorithms. While rendering techniques implementing that strategy constitute a well-
covered research area [69, 141, 186, 66], considerably less research has been aimed at the
refinement of these basic rendering techniques into professionally usable 3D visualization
systems. In particular, there exists a gap in knowledge regarding three areas: First,
assisting users in conducting use case specific visualization and exploration tasks, e.g.,
by means of visual filtering and highlighting. Second, portability of interactive point
cloud visualizations across an ever-more diversified hardware landscape, e.g., by means of
hardware-specific render optimization strategies, interaction, and locomotion techniques.
Third, integration of point cloud visualizations into established workflows and software
systems, e.g., by enabling collaborative data access and manipulation via standardized
interfaces. While considerable advances have been made in these areas with respect to
mesh-based 3D models [58, 155, 177, 126], it remains largely unknown to what extent
those contributions may also be effectively applied to point clouds. As a remedy, 3D
meshes are still widely considered to be the more easily handleable, more flexible and,
thus, preferable representation of spatial data for visualization purposes. For example,

1

2 Chapter 1. Introduction

even current iterations of popular geographic information systems (GIS) often default
to using point clouds as input to derive generalized 3D meshes, rather than visualizing
them directly — especially for massive data sets containing billions of points. Thus, the
full potential and density of point clouds is rarely leveraged by established applications,
tools and systems in today’s market.

This thesis contributes towards the long-term goal of establishing point clouds as a
universal type of spatial base data usable directly for analysis and visualization purposes.
Concentrating on concepts, techniques and implementations for real-time rendering of
point clouds, it investigates how a number of strategies to control rendering efforts and
to optimize data management can be applied to achieve robust, scalable, and portable
3D visualization systems for massive point clouds. In particular, this thesis addresses the
aforementioned specific gaps in knowledge:

o It presents a new visualization technique for context-aware filtering, highlighting,
and interaction that incorporates thematic data layers such as temporal information
or surface categories derived via deep learning; this facilitates and speeds up a
number of common visualization and exploration tasks for point clouds.

e It introduces several optimization techniques improving rendering performance and
image quality; this is key to implement natural and artificial locomotion techniques
as part of immersive, nausea-free exploration using state-of-the-art Virtual Reality
(VR) devices.

o It presents a framework for web-based rendering that enables interactive visual-
ization of massive point clouds even on low-end mobile devices; this is key for I'T
solutions that build on service-oriented computing and that allow various stake-
holders to access and use applications based on point cloud data.

All contributions in this thesis have been evaluated against representative application
scenarios and point cloud data sets, showcasing their adaptability to changing require-
ments and how they scale with respect to the point cloud size. The results clearly indicate
the practicability and robustness of the presented techniques and provide arguments in
favor of establishing point clouds as a universal type of spatial base data usable directly
for visualization purposes. This is further underlined by several case studies conducted
together with partners from industry and academia that apply these techniques to build
specialized tools and applications addressing specific real-world use cases (see Chapter 6).

1.2 Intellectual Merit and Problem Statement

Precise and detailed digital 3D models of real-world objects, environments, and phenomena
have become highly relevant for a large variety of geospatial [53] and non-geospatial
application domains [189]. As an example, "3D digitization" [120] is commonly applied
to document and preserve cultural and natural heritage of any size, ranging from
individual artifacts [193] over sprawling building complexes [80] to entire landscapes [51].

1.2. Intellectual Merit and Problem Statement 3

Forming "a permanent record for current and future conservation, research and educational
purposes” [151], digital 3D models in this context allow users to explore and inspect
artifacts and sites they would not be able to access in person, e.g., due to ongoing
conservatory work or for political, legal, and safety reasons, while ensuring that "the
information of the shape and appearance of an object is not lost in case of damage" [68]. In
various industry sectors, such as the manufacturing, automotive industry or architecture,
digital 3D models of real-world buildings and infrastructures play a crucial role, serving as
base data to build digital twins [62]: Constituting "an integrated multiphysics, multiscale,
probabilistic simulation of a complex product, which functions to mirror the life of its
corresponding twin" [171], such digital twins are deemed "a key enabler for the digital
transformation” [87]. As an example, they may "support operators’ understanding and
decision-making" [122], enable "predictive maintenance for critical [automotive] sub-
systems" [97], or "assist researchers do experiments and testing of medicines in virtual
patients to reduce risks and costs" [92]. In the architecture, engineering, and construction
(AEC) industry, digital 3D models and digital twins alike can facilitate the design,
construction, operation, and maintenance of large-scale building and infrastructure
projects, for which typically a multitude of stakeholders needs to be coordinated [20]: In a
process commonly referred to as building information modeling (BIM), digital 3D models
are generated for all assets acquired over the lifetime of a project, including buildings and
built infrastructure (e.g., pipelines, railways) [33] as well as movable parts such as vehicles,
building interiors, or outdoor furniture [60]. Generated models are synchronized with a
database serving as a central repository, allowing stakeholders to easily browse, locate,
and monitor a project‘s inventory, thus "engendering collaboration" [100] and potentially
"improving design, construction and maintenance practices" [65]. Recent years have
seen this concept being adapted for other domains, such as facility management [169]
or cultural and natural heritage preservation [95]. On a larger scale, it can also be
applied to large-scale infrastructure networks, cities and metropolitan areas, or even
countries, rather than individual sites [192, 27]. Here, the primary focus is typically
on inventorying ground heights, buildings, vegetation, or city furniture (e.g., street
signs, lamp posts), possibly automated via AI technology as a means "to transcend
explicit geospatial modelling" [54]. In turn, the corresponding digital 3D models allow
us to facilitate and automatize applications in diverse areas such as land surveying
and landscape architecture [180], urban planning and development [26], environmental
monitoring [147], and disaster management [61].

Technological advances in in-situ and remote sensing technology have opened up
efficient ways to digitize real-world or built objects and sites by generating point clouds
that can be either used as is or further converted to 3D meshes [25] (Figure 1.1). Two
fundamental approaches are used to obtain point clouds: Light Detection and Ranging
(LiDAR)! [56] and a combination of high resolution imagery and photogrammetric
analyses [15]. Unlike approaches based on mesh-based or primitive-based 3D geometric
modeling, point cloud acquisition involves almost no manual postprocessing, that is,

!Sometimes also referred to as Laser Detection and Ranging (LADAR).

4 Chapter 1. Introduction

Figure 1.1: Surface reconstruction algorithms allow to derive 3D meshes even from noisy point
clouds. Figure has been taken from [25].

the raw data results from an automated process. As an example, state-of-the-art laser
scanners can capture several thousands of points per second [144], generating millimeter-
precise point clouds of individual sites, such as the "Teatro Olimpico" in Vicenza, Italy
with an approximated cubic volume of 7700m? [184], acquired within a few working
days [72]. Larger areas are covered by attaching the scanning device to a moving vehicle,
such as cars or unmanned aircraft systems (UAS), resulting in point clouds that contain
several billion points and terabytes of raw data [90, 98]. Due to its increased affordability
and effectiveness, communities worldwide have started to intensify the use of in-situ
and remote sensing technology by conducting scans more regularly (e.g., once a year)
and by combining different capturing methods (e.g., aerial laser scanning [106] and
mobile mapping [128]), thus, establishing point clouds "as the national core data for
geo-information" [176]. Similarly, 3D scanning technology is being integrated into an
ever-increasing number of consumer electronics such as video game consoles [74] or mobile
devices [45], which "lowers the entry barrier for both private users and industrial users to
digitize objects" [179].

Existing tools and applications are often limited in their ability to handle point
clouds, that - unlike 3D meshes - both inherently have some representational blur and
lack order or connectivity. Traditional analysis algorithms for geodata often struggle with
these properties as they commonly rely on explicitly defined connectivity information.
Existing rendering techniques for point clouds are often quite straightforward, for example,
applying a uniform pixel size and render style to each point and, therefore, are prone to
visual artifacts such as holes or visual clutter, which severely limits perception of structures,
interaction, and navigation [162] (Figure 1.2). As a remedy, existing applications and
systems (e.g., GIS) tend to utilize point clouds primarily as input data to derive more
easily handleable 3D meshes (e.g., 3D city models, 3D terrain models) [25], rather than
to operate on the point data directly. Depending on the use case, this may require a
time-consuming and only semi-automatic process that does not scale for massive data
sets, especially if precision, density, and data quality of the derived 3D meshes need
to be maximized. That issue is only aggravated by ever-improving scanning hardware
and novel, cheaper, and easier-to-use carrier systems, which will result in more massive
point clouds in the future. Thus, there is a strong demand to efficiently store, manage

1.2. Intellectual Merit and Problem Statement 5

Figure 1.2: Effect of different rendering techniques on the perception of structures within point
clouds depictions: Uniform pizel size and rendering style per point (left). Adaptive pizel size per
point and highlighted depth differences (right). Data courtesy of Ordnance Survey Ireland.

and process as well as interactively explore point clouds to take advantage of their full
potential and to provide an unfiltered, detailed representation of captured sites.

This thesis concentrates on rendering and interaction techniques for massively sized
point clouds that may contain an arbitrary number of additional data layers, e.g., per-point
color values or thematic information (see Section 2.1). The constraints and conditions
for those techniques include:

o Massive raw data needs to be processed (e.g., several terabytes), that typically
surpasses available main memory and GPU memory capacities by a wide margin.

e A number of additional data layers computed by pre-processing steps and analyses
needs to be considered by real-time rendering; for example, visual filters and
highlighting techniques are required for that reason.

e A broad range of hardware platforms with varying processing and graphics capabili-
ties need to be supported (e.g., low-end mobile devices, high-end desktop computers
and emerging VR devices), necessitating the need for different data management
approaches, rendering strategies, and interaction techniques.

Interactively visualizing massive data sets with billions of points requires to decouple
rendering efforts and data management. This can be achieved by subdividing point
clouds into small, representative subsets that are suitable for real-time rendering and that
can be selected dynamically, e.g., based on the current view and available memory [71,
156]. Traditionally, such out-of-core algorithms are designed for a specific use case and a

6 Chapter 1. Introduction

comparatively small group of users: GIS-like applications running on high-end desktop
computers with the complete data being directly accessible via local storage. Even in
current iterations of popular GIS (e.g., ESRI ArcGIS? or QGIS?) the underlying processing
paradigms are still largely built around this use case — not least to ensure compatibility
to older software versions. However, recent technological trends and breakthroughs have
established new ways to present and interact with point clouds, rendering traditional
desktop applications more and more outdated:

e Following the trend of device ecosystems, mobile devices, tablets, or web-based
applications are replacing the traditional high-end workstation. Their lack of local
storage necessitates web-based rendering techniques that enable streaming of the
required data from a central server. Combining out-of-core and web-based rendering
techniques for point clouds raises additional challenges (e.g., regarding network
traffic, data security, or load balancing) and has therefore become an active field of
research [98, 48] that is further discussed in Chapter 5.

o Recent years have seen the emergence of sophisticated VR devices (e.g., HTC Vive,
Oculus Rift), granting users the perception of being physically present within a
digital scene [133, 113, 19]. However, such immersive visualizations not only rely
on significantly higher frame rates than traditional non-immersive visualizations
to avoid feelings of motion sickness, they are also highly sensitive to any kind of
visual artifacts (e.g., stitching) that may break the immersion. Hence, additional
rendering techniques have to be designed, implemented, and evaluated that optimize
existing non-immersive rendering systems for massive point clouds with respect
to two conflicting goals: An improved visual quality of render artifacts and an
increased rendering performance. Likewise, specialized locomotion techniques need
to be provided and evaluated since navigating 3D virtual environments can easily
result in orientation loss or motion sickness. Details are discussed in Chapter 4.

Rendering performance and visual quality are just two aspects that need to be
considered when designing systems for the interactive exploration of point clouds: Users
of such systems are usually motivated by specific visualization or exploration tasks, e.g.,
identifying all newly constructed buildings within an area. If used to their full potential,
additional data layers (e.g., temporal information, thematic data) can notably speed up
such tasks. However, current rendering systems for point clouds rarely utilize such data
layers for more than straightforward gradients or classification-based color schemes [159,
140, 190]. Therefore, context-aware filtering, highlighting, and interaction techniques
that incorporate additional data layers to facilitate the recognition and inspection of
objects, semantics, and temporal changes within point cloud depictions are discussed in
Chapter 3.

2https ://www.esri.com/en-us/arcgis/about-arcgis/overview
3https://www.qgis.org/en/site/

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.qgis.org/en/site/

Chapter 2

Foundations and Background

This chapter provides a detailed overview of the research field, introducing and discussing
terminology and related work relevant to the subsequent chapters. The chapter is based
in parts on the author’s scientific publications in [2], [1], [3], [5], and [7].

The following sections are structured as follows: Relevant terminology for the
remainder of this work is defined in Section 2.1, followed by a short characterization of
different acquisition techniques in Section 2.2 In Section 2.3 the concept of a multi-tier
software architecture enabling the efficient management, processing, and visualization
of point clouds is introduced. This concept is followed up by Section 2.4, discussing
the advantages and disadvantages of common spatial data structures, and Section 2.5,
introducing a modular service-oriented processing pipeline based on out-of-core and GPU-
based processing to enable a seamless integration into existing workflows and systems.
Section 2.6 concludes with a discussion of the state-of-the-art regarding visualization and
interaction techniques for point clouds, in particular regarding immersive and web-based
visualizations.

2.1 Terminology

In the context of this thesis, the terms point cloud, enriched point cloud, and 4D
point cloud will be defined as detailed below.

2.1.1 Point Clouds

With the term point cloud, we refer in the following to an unstructured collection of
discrete points in a three-dimensional Euclidean Space. It is denoted by P = pg, p1, ..., pn
with points p € R3. The metaphor cloud draws the analogy between the unorganized
water particles in a cloud and the 3D points in a point cloud.

Point clouds, partially due to the acquisition technologies, are characterized by the
following properties:

e Simplicity: Point clouds exclusively rely on point sampling. They do not ensure a
specific density or a regular point distribution within the cloud. They do not model
nor reflect topological surface properties, which must be reconstructed if needed.

¢ Genericity: Point clouds can represent three-dimensional objects in a generic way
as they approximate the surface or boundaries by point samples.

7

8 Chapter 2. Foundations and Background

Figure 2.1: Point cloud of an engine room, representing millimeter-scale surface details.

Figure 2.2: Fusion of several point clouds representing different sites and objects within the
inner city of Landshut, Germany, at varying scales. Data was captured and provided by Elektra
Solar and Illustrated Architecture.

2.1. Terminology 9

¢ Density: The average distance between points, i.e., the density of a point cloud
can vary drastically, ranging from micrometers to several meters.

e Scalability: Point clouds apply to object scales, ranging from micrometer-scale
surface details [21] to plate-tectonic surface displacements [108, 119] (Figure 2.1,
Figure 2.2).

e Massiveness: Due to the scale in terms of number of points that typical acquisition
processes produce, point clouds can be considered as "big data", e.g., having millions
or billions of points in a single scan.

o Invariance: Point clouds are invariant regarding permutations. As they do not
define any order or structure among the points, the points are strictly unorganized.

Point clouds are increasingly becoming a universal, cross-application category of
spatial data and therefore form basic data for a growing number of geospatial [54] and
non-geospatial applications, systems, and services [183]. In the context of this thesis,
point clouds may be of arbitrary origin (e.g., acquired via mobile mapping, terrestrial,
or aerial acquisition campaigns), density, scale (e.g., representing individual objects up
to entire cities) and massiveness, representing a snapshot of the captured surface at a
specific point in time.

2.1.2 Enriched Point Clouds

With the term enriched point cloud we refer in the following to a point cloud that has
been enhanced with additional data layers, i.e., per-point attributes. Typical examples
of such data layers can be categorized as follows:

¢ Geometric Information: Data layers that characterize the relationship between
neighboring points. Common examples are scalar values describing the height
of a point in relation to points within its proximity as well as per-point normals
approximating the surface of the local point proximity [103].

e Graphical Information: Data layers that can be directly applied to change a
point’s graphical representation and stylization. In particular, this refers to color
or color-infrared values that have been extracted from images captured alongside
the point cloud.

e Surface Material Properties: Data layers that provide information about the
material properties of the surface represented by a point, e.g., the reflectivity of a
surface.

e Surface Category and Object Information: Data layers that categorize points
with respect to the type of surface represented by them. This may range from a
coarse categorization of points into building, ground, and vegetation [139] to highly
specific categories [125], e.g., different building parts or archetypes of vegetation.

10 Chapter 2. Foundations and Background

In some cases, points may even be assigned to individual objects that are part of a
surface category, e.g., individual trees [109].

e Thematic Information: Data layers that provide georeferenced thematic infor-
mation about a captured site (e.g., cadastre data, statistical information) or objects
within (e.g., sensor data) that has been projected on the point cloud.

Compared to point clouds without additional data layers, enriched point clouds
facilitate the design and implementation of task and domain-specific tools and applica-
tions [124, 115]. In the context of this thesis, the handling and visualization of enriched
point clouds will be the main focus.

2.1.3 4D Point Clouds

With the term 4D point cloud we refer in the following to data sets that combine
multiple point clouds of the same site or object, taken at different points in time. The
individual point clouds are typically enriched with additional data layers. In particular,
they contain time stamps, describing the date of data collection, as well as change
information, i.e., scalar values describing on a per-point basis the degree of change related
to a given reference point cloud.

2.2 Data Acquisition

Approaches for acquiring point clouds are manifold, whereby in general they allow us
to capture real-world objects. In particular, the surfaces of such objects are captured
at all scales, ranging from tiny surface details (e.g., varnish control) over small objects
(e.g., sorting fruits) to complete buildings, cities or even countries (e.g., environmental
monitoring). In literature, two different kinds of sensors are typically distinguished:

o Active sensors (e.g., LIDAR, radar, stripe projection systems), which emit electro-
magnetic radiation to directly measure the distance between surface and sensor,
generating so-called range data [57].

o Passive sensors (e.g., aerial cameras, digital cameras, hyperspectral radiometers),
which rely on natural radiation, most notably sunlight, to generate series of im-
ages [137] that may be used as input for dense image matching algorithms to derive
3D information [148].

Both, active and passive sensors, can capture individual objects with point densities
of up to a few micrometers [136, 23]. The resolution, in general, depends on the distance
between sensor and captured surface. On a larger scale, point clouds of rooms, buildings,
or facilities can be generated by capturing scenes at key positions within the site in
question [135]. By attaching the sensors to moving vehicles such as cars, trains, Unmanned
Aireraft Systems (UAS), planes, helicopters, or satellites, data for large-scale areas such

2.2. Data Acquisition 11

.- - -
. BB comter TUDif .7 Potiesseg

Figure 2.3: Nation-wide point cloud of the Netherlands. Figure has been taken from [98].

as infrastructure networks, cities, or countries can be efficiently collected (Figure 2.3),
albeit at reduced point densities [114].

Each acquisition approach comes with specific advantages and disadvantages, affect-
ing its suitability for different use cases (Table 2.1). In general, passive sensors tend to be
more affordable, portable, and easier to use than their active counterparts, as evidenced
by their frequent integration into state-of-the-art consumer electronics [84] and UAS.
Furthermore, image-based methods allow for potentially higher point densities, e.g., up
to 400 points/m? for aerial photographs as in contrast to typically 1-25 points/m? for
aerial laser scans [137]. However, the quality of the resulting point clouds is significantly
influenced by surface materials (e.g., shininess, texturedness) and image properties (e.g.,
shadows, color variety, depth of field). This can be especially noticeable when capturing
glassy surfaces, where range-based approaches tend to generate much cleaner point
clouds [137]. With respect to performance, passive sensors collect data faster; however, a
computation-intense post-processing of the generated images is required to compute 3D
points, whereas active sensors provide those directly [135]. Table 2.2 provides an overview
of several common acquisition systems and their specific characteristics regarding typical
point density and acquisition costs.

In practice, different acquisition systems are frequently used in parallel: Advanced
driver assistance systems, for example, combine several active and passive sensors to
observe a car’s immediate surroundings [89]. Similarly, digitization projects for cultural
heritage frequently involve stationary acquisition systems for close quarter sections as
well as mobile ones for open areas [63, 185]. The resulting data sets may cover large
areas while still preserving tiny details, amounting to hundreds of billions of points and
terabytes of raw data.

12 Chapter 2. Foundations and Background

Table 2.1: Typical scale of commonly used acquisition systems for point clouds.

Acquisition System ‘ Typical Scale
Airborne Laserscanning Infrastructure networks urban + rural areas
Aerial Photography Infrastructure networks, urban + rural areas
Mobile Mapping (rails, roads) Infrastructure networks, urban areas
UAS Buildings, facilities, infrastructure networks
Static Terrestrial Laserscanning Indoor scenes, buildings, facilities
Smartphone cameras / DSLRs Individual objects, indoor scenes, buildings
Depth Cameras Individual objects, indoor scenes
Stripe-projection Systems Individual objects, indoor scenes

Table 2.2: Typical density and costs of commonly used acquisition systems for point clouds.

Acquisition System ‘ Typical Density (pts/m?) ‘ Costs
Airborne Laserscanning 1-25 very high
Aerial Photography 25 - 400 high
Mobile Mapping (rails, roads) 200 - 1,400 medium
UAS 500 - 6,000 medium
Static Terrestrial Laserscanning 4,000 - 20,000 medium
Smartphone cameras / DSLRs 4,000 - 40,000 low
Depth Cameras 4,000 - 20,000 low
Stripe-projection Systems 100,000 - 400,000 low

2.3. Software Architectures for Enriched Point Clouds 13

Figure 2.4: Concept of a multi-tier software architecture providing functionality for data man-
agement, analytics, visualization, and end-user applications in the context of enriched point
clouds.

2.3 Software Architectures for Enriched Point Clouds

As outlined in Chapter 1, the improved affordability and robustness of state-of-the-art
in-situ and remote sensing technology have led to point clouds becoming an increasingly
relevant source of spatial information in corresponding application domains. However,
the use of point clouds as a central data source poses a challenge for any I'T system due
to their inherent complexity and size. Therefore, from a software engineering perspective,
multi-tier software architectures are required that should decouple the components for
data management and storage, processing and analysis, visualization and exploration,
and end-user applications. (Figure 2.4):

o Data Integration Layer: Includes components for the integration and quality
control of point clouds from heterogeneous data sources (e.g., active or passive
sensors, mobile or stationary acquisition systems) into a homogeneous spatial data
model featuring efficient data storage concepts. This encompasses (1) georeferencing
acquired data, i.e., associating each point with a concrete spatial location via well-
defined geodetic reference systems, (2) filtering noise and outliers as well as (3)
creating and updating spatial data structures that ensure an efficient access to
arbitrary data subsets during subsequent operations.

e Point Cloud Analytics Layer: Includes components for general-purpose pro-
cessing tasks (e.g., calculating per-point surface normals, mapping external color

14 Chapter 2. Foundations and Background

information onto a point cloud), domain-specific simulations as well as clustering,
classification, and feature derivation, frequently based on Artificial Intelligence
(AI) concepts such as Machine Learning (ML) or Deep Learning (DL) [54]. As a
prerequisite, such components may require additional data layers (i.e., geometric
or thematic information), which can be either calculated on a per-point basis or
queried from dedicated web services that are accessed via standardized protocols
such as Web Processing Services (WPS) [105] or Web Map Services (WMS) [88].
The size of point clouds requires implementations of high-performance computing
and parallel processing strategies, e.g., using spatial data structures provided by
the Data Integration layer.

e Point Cloud Visualization Layer: Includes components for interactively visu-
alizing point clouds, related geodata (e.g., digital terrain models of the area in
question), and analysis data; this layer should operate on various platforms, ranging
from low-end mobile devices over high end desktop computers to emerging VR
systems. Each platform differs with respect to available memory capacities and
graphics capabilities as well as requirements regarding visual quality and rendering
speed, necessitating the use of vastly different rendering strategies. Furthermore, to
facilitate the visual inspection of a point cloud‘s many data layers, semantics-driven
rendering and stylization techniques must be provided that highlight different
aspects of a data set.

e Point Cloud Application Layer: Includes components that combine functional-
ity provided by the underlying layers into end-user applications. Scope and target
audience of these applications may be vastly different, ranging from, e.g., extension
modules for traditional desktop-based GIS aimed at professionals [31, 47], over web
platforms facilitating the upload, storage and collaborative exploration of point
clouds [123, 124], to VR-based presentations of historical sites meant to educate
non-experts [116, 42]. Thus, the design and implementation of suitable interaction
techniques and user interfaces that are customized for the corresponding use cases
is a crucial aspect. Moreover, to facilitate their integration into existing workflows
and systems, well-documented and openly accessible interfaces and file formats
constitute a prerequisite for components of this layer.

The contributions provided by this thesis are related to the point cloud visualization
layer and the point cloud application layer. Efficient spatial data structures and processing
concepts, constitute the basis on which techniques of these layers operate and are therefore
briefly discussed in the following sections.

2.4 Spatial Data Structures

For any non-trivial processing, analysis, or visualization technique, it is necessary that
subsets of a point cloud can be spatially queried in a random and efficient manner.
The data structures necessary for this require pre-processing of the point cloud, but in

2.4. Spatial Data Structures 15

0000
0000
0-0-0-0
0-0-0-0

Simplified Data Structure

Figure 2.5: Uniform grids split a given space into a fized number of equally sized cells (or vozels),
without applying any LoD concepts. While they are easy to manage, they are inefficient when the
data density is non-uniformly distributed.

particular the construction of LoD representations to spatially subdivide and structure
the a priori unstructured points of the point cloud into smaller, more manageable subsets.
Of the many options, the following spatial data structures are most commonly used in
the context of point clouds:

2.4.1 Uniform Grids

A uniform grid is the simplest form of a spatial data structure [153, 13] as it simply
divides a given space into a fixed number of equally size grid cells (Figure 2.5). Individual
cells —or voxels in the case of a three-dimensional grid— are accessed via indices; LoD
concepts are not applied. Due to their simplicity, uniform grids can be expanded and
regressed very efficiently. However, varying point densities are not taken into account,
making this spatial data structure inefficient for non-uniformly distributed data, since
either a comparatively large number of cells would remain empty and essentially unused
or some cells would hoard an impractical massive amount of points.

2.4.2 Quadtrees

A quadtree is defined as a tree structure that recursively subdivides a two-dimensional
area into equally sized quadrants until a maximum number of points is reached for each
leaf [154]. Tts overall efficiency depends on the number of traversal operations needed
to locate and extract a point or group of neighboring points, which in turn is primarily
influenced by its balancedness. Thus, the tree depth should be as equal as possible across

16 Chapter 2. Foundations and Background

O- -0

O_ O\ O /O -O
o-|—0— ~ —™—o0—|-0
O- -0

Simplified Tree Structure

Figure 2.6: Quadtrees recursively subdivide a two-dimensional area into a number of equally
sized quadrants until the amount of details stored in each leaf reaches a predefined maximum.
They are most efficient if the data is primarily distributed non-uniformly along two coordinate
azxes.

all areas covered by the quadtree. As a remedy, quadtrees tend to be suited best in
scenarios where the data is primarily distributed horizontally, which is typically true for
aerial acquisitions (Figure 2.6). Even in scenarios with a less ideal point distribution
however, they still tend to outperform uniform grids in terms of look-up speed and
memory consumption as long as the point distribution is "somewhat" non-uniform. On
the other hand, spatial expansion and regression of a quadtree is drastically more complex
compared to uniform grids as such operations necessitate restructuring the whole tree
structure.

2.4.3 Octrees

In contrast to a quadtree, an octree [102] constitutes a recursive subdivision of a three-
dimensional space into equally sized octants (Figure 2.7). Again, the recursion stops once
a minimal number of points for each leaf of the tree structure is reached. If the data
is non-uniformly distributed both horizontally and vertically —as it is often the case
for terrestrial or mobile mapping acquisitions— octrees are typically more balanced and
thus more efficient to traverse than quadtrees. Otherwise however, many leaves will be
sparsely populated or even completely empty, resulting in an unnecessarily high memory
consumption. Finally, adding and removing points to and from an octree comes with
caveats similar to those known from quadtrees: Such changes can be conducted with
minimal effort unless the overall spatial bounds have to be expanded or regressed, which
would require to restructure the tree.

2.4. Spatial Data Structures 17

o- -0 |0
o- -0—|-0
O
-0 |0
-0 l-o

Simplified Tree Structure

Figure 2.7: Octrees recursively subdivide a three-dimensional space into a number of equally
sized octants until the amount of details stored in each leaf reaches a predefined maximum. They
are most efficient if the data is distributed non-uniformly along all three coordinate azes.

2.4.4 Kd-Trees

As a generalization of quadtrees and octrees, kd-trees organize points in a k-dimensional
space, allowing to create perfectly balanced tree structures independently of the data’s
spatial distribution [22]. Unlike quadtrees or octrees, kd-trees are binary, i.e., each inner
node is split into two rather than four and eight subsets, respectively. Splitting planes
applied during each iteration are not fixed but can instead be positioned freely alongside
the respective coordinate axis (Figure 2.8). While this minimizes tree traversal times
during data look-up, it also results in a significantly more complex construction and
update process compared to data structures based on fixed splitting planes. Thus, the
practical use of kd-trees is typically limited to static data sets that are not expected to
be updated frequently.

2.4.5 Multi-Layered Data Structures

None of the described spatial data structures should be seen as one fits all solutions.
On the contrary, many use cases stand to benefit from combining different approaches.
As an example, large parts of a city may be scanned at lengthy intervals, whereas
certain hotspots (e.g., active construction sites) need to be re-scanned and updated
frequently. Here, maintaining separate spatial data structures for each of those sites
that are combined into an overlaying uniform grid or a quadtree allows to integrate
locally constrained updates without intense reordering of the entire spatial data structure

18 Chapter 2. Foundations and Background

O — __0
—0—0—0_

Simplified Tree Structure

Figure 2.8: Kd-Trees recursively subdivide a k-dimensional space via flexible splitting planes,
that can be freely positioned alongside the coordinate axes. As a remedy, the resulting binary trees
are perfectly balanced.

Figure 2.9: In practice, many data sets benefit from so-called multi-layered approaches. Here,
several spatial data structures are combined that each organize different types of sites (e.g.,
quadtrees for plain, rural areas and kd-trees for more convoluted, urban areas.

2.5. Point Cloud Analytics Concepts 19

(Figure 2.9). Furthermore, multi-layered data structures may be used to organize points
based on multiple data layers. This will be further demonstrated in Chapter 3 by splitting
semantically enriched point clouds based on each point’s surface category (e.g., building,
vegetation); for each surface category a separate kd-tree is maintained.

2.5 Point Cloud Analytics Concepts

Data and use case specific operations and analyses on point clouds typically combine
several atomic processing tasks (e.g., determining a point’s closest neighbor or aggregating
attribute values within a point’s proximity) that can be executed independently on a
small area around each point [40, 30, 139, 142]. Therefore, the processing performance
can be significantly increased by applying parallel computing concepts, either based on a
CPU or a GPU. Furthermore, different processing tasks can be efficiently chained together
by interleaving them: Instead of executing each task one at a time for the complete data
set, processed subsets are immediately subjected to subsequent tasks. Since point clouds
commonly exceed available capacities of main or GPU memory, these parallel computing
concepts need to combined with out-of-core approaches that subdivide the overall data
set into sufficiently small subsets.

A practical example that combines parallel computing and out-of-core concepts
is the processing engine used and evaluated in Chapter 5: Here, a modular pipeline
architecture (Figure 2.10) is introduced. Complex analyses, comprising several basic
processing tasks, can be performed on arbitrary large data sets, making optimal use of
available hardware resources by parallelizing, interleaving, and distributing processing
tasks alongside corresponding data subsets between computing resources (e.g., different
servers in a distributed environment). Each analysis is described by a processing pipeline
that defines involved processing tasks and can be reconfigured and replaced at runtime.
Efficient retrieval of arbitrary subsets is achieved by means of a multi-layered hierarchical
subdivision: For each point cloud, a separate spatial data structure is generated that
best compliments the spatial distribution of the corresponding points (e.g., quadtrees for
airborne data sets, octrees or kd-trees for terrestrial data sets). In turn, those spatial
data structures are integrated into an overarching quadtree, allowing to efficiently answer
queries stretching across multiple point clouds.

2.5.1 Pipeline Architecture

The pipeline architecture developed as part of this thesis comprises two major components:
First, a resource manager, monitoring the memory and processing capacity of a system
and distributing them among currently executed processing tasks (Section 2.5.2); second,
a pipeline engine to configure and execute various pipelines plans, each of which defining
a specific combination of basic input, processing and output tasks. To be more precise, a
pipeline plan may contain the following elements (also referred to as pipeline nodes):

e Importers, i.e., pipeline nodes that import point clouds from any source such
as files, a point cloud database or external sources (e.g., web services). For each

20

Chapter 2. Foundations and Background

Figure 2.10: Overview of the pipeline architecture and pipeline elements.

data source and file format (e.g., LAS, E57) a separate importer is provided. Each
importer prepares data packages. If the input data exceeds the maximum data
package size, the importer prepares subsets by splitting the data.

Exporters, i.e., pipeline nodes that export processing and analysis results into
standardized formats for point clouds (e.g., LAS, E57), use-case specific LoD
representations and point cloud databases, or other common geodata formats (e.g.,
shape files, CityGML, GeoTIFFs).

Tasks, i.e., pipeline nodes that implement a specific processing or analysis algorithm.
Some algorithms operate on multiple data packages simultaneously (e.g., to compare
or to merge them). Similarly, algorithms may split incoming data sets or yield
multiple results (e.g., additional per-point attributes and corresponding shapes).
Hence, multiple incoming and outgoing connections may be defined per task.

Connections, i.e., links between two pipeline nodes for the transfer of data
packages. They define the order of execution. A given connection transfers only
packages of a specific type (e.g., point clouds or shapes). Depending on the pipeline
nodes being connected, various constraints may be defined, such as specific data
layers that are required.

Data Packages, i.e., data subsets that are transferred between pipeline nodes via
connections. Like connections, a given data package may only contain a specific
type of geodata. Also, the size of the corresponding data subset may not exceed a
specific maximum defined by the resource manager.

External services for geodata can be seamlessly integrated by implementing tasks and

2.5. Point Cloud Analytics Concepts 21

importers as interfaces. Vice versa, by adding exporters for specific external data formats,
the proposed pipeline architecture may be easily integrated into existing workflows and
systems. Pipeline plans are executed by the pipeline engine. Several pipeline plans can be
executed in parallel; every single one can also be dynamically started, paused, and stopped.
At runtime, each active pipeline node gets assigned its own set of resources by the resource
manager, responsible for monitoring and distributing memory and processing usage within
a system. Processed data packages are immediately transferred to subsequent pipeline
nodes. Pipeline nodes manage a queue of incoming data packages for each incoming
connection, whose size is restricted to a maximum number of data packages that can be
defined at runtime. If a queue reaches its maximum capacity, no additional data packages
are accepted and preceding nodes are not executed for the moment. To improve their
runtime performance, the most time-consuming pipeline nodes are executed in parallel
by adaptively assigning additional resources (e.g., CPU or GPU cores).

2.5.2 Memory and Resource Management

The resources of a system may be distributed across several network nodes, each featuring
different memory capacities (i.e., size of secondary storage, main memory, and GPU
memory) and computing capabilities (e.g., number and clock speed of CPU and GPU
cores, memory transfer rates). Network nodes and their resources are added to a global
resource pool that is monitored by the resource manager. Whenever a pipeline node
needs to be executed, the resource manager assigns resources based on available memory
and processing capabilities. After the execution is finished, all assigned resources are
released to the resource pool and become available for other pipeline nodes (Figure 2.10).
Distributing resources requires the resource manager to make a trade-off between several,
often contradicting optimization goals:

o Exclusivity. Exclusive access to a resource (e.g., storage or GPU) significantly
improves the runtime performance of a pipeline node (e.g., by minimizing cache
misses and seek times).

e Transfer Costs. Frequently transferring data packages via connections may
notably reduce the performance if subsequent pipeline nodes operate on different
network nodes. This can be avoided by executing them on the same network node.

e Parallelization. Executing pipeline nodes in parallel or interleaved is an essential
mechanism to improve the overall performance of the system. Thus, available
resources and network nodes should be shared among as many pipeline nodes as
possible.

The runtime of pipeline nodes may vary significantly depending on the corresponding
operation. Thus, an adaptive resource scheduling allows to manage bottlenecks: The
execution time is tracked for each pipeline node and the number of assigned resources is
adjusted dynamically, whenever necessary.

22 Chapter 2. Foundations and Background

2.6 Point Cloud Visualization Concepts

A general overview of point-based rendering is given by Gross and Pfister [71]. Several
rendering techniques aim for a photorealistic and, thus, solid visualization of point clouds
without holes in the surface [163, 194]. These techniques commonly represent points
as splats, i.e., oriented flat disks [28, 196, 14|, spheres, or particles. To visualize closed
surfaces, an adequate size and orientation must be applied to each point [85]. These
attributes can be calculated in a preprocessing step [188] or on a per-frame basis as
proposed by [127]. However, these techniques are often difficult to apply because of
varying point densities, e.g., on horizontal and vertical structures, as well as on fuzzy
and planar areas. In addition, it is difficult to combine these techniques with out-of-core
rendering techniques for point clouds because the point density varies depending on
the LoD. As an alternative that scales better for massive data sets, visual artifacts can
be eliminated via post-processing using image-based rendering techniques, e.g., to fill
holes [52, 146], to blur visual clutter [96], or to emphasize depth cues [29, 104].

Non-photorealistic rendering techniques for point clouds have been proposed by Goe-
sele et al. [67] and Xu et al. [191]. The silhouette highlighting technique of Xu et al was
extended and added to the set of rendering techniques used in the context of this thesis,
particularly Chapter 3. Olson et al. [110] show how the complete set of silhouette points
of a surface can be calculated instantly. However, that information comes with the cost
of an additional preprocessing step.

Out-of-core rendering systems for point clouds have been presented in detail by
several authors [66, 186, 141, 69]. These systems use LoD data structures that aggregate
or generalize points solely based on spatial attributes. This is not applicable for the
overall purpose discussed in this thesis since points need to be separated according to
their various data layers at any time during rendering to apply context-aware rendering
techniques as well as to render only points with specific information, e.g., selected surface
categories.

In the following subsections related work specific to Chapters 3, 4, and 5 is discussed.

2.6.1 Interactive Visualization of Enriched Point Clouds

Surface category information is commonly used to extract mesh-based 3D models [195],
e.g., vegetation, building, or terrain models. However, surface categories are rarely used to
enhance the visual quality of a point cloud directly - aside from adapting the colorization
of the points. A more advanced rendering approach that does take surface categories into
account was presented by Gao et al. [64]. They aim for a solid, hole-free visualization of
airborne laser scans by resampling terrain segments and by applying a solid rendering
style. The purpose of this approach is quite similar to the one presented in Chapter 3.
However, the approach presented here supports a larger variety of rendering styles that
may be applied to arbitrary surface categories at runtime.
Interactive occlusion management techniques for virtual 3D environments —conceptually

similar to the ones applied to point cloud depictions in Chapter 3— have been widely

2.6. Point Cloud Visualization Concepts 23

discussed for years. However, the focus typically lies on mesh-based 3D models instead of
point-based rendering. Elmqvist and Tsigas [58] differentiate three primary purposes for
these techniques: (1) the discovery of yet unknown, occluded objects, (2) the exploration
of occluded objects whose position has been known beforehand, and (3) the exploration
of an occluded object’s spatial relationship to its environment. Since all these purposes
are important when exploring enriched point clouds, Chapter 3 introduces techniques
addressing all of them. Elmqvist and Tsigas [58] identify five distinct categories of
occlusion management techniques: Tour planner based approaches [18, 37] calculate
special camera paths through an environment, ensuring that every significant object is
visible at least once while following these paths. Some approaches use multiple views
of an environment in parallel. The different views are either rendered into separate
viewports [77, 34] or combined into one by applying multi-perspective projections [118,
35]. Volumetric probes stay with a single view for an environment. Instead, they deform
objects (e.g., by manipulating their proportions) within a certain area that is often
defined by the user [182, 168].

The see-through lenses for enriched point clouds proposed in Chapter 3 belong to
the category of wirtual z-rays. These techniques leave object proportions intact and
usually operate in screen space, either masking out occluders completely or making them
(semi-)transparent. They can be either active, i.e., requiring user input to define the areas
they should be applied to [173, 145], or passive, i.e., finding suitable areas automatically
based on available information about the objects within a virtual environment [175, 164].
By choosing to adapt the concept of visual x-rays, users are able to freely navigate the
point cloud (which wouldn’t be the case for tour planner based approaches) without
having to manipulate or deform the data (which would be the case for volumetric probes).
Moreover, the idea to combine multiple views was rejected, as this would interfere with
existing out-of-core rendering techniques for point clouds.

2.6.2 Immersive Visualization of Point Clouds using VR Technology

Regardless of the type of rendered geometry, real-time rendering is based on performance
optimization techniques, that reduce and simplify the geometry needing to be processed by
the different stages of the rendering pipeline [12]. However, while techniques such as view
frustum culling and detail culling can be easily applied to point clouds, occlusion, backface,
and portal culling are designed with mesh-based geometry and closed surfaces in mind.
Due to the unstructured nature of point clouds those techniques require adaptation before
being applicable to point-based rendering. The rendering system presented in Chapter 4
implements occlusion culling based on the reverse painter’s algorithm [78]. Backface
and portal culling were not adapted, as both techniques require specific knowledge or
preprocessed additional data layers about a point cloud (e.g., per-point normals, surface
categories) that might not always be available. Performance optimization techniques
specifically for VR applications have been discussed by Vlachos [177]. Some of those
techniques, such as the hidden mesh or the single-pass stereo rendering, are implemented
and evaluated by the rendering approach presented in Chapter 4.

24 Chapter 2. Foundations and Background

Visual optimization techniques for point clouds primarily encompasses reduction
of visual clutter and holes between neighboring points. Corresponding photorealistic
rendering techniques for point clouds have already been discussed at the beginning of
this chapter. However, several of these techniques introduce a noticeable performance
hit and are thus not usable in the context of VR applications. Specifically for VR
applications Schiitz [160] introduces instead the usage of point cloud mipmaps as well as
multisampling for a reduction of z-fighting and softer edges, which is evaluated in detail
in Chapter 4.

Locomotion and interaction in virtual environments has been discussed by several
authors. Studies from Wloka and Greenfield [187] and Sarupuri et al. [155] have shown
that siz-degrees-of-freedom (6DOF) input devices are preferred over more traditional
devices such as keyboards, gamepads, or haptic gloves. Objects that can be both seen and
touched reinforced the user’s sense of presence while locomotion based on the 6DOF input
device was much less likely to induce nausea. Walking-in-Place (WIP) as a technique
for locomotion was introduced by Slater et al. [165]. User studies comparing WIP to
joystick flying and real walking [166, 174] showed that techniques resembling walking in
the real world gave the participants a stronger feeling of presence and less discomfort
than artificial locomotion. To utilize this finding and cope with the challenge of virtual
space being indefinitely bigger than physical space, Redirected Walking (RDW), originally
proposed by Razzaque et al. [131], alters the user’s path by slightly rotating the virtual
world to keep the user within the available physical space. Studies [132, 130] have
demonstrated that RDW can be effective while being unnoticeable by participants. This
concept has been augmented in the past years. Chen et al. [41] proposed an algorithm to
redirect the user through irregularly shaped environments with dynamic obstacles while
Sun et al. [170] demonstrated that saccadic suppression and the subsequent temporary
blindness can be used to increase the rotation gains without the user noticing. The Point
€ Teleport (P&T) locomotion technique was proposed and evaluated by Bozgeyikli et al.
[32]. In an experiment with WIP and joystick flying, they found P&T an intuitive, easy
to use, and fun technique, though not more immersive or less prone to induce nausea as
the other two. Still, the participants rated it as their preferred technique.

2.6.3 Web-Based Rendering of Enriched Point Clouds

Point-based rendering approaches that combine out-of-core and web-based rendering
concepts to enable the visualization of point clouds across device ecosystems [143] have
become increasingly popular in recent years.

With Potree, Schiitz and Wimmer [159] propose a thick client approach for arbitrary
large data sets, which is adapted by Martinez-Rubi et al. [98] to interactively present a
massive data set of the Netherlands. An alternative thick client renderer for point clouds
named Plasio was introduced by Butler et al. [38]: Using open-source libraries such as
Entwine and Greyhound massive data sets can be streamed interactively. GVLiDAR [50]
and VILMA [49] constitute thick client rendering approaches that focus on geospatial
analysis and measurement tools. While all four frameworks provide effective interaction

2.6. Point Cloud Visualization Concepts 25

and inspection techniques specifically for point clouds, they offer only minimal support
to integrate additional, context-providing geodata (e.g., shapes, 2D maps). The Cesium !
framework on the other hand aims to provide a generalized thick client rendering solution
for arbitrary types of geodata (e.g., point clouds, 3D meshes, 2D maps). The approach
presented in Chapter 5 is in parts based on that framework, expanding it by several
context-aware rendering techniques and a set of interaction techniques for the collaborative
inspection of enriched point clouds (e.g., to share, query, and annotate).

In addition, the presented approach also provides a thin client renderer, allowing to
optionally reduce the performance impact on client-side by delegating the rendering to the
server side. Compared to the aforementioned frameworks, it can thus adapt to a broader
range of computing and graphics capabilities on client side. Similar approaches have
been successfully implemented in the past [75, 43, 55] but typically focus on mesh-based
geometry rather than point clouds. To generate stereoscopic panoramas the theoretical
concepts described by Peleg et al. [121] were implemented by means of modern 3D
computer graphics.

Systems for the efficient management of enriched point clouds have been recently
presented and evaluated by several publications [44, 112, 124]. However, those contri-
butions focus on the efficient storage, retrieval, and processing of the stored data sets.
Less emphasis is put on the collaborative exploration, inspection and manipulation of
the stored data sets.

"https://cesiumjs.org

https://cesiumjs.org

Chapter 3
Interactive Visualization of Enriched
Point Clouds

In this chapter, rendering and interaction techniques are presented and evaluated that
take advantage of additional data layers (e.g., surface categories), thus facilitating the
exploration and inspection of enriched point clouds, even for large-scale data sets. The
chapter is based in parts on the author’s scientific publications in [5] and [7].

The following sections are structured as follows: Section 3.1 further motivates this
chapter and gives a more detailed introduction. Point-based rendering techniques that
incorporate additional data layers as well as interactive and view-dependent see-through
lenses are presented in Section 3.2, highlighting their specific advantages and disadvantages
in different scenarios. Section 3.3 focuses on the implementation, introducing (1) a multi-
pass rendering approach allowing to dynamically combine and configure these different
rendering techniques as well as (2) an out-of-core rendering approach based on a layered,
multi-resolution kd-tree. As shown in Section 3.4, this allows to provide interactive frame
rates. Section 3.5 gives conclusions and outlines future research directions.

3.1 Introduction

The interactive exploration, inspection, and presentation of enriched point clouds is
an essential functionality for an ever-growing number of geospatial and non-geospatial
applications, as it enables their visual inspection, facilitates their interpretation, and
provides an interface to perform analyses. While standard rendering systems for point
clouds enable an interactive exploration of arbitrary large data sets by using fitting spatial
data structures and LoD concepts [66, 186, 141, 69], these systems generally render all
points in a uniform way, which complicates the visual identification and categorization
of objects and structures by the user: For example, if points are rendered by the point
primitives of the underlying rendering system (e.g., OpenGL’s GL_ POINTS) they are
not scaled according to the camera distance, thus, making it difficult to correctly estimate
depth differences and leading to visual artifacts due to overlapping of points close to each
other. Furthermore, point clouds may exhibit stark differences in local point density by
nature of the capturing process, i.e., based on the distance of the captured surface to the
scanning device, the scanning angle, and possibly occlusions. Sometimes, reduced local
point densities can even be pinpointed to specific surface categories, such as building

27

28 Chapter 3. Interactive Visualization of Enriched Point Clouds

Figure 3.1: Left: Example of a point cloud rendered in a uniform way by GL__POINTS primitives
and textured by aerial photography. Right: Same scene rendered by a thematically enriched
rendering technique: Different surface categories can be better distinguished, holes on facades are
filled, and visual clutter in the background is reduced.

facades or water surfaces within airborne laser scans. Standard rendering, therefore, leads
to gaps between neighboring points in some areas, which complicates their perception as
a continuous surface (Figure 3.1).

In more general terms, common rendering systems do not include additional data
layers into their rendering strategy as a criterion, and therefore tend to give an equal
amount of significance to every point. However, the relevance of a point in the context
of spatial information often depends on additional data layers (e.g., timestamp, surface
category, RGB photographic color, spatial position) as well as the current visualization
or exploration task. In this chapter, we focus on the following use cases:

¢ Point Clouds from Different Acquisition Techniques. Spatial data for a site
may result from different surveys such as an airborne, mobile mapping, terrestrial,
outdoor and indoor data acquisition. On a broader scale, point clouds can consist
of overground as well as subterranean structures (e.g., mine shafts, sewers). By
allowing users to see through occluding structures (i.e., by masking out correspond-
ing points in front of the others) an in-depth exploration of such point clouds can
be facilitated (Figure 3.2).

e 4D Point Clouds. Many applications include repetitive scans and simultaneous
use of point clouds captured at different points in time. To assist users in exploring
spatial differences such as structural changes of the captured site over time (e.g.,
constructed, demolished, or modified buildings), points indicating such changes
should be highlighted (Figure 3.3).

e Classification-dependent Rendering. Typically, points represent different sur-
face categories (e.g., ground, building, vegetation, water, city furniture). Standard
rendering does not take into account characteristics of these surface categories (e.g.,
fuzziness of vegetation, smooth ground surfaces or planar building roofs). For that
reason, it limits the visual perception of such categories as well as the identification
of individual objects (e.g., individual trees and buildings) and relations between

3.1. Introduction 29

Figure 3.2: Fxample of a point cloud consisting of indoor and outdoor scans. It is explored with
a see-through lens to inspect the occluded interior of the building in the context of the overall scan.

them. Furthermore, relevant objects might not be visible at all due to occlusion
by less relevant objects (e.g., buildings below vegetation), necessitating rendering
techniques to mask out less relevant points in such occlusion events (Figure 3.4).

The visualization of enriched point clouds can be improved by taking into account
additional data layers that further characterize the surface represented by a point. These
data layers can be derived from external data sources (e.g., aerial images, thematic
maps) or computed by point cloud analysis approaches [94, 39, 139] that typically
analyze geometric relationships between points such as connectivity, local flatness, normal
distribution, and orientation. In the following sections, a novel rendering approach is
presented that uses available data layers, such as timestamps, surface categories, thematic
and geometric information, to adapt the appearance of each point, i.e., its color, size,
orientation, and shape. Different photorealistic, non-photorealistic, and solid point-based
rendering techniques matching different surface characteristics are selected on a per-point
basis. The different rendering techniques can be configured at runtime according to the
visualization or exploration task. To filter points based on their relevance to the given
task, see-through lenses for enriched point clouds are defined as follows:

e A see-through lens defines a space within a point cloud, in which points of higher
relevance are emphasized by masking out less relevant points completely or in parts.

e The area of a see-through lens can be defined interactively by the user or auto-
matically with respect to the current view position (e.g., center of the screen), i.e.,
view-dependent.

30 Chapter 3. Interactive Visualization of Enriched Point Clouds

Figure 3.3: 4D point cloud enriched with surface category information: Points representing
buildings that are not present in the earlier scan (upper left) but captured in the new scan (lower
right) are highlighted with a red color scheme and by tracing their boundaries.

Figure 3.4: Enriched point cloud with surface category information: Points representing vegeta-
tion are masked out in the lower right part to show hidden building parts.

3.2. Visualization Concepts for Enriched Point Clouds 31

In this chapter several interactive and view-dependent see-through lenses for enriched
point clouds are introduced. Interactive visualization of point clouds, that exceed available
memory resources and rendering capabilities, is achieved by storing points in a layered,
multi-resolution kd-tree providing a surface category specific subdivision of the data.

3.2 Visualization Concepts for Enriched Point Clouds

In the context of this chapter, we focus on enriched point clouds and 4D point clouds
containing the following data layers:

e Geometric Information: Surface normals approximate the surface of the local
point proximity. They can be computed efficiently by analyzing the local neighbor-
hood of a point [103] and are used to orientate the point primitive according to the
represented surface.

The horizontality indicates how vertical the surface normal of a point is oriented,
i.e., points representing horizontal surfaces (e.g., flat building roofs) feature higher
values than points on vertical surfaces (e.g., building facades) [195]. It can be
used for a colorization to accentuate detailed and geometrically complex object
structures (e.g., roof elements).

The local height describes the height of a point in relation to all points belonging
to the same surface category in the point’s proximity. Using local heights for a
colorization allows to highlight edges and differences in the structure of an object,
e.g., roof ridges and smokestacks.

The global height describes the height of a point in relation to all other points that
belong to the same surface category. Colorizing points based on their global height
emphasizes height differences for different objects belonging to the same surface
category (e.g., trees with different heights).

e Graphical Information: Color or color-infrared values can be extracted from
aerial images, ideally captured at the same point in time as the 3D point cloud.
These values are generally used for a colorization, e.g., when a photorealistic and
natural appearance of the points is required.

e Surface Category and Object Information: A basic categorization of points
into indoor, outdoor, overground, subterranean, airborne, or terrestrial can be made
directly during the capturing process. A more specific categorization into surface
categories such as building, ground, and vegetation can be derived with point
cloud classification approaches that are based on analyzing topological attributes or
additional geodata capturing the same surface area (e.g., infrastructure maps) [139].

e Thematic Information: Time stamps describe the date of data collection.

Change information describes on a per-point basis the degree of change related to
a given reference geometry. That reference geometry might be another 3D point

32 Chapter 3. Interactive Visualization of Enriched Point Clouds

cloud captured at a different point in time or a 3D mesh representing the same
surface area, e.g., building model, cadastre data, 3D city model.

While the rendering techniques presented in this chapter have been implemented
with these specific data layers in mind, they may also be used analogously in combination
with other data layers, as long as those are available on a per-point basis.

3.2.1 Point-Based Rendering Techniques

All aforementioned data layers can be used to adapt the appearance of a point, i.e.,
its color, size, orientation and shape, at runtime. The color of a point can be chosen
based on its color attributes, surface category, topologic information (i.e., surface normal,
horizontality, global, or local height), temporal or change information, or a combination of
these. The orientation of a point can either correspond to its surface normal, the current
view direction or a defined uniform vector. In addition, size and shape type of a point can
be set dependent on its surface category. Regarding the shape type, different rendering
techniques may be applied, each coming with different strengths and weaknesses:

Default Point Primitives

To efficiently render 3D point clouds, the Graphics Processing Unit (GPU) supports point
primitives, such as GL__POINTS in OpenGL. However, these primitives have a fixed size
in pixels (e.g., Figure 3.5 (a) uses a size of three pixel), i.e., their size in object space varies
according to their perspective depth. Depending on the view position, undersampling,
i.e., holes between neighboring points (Figure 3.5 (a) - bottom), or oversampling, i.e.,
visual clutter due to overlapping points (Figure 3.5 (a) - top), occurs.

Point Splats

To avoid undersampling and oversampling due to changing view positions, the point
splats technique renders each point as an opaque disk defined in object space that can be
oriented alongside the surface normal [150, 28]. The on-screen size depends on the current
view position and angle, ensuring a perspective correct visualization (Figure 3.5 (a—f, 1)).
However, the perception of depth differences between overlapping points that are colored
homogeneously (e.g., points belonging to the same surface category), is generally limited.

Point Spheres

This point-based rendering technique emphasizes the three-dimensional character of a
point. The proposed point spheres extend the original splat concept by rendering points
as hemispheres instead of flat disks that are always facing the view position and, thus,
look like spheres [150]. These hemispheres are created by (1) adding an offset to each
depth value of the rendered fragment and by (2) shading each fragment. The depth
offset as well as the shading color can be determined by projecting the fragment onto a
plane defined by the corresponding splat and by calculating the projected distance of

3.2. Visualization Concepts for Enriched Point Clouds 33

(a) Point Splats; aerial image colors. (b) Point Splats; aerial image colors. (c) Point Splats; aerial image colors.

(d) Points Splats; global height. (e) Point Splats; aerial image colors and (f) Point Splats; global height.
surface category information.

(g) Point Spheres; local height. (h) Silhouette Rendering; horizontality. (i) Point Splats; surface category
information.

(j) Silhouette Rendering; local height. (k) Solid Rendering; horizontality. (1) Silhouette Rendering; global height.

Figure 3.5: Ezamples of enriched point clouds rendered with different rendering setups for
different surface categories: Vegetation (left), buildings (middle), and terrain (right).

34 Chapter 3. Interactive Visualization of Enriched Point Clouds

the fragment to the center of the splat. Point spheres are well suited for non-planar and
fuzzy surfaces, such as vegetation (Figure 3.5 (g)).

Silhouette Rendering

Point-based silhouettes highlight and abstract silhouettes and distinctive surface structures
(e.g., depth differences). This technique extends the splat rendering approach and was
originally proposed by [191]. Similar to the rendering of point spheres, color and depth
of each fragment depends on its projected distance to the center of the splat. In addition,
the splat is divided into an inner and an outer part. Fragments in the outer part represent
the silhouette and are rendered with an increased depth value and a distinct color. As a
result, depth discontinuities between overlapping points exceeding a given depth offset
are highlighted (Figure 3.5 (h, j, 1)).

Solid Rendering

In this context, solid rendering of point clouds focuses on building facades (or similar,
primarily vertical surfaces), aiming for a solid and hole-free depiction. As the point
density on facades in airborne laser scans is very low in contrast to horizontal structures,
the efficient identification of building segments is limited because other structures behind
a building are visible through the fagade [64]. To overcome this, a second rendering pass
is used to fill the area below roof points with additional primitives. The geometry shader
is used to render (1) a point-based splat, sphere, or silhouette equal to the rendering
techniques presented above and (2) a quad that imitates the fagade below a point. The
quad width is equal to the point size used in (1) whereas the height depends on the
point’s distance to the terrain level. All quads are aligned to the view direction and have
the same color or height-based color gradient to create the appearance of a solid facade
(Figure 3.5 (k)).

3.2.2 View-Dependent and Interactive See-Through Lenses

Adapting the appearance of points based on their data layers facilitates the visual
identification of distinct objects within point cloud depictions by highlighting neighboring
points that are related to each other (e.g., by representing the same surface category
or by sharing the same time stamp). However, if points are occluding each other,
the aforementioned rendering techniques alone are not sufficient to reliably highlight
all distinct objects within a data set. Instead, these rendering techniques need to be
combined with visual filtering and highlighting techniques that explicitly reduce visual
clutter by masking out points based on their significance to the current application,
use-case, and kind of information that needs to be explored. To describe the significance
of a point the following priority levels are used:

o Focus. Essential information of interest and exploration aim (e.g., interior objects
occluded by walls, subterranean structures or buildings that have been demolished

3.2. Visualization Concepts for Enriched Point Clouds 35

Figure 3.6: Illustration of compositions for different priority levels in occlusion situations.
Context information is (b) masked out in favor of or (¢) blended with focus information. Neutral
information is neither highlighted nor filtered.

between consecutive scans). The more points carrying such information are occluded,
the less information can be gathered, i.e., the less effective the exploration becomes.

e Context. Information that increases the overall realism of the visualization with-
out being the main focus of the exploration (e.g., vegetation in densely forested
areas). Points carrying such information can be safely masked out in favor of focus
information.

e Neutral. Depending on the use case, users might want to focus on specific occlusion
scenarios, such as solely on buildings that are occluded by vegetation. This requires
to define all other information as neutral, i.e., points representing such information
are treated as solid geometry that is neither masked out or highlighted.

These priority levels are used to define the composition of the data for the rendering
and visualization of different occlusion scenarios (Figure 3.6): Occlusions with the same
priority level or including points carrying neutral information are solved by displaying the
nearest point to the view position (i.e., similar to the default behavior in 3D rendering).
Points carrying context information on the other hand (so-called context points) are
masked if focus points are occluded. To mask context points, different rendering techniques
may be applied, each coming with different strengths and weaknesses:

Simple Blending

Simply masking out all context points in occlusion scenarios limits the correct estimation
of depth differences and does not provide information about the object shape and
boundaries within a point cloud depiction (Figure 3.7 (a)). Blending context points and

36 Chapter 3. Interactive Visualization of Enriched Point Clouds

focus points by a certain factor addresses these limitations, however, areas with blended
structures might be difficult to recognize during the exploration (Figure 3.7 (b)).

Blueprints

Blueprints are a traditional form of technical drawings and known for their characteristic
style which originating from the historical contact print process [107]. Construction
elements are visualized by tracing outlines using different line widths and a color con-
trasting favorably with the background. Thus, the focus of the viewer is directed towards
the most significant construction elements. This concept can be adapted to highlight
areas where focus and context points have been merged by tracing the boundaries of
those areas with a configurable line width and color (Figure 3.7 (c)). This approach is
especially effective to highlight changes within 4D point clouds (Figure 3.3).

Halos

A stronger emphasis on focus points can be obtained by masking out additional context
points in a defined local proximity (Figure 3.7 (d)). As a result, groups of neighboring
focus points are surrounded with a halo effect, similarly to the real-world phenomenon
and the technique used by artists throughout history to emphasize certain individuals.
Techniques that highlight objects by removing occluders are known as cut-away-views
[175, 164]. So far, they have not been applied to point-based rendering. The typical use
case to apply this technique is the exploration of complex structures that are completely
occluded by their surroundings, such as subterranean structures (Figure 3.2).

Interactive See-Through Lenses

All techniques that have been introduced are applied automatically to the data where
focus information is occluded by context information. Naturally, the number, position,
and extent of these areas varies depending on the view position. As opposed to that
automated, view dependent approach, interactive see-through lenses (also commonly
known as 'magic lenses’) can be moved freely across the screen. Within an interactive
see-through lens, context points are masked out completely, whereas in the surrounding
no blending is applied at all (Figure 3.7 (e+f)). This is required to focus on occlusions
within certain areas whose position is known beforehand (e.g., to explore and show
a former state for a certain area). However, if those areas are unknown, interactive
see-through lenses are inefficient as the entire point cloud has to be traversed manually
to identify all areas.

3.3 Out-of-Core Rendering and Image Compositing

The interactive visualization of point clouds exceeding available memory resources and
rendering capabilities demands for out-of-core rendering techniques that combine LoD
concepts, spatial data structures, and external memory algorithms. In the following, a

3.3. Out-of-Core Rendering and Image Compositing 37

oy

(b) Simple Blending highlighting streets in favor of buildings and
vegetation.

(c) Blueprints highlighting streets in favor of buildings and
vegetation.

(e) Interactive See-Through Lenses highlighting buildings in favor (f) Interactive See- Through Lenses highlighting buildings in favor
of vegetation. of vegetation

Figure 3.7: Exzamples of different see-through lenses applied to enriched point clouds.

38 Chapter 3. Interactive Visualization of Enriched Point Clouds

Terrain Building

Input Data:

Vegetation f Water

Multi-resolution

Kd-tree Layers
. LoD-Node in

Main Memory

% LoD-Node on
7

Secondary Storage

Figure 3.8: Schematic overview showing the structure of our layered, multi-resolution kd-tree.
For each surface category a separate multi-resolution kd-tree is maintained.

layered, multi-resolution kd-tree for enriched point clouds is presented. It is characterized
by the following properties:

o Adaptive multi-resolution LoDs to preserve a defined rendering budget (e.g., 30
frames per second).

o Efficient and adaptive memory management (e.g., by using equal-sized LoD chunks).

¢ Semantics based subdivision of the data to enable a selective access and visualization
(e.g., only building points or only points captured at a specific point in time).

e LoD selection that that takes into account semantics to fulfill different requirements
for specific rendering techniques (e.g., varying point densities).

While the concrete implementation described in this chapter subdivides the data
based on the available surface categories, that subdivision may analogously be based on
any other data layer that defines a discrete number of possible values (e.g., acquisition
types).

3.3.1 Layered Multi-Resolution Kd-Tree

As described in Section 2.4, a variety of different spatial data structures is commonly used
to organize point clouds. The construction of quadtrees and octrees can be performed
faster in contrast to kd-trees because there is no need to sort the points. However, the
use of quadtrees and octrees for irregular and sparse distributed data, e.g., airborne
laser scans, results in tree nodes with a varying number of points. Out-of-core memory

3.3. Out-of-Core Rendering and Image Compositing 39

A Left Subtree Right Subtree

#Points 4 II II
ol e, ol

. Median Chunk Spatial Distribution

D Representative Points

Figure 3.9: Illustration of the histogram-based construction of the kd-tree to reduce preprocessing
times.

management must implement efficient caching and memory swapping mechanisms that
benefit from equal-sized data chunks. For that reason, kd-trees were chosen to arrange the
data in this instance. All points belonging to the same surface category are arranged in
a sub-tree consisting of nodes with an equal number of points (Figure 3.8). Each of these
nodes corresponds to a specific LoD for a spatial area with the root node representing
the overall expansion of the point cloud and child nodes subdividing the area of their
parent node. Each point is stored only once in the tree, and all nodes together are equal
to the input point cloud.

The layered, multi-resolution kd-tree is constructed in a preprocessing step. It can
be stored on secondary storage and therefore applied for arbitrary sized point clouds.
First, the given point cloud is subdivided based on surface categories. Second, for each
surface category the corresponding points are arranged in a multi-resolution kd-tree. The
construction of a kd-tree with an equal number of points per node, i.e., a balanced kd-tree,
is implemented by a multi-pass histogram-based approach that avoids a time-consuming
sorting of the entire data for each tree level. In a first pass, we iterate over the point
cloud to fill a histogram that describes the spatial distribution and extent of the data.
Like a uniform grid, the histogram organizes points into a number of equal-sized spatial
chunks. For each chunk, the number of points belonging to the respective area and a
representative point are stored (Figure 3.9). Based on the number of points per chunk
and the spatial extent of the histogram, a median chunk can be determined that contains
the median point required to construct the kd-tree. A second iteration over the point
cloud is used to fill up the current node with representative points (i.e., to create a LoD)
and to assign all points to the left or right part of the tree. Only points belonging to the
median chunk need to be sorted to determine the exact median element. The median
element for the split is chosen so that the number of points to the left is a multiple of the

40 Chapter 3. Interactive Visualization of Enriched Point Clouds

Building Water Terrain Vegetation
NENCEEEE Y
Building Water Terrain Vegetation
NENNE 7Y
Water Terrain Vegetation
o IR T T

Figure 3.10: [llustration of an exemplary GPU memory usage that is balanced during rendering
according to memory requirements of LoD nodes that belong to different surface categories. (a) to
(b) dllustrate how unused memory is assigned to other surface categories. (b) to (c) illustrate the
balancing process when the visualization of one surface category (e.g., building) is disabled.

number of the points stored per node. This is important to construct a balanced kd-tree
with equal sized nodes with exception of one leaf node. The out-of-core construction
process subdivides point data on the file system until data chunks can be processed in
main memory.

3.3.2 Layered Kd-Tree Rendering

The rendering process can be divided into three stages that are performed per frame.
The first stage is responsible for the data provision, caching, and transferring of points
from secondary storage to main memory as well as from main memory to GPU memory
using the layered, multi-resolution kd-tree. The second stage applies one of the point-
based rendering techniques described in Section 3.2.1 to all points belonging to the
respective surface category. The final stage seamlessly combines all surface category
specific rendering results into one final image (Section 3.3.3).

At first, the root nodes of all surface category specific sub-trees are loaded into main
memory. Each chunk is equal to a LoD node and is mapped into a vertezx buffer object
(VBO) resident in GPU memory. The VBO is divided into equal sized chunks that can
store exactly one LoD node. The layered, multi-resolution kd-tree is used to determined
LoD nodes that need to be transferred to or can be removed from the VBO. The decision
to add or remove a LoD node from memory depends on the projected node size (PNS).
Therefore, the bounding sphere of the node is projected into screen space, and the number
of covered pixels is compared to the number of points per node [141]. The threshold
applied to the PNS depends on the point-based rendering technique, available memory,
and computing capability of the GPU. Each surface category has its own memory budget
(Figure 3.10) and is balanced permanently during the rendering process because the
amount of memory required by a surface category may vary due to the following reasons:

e Only a small number of points belonging to a surface category is visible during the
exploration.

e Visualization of certain surface categories is disabled.

3.3. Out-of-Core Rendering and Image Compositing 41

Figure 3.11: Schematic overview of the rendering system described and evaluated in this chapter.
Categorized by surface categories, points are transferred to GPU memory and rendered into
separate G-Buffers that are merged based on the respective priority levels before being composed to
the final image.

o Close up views require a high point density for a surface category (e.g., for buildings).

Surface categories can be rendered with different LoDs because the required number
of points for an appropriate rendering result depends on the structure. For example,
buildings may require to be rendered with more points due to detailed roof structures
in contrast to terrain or vegetation that can be rendered with less points. To ensure a
hole-free surface, the lower point density can be compensated by using larger primitives,
e.g., splats for terrain or spheres for vegetation.

3.3.3 Image Compositing

We combine different point-based rendering techniques by a multi-pass rendering tech-
niques based on so-called G-Buffers[152] for image-based composition. (Figure 3.11).
G-buffers, from a rendering perspective, are specialized frame buffer objects (FBO) that
store multiple 2D textures such as for color, depth, or normal values. In our approach,
we use a separate rendering pass for each surface category; the results of each rendering
pass are stored in a corresponding G-Buffer. The G-Buffers are then merged based on the
priority levels assigned to the respective surface categories. To synthesize the final image,
the G-Buffers are drawn onto the canvas. This compositing pass allows us, for example,
to implement see-through lenses by programmable fragment shaders and, therefore, to
activate or deactivate the lenses at run-time.

42 Chapter 3. Interactive Visualization of Enriched Point Clouds

In our implementation, the compositing pass always combines exactly a fixed number
of G-Buffers, independently from the overall number of surface categories within an
enriched point cloud. For our use cases, three G-Buffers turned out to be sufficient for
the current functionality of the rendering techniques and for the variety of additional
layers, in particular, surface categories.

To enable halos with a defined proximity (e.g., two meters in world-space) and
additional halo mask must be prepared for surface belonging to the focus that determines
the area in which context information needs to be maxed out. However, creating that
mask for each frame has a notable impact on the overall performance (Section 3.4).

G-Buffer-based Interaction Techniques

Using G-Buffers also provides the technical foundation for interaction techniques that
allow for an in-depth inspection of enriched point clouds: Upon generating the layered,
multi-resolution kd-tree, every single point gets assigned a unique identifier, detailing (1)
its corresponding sub-tree, (2) the node within that sub-tree, and (3) its exact position
within the point set of that node. Similar to other data layers, these point-specific ID
values are first rendered into a separate sub-texture of the corresponding G-Buffer. The
subsequent compositing passes then merge all ID sub-textures into a single entity that
can be accessed at runtime, allowing to trace any fragment of the final image back to the
corresponding point and all its data layers with minimal effort.

Based on this mechanic, a variety of interaction techniques can be implemented,
such as:

o Live Picking. While hovering with the mouse cursor over the point cloud depiction,
any available information about the point underneath the current mouse cursor
position (i.e., its exact coordinates as well as any other semantics) is displayed.

¢ Live Measuring. Points underneath the current mouse cursor position may be
selected via double clicking to interactively define line segments, areas, and volumes,
the size of which is calculated and displayed on the fly.

e Object Selection. Contingent on the processing steps and analyses conducted
prior to the visualization, data layers may be available that define ID values to assign
each point to a specific object (e.g., a specific tree or building segment) amongst the
corresponding surface category. In that case, double clicking selects and highlights
the complete object the point underneath the current mouse cursor position belongs
to, rather than only the point itself. Once selected, available information (e.g.,
number of points, area or volume size) about an object is displayed.

These basic interaction techniques can be easily combined and extended into more
sophisticated ones (e.g., GIS-like features, a camera-path editor), thus, allowing to design
and implement applications that are highly customized to specific use cases.

3.4. Performance Evaluation and Results 43

Table 3.1: Characteristics of the data sets used to evaluate the performance of the presented
rendering approach.

Data Set 1 Data Set 2 Data Set 3

Point Density 10 pts/m? 28 pts/m? 100 pts/m?>
Number Points 5 Billion 7.1 Billion 80 Billion
Data Size 112 GB 159 GB 1788 GB

fps A

60 ~ \ ~2\\\
\ \ glPoints

\ Point Splats
30

Point Spheres

Silhouette Rendering

Solid Rendering

——t—+—+F—+—F——+—F—+—F P #Points in Million
10 2,0 3.0 40 5.0 6.0

Figure 3.12: Rendering performance in frames per second (fps) using different sized subsets of
the data sets from Table 3.1.

3.4 Performance Evaluation and Results

The presented rendering approach was implemented based on C++, OpenGL, GLSL,
and OpenSceneGraph. Performance evaluation was conducted based on three real-world
data sets of different size and point density containing up to 80 billion points (Table 3.1).
The test system consisted of an Intel Xeon CPU with 3.20 GHz, 12 GB main memory,
and a NVIDIA GeForce GTX 770 with 2 GB device memory.

Each data set was rendered from a zoomed out and a close-up perspective which
affected the number of points rendered for a given frame. As depicted in Figure 3.12,
interactive frame rates can be achieved for each point-based rendering technique as
long as the overall number of rendered points does not exceed a certain threshold (e.g.,
six million points for the solid rendering approach). The highest frame rate could be
observed for GL__POINTS, which was expected since these primitives are supported
natively by the GPU. Point Spheres as well as the solid and the silhouette rendering
approach extend the concept of Point Splats and increase the computational effort during
rendering. Consequently, lower frame rates were achieved when using these techniques
for rendering as opposed to Point Splats. Furthermore, the observed performance for
Point Spheres is higher than for Point Silhouettes due to a more hardware demanding
shading implementation (e.g., conditional branching).

With respect to see-through lenses, applying simple blending, blueprints, and in-
teractive see-through lenses has minimal effect on the overall performance (Tables 3.2

44 Chapter 3. Interactive Visualization of Enriched Point Clouds

Table 3.2: Rendering performance in frames per second (fps) when applying different see-through
lens techniques based on data sets 1 and 2, evaluated from a close-up and a far perspective. Points
are rendered as Point Splats.

Data Set 1 Data Set 2

Far Close-Up Far Close-Up

#Rendered Points in Million 2.32 0.50 3.42 0.85
No technique applied 51.84 214.32 32.27 138.67

Simple Blending 49.65 210.84 30.39 135.84

Blueprints 48.18 208.31 29.84 134.76

Interactive Lenses 49.32 209.68 30.12 135.20

Halos 27.68 104.31 23.97 67.31

Table 3.3: Rendering performance in frames per second (fps) when applying different see-through
lens techniques based on data set 3, evaluated from a close-up and a far perspective. Points are
rendered as Point Splats.

Data Set 3

Far Close-Up

#Rendered Points in Million 4.85 1.04
No technique applied 23.01 108.63

Simple Blending 21.73 105.96

Blueprints 21.09 104.85

Interactive Lenses 21.46 105.21

Halos 16.92 52.57

3.5. Conclusions 45

Table 3.4: Rendering performance in frames per second (fps) when applying different point-based
rendering techniques based on data sets 1 and 2, evaluated from a close-up and a far perspective.

Data Set 1 Data Set 2

Far Close-Up Far Close-Up

#Rendered Points in Million 2.32 0.50 3.42 0.85
GL_POINTS 86.39 378.07 60.02 246.12

Point Splats 51.84 214.32 32.27 138.67

Point Spheres 49.57 203.81 28.31 133.72

Silhouette Rendering 46.07 195.65 26.66 127.38

Solid Rendering 27.32 100.13 20.22 63.78

Combination 1 (Figure 3.5, row 3) 40.51 200.97 27.33 128.73
Combination 2 (Figure 3.5, row 4) 33.28 126.31 22.21 80.80

Table 3.5: Rendering performance in frames per second (fps) when applying different point-based
rendering techniques based on data set 3, evaluated from a close-up and a far perspective.

Data Set 3

Far Close-Up

#Rendered Points in Million 4.85 1.04
GL_POINTS 40.24 194.35

Point Splats 23.01 108.63

Point Spheres 22.35 107.07

Silhouette Rendering 22.18 106.97

Solid Rendering 18.74 59.45

Combination 1 (Figure 3.5, row 3) 22.45 107.75
Combination 2 (Figure 3.5, row 4) 19.90 68.47

and 3.3). Since all techniques are implemented as screen-based post-processing effects,
this stays true independent of the overall number of rendered points. Halos require a
halo mask that is created by rendering corresponding surface categories twice, which
effectively halves the average frame rate if halos are activated. However, interactive frame
rates are still achieved for several million points being simultaneously rendered. Since
the applied out-of-core rendering technique limits the number of rendered points per
frame by dynamically selecting them, the proposed rendering approach can be applied to
arbitrary large data sets while achieving real-time frame rates (Tables 3.4 and 3.5).

3.5 Conclusions
In this chapter, rendering approaches have been discussed that facilitate the exploration

of enriched point clouds by taking into account per-point attributes as well as a point’s
relevance to a specific visualization or exploration task. In particular, geometric and

46 Chapter 3. Interactive Visualization of Enriched Point Clouds

surface category information can be used to combine and configure different rendering
techniques and color schemes to adapt the appearance of each point (i.e., its color, size,
orientation, or shape) to reflect characteristics of the surface area represented by these
points (e.g., solid, planar, non-planar, fuzzy). By applying image-based compositing
based on G-Buffers, sophisticated focus+context visualization and interaction techniques,
such as visibility masks or interactive lenses, are supported. As a remedy, the visual
recognition of task-relevant objects within the point cloud depiction that are fully or
partly occluded can be facilitated by masking out less relevant occluders. The proposed
layered, multi-resolution kd-tree enables in addition to a spatial data selection a context-
aware selection of LoDs. Hence, memory and processing resources can be used efficiently
and adaptively.

The presented rendering approach offers many degrees of freedom for graphics and
interaction design and adapts to a variety of use cases and exploration tasks from different
domains. For future work, different research directions could be considered:

o Halo-based see-through lenses are currently considerably less efficient to render due
to the costly preparation of the corresponding halo mask. By defining halos in
screen space, that step could be avoided.

e The point density within point cloud depictions may vary heavily, not only due to
density of the captured data itself, but also due to the nature of the out-of-core
rendering and LoD selection. This can be addressed to an extent by scaling the
point sizes based on the maximum loaded LoD in the corresponding subtree. A
more precise calculation of appropriate per-point sizes —and thus a higher quality
visualization— may be achieved by integrating rendering techniques that enable a
per-frame reconstruction of object surfaces [127].

e The presented see-through lenses are just a selection of many focus+context tech-
niques that have been proposed over the years to highlight occluded objects [58] and
that might also be feasible in the context of 3D point clouds. In particular multiple
views [77] or multi-perspective projection [118] techniques could be evaluated.

The presented rendering approach can be improved regarding rendering performance
as well as interoperability with external GIS based on the techniques described in
Chapters 4 and 5.

Chapter 4
Immersive Visualization of Point
Clouds using VR Technology

This chapter addresses the immersive visualization of point clouds using VR, technology,
discussing the benefits of potential rendering optimization techniques as well as the
applicability and usability of different interaction and locomotion techniques. The
chapter is based in parts on the author’s scientific publications in [3] and [8].

The following sections are structured as follows: Section 4.1 further motivates this
chapter and gives a more detailed introduction. Section 4.2 and Section 4.3 discuss
the advantages and disadvantages of different rendering optimization, interaction, and
locomotion techniques. Section 4.4 describes setup and results of two-fold evaluation:
The presented rendering optimization techniques are evaluated for real-world data sets
with up to 2.6 billion points to show the rendering system’s practicability and scalability.
Furthermore, a pilot user study is conducted to gain initial insights into the usability of
the presented interaction and locomotion techniques in the context of VR applications.
Section 4.5 gives conclusions and outlines future research directions.

4.1 Introduction

VR devices, for example Oculus Rift! or HTC Vive?, open up new ways to present
digital 3D models on standard consumer hardware, granting users the perception of being
physically present in a 3D virtual environment [12, 24]. In general, the corresponding 3D
models can be designed and modeled for a particular purpose (e.g., game environment)
or can be derived by captured data from real-world sites or assets (e.g., building models).
For complex sites, e.g., buildings with a highly detailed interior, or large areas, e.g., cities
and landscapes, manually modeling 3D contents is neither time efficient nor cost efficient
due to the required effort [106]. As a remedy, there is a strong demand for methods and
techniques that (1) automatically and efficiently capture real-world sites of arbitrary
size and complexity with high precision and that (2) directly integrate the resulting 3D
contents into VR applications without having to sacrifice any captured details.

In recent years, automatically capturing real-world sites by means of point clouds
has become increasingly cost efficient and time efficient due to technological advances

1https://www.oculus.com/rif‘t/
2https://www.vive.com

47

https://www.oculus.com/rift/
https://www.vive.com

48 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

(a) Airborne scan of a city. (b) Terrestrial indoor scan.

Figure 4.1: Ezamples of point clouds being immersively visualized using the rendering system
presented in this chapter and an HTC Vive. Supported interaction techniques include measuring
of distances as well as rotating and scaling of the rendered data.

in remote and in-situ sensing technology (Chapter 2). As presented in Chapter 3, point
clouds of arbitrary size and density can be directly used as interactively explorable models
by combining LoD concepts, out-of-core strategies, and external memory algorithms.
In combination with web-based rendering concepts, these external memory algorithms
allow the interactive inspection and visualization of point clouds on a multitude of
devices featuring vastly different CPU and GPU capabilities (Chapter 5). However,
common rendering systems for point clouds typically focus on non-immersive applications,
carefully balancing the trade-off between rendering quality and performance [162]. In
VR applications additional challenges are raised:

¢ Stereo rendering. To generate a stereoscopic image, each scene must be rendered
for two displays simultaneously.

e High rendering quality. Visual artifacts such as visible holes between neighbor-
ing points or visual clutter tend to be more noticeable on VR displays, can easily
break the immersion [160] and, therefore, need to be fixed.

e High frame rates of 90 fps. Nausea, i.e., the feeling of motion sickness, typically
occurs when the motion-to-photon-latency, i.e., the time required for the depicted
images to update after a physical movement by the user, becomes too high. As
a remedy, the built-in displays of VR devices such as Oculus Rift or HTC Vive
operate at 90 Hz [177]. Hence, frames must be rendered at a considerably higher
speed compared to non-immersive applications, for which frame rates between 30
and 60 fps are usually sufficient.

For these reasons, rendering systems must be optimized with respect to two con-
flicting goals: An improved visual quality of render artifacts and an increased rendering
performance. Furthermore, VR applications require sophisticated locomotion techniques
to efficiently navigate through a 3D virtual environment without causing nausea or loss

4.2. Rendering Optimization Techniques 49

Level-of-Detail & Point Cloud Post Processin Interaction
Memory Manager Renderer e Handler

Point Cloud 1 N f I
i Framebuffer =

Point Cloud 2
Framebuffer E!.

Point Cloud 3

Head-Mounted
Display/
Screen

Figure 4.2: Rendering pipeline and data flow between hard disk drive (HDD), random-access
memory (RAM), VBO, and FBO. A common memory budget is shared by all rendered data sets.

of orientation. Intuitive interaction techniques, such as measuring and annotating within
point cloud depictions, that have minimal impact on the rendering performance are also
required. In the following sections, a rendering system is presented that allows for an
immersive, nausea-free exploration of point clouds on state-of-the-art VR devices (Fig-
ure 4.1). To that end, performance optimization techniques that speed up the rendering
pipeline are combined with image optimization techniques that improve the overall image
quality. To enable an in-depth exploration and inspection, different interaction techniques
are provided, such as, to measure distances and areas or to scale and rotate visualized
data sets, as well as several natural and artificial locomotion techniques, that can be
selected and configured at runtime.

4.2 Rendering Optimization Techniques

The rendering system presented in this chapter shares some similarities to the context-
aware point-based rendering system presented in Chapter 3: A multi-pass pipeline
(Figure 4.2) is used to seamlessly combine three distinct render stages: (1) Selecting
subsets of representative points, (2) rendering those subsets, and (3) applying image-based
post-processing on the resulting render artifacts.

50 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

Figure 4.3: Culling techniques used to reduce the amount of points to be rendered: View frustum
culling (yellow), occlusion culling (orange), detail culling (red).

Level-of-Detail and Data Subset Selection

Rather than rendering every point of a given data set, a representative subset of points
is determined on a per-frame basis that can be managed by available CPU and GPU
capabilities. To that end, two major criteria are taken into account (Figure 4.3): First,
points outside the current view frustum are excluded as they would not be visible anyway
(i.e., view frustum culling). Second, points are aggregated based on their spatial position
to accommodate for the perspective distortion resulting in areas farther away from the
current view position to appear smaller on screen (i.e., detail culling). To provide an
efficient access to representative data subsets, the point cloud is hierarchically subdivided
using a kd-trees. As discussed in Chapter 2, this allows for minimal tree traversal times
during rendering. For each point cloud a separate kd-tree is generated in a pre-processing
step. A flexible memory budget is defined to limit the number of points that can be
rendered per frame. While each point cloud is rendered separately, the memory budget
is shared among them. As the performance may vary based on scene complexity and
applied rendering techniques, the memory budget is adjusted dynamically to guarantee
90 fps at any time.

Data Subset Rendering

Selected representative subsets are rendered into G-buffers combining 2D textures for,
color, depth, and normal values. This provides efficient means to combine image-based
post-processing techniques in the subsequent render stage that improve the visual quality
of the final image being displayed on the VR device. Furthermore, different point-based
rendering techniques can be dynamically configured, selected, and combined at that
render stage. This makes it possible to (1) dynamically adapt the appearance of each point
to the current exploration task (Chapter 3) control the overall rendering performance

4.2. Rendering Optimization Techniques 51

(Section 4.2.1). Contrary to the rendering system presented in Chapter 3, the G-Buffers
do not contain any ID textures since interaction techniques evaluated in the context of
this chapter focus on measuring and transformation tasks, that require no data layers
other than a point’s spatial position 4.3.

Image-Based Post-Processing

The concluding image compositing stage of the rendering pipeline operates recursively
on the previously generated G-Buffers, allowing to configure and combine several image-
based rendering techniques. As an example, rendering techniques for hole-filling, blurring,
anti-aliasing as well as edge detecting and highlighting can be efficiently combined to
improve the visual quality of the final rendered image (Section 4.2.2).

4.2.1 Performance Optimization

To further improve the performance of the presented rendering system on state-of-the-art
VR devices, the following rendering techniques are implemented and evaluated:

Hidden Mesh Rendering

Due to the radially symmetric distortion produced by the lenses of an VR device, the
actually visible area of the built-in screens is restricted to a circular area (Figure 4.4).
To prevent unnecessary fragment shader operations, fragments outside that area are
discarded early, using a separately rendered mesh representing the hidden parts of the
screen as a mask that is evaluated using early fragment testing [177].

Reverse Painter’s Algorithm

As a GPU-based occlusion culling technique (Figure 4.3), the reverse painter’s algo-
rithm [78] describes efficient means to prevent occluded fragments from being unneces-
sarily processed by the fragment shader. Based on early fragment testing, scene objects
should be rendered in order of their distance to the view position for the technique to have
a measurable effect. Calculating such an order on a per-point basis would be inefficient.
As each point belongs to a specific node of the kd-tree however, that calculation can
instead be performed on a per-node basis, considering only those nodes that have been
selected for rendering.

Single-Pass Stereo Rendering

VR devices require to render all view dependent items from two different views representing
the left and right eye, respectively. Single-pass stereo rendering aims to reduce the CPU
overhead by rendering both views in a single render pass [82]. To that end, the frame
buffer size is doubled, assigning each half to one eye. Instanced rendering is used to
avoid duplicated draw calls. It duplicates each point and applies the corresponding view
transform at the vertex shader stage. To minimize the probability of points spilling over

52 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

Figure 4.4: A separately rendered mesh serves as a mask to discard fragments beyond the visible
area of an VR device’s screens early on.

into the opposite half of the frame buffer, a heuristic is applied that shrinks points close
to the border. Preventing such artifacts completely would require to discard affected
fragments explicitly, which would be incompatible to early fragment testing as required
by the techniques presented above.

4.2.2 Image Optimization

The immersiveness of a virtual scene is negatively affected by any kind of visual artifacts
or inconsistencies one would not expect in the real-world, such as aliasing, z-fighting, and
insufficient or missing depth cues [12]. In point cloud depictions, the most noticeable
artifacts arise when points representing a continuous surface are sized inappropriately,
resulting in either a holey appearance of those surfaces or visual clutter due to overlapping
points (Figure 4.5 (a+b)). To minimize such artifacts the following rendering techniques
are implemented and evaluated:

Adaptive Point Sizes

The different nodes of LoD data structures exhibit noticeable differences regarding the
point density. Thus, assigning all points a uniform size results in either holes between
neighboring points or overlaps and visual clutter (Chapter 3). Schiitz [160] addresses
that issue by adjusting each point’s size based on the maximum LoD within its local
neighborhood. Point sizes are also adjusted adaptively by the rendering system presented
in this chapter. However, the corresponding rendering technique operates on a per-node

4.2. Rendering Optimization Techniques 53

(d) (e)

Figure 4.5: Incorrectly sized points may lead to a holey appearance (a — point size of 1pzx)
or visual clutter (b — point size of 5px). An adaptive point size strikes a balance between both
artifact types, but does not eliminate them completely (c¢). This can be minimized by applying
paraboloid rendering (d — diameter of 5px) or filling (e — 5x& filter kernel and point size of 1pz).

54 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

Figure 4.6: Contrasting color values can be harmonized using blurring to smooth aliasing and
z-fighting.

instead of a per-point basis, thus, avoiding the need for a separate render pass to calculate
each point’s LoD. In that regard, the implemented rendering technique is similar to the
one proposed by Scheiblauer and Wimmer [157]. However, it uses inherently balanced
kd-trees in favor of octrees.

For each node, its deepest descendant that has been selected for rendering is deter-
mined. The adaptive point size for that descendant is then applied to all of its ancestors.
Furthermore, point sizes are calculated based on a node’s bounding box rather than its
LoD since nodes of the same LoD might still feature drastically different point densities.
While this approach drastically and effectively reduces holes and overlaps, it does not
exclude those artifacts entirely. For example, if nodes selected for rendering form a
heavily unbalanced tree, some points might be rendered too small (Figure 4.5 (c)). The
resulting holes are filled via post-processing.

Paraboloid Rendering

Paraboloid rendering is a technique introduced by Schiitz and Wimmer [162] that aims
to further reduce visual clutter by rendering points not as flat, screen-aligned disks but
as paraboloids oriented towards the view position. By adding a depth offset to fragments
based on their distance to the corresponding point’s center, undesired occlusions are
drastically reduced (Figure 4.5 (d)). However, as this technique requires to modify depth
values at the fragment shader stage, it is incompatible with early fragment testing and,
thus, with most of the performance optimization techniques discussed in Section 4.2.1.

Post-Processing

Several post-processing techniques are combined to further improve the visual quality:
Screen space ambient occlusion (SSAQO) [104] and eye-dome lighting (EDL) [29] add depth
cues and highlight silhouettes, blurring [96] smoothes aliasing and z-fighting (Figure 4.6).

4.3. Interaction and Locomotion Techniques 55

z=0.11 z=0.1 z=0.12 z=0.11 2z=0.1 [z=0.12

z=0.09 z=0.1 z=0.09 z=0.13 z=0.1 .
fl 2 3

Z=o.11

z=0.11 z=0.1 z=0.12 z=0.11 2z=0.1 [z=0.12
z=0.09 z—013 z=0.1 .
f3

Figure 4.7: Fragment {1 is detected as a hole based on depth differences to its neighbors and
gets assigned the minimum depth value within its neighborhood; {2 and {3 remain unchanged as
they fail the distance threshold and the minimum number of neighbors, respectively.

Furthermore, remaining holes between points representing the same surface are filled
(Figure 4.5 (e)). To that end, the technique presented by Dobrev et al. [52] is adapted,
applying two one-dimensional filter kernels instead of a single two-dimensional one for
a performance speed up. The filter kernel checks a pixel’s neighborhood for significant
depth differences and overwrites corresponding pixels with interpolated values from those
neighbors being closest to the view position (Figure 4.7).

Multisampling

An image optimization technique to smooth aliasing and reduce z-fighting even further
would be multisampling, which provides a smoother color transition between neighboring
fragments by sampling them several times. While this technique also reduces the visibility
of outliers, it also requires rendering fragments several times, thus, drastically affecting
the performance, especially when combined with post-processing effects. As a remedy,
this image optimization technique was ultimately rejected in the context of this chapter.

4.3 Interaction and Locomotion Techniques

Handling of user interaction as well as updating the point cloud depiction accordingly is
managed by a separate component of the presented rendering system, the interaction
handler (Figure 4.2). This component’s tasks include (1) configuring and selecting applied

56 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

rendering techniques, (2) locomotion, (3) measuring distances and areas, as well as (4)
transforming rendered point clouds.

When required, the interaction handler is also able to communicate with the rendering
and post-processing stage. An example of this is the interactive selection of points
for measurement or transformation tasks. To minimize the performance impact of
corresponding interaction technique, a separate rendering pass is introduced, that centers
the view at the corresponding controller’s location while looking alongside the pointing
direction. Using an orthographic projection, the scene is then rendered into a separate
G-Buffer storing a single depth texture. Combined with the known location of the
controller, the stored depth values provide efficient means to calculate the targeted
point’s position. The idea of a perspective projection was rejected to ensure a constant
precision of the calculated positions independent of the distance to the view center.

4.3.1 Interaction

In the context of this chapter three different interaction techniques that enable users to
explore and manipulate rendered point clouds are implemented and evaluated. These
techniques are an imprecise yet intuitive virtual tape measure, a precise measurement
tool that allows querying distances and areas between dynamically selected points, and
a gesture-based transformation tool providing means to scale and rotate data sets. All
interaction techniques can be controlled with HTC Vive and Oculus Rift interchangeably,
requiring only the corresponding motion controllers.

Virtual Tape Measure

The virtual tape measure is activated by simultaneously pressing the grip buttons on
both controllers. When active, a yellow rectangle with equidistant markings is rendered
between the controller models, while the measured length is constantly displayed above
that rectangle (Figure 4.8). Text and tape measure are rendered using procedural textures
and distance fields [70] to prevent visual artifacts when viewed up close. The length
displayed is calculated in object space. This enables users to measure objects that usually
would not fit in an arm span, such as the height of a church tower or the length of a
house, by rescaling the data beforehand. Both, the grabbing motion and the rectangle’s
appearance, contribute to the virtual tape measure resembling its real-world counterpart.
In the sense of an interface metaphor [99], this resemblance enables users to transfer their
knowledge of using real-world tape measures into the virtual world, making this technique
easier to use. While being a quick and intuitive way to measure distances between two
positions, the virtual tape’s precision heavily depends on the user’s ability to keep his
hands steady. Unlike the precise measurement tool, it also fails provide functionality to
measure area sizes.

4.3.

Interaction and Locomotion Techniques 57

Figure 4.8: The virtual tape measure enables the user to take quick measurements in object

space.

Precise Measurement Tool

The precise measurement tool (Figure 4.9) allows dynamically selecting points to measure
exact distances as well as the areas. The points are selected by pointing at them and

pressing the trigger button, using the orthographic, projection-based approach described
at the beginning of this section. This interaction technique provides two different modes:

1. In distance mode, selected points are connected by a line, and a label indicating its

length is displayed next to it. After every two points the measurement is automati-
cally completed. Selecting an additional point will start a new measurement.

. In surface mode, selected points form a polygon and its area and the lengths of

its outer edges are displayed. The first three selected points define a plane into
which every subsequent point is projected. All projected points form a surface
that is reconstructed upon each new selection, using either a Bowyer- Watson
triangulation [93] or an advancing front reconstruction [101]. The latter handles
concave polygons better, but often leads to unintuitive results, especially when
there is a large variance in edge length. All points are projected into a common
plane to compensate for unavoidable inconsistencies during the data acquisition
process, since even perfectly even surfaces will usually not be completely planar [57].

Similar to the virtual tape measure, procedural textures and distance fields are

applied to render distance and area labels. Pressing the left grip button starts a new

measurement while the previous lines and polygons are still displayed. The right grip
button cancels the current measurement, deleting previous measurements from last to first

58 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

Figure 4.9: The precise measurement tool allows measuring both distances and areas by point
selection.

with every subsequent button press. A dedicated menu pane allows switching between
distance and surface mode and choosing the method for the surface reconstruction.

Gesture-Based Transformation Tool

The gesture-based transformation tool (Figure 4.10) is operated in a analogous way as
equivalent tools from other VR applications as Tilt Brush by Google? or Oculus Quill?.
Objects can be grabbed with one or both controllers by pressing the respective grip
buttons. The grabbed objects can then be manipulated by performing gestures with the
grabbing controllers. In this specific case, the following gestures are supported:

1. Translate: Real-world movement of the controller is directly translated to move-
ment of the point cloud. To the user, the point cloud appears fixed to the moving
controllers.

2. Scale: Moving both controllers apart or bringing them closer together scales the
point cloud up or down.

3. Rotate: Rotating both controllers around an imaginary point in between the
controllers also rotates the point cloud. However, to prevent nausea, this rotation
is limited to the up axis.

While scaling and rotating requires the use of both controllers, translating can also
be triggered with just one controller.

3https ://www.tiltbrush.com/
4https ://www.oculus.com/experiences/rift/1118609381580656/

https://www.tiltbrush.com/
https://www.oculus.com/experiences/rift/1118609381580656/

4.3. Interaction and Locomotion Techniques 59

Figure 4.10: The gesture-based transformation tool allows to scale, translate and rotate point
clouds interactively.

4.3.2 Locomotion

Users can navigate using different locomotion techniques: Locomotion based on gamepads
and keyboards, real walking, joystick flying, point € teleport (P&T), or dashing:

Keyboard/Gamepad Locomotion

Depicted point clouds can be navigated using a gamepad or a keyboard. On gamepads
the left thumbstick controls the movement relative to the gaze direction. The speed of
the movement can be controlled by the inclination of the stick, with no movement in
the center position and maximum velocity when the stick is completely pushed in one
direction. The right thumbstick enables rotating (left and right) or changing altitude
(up and down) in the virtual world. The gamepad’s right trigger button accelerates any
movement. Keyboard controls are similar, with the WASD keys controlling movement
and the arrow keys controlling rotation and tilt.

Real Walking

Position and orientation reported by the tracking system are taken into account so that
physical movements are translated to equivalent motions in the virtual world. This
enables running and walking, but also movements like bowing down (e.g., to inspect
details of an object) crouching, sitting, or lying prone on the ground.

Joystick Flying

The motion controller projects a green ray that indicates the movement direction. Pressing
the trigger button allows movement along that direction in the virtual world. The
movement speed increases linearly with the force of the trigger pull. Any changes to

60 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

Figure 4.11: The touchpad allows movement in the selected direction relative to the forward
direction symbolized by the green ray.

direction and speed of the movement are applied directly, conforming to the Oculus best
practices guide® that highly discourages gradual accelerations. While the trigger is being
pressed, the direction of movement is strictly forward, symbolized by the green ray. The
decision in favor of that behavior was made due to an observation by Bozgeyikli et al.
[32] that humans tend to primarily move forward and rarely backward or to the side.
Still, users may explicitly move backwards or sideways in relation to the current forward
direction by using the controller’s touchpad (i.e., for HT'C Vive) or analogue stick (i.e., for
Oculus Rift) (Figure 4.11). Again, the movement speed increases linearly with growing
distance to the touchpad’s center and the analogue stick’s inclination, respectively.

Point & Teleport Locomotion

Based on a study by Bozgeyikli et al. [32], recommending that technique explicitly for
applications with an explorative nature, P&T enables an instantaneous movement to
interactively selected positions in the virtual world. In addition to the green ray used
in joystick flying mode, a red cross is rendered onto the ray, indicating the position
of the user’s feet after completing the teleport. The cross on top of the ray can be
repositioned (i.e., shifted further away or pulled closer in) using a controller’s touchpad
or analogue stick. This target selection diverges from other P&T implementations and
current teleportation-based VR games (e.g., RoboRecall®) in which the targeted position
always snaps to the ground of the geometry. Due to the very nature of a point cloud the
generation of a corresponding ground mesh would require an additional preprocessing
step. We avoid such a preprocessing step by allowing users to modify both, position and
altitude above the perceived ground, as long as those modifications do not result in a

5https ://static.oculus.com/documentation/pdfs/intro-vr/latest/bp.pdf
Shttps://www.epicgames.com/roborecall/en-US/home

https://static.oculus.com/documentation/pdfs/intro-vr/latest/bp.pdf
https://www.epicgames.com/roborecall/en-US/home

4.4, Performance Evaluation and Usability 61

(a) Pedestrian view of a mobile mapping (b) Birds-eye view of a mobile mapping (c) Close-up view of a terrestrial indoor
scan. scan. scan.

Figure 4.12: Scenes used during the performance evaluation.

position outside of the point cloud’s bounding box. The teleport is initiated by a single
press of the trigger button. The forward direction is not changed, as the ability to do so
was determined as a possible cause for disorientation by Bozgeyikli et al. [32].

Dash Locomotion

The dash locomotion is a variation of P& T featuring the same user interface elements
and limitations (i.e., regarding the bounding box). Pressing the trigger button initiates
the transport process, locking locomotion controls and moving the user in a fast and
sudden gliding motion to the new position. On arrival at the new position, the controls
are unlocked once more for further movement. As recommended by the Oculus best
practices guide, the acceleration is instantaneous and not gradually. It is claimed that
short bursts of movement with a high, constant velocity are less likely to cause nausea,
as the vestibular system can only detect acceleration and not speed.

4.4 Performance Evaluation and Usability

The presented rendering system has been implemented on the technological basis of C++,
OpenGL, GLSL, and OpenVR". The test system featured an Intel Core i7-5820K CPU,
16 GB main memory (DDR4, 1200 MHz), a GeForce GTX 980 with 4096 MB device
memory(GDDRS5, driver version 390.77) as well as an HTC Vive as the output device.
Measurements on an Oculus Rift lead to comparable, slightly better performance due to
the tighter view frustum.

4.4.1 Rendering Performance

The test data sets comprised a mobile mapping scan of an urban area (2.6 billion points)
and a terrestrial indoor scan of an individual site (1.5 billion points). The performance

7https ://github.com/ValveSoftware/openvr

https://github.com/ValveSoftware/openvr

62 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

Table 4.1: Average rendering performance of performance optimization techniques in ms/frame.
All test runs include view frustum and detail culling. Dynamic memory budget was disabled to
ensure comparability of measured values.

Scene 1 Scene 2 Scene 3
#Rendered points 19.8M 6.9M 11.6M

Default 15.93ms 9.23ms 12.15ms
Hidden Mesh 15.59ms 9.19ms 11.87ms
Reverse Painter’s 12.95ms 9.27ms 11.11ms

Single-Pass Stereo 17.48ms 9.82ms 13.54ms

evaluation was conducted for three different scenes (Figure 4.12): A close-up and a
zoomed out view of the urban area (Scene 1 and 2) as well as a close-up view of the
individual site (Scene 3). The dynamic memory budget, which guarantees the constant
frame rate of at least 90 fps, was disabled for the evaluation to ensure the comparability
of the measured values.

Both, the hidden mesh and the reverse painter’s algorithm, improve the rendering
performance. However, their effectiveness varies, depending on the number of affected
fragments (Table 4.1). Single-pass stereo rendering proved to be less effective as the
primary rendering bottleneck is the GPU, not the CPU. On the contrary, the technique
even slows the rendering pipeline as view frustum culling needs to be combined for
both eyes, thus notably increasing the amount of unnecessarily rendered points per
side. Regarding image optimization techniques, paraboloid rendering and multisampling
—as expected— significantly reduces the rendering performance (Table 4.2) and thus
should only be used if the z-fighting becomes too prominent and significantly affects the
immersion. On the other hand, post-processing effects and adaptive point sizes only
have a moderate performance impact. While combining all post-processing techniques
would amount to a significant performance drop, doing so will hardly be necessary. As an
example, EDL and SSAO aim for similar effects, whereas blurring will only be noticeable
in specific scenes, e.g., if color values of neighboring points are inconsistent due to an
erroneous capturing process.

4.4.2 User Study Setup

To evaluate the usability of the presented interaction and locomotion techniques, a pilot
user study featuring a small number of participants was conducted. The tendencies
discovered in that pilot user study should be seen as the basis for future hypotheses
investigated by full-fledged user studies with more participants in future work.

4.4, Performance Evaluation and Usability 63

Table 4.2: Average rendering performance of image optimization techniques in ms/frame. For
paraboloids, hidden mesh rendering and the reverse painter’s algorithm were deactivated and an
oversized point size (5 pr) was used. Dynamic memory budget was disabled to ensure comparability
of measured values.

Scene 1 Scene 2 Scene 3
#Rendered points 19.8M 6.9M 11.6M

Default 12.82ms 9.21ms 10.77ms
Adaptive Pt. Size 13.88ms 9.48ms 12.46ms
SSAO + 2.67 ms
EDL + 0.32 ms
Filling + 1.07 ms
Blurring + 2.17 ms

Multisampling 17.91ms 10.14ms 16.94ms
Paraboloids Def. 12.72ms 10.77ms 10.26ms
Paraboloids 15.17ms 18.45ms 15.62ms

Participants

The participants were eight students aged 18 to 21, six male and two female. All had a
background in computer science, but only four had used VR devices before. Of these
participants, only one had sporadic contact with VR technology while the remaining
three made such contact solely via other user studies.

Experimental Session and Measures

Participants began with a training session introducing and explaining each technique by
setting simple tasks like following a straight line, scaling up and down and measuring a
rooftop while within the virtual environment.

The first actual experiment was set within a terrestrial indoor scan. Participants
were asked to follow a predefined path while using the gamepad locomotion. The path
was 80 meters long including various sharp turns and narrow doorways. After completion
the participants were asked to fill a questionnaire about the locomotion technique used.
They could rate the technique on a 5-point scale regarding intuitivity, ease of use, and
comfort. They were also asked about signs of discomfort and positive or negative remarks.
Trial and questionnaire were repeated for the remaining three locomotion techniques
(joystick flying, P&T locomotion, dash locomotion). Afterwards, the participants had to
complete a last pass, but this time were allowed to freely choose a technique and were
asked to state the reasons for that choice on the questionnaire. The second experiment
was set within a city-wide aerial scan with wider spaces and a longer path of 945 meters
with long straights (Figure 4.12 (a+b)), following the same procedure.

For the third experiment, all locomotion techniques beside real walking were disabled.

64 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

Participants were placed in front of a church within the city-wide aerial scan and tasked to
measure the length of its roof using the virtual tape measure. To complete this task, they
had to use the gesture-based transformation tool to scale the scenery down beforehand.
They were asked to fill a questionnaire afterwards, rating the tape measure on a 5-point
scale regarding intuitivity, ease of use and precision. This procedure was repeated with
the precise measurement tool. Afterwards, participants were asked to measure the size of
the church’s tower with a technique of their liking and to give reasons for their choice. A
last questionnaire was given to grade the gesture-based transformation tool on a 5-point
scale regarding intuitivity, ease of use, and usefulness as well as to comment on the
technique’s overall comfort.

4.4.3 User Study Results

The pilot user study provided a number of preliminary insights about the implemented
interaction and locomotion techniques. A brief discussion of what conclusions can be
drawn from these insights is given at the end of this section.

Gamepad Locomotion

Gamepad locomotion had the second highest score in almost all categories in the first and
the second experiment. Only for the indoor scene it came third in the comfort category,
surpassed by joystick flying and dash locomotion. Two participants reported nausea and
dizziness. Participants made positive remarks about the familiarity with the controller
mapping known from video games and the ability to turn in the virtual environment
without having to turn around physically. They further praised the possibility for a fluid
and fast motion enabling them to turn without having to stop. On the downside, they
reported problems with the height control, due to it being mapped on the same stick as
turning and, thus, being easy to trigger accidentally. One participant stated a feeling of
disorientation when the body was moved simultaneously with gamepad input.

Joystick Flying

Joystick flying had the highest score in all categories in the first and the second experiment.
One participant reported nausea, another experienced a short loss of balance in a fast
turn that forced him to do a small side step to keep his balance. The participants made
positive remarks about being able to change the speed with the trigger pull though some
criticized it as too sensible. The control over the direction by pointing, allowing immediate
corrections and course changes, was mentioned as positive as well. The necessity to
turn the body to face the current movement direction faced a mixed reception: Some
participants experienced it as natural while others found it cumbersome. No participant
made extensive use of the touchpad for movement.

4.4, Performance Evaluation and Usability 65

P&T Locomotion

P&T locomotion was ranked third regarding intuitivity and fourth regarding comfort in
both, the first and second experiment. Its ease of use was ranked third (outdoor) and
lowest (indoor), respectively. Participants commented that the technique was a fast way
to travel long distances. One participant reported nausea, whereas another one stated
that it felt less unnatural and that he therefore felt less dizzy while using it. However, the
necessity to place the cross on floor height to keep the current altitude and the repeated
need for corrections was perceived as very negative. While some participants experienced
the technique as merely cumbersome, others reported that they repeatedly teleported to
other locations than expected. The mandatory pause to adjust the position of the cross
was commonly perceived as disrupting.

Dash Locomotion

The intuitivity of the dash locomotion was ranked fourth (indoor) and third (outdoor),
respectively. Its ease of use was ranked third (indoor) and fourth (outdoor), its comfort
second (indoor) and third (outdoor). One participant reported nausea as well as a light
headache in the second experiment. The participants perceived the dashing motion as
positive, especially in comparison with P&T. An important aspect for the participants
was that they could see where they were going and did not have to regain their orientation
afterwards. It also encouraged them to move by many smaller increments instead of
trying to cover large distances by pushing the target far out. However, the main critique
points of the P&T locomotion (i.e., the red cross and its necessary adjustment) were also
present with the dash locomotion.

Virtual Tape Measure

Compared with the precise measurement tool, the virtual tape measure ranked first
regarding intuitivity and ease of use, but received a lower ranking regarding its precision.
The participants had no problems using the technique, even though a few participants
remarked that they would like to see both ends of the rendered tape for a more precise
measurement.

Precise Measurement Tool

The scores of the precise measurement tool were lower than that of the virtual tape
measure regarding intuitivity and ease of use, but significantly higher regarding precision.
Overall, the participants had no major issues with the technique, but noted that the
required pressure on the trigger sometimes resulted in them missing the point they
intended to select.

66 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

Gesture-Based Transformation Tool

On the 5-point scales for intuitivity, ease of use and usefulness, the technique scored
averaged values between 3 and 4 points. Participants found it easy to change the scale of
the scenery but commonly struggled with the grip button’s location and with moving
the scaled model around. Some participants experienced an accidental translation or
rotation of the model due to not keeping the controllers in a straight line, crossing them,
or moving them up or down while scaling.

Preferences: Locomotion

When left with a choice, most participants chose the joystick flying, both in the indoor
(five participants) and the outdoor scene (six participants). Reasons given were that they
would not have to stop for adjustments, could see where they were going, and had at
every moment control over speed and course. Fun was also a factor, as was not only noted
quite often on the questionnaire, but could also be observed in the study: Participants
commented that the application was missing a “superhero soundtrack”, compared it with
a fast ride on a motorbike or seemed outright disappointed when the end of the path
was reached and another compared it with a fast ride on a motorbike. However, some
participants also chose the gamepad locomotion technique (two times for the indoor scene,
two times for the outdoor scene). Reasons given were the ability to turn without body
involvement via the analogue stick, as well as the control scheme being similar and thus,
familiar to video games. While P&T locomotion was not chosen, one participant opted
to use dash locomotion in the indoor environment for its precision and fluid movement.

Preferences: Measurement

Six participants preferred the precise measurement tool while only two opted for the
virtual tape measure. Reasons given were superior precision, the possibility to move
between selections, and the fact that most measurements could be done without the
necessity to scale the scenery. The two participants who selected the virtual tape measure
stated that it gave them more flexibility in the measurement, as they found it difficult to
select precisely the point they intended to select.

Discussion

The low ranking scores of P&T locomotion is noteworthy, as P&T and joystick flying
were also compared in the study by Bozgeyikli et al. [32]. In their study, the difference in
score between the two locomotion techniques was much less significant. The most likely
explanation for that discrepancy is the modified target selection process in the context of
this chapter, i.e., selecting the target position via the red cross rather than the location
snapping to the perceived ground. For the future study, the current implementation of
P&T locomotion could be modified with an additional rendering pass similar to the precise
measurement system, albeit at a slightly decreased rendering performance. However, this
would also restrict movement as users could only navigate from point to point: Vertical

4.5. Conclusions and Future Work 67

movement would be very limited and point clouds featuring a particular low density
could be hard to navigate. The dash locomotion technique should be altered similarly,
as the scores of this pilot study indicate it being a more comfortable, less disorienting
version of P&T, as long as the issues with the target selection can be solved.

Another noteworthy tendency is the popularity of the gamepad locomotion as studies,
as the one done by Sarupuri et al. [155], indicate that users prefer locomotion techniques
based on 6DOF input devices. This might be a side effect of the computer science
background and the relatively young age of the participants as they are likely to have
grown up with video games and are very familiar with gamepads as input devices. This
should be examined closely in the later study and therefore participants from various
age groups should be selected. Joystick flying proved to be the preferred locomotion
technique. The virtual tape measure, the precise measurement tool and the gesture-based
transformation tool performed as expected.

4.5 Conclusions and Future Work

The presented rendering system enables users to interactively explore point clouds on
consumer-level VR devices, providing immersion-preserving visual quality and frame
rates that avoid nausea at all times. To this end, various rendering, interaction, and
locomotion techniques are provided that can be freely combined and configured at runtime
using a multi-pass rendering approach, offering many degrees of freedom for graphics
and application design. As a remedy, the presented rendering approach promises to be
highly beneficial for applications in the fields of digital documentation, preservation, and
presentation of natural and cultural heritage as it allows users to remotely explore and
inspect digital twins of endangered or hardly accessible sites in a much more immersive
way than existing solutions [98]. In building information modeling or urban planning and
development, it facilitates planning processes by providing efficient means to integrate
additional, mesh-based geometry such as 3D floor plans or building models into the
generated stereoscopic point cloud depictions. Performance tests on several massive data
sets with up to 2.6 billion points show the feasibility and scalability of the rendering
system. Results of a pilot study indicate the usability of the provided interaction and
locomotion techniques.

As future work, full-fledged user studies featuring more participants with diverse
backgrounds should be conducted to evaluate and solidify the tendencies discovered
in that pilot user study. To further improve the rendering performance, distributing
the stereo rendering across two separate GPUs should be considered and evaluated as
proposed by Vlachos [178]. To support hardware that is not specifically designed for
VR, web-based rendering concepts for thin clients, that drastically reduce client-side
hardware requirements by using a central server to render and distribute stereoscopic
panoramas, may be combined with the presented techniques as described in Chapter 5.
Additional future work could focus on combining eye tracking technology with VR

68 Chapter 4. Immersive Visualization of Point Clouds using VR Technology

technology. Manufacturers of eye tracking solutions such as Tobii® and Pupil labs?
are already producing integration kits for the HTC Vive, while the Oculus Half Dome
prototype!'® comes with eye tracking technology already installed. Such solutions would
enable an implementation of advanced redirected walking algorithms [170], allowing users
to navigate a point cloud in the same way they would explore a real-world scenery. In this
context, redirected walking in would be especially important as the discrepancy between
the available physical space and the area covered by the scan tends to be significant.

8https://www. tobiipro.com/product-listing/vr-integration/
9https ://pupil-labs.com/blog/2018-04/htc-vive-pro-eye-tracking-add-on/
10https ://www.oculus.com/blog/half-dome-updates-frl-explores-more-comfortable-compact-vr-
prototypes-for-work/

https://www.tobiipro.com/product-listing/vr-integration/
https://pupil-labs.com/blog/2018-04/htc-vive-pro-eye-tracking-add-on/
https://www.oculus.com/blog/half-dome-updates-frl-explores-more-comfortable-compact-vr-prototypes-for-work/
https://www.oculus.com/blog/half-dome-updates-frl-explores-more-comfortable-compact-vr-prototypes-for-work/

Chapter 5

Web-Based Rendering of Enriched
Point Clouds

In this chapter, the web-based rendering of enriched point clouds is discussed in depth,
providing examples for server-side as well as client-side renderers and describing the
specific advantages and disadvantages of those strategies. The chapter is based in parts
on the author’s scientific publications in [1] and [4].

The following sections are structured as follows: Section 5.1 further motivates this
chapter and gives a more detailed introduction. Requirements deemed crucial for a
system enabling the web-based visualization and collaborative exploration of enriched
point clouds are defined in Section 5.2, followed by a proposed system architecture
fulfilling these requirements. Section 5.3 focuses on the concrete implementation of
the web-based rendering, whereas Section 5.4 follows up with an in-depth performance
evaluation. Section 5.5 gives conclusions and outlines future research directions.

5.1 Introduction

The rendering approaches presented and evaluated in Chapters 3 and 4 can be applied
to arbitrary large data sets by spatially subdividing these into small, representative
subsets that are selected for real-time rendering at runtime based on different criteria
such as memory budgets, targeted frame rates, and view setups. However, these rendering
approaches were primarily designed with individual users operating on dedicated hardware
in mind and, thus, come with several drawbacks:

e They assume a direct access to the corresponding point cloud, which generally
restricts their application to systems with massive local storage capacities. First
and foremost, this affects mobile devices, which are steadily replacing stationary
computers as primary working devices as well as sources of entertainment. However,
even stationary systems may struggle with providing sufficient local disk space,
considering constant advances in data precision and density achieved by state-of-the
art sensing hardware.

e Enriched point clouds are rarely inspected in solitude. Instead, exploration tasks
—especially in the context of large data sets— are often conducted collaboratively,
necessitating interaction techniques that are synchronized between the devices of all

69

70 Chapter 5. Web-Based Rendering of Enriched Point Clouds

involved stakeholders. For example, annotations and measurements created by one
user may also be of interest for other users and, thus, should be shareable across
devices.

o With point clouds being established as a universal data category for a large number
of geospatial and non-geospatial applications, there is a growing demand for the
seamless integration of processing as well as rendering functions for enriched point
clouds into existing workflows and systems. In particular, this necessitates the
application of service-oriented and web-based design principles that can leverage
distributed and cloud-based hardware setups (see Chapter 2). In such setups,
however, device-specific, independent copies of the data —as they are assumed
by the previously discussed rendering techniques— are prone to generate data
inconsistencies and synchronization conflicts.

To address these drawbacks, web-based rendering approaches are required that
limit workload and data traffic on client-side by using a central server infrastructure to
maintain and distribute the data. Rendering directly on the server and only transferring
the rendered images to the client is commonly referred to as a thin client approach [55,
76]. Alternatively, thick client approaches can be applied that delegate the rendering to
the client side — in that case, the server is only responsible for selecting and transferring
the data to the client [86, 158].

In this chapter, a web-based system for the interactive and collaborative exploration
and inspection of enriched point clouds is presented that provides functionality for both,
thin-client and thick-client applications and, thus, scales for client devices that are vastly
different in computing capabilities. The system is based on standard WebGL on the client
side and can render point clouds with billions of points. It uses spatial data structures and
LoD representations to manage the point cloud data and to deploy out-of-core and web-
based rendering concepts. Different point-based rendering techniques and post-processing
effects are provided to enable task-specific and data-specific filtering and highlighting,
e.g., based on per-point surface categories or temporal information. A set of interaction
techniques allows users to collaboratively work with the data, e.g., by measuring distances
and areas, by annotating, or by selecting and extracting data subsets. Additional value is
provided by the system’s ability to display additional, context-providing geodata alongside
point clouds (Figure 5.1) and to integrate task-specific processing and analysis operations.
The presented techniques and the prototype system are evaluated with different data sets
from aerial, mobile, and terrestrial acquisition campaigns with up to 120 billion points to
show their practicality and feasibility.

5.2 Requirements and Concepts

The following requirements were identified as crucial for a system enabling the web-based
visualization and collaborative exploration of enriched point clouds and 4D point clouds:

5.2. Requirements and Concepts 71

Figure 5.1: Fxample of a point cloud rendered with the web-based rendering system presented in
this chapter. Context-providing geodata such as 2D maps and 3D terrain models can be seamlessly
integrated into the visualization.

Figure 5.2: System architecture showing data flow between integration, processing, visualization,
and interaction components.

72 Chapter 5. Web-Based Rendering of Enriched Point Clouds

R1 Use of point clouds as a fundamental geometry type instead of generalized mesh-
based representations to enable a direct and unfiltered provision of the data.

R2 No limitations regarding used acquisition methods as well as density, resolution,
and scale of the data (e.g., hundreds of billions of points, complete countries).

R3 Support for varying hardware platforms and computation capabilities, ranging from
high-end desktop computers to low-end mobile devices.

R4 Distributed data storage to enable load balancing and to adjust for data specific
requirements (e.g., certain point clouds might have to be stored on a specific server).

R5 Capabilities to prepare and clean up point clouds for the visualization (e.g., noise
and outlier removal).

R6 Capabilities to conduct task and data specific analyses on point clouds (e.g., surface
category extraction) to provide adaptive and task specific content.

R7 Visualization of analysis results (e.g., surface categories) to enable task specific
highlighting and filtering.

R8 Capabilities to compare and show differences between point clouds of the same site
captured at different points in time (i.e., change detection).

R9 Integration of supplementary, context-providing geodata such as 2D maps.

R10 Provision of interaction techniques to inspect (e.g., measuring of distances, areas,
volumes) and annotate point clouds.

R11 Basic user management to customize data access.

R12 Capabilities to share specific rendering configurations, annotations and measure-
ments with others (e.g., via link).

Based on these requirements a web-based system was designed and implemented
that seamlessly combines functionality to integrate, process, and collaboratively explore
enriched point clouds as well as supplementary, context-providing geodata. The proposed
system (Figure 5.2) consists of the following major components:

Point Cloud Manager

Point clouds are organized in a single, homogeneous spatial data model. Access to
that model is handled by the point cloud manager storing spatial information and
additionally provided or computed per-point attributes (e.g., temporal information or
surface categories) (R1). LoD representations [69, 59] are required to efficiently access
arbitrary data subsets of any size based on spatial, temporal or any other data layer.
These representations as well as additional data layers can be generated by the processing
engine (R2). While the point cloud manager logically acts as a singular component, the

5.2. Requirements and Concepts 73

(a) Colors extracted from aerial imagery. (b) Height-based gradient from black to white.
(c) Colorization based on surface categories, i.e., green for (d) Colors from aerial imagery combined with change detection
vegetation, red for buildings, and brown for ground. results, i.e., gradient from yellow to red indicates the degree of
change.

Figure 5.3: Different point-based rendering styles can be selected and configured at runtime.

data itself may be stored in a distributed infrastructure, e.g., to maximize data throughput
and network transfer rates or to account for data specific requirements regarding server
location and data security (R4).

Workspace Manager

The workspace manager handles information specific to a workspace, i.e., each user‘s
private view of a specific data subset containing custom selections, measurements, anno-
tations, view positions, and angles. Per default, each user operates in its own private
workspace rather than sharing one globally with everyone else to avoid conflicting modifi-
cations (R11). However, a given workspace may be shared via links (R12). Each user
may also own multiple workspaces.

Geodata Manager

The term application-specific geodata refers to additional geodata that should be used and
rendered in combination with a point cloud to provide application-specific information
layers (R9). Examples are digital terrain models, aerial images, BIM models, or 3D city
models. Like point clouds, these data types require supplemental LoD representations
to allow for an interactive visualization. Application-specific geodata can be stored and
provided by independent geospatial databases or geodata services, access to which is
handled by the geodata manager.

74 Chapter 5. Web-Based Rendering of Enriched Point Clouds

Processing Engine

The processing engine conducts task and data specific operations on a given data subset.
These operations range from (a) essential preprocessing steps (e.g., converting input data
sets into a homogeneous georeference system or generating LoD representations), over (b)
simple point cloud filtering (e.g., noise and outlier removal (R5)) to (c) more complex
analyses (e.g., surface category extraction and change detection (R6)) deriving additional
data layers. The operations can be accessed via web processing services implemented as
separate web services that are individually combined and scheduled by the processing
engine. Thus, existing web processing services for 3D point clouds can be easily integrated
into the system. The results of each operation are automatically stored by the point
cloud manager and can be seamlessly integrated by the rendering engine into depictions
of the corresponding site (R7). Behind the scenes, the processing engine uses a modular
pipeline architecture combining parallel computing and out-of-core concepts whose details
are described in Chapter 2.

Rendering Engine

Providing the core functionality of the presented system, the rendering engine is re-
sponsible for interactively visualizing three types of data: (a) Enriched point clouds
featuring a varying number of data layers, (b) task-specific geodata providing context
(e.g., maps (R9)), and (c) workspace elements resulting from user interactions (e.g.,
annotations or selection and measurement indicators (R10)). For each of those data
types the corresponding manager is queried, retrieving only data subsets that are relevant
for the current view and task. To highlight certain aspects of the data (e.g., temporal
changes or surface categories in an area), different point-based rendering techniques and
post processing effects can be combined (R8). Changes to the currently applied render
configuration can be made dynamically via the interaction handler) (Figure 5.3). In
general, retrieved data subsets will be transferred to and rendered on client side, which
minimizes the workload on the server (i.e., thick clients). As an alternative, server-side
rendering can be applied to reduce the performance impact for clients (i.e., thin clients).
Thus, the system scales for a broad range of devices, ranging from high-end workstations
to mobile devices (R3).

Interaction Handler

The interaction handler is responsible for handling user interactions as well as for updating
the rendered data and workspace elements accordingly (R10) (Figure 5.4). Users may

e define or load workspaces,
e select which data subsets to render,
o configure the presentation of the data (with regards to applied rendering techniques),

e select, query, and highlight individual points or groups of points,

5.3. Rendering Engine Implementation 75

(a) Measuring of distances between points. (b) Measuring of areas defined by multiple points.

(¢) Annotation of selected points or areas. (d) Selecting areas of interest.

Figure 5.4: Overview of implemented interaction techniques.

e measure distances and areas between selected points,
e annotate selected points or areas,
o modify annotations,

e saving and loading view positions and angles.

5.3 Rendering Engine Implementation

To seamlessly combine point clouds, context providing geodata and interactive workspace
elements into a homogeneous visualization, a multi-pass rendering pipeline similar to
the ones presented in Chapters 3 and 4 is used that consists of three distinct stages
(Figure 5.5).

5.3.1 LoD and Data Subset Selection

While point clouds may easily contain billions of points, only a fraction of that data is
required to render a frame. Subsets of the point cloud that are manageable by available
CPU and GPU capabilities can be queried dynamically from the point cloud manager
by specifying the current view frustum, main and GPU memory budgets as well as
task specific qualifiers (e.g., value ranges for selected per-point attributes) to filter the
corresponding data sets. In particular, the resulting screen-space error is used as a
metric to evaluate potentially fitting subsets, optimizing towards a mazimum allowed

76 Chapter 5. Web-Based Rendering of Enriched Point Clouds

[Server Component 3 Client/Server Component 3 Client Component

: Rendering Techni .
Rendering R Image | Interaction
Engine ToverorDeET & enderer Compositer | «—— Handler

Memory Manager

A
.
/\]
3D Point Clouds P G-Bufer | w
/_\]
N
Additional I’ I
- dJ Screen
N~
AN
N]
Workspace | o
Elements 1
N~
GPU Memory GPU Memory
(VBO) (FBO)
— - " ")

Figure 5.5: Ouverview of the rendering pipeline. FEach data type is managed and rendered
separately.

screen-space error: The higher the allowed screen-space error, the less points need to be
queried and rendered, albeit at the cost of further reducing precision and density of the
point cloud depiction. To accommodate for changing network latencies, the maximum
allowed screen-space error can be adjusted at runtime. Since hardware specifications of
clients cannot be queried from a web browser, main and GPU memory budgets need to be
specified manually. To assist users in specifying a reasonable budget, a set of predefined
budget configurations that have been evaluated for a variety of common hardware setups
is optionally provided.

To enable an efficient subset retrieval, the data is hierarchically subdivided in a
pre-processing step before being made accessible by the point cloud manager. Similarly
to Chapters 3 and 4, a multi-layered data structure is constructed: For each data set, a
separate spatial data structure is generated that best compliments the spatial distribution
of the corresponding points (e.g., quadtrees for airborne data sets, octrees, or kd-trees for
terrestrial data sets, see Section 2.4). In turn, those spatial data structures are integrated
into an overarching quadtree, allowing to efficiently answer queries stretching across
multiple data sets. Compared to uniform, single-layer spatial data structures, e.g., as they
are used by Potree [162], this avoids a time-consuming rebalancing when new point clouds
are added while simultaneously ensuring balanced tree structures and minimal data
access times. Context providing geodata and workspace elements are handled similarly
and can be queried simultaneously from their respective manager when required.

5.3. Rendering Engine Implementation s

(a) Colorization using a height gradient. (b) Same color scheme combined with EDL

Figure 5.6: Post-processing effects such as EDL facilitate visual filtering and highlighting.

5.3.2 Rendering and Image Compositing

After being queried from the respective managers, point clouds, context providing geodata
and interactive workspace elements are rendered into separate G-Buffers combining 2D
textures for, e.g., color, depth, normal, or ID values. The use of ID values is important
to separate point clouds from context data. Fach rendered point has a unique identifier,
stored in an ID texture, to allow for an efficient point selection, e.g., to implement
interaction features. In addition, different rendering styles can be configured and applied
at runtime. As an example, size and color of each point can be modified based on selected
data layers (e.g., surface categories, geometrical information) to enable task specific visual
filtering and highlighting (Figure 5.3). Similarly, several options exist to dynamically
adjust the appearance of mesh-based geometry, ranging from transparency settings to
changeable texture mappings.

A final image compositing stage is used to merge the separate G-Buffers, i.e., to
combine several independently generated views of point sub-clouds into a final image. For
example, image-based post processing effects emphasizing edges and depth differences
(e.g., SSAO or EDL) can be applied at that stage to improve the visual identification
of structures within point cloud depictions (Figure 5.6). As described in detail in
Section 3.3.3, the ID textures stored by the G-Buffers provide efficient means to select
individual points in real-time, which is an essential requirement to support annotating
points or measuring distances and areas.

5.3.3 Web-based Rendering

To accommodate for client devices with varying computation capabilities, different web-
based rendering concepts are combined with the presented rendering pipeline (Figure 5.7).

78 Chapter 5. Web-Based Rendering of Enriched Point Clouds

[Server Component [Client Component

()
Thin > Selection > > Rendering > Rendered ? Display)
Client Database Images

A J

()
Thick .

" S y—
Relevant
L Data)

Figure 5.7: Comparison of web-based rendering concepts: Thin clients vs thick clients

A thick client application is provided that uses a central server infrastructure to organize,
process, select, and distribute the data, but delegates the actual rendering of selected
data subsets to the clients. This approach significantly reduces workload on server side,
allowing to serve massive numbers of clients simultaneously. Transferred data subsets are
cached on client side up to a device specific limit, thus, minimizing the frequency of data
requests for subsequent frames. In fact, additional data subsets are only required if the
view frustum changes significantly, whereas inspecting the transferred data or changing
the applied rendering style triggers no such requests.

Alternatively, in the sense of a thin client approach, the data can be rendered directly
on the server, supplying only the resulting images. While this comes with the drawback
of increased workload on server side as any user interactions trigger a new data request,
hardware requirements for clients are notably reduced. A common optimization for
such thin client applications is to render and transfer cube-maps or virtual panoramas
instead of individual images [55, 76]. This provides clients with efficient means to locally
reconstruct the 3D scene for a specific view position. Thus, the data only must be rendered
anew whenever the view center or the rendering style are modified, which significantly
reduces the frequency of data requests for subsequent frames. Our system provides a
thin client application that expands that concept, distributing not only traditional 2D
panoramas but also stereoscopic panoramas. Thus, emerging virtual reality technologies
allowing for an immersive exploration of point clouds even on mobile devices can be
easily integrated. We generate those stereoscopic panoramas by rendering several equally
sized image strips along a viewing circle that are stitched together in a post-processing
step [121]. The visual quality of the panoramas depends on the requested resolution
as well as the number of image strips; both settings can be specified upon requesting a
new panorama. To further reduce overall network load, both applications dynamically
compress and decompress the transferred data, using common standards such as gzip
(for thick clients) and png (for thin clients), respectively. To maximize visual quality,
lossy compression standards (e.g., jpeg compression) are not applied.

5.4. Performance Evaluation 79

(a) Terrestrial indoor scan. (b) Mobile mapping scan.

(c) Airborne scan of a city (zoomed out). (d) Airborne scan of a city (zoomed in).

Figure 5.8: Scenes used during the performance tests.

5.4 Performance Evaluation

The presented concepts have been implemented on the basis of several C++ and Javascript
libraries. The processing engine uses CUDA ! and the Point Cloud Library 2. Regarding
the rendering engine, WebGL and Cesium.JS 2 provide the technological basis for thick
client applications. For thin client applications, server-side rendering is based on OpenGL,
glbinding * and GLFW 5. On client-side, Three.js 6, WebGL, and WebVR Polyfill 7
are combined to display 2D as well as stereoscopic panoramas. Data compression is
implemented based on gzip & and lodePNG ?, respectively. Evaluated point clouds are
represented by separate kd-trees, that in turn are integrated into an overarching quadtree.
The decision in favor of kd-trees was made to optimize the balancedness of the tree
structures, speeding up the subset retrieval, albeit at the cost of a prolonged preprocessing.
The spatial data structures and corresponding data subsets are serialized into files acting
as a point cloud database. Similar, file-based approaches are applied to store and access
context-providing geodata and workspace elements.

1https://developer.nvidia.com/cuda—zone
2http://pointclouds.org

3https://cesiumjs.org
‘https://github.com/cginternals/glbinding
5http://www.glfw.org

Shttps://threejs.org
7https://github.com/immersive-web/webvr-polyfi11
8http://www.gzip.org

%http://lodev.org/lodepng/

https://developer.nvidia.com/cuda-zone
http://pointclouds.org
https://cesiumjs.org
https://github.com/cginternals/glbinding
http://www.glfw.org
https://threejs.org
https://github.com/immersive-web/webvr-polyfill
http://www.gzip.org
http://lodev.org/lodepng/

80 Chapter 5. Web-Based Rendering of Enriched Point Clouds

Table 5.1: Average data throughput of the processing engine.

Processing Operation Average Data Throughput
Noise & Outlier Filtering 1.26B pts/hour
Surface Category Identification 0.10B pts/hour
Change Detection 1.42B pts/hour
Kd-Tree Generation 4.85B pts/hour

5.4.1 Test Setup and Results

A desktop computer featuring an AMD Ryzen 7 1700 CPU, 32 GB main memory and
an NVIDIA GeForce GTX 1070 with 8 GB device memory was used as a server for the
performance tests. The test data sets included a terrestrial, indoor scan of an individual
site (1.33 billion points), a mobile mapping scan (2.57 billion points) and a massive, multi-
temporal data set of an urban region (120 billion points) captured by airborne devices.
For all data sets essential preprocessing steps (i.e., spatial data structure generation) and
filtering (i.e., noise and outlier removal) were performed by the processing engine. In
addition, surface categories (i.e., ground, building, vegetation) and changes in comparison
to earlier scans were identified for the airborne data set, allowing to evaluate the system’s
ability to dynamically combine different rendering styles. The average data throughput
for the applied processing operations is listed in Table 5.1.

The rendering engine was evaluated based on four different scenes (Figure 5.8) with
client applications running on a number of different devices and web browsers (Tables 5.2
and 5.3). As opposed to aforementioned state-of-the-art web-based rendering frameworks
for 3D point clouds such as Potree, Plasio, GVLIDAR or VILMA, the rendering engine
presented in this chapter provides both, a thick and a thin client renderer. Thus, the
rendering process can be shifted dynamically between client and server side depending
on network conditions and a client’s computing and graphics capabilities, allowing to
support a broader range of hardware platforms.

The presented CesiumJS-based thick client implementation allows to render several
millions of points simultaneously at interactive frame rates (i.e., >30 fps) on standard
desktop computers and notebooks (Table 5.6). On mobile devices, frame rates are
significantly lower due to the more limited computing capabilities. However, arbitrary
large data sets can be visualized on all evaluated devices by assigning device-specific
memory budgets, thus, limiting the density of the point cloud depiction. Overall, rendering
performance and visual quality are similar to what can be achieved by Potree, Plasio,
GVLiDAR or ViLMA. However, the presented thick client implementation allows to
seamlessly integrate additional geodata as well as analysis results which facilitates an
in-depth inspection.

On the other hand, the presented thin client implementation provides a uniform
rendering quality on all client devices since the panoramas are generated on server side,
minimizing workload on client side. On all evaluated devices measured frame rates stayed

5.4. Performance Evaluation 81

Table 5.2: Dewvices used to evaluate the rendering engine. All web browsers were updated to the
latest version as of 04/20/2018.

Client Device CPU GPU
Lenovo M710t Intel Core i7-6700 GeForce GTX 1050Ti
Macbook Pro 13” Intel Core 15-4278U Intel Iris 5100
iPhone SE Apple A9 @ 1.84 GHz Power VR GT7600
Galaxy s7 Samsung Exynos 8890 ARM Mali-T880 MP12

Table 5.3: Devices used to evaluate the rendering engine. All web browsers were updated to the
latest version as of 04/20/2018.

Client Device Main Memory Evaluated Web Browsers
Lenovo M710t 32GB Chrome, Firefox, Opera, Edge
Macbook Pro 13” 16GB Safari, Chrome, Firefox
iPhone SE 2GB Safari Mobile, Chrome Mobile
Galaxy s7 4GB Samsung Internet Browser, Chrome Mobile

close to the corresponding display’s refresh rate (e.g., 60 fps on the Galaxy S7), making
the approach applicable to state-of-the-art VR devices such as GearVR or Oculus Rift.
The performance of the panorama generation is primarily influenced by the requested
resolution and to a lesser degree on the number of image strips used (Table 5.7).

For all evaluated scenes, thick client applications require to transfer significantly
more data for an individual scene than thin clients as long as no reusable data subsets
have been cached from previous requests, even if gzip compression is applied (Tables 5.4
and 5.5). However, they do not require all those data subsets at once, allowing to update
the scene progressively. Furthermore, while exploring a point cloud, the view will usually
change only gradually across subsequent frames, allowing for thick clients to reuse many
of the previously transferred data subsets, thus, resulting in smaller and faster scene

Table 5.4: Average amount of data transferred by the rendering engine based on the scenes
defined in Figure 5.8. For thin clients, a stereoscopic panorama must be newly created per request.
While the same, device-dependent resolution was requested for each scene, different entropies
affected the compressed image size.

Scene Thick Client Thin Client
Terrestrial 156.2 MB 4.68 MB
Mobile Mapping 140.7 MB 4.16 MB

Airborne (zoomed out) 16.1 MB 4.15 MB
Airborne (zoomed in) 82.4 MB 4.54 MB

82 Chapter 5. Web-Based Rendering of Enriched Point Clouds

Table 5.5: Average data transfer times of the rendering engine based on the scenes defined in
Figure 5.8. For thin clients, a stereoscopic panorama must be newly created per request. For thick
clients, no additional calculations are necessary.

. . Thin Client
Scene Thick Client Panorama Generation Time Transfer Time
Terrestrial 16.18s 5.27s 1.36s
Mobile Mapping 14.15s 5.05s 1.27s
Airborne (zoomed out) 3.43s 4.96s 1.22s
Airborne (zoomed in) 8.09s 5.13s 1.32s

Table 5.6: Average performance rate of the thick client for different point budgets based on the
airborne data set (Figure 5.8 (d)).

Number of Points ‘ Lenovo M710t Macbook Pro 13” iPhone SE Galaxy s7

2M pts 122.63fps 53.85fps 41.83fps 39.961ps
4M pts 84.48fps 45.63fps 36.441fps 35.291ps
6M pts 63.23{ps 39.081ps 26.36{ps 24.83fps
8M pts 56.87fps 35.83fps 19.65fps 18.43fps

updates over prolonged explorations. Changes to the rendering style as well interaction
techniques such as picking, selecting, or measuring do not trigger any additional data
requests at all and can be applied even under unstable network conditions. For thin
client applications on the other hand, no parts of the previously transferred data can be
reused if the currently used panorama becomes invalid: Navigating —apart from merely
looking around from a fixed position— as well as rendering style adjustments require the
server to generate and transfer a new panorama as a replacement. Similar to thick clients
however, picking, selecting, or measuring can be conducted on the already transferred
data and does not trigger any new data requests.

Table 5.7: Panorama generation time for different configurations based on the terrestrial data
set (Figure 5.8 (a)).

Resolution ‘ 90 image strips 120 image strips 160 image strips

2360x1600 px 1.88s 2.26s 2.29s
2360x3200 px 4.20s 4.68s 5.27s
2360x6400 px 6.17s 7.14s 7.88s

5.5. Conclusions and Future Work 83

Expandability

The proposed web-based system can be easily adapted for specific applications by adding
custom visualization techniques or algorithms for data analysis: Per-point attributes
as well as the pipeline nodes used by the processing engine share common interfaces
which facilitates the implementation of additional importers, exporters, or tasks. The
corresponding pipeline plans are defined via JSON files and can thus be easily customized.
Similarly, the rendering engine allows to define and apply custom GLSL shaders to adapt
the visualization. Some examples of such expansions are presented in Chapter 6.

5.5 Conclusions and Future Work

Web-based visualization and exploration of enriched point clouds from aerial, mobile,
or terrestrial data acquisitions represent a key feature for today’s and future systems
and applications dealing with digital twins of our physical environment. The presented
web-based rendering approach scalably visualizes point clouds onto web-based client
devices. To cope with enormous numbers of points, the implementation relies on spatial
data structures and LoD representations, combined with different out-of-core rendering
and web-based rendering concepts. Since the rendering process can be shifted from client
side to server side, the system can be easily adapted to varying network conditions and to
clients with a broad range of computing and graphics capabilities. Performance tests on
data sets with up to 120 billion points show the usability of the system and the feasibility
of the approach. This is further underlined by the case study presented in Chapter 6.

As future work additional case studies should be conducted regarding to the system’s
performance in distributed server environments. Various rendering techniques allow
to filter and highlight subsets of the data based on any available per-point attributes
(e.g., surface categories or temporal information), which is required to build task-specific
or application-specific tools. Various interaction methods (e.g., for collaborative mea-
surements and annotations), built-in support to display context-providing, mesh-based
geodata, and the possibility to conduct different processing and analysis operations
provide additional features. The system could be further extended by integrating addi-
tional analyses (e.g., for asset detection, or surface segmentation) [172, 81] as well as
by specialized interaction techniques. For example, Scheiblauer and Wimmer [157] and
Wand et al. [181] propose spatial data structures that allow for an interactive editing of
3D point clouds. In addition, sophisticated visualization techniques for 4D point clouds
are becoming increasingly important to understand captured environments [138] and,
thus, should be further investigated.

Chapter 6

Case Studies and Applications

The presented rendering and interaction techniques provide the technological foundation
for specialized tools and applications addressing specific real-world use cases. Some
of these tools and applications are still in a conceptual stage, depending on a more
widespread adoption and acceptance of underlying technology by the general public
before they can be evaluated in practice on a large scale. As an example, consumer and
enterprise level VR setups, as used in Chapter 4, are still widely considered as niche
products that require significant space and financial investment, even though market sizes
are predicted to grow significantly over the next years [17]. In other cases, visualization
merely serves to facilitate subsequent analysis steps. One such example is described in [11],
where different point-based rendering techniques are used to generate highly detailed
screenshots of point cloud depictions that can be utilized by established convolutional
neural networks for image segmentation to identify surface categories that are mostly
two-dimensional by nature, such as road markings (Figure 6.1).

As opposed to that, this chapter focuses on systems and applications that (a) use
interactive depictions of point clouds as a core feature and (b) can be practically deployed
and evaluated on a large scale right away. In the following, two case studies are presented
that showcase the practicability and robustness of such applications in more detail.

(a) Point cloud with detected road (b) Ezamples of rendered images from a point cloud, showing different types of road
markings represented as orange shapes markings. Intensity values are represented in grayscale, lighter colors have higher
rendered on top of the point cloud. intensity values.

Figure 6.1: Point-based rendering techniques play an important role in image-based classification
approaches for point clouds as discussed in [11].

85

86 Chapter 6. Case Studies and Applications

M 0.0 5.0 10.0 15.0 20.0 25.0 3000 35.0
cm ||||||||||||||||||||||||||||||||||
_ ki RRE T R A " -
o L T r— P R Ay W gt 0 W S
25~ -y
_' R e
50
75
100

Figure 6.2: Typical visualization of a GPR B-scan, with the z-azis representing the traveled
distance and the y-axis representing the results of the individual A-scans. Using a two-color
representation, the direction of the signal’s amplitude is represented by hue and its size by
saturation.

6.1 Combined Visual Exploration of GPR Data and Point
Clouds for Road Environments

This section is based in parts on the author’s scientific publications in [10] and [9)].

While a lot of semantic information and insights can be derived directly from the raw
point data, other types of geodata, that often can be automatically captured alongside
the point cloud, may still provide crucial additional information for certain use cases.
One such example are ground penetrating 2D radar scans.

Ground penetrating radar (GPR) has been used for below-ground analyses for several
decades, allowing to measure material properties several meters below ground and to
create insights about the non-visible foundation of roads and pathways [46]. GPR scanners
operate by emitting electromagnetic waves into the ground and receiving the reflected
signal from pavement and soil. Since the ground’s structure impacts propagation of the
emitted signal, the reflected signal provides information about the materials’ condition.
Just as sensors for mobile mapping scans, GPR scanners are usually mounted on scanning
vehicles which can drive unintrusively along with traffic, adding an additional data source
for the region not accessible by LiDAR scanning [129]. Once captured, the radar scan
data is usually analyzed in the form of so-called B-scans, i.e., consecutive sequences of
individual measurements (i.e., so-called A-scans) taken alongside the driving trajectory
of the scanning vehicle. A typical visualization of a B-scan is shown in Figure 6.2.

The combination of above-ground point clouds and below ground GPR data enables a
more extensive analysis of road environments by using two combined data sources instead
of evaluating each one separately. As an example, a common use case for GPR data
inspection is to find certain areas with an increased chance of developing pot-holes [79].

6.1. Combined Visual Exploration of GPR Data and Point Clouds for Road Environments 87

Figure 6.3: System architecture showing data flow between integration, processing, visualization,
and interaction components.

By adding road surface information from a point cloud of the same area, false positives
like manholes can easily be distinguished from other anomalies in the road’s subsoil. This
section presents desktop-based system for the combined interactive exploration of point
clouds and GPR data. In particular, the following requirements were identified as crucial
for the rendering system’s intended purpose:

R1 No limitations regarding used acquisition methods, as well as the number, scale
and size of the data sets. The latter is especially important for point clouds, as
those can easily contain hundreds of gigabytes of raw data.

R2 Correct positioning of GPR data and point clouds into a homogeneous spatial
reference system.

R3 Occlusion-free visualization of individual B-scans within a GPR data set.

R4 Visual filtering and highlighting techniques to enable a focused inspection of areas
of interest, that can be defined at runtime.

6.1.1 System Overview

To address the aforementioned requirements, the rendering approach presented in Chap-
ter 3 was extended and integrated into a simplified, strictly offline adaptation of the
system architecture presented in Chapter 5. In particular, the rendering system consists
of the following components (Figure 6.3):

o Point Cloud Manager. All point clouds are sorted into a single, homogeneous
spatial data model. Access to that model is handled by the point cloud manager,

88

Chapter 6. Case Studies and Applications

storing spatial information together with additional per-point attributes (e.g., color
values). LOD representations, which are essential for an efficient rendering of
massive data sets (Chapter 3), are generated by the processing engine (R1).

GPR Manager. Fulfilling a similar role as the point cloud manager, the ground
penetrating radar manager enables efficient access to GPR data, which is stored
in combination with simultaneously captured GPS trajectories. Based on that
information, GPR data can be positioned precisely within point clouds of the
corresponding area (R2). Individual B-scans within a GPR data set can be
accessed separately (R3). Since the size of the GPR data sets evaluated in the
context of this chapter is neglectable by comparison (i.e., 25.7MB raw data per
B-scan), no LoD representations were deemed necessary.

Processing Engine. The processing engine conducts different pre-processing
operations on given data sets, ranging from (a) georeferencing data (e.g., by
combining GPR data and GPS trajectories), over (b) data cleaning (e.g., filtering
of noise and outliers in 3D point clouds) to (¢) generating LOD representations
for point clouds. Using the modular pipeline architecture described in Chapter 2,
the processing engine allows running and scheduling multiple operations in parallel.
Results of those operations are automatically stored by the point cloud manager
and ground penetrating radar manager, respectively.

Rendering Engine. The rendering engine is responsible for providing an inter-
active, combined visualization of point clouds and GPR data. To that end, the
multi-pass rendering approach presented in Chapter 5 is utilized, allowing to apply
image-based post processing effects that facilitate visual filtering and highlighting.
For each data type the corresponding manager is queried, retrieving only data
subsets that are relevant for the current view and task. Changes to the current
render configuration (e.g., regarding applied post processing effects) can be made
at runtime via the interaction handler.

Interaction Handler. The interaction handler updates the visualization according
to user interactions. In particular, users can (1) change view position and angle, (2)
select B-scans they want to focus on, (3) select and configure applied post-processing
effects, and (4) define areas of interest for highlighting (R4).

6.1.2 Visualization Techniques

The combined visualization of point clouds and GPR data is based on two major user

interface components: A interactive 3D scene view and a 2D user interface.

3D Scene View

The first step towards integrating GPR data and point clouds into a single visualization

is projecting each B-scan onto the captured GPS trajectory (R2). To prevent different

6.1. Combined Visual Exploration of GPR Data and Point Clouds for Road Environments 89

Figure 6.4: Points under the cuboid are elevated and highlighted. An interactive lens shows the
cuboid’s surface below the points.

B-scans from occluding each other, individual B-scans can be hidden dynamically (R3).
Each GPR data set is represented by a cuboid, covering the amount of space scanned
by the GPR sensors, that is rendered onto the GPS trajectory (Figure 6.4). To fill the
area in between the B-scans, their values are interpolated. A 3D texturing approach
guarantees the possibility of slicing the cuboid —both vertically and horizontally— as
well as moving it along the trajectory. That way, the cuboid can be restricted to specific
areas of interest, thus, facilitating visual filtering and highlighting (R4).

The visibility and usability of the cuboids is increased by raising them onto the
corresponding GPS trajectory rather than leaving them below ground level (R3). To
keep the spatial context, the points located originally above the cuboid are translated
alongside and highlighted for a better contrast to non-translated points (Figure 6.4).
Furthermore, to enable a direct view onto the cuboid’s surface, an interactive see-through
lens similar to the one presented in Chapter 3 is provided that hides points around the
mouse cursor. As an alternative, the see-through lens mode may be inverted, displaying
only points around the cursor. This allows to focus on the GPR data, while keeping once
more the spatial context (R4).

2D User Interface

To facilitate an in-depth exploration of the GPR data, a supplementary widget is provided
that shows all B-Scans in full length in 2D (Figure 6.5) and allows to configure the 3D
scene view.

In particular, users may change how the cuboid of the given GPR data set is rendered.
This includes (1) setting its elevation relative to ground level, (2) cropping to specific
start and end points, (3) cropping to specific minimum and maximum radar scanning

90 Chapter 6. Case Studies and Applications

& GPR Dt Sices - 30 Point Cloud Bxlorer - o x

[s = ,v’n;,.:;&ﬁ_.,i;k‘ o A e s B s e mar‘}“t“}“‘:}uv—"— Y R (Ve

e e — — —————

¢ }\Vpu VO e el

— — — —

only elevate around cursor [] remove points around cursor /]

Figure 6.5: 2D User Interface for GPR data with cropping and thresholding options.

heights, and (4) hiding specific B-scans altogether. Cropping to specific start and end
points enables users to move both, the cuboid and the corresponding slice in the 2D
view, back and forth. Doing so moves the camera position in the 3D view accordingly,
ensuring that the view is always centered on the cuboid (R4).

Furthermore, users may change, how textures are generated from a GPR data set.
While the input data includes raw information about the reflected signal picked up by the
receiver, the generated textures show the amplitudes of these values, with positive and
negative values color coded in red and blue. Users may change how much these values
should be amplified, since their range can vary greatly. As an example, a much stronger
amplification should be applied when exploring parts of the data with small differentials.
Furthermore, parts featuring drastic changes (i.e., most often points of interest) can
be highlighted by specifying thresholds. As a consequence, these parameters facilitate
identifying anomalies in specific regions of the GPR data.

6.1.3 Evaluation

Similar to the rendering system evaluated in Chapter 3, the presented adaptation was
implemented based on C++, OpenGL, GLSL, and OpenSceneGraph. Test data consisted
of four GPR B-scans continuously captured in driving direction alongside a 650m long
trajectory, as well as a mobile mapping LiDAR scan of the same area. The four B-scans
were captured in parallel, using radar antennas sensing with a frequency between 1000 and
2000 MHz. Reaching a depth between 0.45m and 0.90 m, each radar antenna captured
the 650m of road data with a density of 13,146 data points, holding 512 4-byte samples
each. The mobile mapping LiDAR scan featured a density of at least 1000 points per
square meter in those areas covered by ground penetrating radar. In addition to spatial

6.1. Combined Visual Exploration of GPR Data and Point Clouds for Road Environments 91

information, the intensity of each returned laser ray was measured as well. In the absence
of color information, these intensity values were visualized as grayscale values to enhance
the point cloud depiction.

Usability

Having antennas operating at different frequencies —and therefore featuring different
pickup patterns, maximum depths, and accuracies— is useful for having nearly the same
region covered with two completely different settings. However, it makes visualization
more challenging since neighboring B-scans are not directly comparable anymore. Thus,
interpolating the 2D B-scans to create a 3D representation of the captured data might
lead to unexpected results when B-scans with differing antenna settings are active. Also,
B-scans may easily occlude each other. Since an important part of the visualization is
that the coordinates of the radar scan are exactly mapped to the point cloud, adjusting
the distance between the B-scans is not a viable option. Thus, users must hide unwanted
B-scans to make otherwise occluded B-scans visible.

Performance

As discussed in Chapter 3, the presented rendering system allows generating interactive
frame rates for arbitrary point clouds. Regarding ground penetrating radar, the supplied
B-scans first must be loaded into OpenGL textures to generate the final rendered textures.
Thus, the performance cost in this case is composed of the initial time to load the data,
and the time at runtime to update and draw the B-scan textures. Since the few textures
in the context of this case study feature a resolution of 13,146,512 pixels at a bit depth
of four bytes for the raw data and one byte for result textures, and both updating and
drawing of these textures is completely GPU-accelerated, this runtime cost is negligible in
comparison to the one introduced by managing and rendering the point cloud. However,
for bigger data sets, more advanced memory managing methods and LoD approaches
might be needed to overcome main and GPU memory limitations.

As a conclusion, this case study exemplifies how the interactive rendering techniques,
that have been presented throughout this thesis, can be applied in real-world scenarios
to facilitate the design and implementation of domain specific interactive tools and
applications. In addition to being applicable to 3D point clouds of arbitrary size and
density, they offer many degrees of freedom for application design as they can be seamlessly
combined with existing rendering techniques for other types of geometry such as 2D
and 3D meshes or —as in this case— georeferenced image data. Some of the presented
rendering techniques may even be directly applied to other types of geometry, requiring
only minimal adaptation, as exemplified by the interactive see-through lenses used to
provide unobstructed views of a cuboid’s surface in areas of interest without losing spatial
context.

92 Chapter 6. Case Studies and Applications

(a) File selection and upload. (b) Definition of meta data such as data access rights.

(¢) Definition of EPSG codes to georeference uploaded data sets. (d) Visualization of the uploaded and configured data.

Figure 6.6: Web frontend used during the first case study allowing users to upload, prepare and
explore enriched point clouds.

6.2 Web-Based Management and Monitoring of Large-Scale
Urban Development Projects

This section is based in parts on the author’s scientific publications in [2], [1] and [6].

Following the ever-increasing availability and affordability of in-situ and remote
sensing technology, enriched point clouds have been widely established as a central
source of both, geospatial and non-geospatial information. A prime example of this
are large-scale infrastructure and urban development projects. Here, point clouds are
captured and updated numerous times throughout a project’s lifetime to document and
monitor current developments [167, 134]. As point clouds in this context may need to
be collaboratively inspected, processed, and exported by several stakeholders of vastly
different backgrounds [111], isolated visualization solutions that focus exclusively on
specific use cases and individual users (e.g., Section 6.1) are often not applicable to such
large-scale projects. Instead, sophisticated systems are required that combine web-based
technology to store, update, analyze, and collaboratively inspect captured point clouds
while also providing functionality to seamlessly integrate with existing workflows and
external systems. One example of such a system was presented in depth in Chapter 5.
This section follows up on the initial performance evaluation (Section 5.4) and provides
several case studies that demonstrate the scalability of the presented system with regards
to user base, data size, as well as available computing and graphics capacities in the
context of large-scale infrastructure and urban development projects.

6.2. Web-Based Management and Monitoring of Large-Scale Urban Development Projects 93

Figure 6.7: Processing pipeline used for the first case study to generate kd-trees from a set of
input data sets.

6.2.1 First Case Study: Collaborative Interaction with Enriched Point
Clouds

The first case study focused on the collaborative interaction with enriched point clouds
in the context of a large-scale infrastructure project involving up to 10 concurrent users
representing different stakeholders spread across Germany. The infrastructure project
comprised several individual sites that were captured by air or —in the case of some
especially relevant building complexes— via terrestrial scanning. In total, the scans
amounted to 5.31 TB of raw data (E57 or las format) distributed across 144 individual
data sets, each of which containing between 18 million to 4.1 billion points at an average
point density of 6.1 points/m? (airborne scans) and 1.2 million points/m? (terrestrial
scans), respectively.

Via a web frontend (Figure 6.6) users were able to (1) upload data sets asyn-
chronously, (2) georeference them individually and (3) restrict data access to specific
users. Simultaneously —given corresponding data access rights— users could collabo-
ratively inspect and annotate point clouds that had already been added to the system.
Rendering performance on client devices was consistent with the results presented in
Section 5.4. A dedicated server featuring an Intel Core i7-8700 CPU, 64 GB main memory
and 12 TB secondary storage was used to host uploaded data sets and conduct necessary
pre-processing operations. The applied processing pipeline was rather simplistic, com-
bining just three pipeline nodes (Figure 6.7): An importer and an exporter, connected
via a kd-tree generator task. To speed up performance, each kd-tree generator uses a
main memory cache. In the context of this case study, the maximum cache size was set
to 16 GB, thus, the number of kd-trees that could be generated in parallel was limited
to four in the worst case (Figure 6.9). However, even for the largest uploaded data
sets pre-processing times stayed below 60 minutes. Furthermore, they were added only
gradually which further minimized the delay noticeable by the users.

6.2.2 Second Case Study

For the second case study, emphasis was put onto the processing engine’s performance and
scalability in more computation intense scenarios. In particular, the following scenarios
were considered:

¢ Deriving Tree Cadasters. Tree cadasters consolidate detailed information about
biomass in an area and are essential for a growing number of applications in

94

Chapter 6. Case Studies and Applications

Figure 6.8: Processing pipelines as they have been used for the second case study.

urban planning, landscape architecture, and forest management. Point cloud
analytics allows for the automatic, area-wide derivation and continuation of such
tree cadasters and corresponding metrics, e.g., height and crown diameter [109].
As depicted in Figure 6.8(a), a corresponding analysis comprises three major tasks:
Identification of points representing vegetation, delineation of individual trees
within those vegetation points, and calculation of per-tree metrics. To identify
vegetation points, an iterative, segment-based surface category extraction [139] was
applied that distinguishes between ground, building, and vegetation by analyzing
for each point the topology of its proximity. To efficiently delineate individual trees,
a point-based approach by [91] was adapted, requiring only a single iteration over
the point cloud. For fast nearest-neighbor queries a GPU-based implementation
was used.

Monitoring Infrastructure Networks. Infrastructure networks (e.g., roads,
canalizations, or power lines) are constantly subjected to environmental loads (e.g.,
wind, temperature changes), causing them to deteriorate over time. Regularly
capturing such infrastructure networks provides efficient means for their automatic,
accurate, and predictive maintenance. The corresponding analysis (Figure 6.8(b))
is commonly referred to as a change detection [83, 57]: For each input point,
the distance to a reference geometry (e.g., another point cloud or 3D model) is
estimated as a metric for the degree of change within the covered area and stored
as a per-point attribute. This approach allows to identify changes efficiently and
establish update and maintaining workflows.

Continuing 3D City Models. Many applications in urban planning and devel-
opment or building information modeling require official, state-issued cadaster data
or even full-fledged 3D city models. Keeping those models up to date constitutes

6.2. Web-Based Management and Monitoring of Large-Scale Urban Development Projects 95

Table 6.1: Second case study: Average data throughput of the processing engine.

Processing Operation Average Data Throughput
Surface Category Identification 0.44B pts/hour
Tree Delineation 0.53B pts/hour
Change Detection 7.68B pts/hour
Building Outline Extraction 8.27B pts/hour

a major challenge for municipalities that can be facilitated by using point cloud
analytics. As an example, a change detection as described above can be combined
with per-point surface category information to automatically identify all building
points with a certain distance to a given 3D city model (Figure 6.8(c)), indicating
newly constructed, re-moved, or otherwise modified buildings. The resulting points
can be segmented into subsets of neighboring points, each representing a separate
building. Based on these subsets, 2D building outlines and additional metrics (e.g.,
average distance, projected roof area) can be derived that facilitate the assessment
of necessary —typically manual— modifications to the 3D city model.

For each scenario an individual pipeline plan (Section 2.5) was defined in the form
of a JSON file to configure the processing pipeline’s behavior accordingly. Users were
then able to interactively inspect the processing results by switching between different
rendering styles as described in Chapter 5.3. Test data sets for those scenarios comprised
airborne, terrestrial, and mobile data sets covering different parts of three metropolitan
regions with the largest point cloud featuring 100 points/m? for an area of 800 km?2.
All tests and measurements were performed by a small network containing a total of
six processing nodes, each featuring an Intel Core i7 CPU with 3.40 GHz, 32 GB main
memory, and a NVIDIA GeForce GTX 1070 with 8 GB device memory and 1920 CUDA
cores. In Table 6.1, the data throughput for the most relevant processing operations is
specified. Data throughput for the integration and rendering of the data is defined by
the overall network and memory bandwidth and was at around 80 MB /second.

6.2.3 Third Case Study

Following up on these measurements, a third case study further evaluated the processing
pipeline’s ability to scale with increased processing and memory capacities. Hosted on
an Oracle Server —featuring an Intel Xeon Gold 5120M CPU, 192 GB main memory,
8 TB secondary storage, and two NVIDIA Tesla P100 with 16 GB device memory— a
change detection as well as a surface category extraction were conducted for all uploaded
data sets using the processing pipeline depicted in Figure 6.10. Test data for that case
study consisted of two different airborne scans of a rural area of 270 km? featuring four
points/m? (1.012 billion points in total) and nine points/m? (2.474 billion points in
total), respectively. The computation time of both processing operations was notably

96 Chapter 6. Case Studies and Applications

200

150

100

50

B Cumulative data size in GB (on secondary storage)

B Number of kd-trees generated in parallel

Figure 6.9: Cache size was limited to 16 GB per kd-tree generator during the first case study.
Hence, the number of kD-trees that could be generated in parallel (blue) varied depending on the
overall size of the corresponding raw data (orange).

Figure 6.10: Processing pipeline used for the third case study combining a change detection and
a surface category identification.

200 250
180
160 200
140
. 150
100
100
80
60
50
«
0
. = CPUonly. w41
2 u 7 3 m o100 6517
= Computation tme (min) 6517 8152 1588 862 m20Pi00 39.45
(a) Computation time in minutes of the change detection for (b) Computation time in minutes of the change detection for
different numbers of CPU cores used (for one GPU). different numbers of GPUs used (for 28 CPU cores).

Figure 6.11: Third case study: Computation time in minutes of the change detection for different
numbers of CPU and GPU cores.

6.2. Web-Based Management and Monitoring of Large-Scale Urban Development Projects 97

putation time (in min)

Figure 6.12: Third case study: Computation time in minutes of the surface category identification
for different numbers of CPU cores used (for one GPU).

reduced by increasing the number of CPU threads used in parallel (Figure 6.11(a) and
Figure 6.12) which underlines the scalability of the presented system. The performance
of the change detection could be improved further by increasing the number of GPUs
used during the computation (Figure 6.11(b)), whereas that had only a neglectable effect
on the —in this case— mostly CPU based surface category extraction.

Chapter 7

Conclusions and Future Research

The rendering and interaction techniques presented throughout this thesis provide efficient
means to design and implement visualization tools for enriched point clouds and 4D point
clouds; they can be easily adapted for different use cases, target users and hardware
platforms. In particular, they provide flexibility with respect to the following aspects:

e Data Characteristic. Depending on the applied acquisition system as well as
subsequently conducted processing and analysis steps, captured point clouds can
differ drastically in terms of covered surface area, local point density and number
of data layers. As a consequence, the overall size of a visualized data set may
lie anywhere between a few megabytes and hundreds of terabytes. Furthermore,
additional data layers often necessitate applying unique color schemes and rendering
styles to enable visual filtering and highlighting.

e Hardware Limitations. The maximum number of points that can be rendered
simultaneously in real-time depends on the corresponding device’s specific hardware
setup, most notably available main and GPU memory as well as computation
speed of CPU and GPU. Other factors to consider are memory and —in the case
of web-based applications— network bandwidth, both influencing the speed and
frequency at which visualized data and potential caches can be updated.

e Targeted Frame Rate and Visual Quality. The minimal frame rate required
for an application to be considered usable varies based on the intended area of
use: While traditional desktop applications are considered fully interactive at
around 30 fps, VR applications require at least 90 fps to avoid nausea. Similarly,
requirements regarding rendering style and visual quality (e.g., non-photorealistic
vs. photorealistic) are often derived from the underlying use case.

e Number of Simultaneous Users. Especially large-scale acquisition projects
focusing on entire cities or countries may involve several stakeholders of vastly
different backgrounds that all need to interact with the captured data, may it be in
the form of read-only operations (e.g., a simple visualization or the export of data
subsets) or in a way that modifies the point cloud (e.g., via analysis and processing
operations) and related visualization elements (e.g., by adding annotations or
measurements). Visualization tools need to take this into account and ensure that
the results of modifying operations are shared among all clients.

99

100 Chapter 7. Conclusions and Future Research

By combining the presented techniques, numerous users may collaboratively inspect
enriched point clouds on heterogeneous hardware setups with differing computing capabil-
ities, ranging from low-end mobile devices over high-end desktop computers to emerging
VR devices. All techniques can be combined and configured at runtime, allowing to
design task and domain-specific inspection tools, and can be seamlessly integrated with
existing workflows and external systems. This is evidenced by a number of case studies
and pilot user studies, showcasing the applicability of these techniques in the context of
real-world scenarios.

In future work, some of the techniques discussed in this thesis may and should be
further improved upon: First, the presented rendering techniques still require rather
potent hardware (i.e., high-end dedicated or integrated GPUs) to provide interactive
frame rates and, thus, exclude many hardware setups. To some degree, this can be seen
as a result of all rendering techniques being based on the standard hardware-accelerated
rendering pipeline implemented in modern GPUs, that has primarily been designed and
optimized for mesh-based geometry rather than points — even though native point
primitives are provided by underlying rendering systems (e.g., OpenGL’s GL_ POINTS).
As a remedy, several authors [161, 73] have started to look into rendering techniques
for point clouds that replace the standard hardware-accelerated rendering pipeline with
custom compute shaders. Since such GPGPU-based rendering pipelines for 3D point
clouds have the potential to "outperform the hardware pipeline by up to an order of
magnitude" [161] while simultaneously improving the visual quality, it seems promising to
adapt the rendering techniques presented in this thesis accordingly. Second, collaborative
interaction has been primarily discussed from a technical point of view in this thesis by
focusing on the implementation of interaction techniques allowing to inspect, measure
and annotate as well as methods to synchronize corresponding interaction results across
multiple devices. However, rather minimal focus has been put onto the usability of such
interaction techniques. Therefore, the pilot user study presented in Chapter 4 should
be followed up by additional full-fledged user studies that (a) take into account more
diverse user groups, (b) evaluate the ability of the presented interaction techniques to
facilitate interactions between multiple users and (c¢) focus on non-immersive applications
and their drastically different requirements regarding usability.

Furthermore, the ideal of implementing visualization tools providing flexibility can
be further evaluated with respect to the following aspects that were not further addressed
in this thesis:

o Data Stability. Unlike the data sets used for evaluation purposes throughout this
thesis, point clouds are not necessarily static but may be frequently updated, e.g.,
based on user interaction, processing results or regularly conducted re-acquisitions
of the corresponding site. In particular, modifications may entail changes to the
overall structure of a point cloud (i.e., by adding, moving, or removing entire
points). This introduces additional challenges, as the spatial data structures and
LoD representations utilized in previous chapters are generally optimized for fast
data look-up at the cost of a significantly more complex construction and update

101

process. While spatial data structures and rendering techniques for dynamically
modified point cloud have been introduced for desktop applications [157, 181], their
applicability to web-based or VR applications remains to be evaluated.

e« Data Completeness. The very nature of the capturing process often leads to
varying point densities within a given data set: Depending on the positioning of the
scanning device in relation to occluding structures as well as the reflection properties
of captured surfaces, some parts of a site may be represented by considerably less
points than others or even none at all. To some extent, such holes may be visually
filled by assigning each point an ideal size specific to the point density in its
proximity. However, calculating these ideal point sizes either requires additional
preprocessing steps or slows down the rendering performance by adding complexity.
An alternative that should be evaluated in future work is the use of deep learning
rendering approaches [149, 16] that promise to efficiently "generate high-resolution
photo realistic point renderings from low-resolution point clouds" [36].

An emerging technology that promises to expedite the digital transformation even
further is known as augmented reality (AR). While within this thesis, the concept of
immersiveness was primarily discussed as an either-or property, differentiating between
fully immersive visualizations based on VR technology and traditional non-immersive
visualizations, AR technology has recently gained popularity as a bridge between both
extremes, as it merely "blends computer-generated information on the user’s real en-
vironment, while VR uses computer-generated information to provide a full sense of
immersion" [117]. While AR applications for point clouds share certain requirements
with web-based applications (e.g., having to scale for low-end mobile devices) as well as
VR applications (e.g., being particularly vulnerable to visual artifacts that may break
immersion), they also introduce several unique requirements that necessitate further
research, in particular the precise localization of the digital model within the real-world
environment.

Acknowledgements

This thesis is the result of my research at the Department of Computer Graphics Systems
at the Hasso Plattner Institute (HPI). I am very grateful to my adviser Prof. Dr. Jiirgen
Doéllner for granting me this opportunity.

As a research assistant at the HPI, in particular during my time as a member
of the HPI Research School for "Service-Oriented Systems Engineering’, 1 had the
opportunity to get in regular contact with a number of partners from industry and
academia producing or operating on point clouds in some capacity. This allowed me
to develop a deep understanding of the state-of-the-art in point cloud management,
processing, and visualization as well as the most pressing needs encountered by professional
users of corresponding applications, tools, and systems. In particular, it is a great pleasure
to thank Dr. Rico Richter and Dr. Johannes Wolf for our joint research over the years
that resulted in several publications. Furthermore, I'd like to thank Prof. James Gain,
Prof. Heinz Riither, Stephen Wessels, and Roshan Bhurtha from the University of Cape
Town for their hospitality and in-depth discussion of the specific challenges of the Zamani
project, a research group aiming to digitally preserve endangered cultural and natural
heritage across Africa, the Middle East, and Southeast Asia via in-situ and remote
sensing.

I owe sincere and earnest thankfulness to all the anonymous reviewers who supported
me during writing this thesis by proofreading and by providing ideas for further improve-
ment. This work has been partially funded by the HPI, the HPI Research School for
"Service-Oriented Systems Engineering", and the German Federal Ministry of Education
and Research (BMBF) as part of the "PunctumTube" research project.

103

List of Publications

The work presented in this manuscript appeared previously in the following publications:

Journal Papers and Book Chapters

1]

Soren Discher, Rico Richter, and Jiirgen Dollner. “Concepts and Techniques
for Web-Based Visualization and Processing of Massive 3D Point Clouds with
Semantics”. In: Graphical Models 104 (2019), p. 101036.

Soren Discher, Rico Richter, Matthias Trapp, and Jiirgen Dollner. “Service-
Oriented Processing and Analysis of Massive Point Clouds in Geoinformation
Management”. In: Service-Oriented Mapping: Changing Paradigm in Map Produc-
tion and Geoinformation Management. Springer International Publishing, 2019,
pp- 43-61.

Conference Papers

[3]

Séren Discher, Leon Masopust, Sebastian Schulz, Rico Richter, and Jiirgen Déllner.
“A Point-Based and Image-Based Multi-Pass Rendering Technique for Visualizing
Massive 3D Point Clouds in VR Environments”. In: Proceedings of the 26. Inter-
national Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision. 2018.

Soren Discher, Rico Richter, and Jiirgen Déllner. “A Scalable WebGL-based
Approach for Visualizing Massive 3D Point Clouds using Semantics-Dependent
Rendering Techniques”. In: Proceedings of the 23rd International Conference on
Web3D Technology. 2018, pp. 1-9.

Soren Discher, Rico Richter, and Jiirgen Déllner. “Interactive and View-Dependent
See-Through Lenses for Massive 3D Point Clouds”. In: Advances in 8D Geoinfor-
mation. Springer International Publishing, 2016, pp. 49-62.

Soren Discher, Rico Richter, and Jirgen Doéllner. “Konzepte fiir eine Service-
basierte Systemarchitektur zur Integration, Prozessierung und Analyse von mas-
siven 3D-Punktwolken”. In: Tagungsband der 34. Wissenschaftlich-Technischen
Jahrestagung der DGPF e.V. 2019, pp. 1-10.

105

106

[11]

Rico Richter, Séren Discher, and Jiirgen Déllner. “Out-of-Core Visualization of
Classified 3D Point Clouds”. In: 8D Geoinformation Science: The Selected Papers
of the 3D Geolnfo. Springer International Publishing, 2015, pp. 227-242.

Felix Thiel, Séren Discher, Rico Richter, and Jiirge Déllner. “Interaction and
Locomotion Techniques for the Exploration of Massive 3D Point Clouds in VR En-
vironments”. In: The International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences 4. 2018, pp. 697-701.

Johannes Wolf, Séren Discher, and Jiirgen Dollner. “Techniken zur kombinierten
Darstellung von 2D-Bodenradar und 3D-Punktwolken zur Analyse des Straflen-
raums”. In: Tagungsband der 39. Wissenschaftlich- Technischen Jahrestagung der
DGPF e. V. 2019, pp. 154-166.

Johannes Wolf, Séren Discher, Leon Masopust, Sebastian Schulz, Rico Richter,
and Jiirgen Doéllner. “Combined Visual Exploration of 2D Ground Radar and 3D
Point Cloud Data for Road Environments”. In: The International Archives of
the Photogrammetry, Remote Sensing € Spatial Information Sciences 6210. 2018,
pp. 231-236.

Johannes Wolf, Tobias Pietz, Rico Richter, Séren Discher, and Jiirgen Déllner.
“Image-Based Road Marking Classification and Vector Data Derivation from
Mobile Mapping 3D Point Clouds”. In: Proceedings of the 16th International
Conference on Computer Graphics Theory and Applications. 2021, pp. 227-234.

References

[14]

[15]

[18]

[19]

Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-Time Rendering.
AK Peters/crc Press, 2019.

Varol Akman, W Randolph Franklin, Mohan Kankanhalli, and Chandrasekhar
Narayanaswami. “Geometric Computing and Uniform Grid Technique”. In:
Computer-Aided Design 21.7 (1989), pp. 410-420.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin,
and Claudio T Silva. “Point Set Surfaces”. In: Proceedings of the IEEE Conference
on Visualization. IEEE. 2001, pp. 21-29.

Fatemeh Alidoost and Hossein Arefi. “Comparison of UAS-Based Photogrammetry
Software for 3D Point Cloud Generation: A Survey over a Historical Site”. In:
ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences
4 (2017).

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor

Lempitsky. “Neural Point-Based Graphics”. In: Proceedings of 16th European
Conference on Computer Vision. 2020, pp. 696-712.

Thomas Alsop. Virtual Reality (VR) - Statistics & Facts. 2021. URL: https:
//www.statista.com/topics/2532/virtual-reality-vr/#dossierKeyfigures
(visited on 12/02/2022).

Carlos Andujar, Pere-Pau Vazquez, and Marta Fairén. “Way-Finder: Guided
Tours through Complex Walkthrough Models”. In: Computer Graphics Forum.
Vol. 23. 3. 2004, pp. 499-508.

Christoph Anthes, Rubén Jesiis Garcia-Herndndez, Markus Wiedemann, and Dieter
Kranzlmiiller. “State of the Art of Virtual Reality Technology”. In: Proceedings of
the IEEE Aerospace Conference. IEEE. 2016, pp. 1-19.

Salman Azhar. “Building Information Modeling (BIM): Trends, Benefits, Risks,
and Challenges for the AEC Industry”. In: Leadership and Management in Engi-
neering 11.3 (2011), pp. 241-252.

Esther Baumann, Fabrizio R Giorgetta, J-D Deschénes, William C Swann, lan
Coddington, and Nathan R Newbury. “Comb-Calibrated Laser Ranging for Three-
Dimensional Surface Profiling with Micrometer-Level Precision at a Distance”. In:
Optics express 22.21 (2014), pp. 24914-24928.

107

https://www.statista.com/topics/2532/virtual-reality-vr/#dossierKeyfigures
https://www.statista.com/topics/2532/virtual-reality-vr/#dossierKeyfigures

108

References

[30]

[31]

[32]

[33]

Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative
Searching”. In: Communications of the ACM 18.9 (1975), pp. 509-517.

Jean-Angelo Beraldin, Michel Picard, Adriana Bandiera, Virginia Valzano, and
Fabio Negro. “Best Practices for the 3D Documentation of the Grotta dei Cervi
of Porto Badisco, Italy”. In: Three-Dimensional Imaging, Interaction, and Mea-
surement. Vol. 7864. 2011, pp. 177-191.

Leif P Berg and Judy M Vance. “Industry Use of Virtual Reality in Product
Design and Manufacturing: A Survey”. In: Virtual Reality 21.1 (2017), pp. 1-17.

Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guen-
nebaud, Joshua A Levine, Andrei Sharf, and Claudio T Silva. “A survey of Surface
Reconstruction from Point Clouds”. In: Computer Graphics Forum. Vol. 36. 1.
2017, pp. 301-329.

Filip Biljecki, Ken Arroyo Ohori, Hugo Ledoux, Ravi Peters, and Jantien Stoter.
“Population Estimation Using a 3D City Model: A Multi-Scale Country-Wide
Study in the Netherlands”. In: PloS one 11.6 (2016), e0156808.

Filip Biljecki, Jantien Stoter, Hugo Ledoux, Sisi Zlatanova, and Arzu Coltekin.
“Applications of 3D City Models: State of the Art Review”. In: ISPRS International
Journal of Geo-Information 4 (2015), pp. 2842-2889.

Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt. “High-
Quality Surface Splatting on Today’s GPUs”. In: Eurographics Symposium on
Point-Based Graphics. 2005, pp. 17-24.

Christian Boucheny. “Interactive Scientific Visualization of Large Datasets: To-
wards a Perceptive-Based Approach”. PhD thesis. Université Joseph Fourier,
Grenoble, 2009.

Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert. “Unstructured Point
Cloud Semantic Labeling Using Deep Segmentation Networks”. In: 2017, pp. 1-8.

Mesude Bayrakci Boz, Kirby Calvert, and Jeffrey RS Brownson. “An Automated
Model for Rooftop PV Systems Assessment in ArcGIS using LIDAR”. In: Aims
Energy 3.3 (2015), pp. 401-420.

E. Bozgeyikli, A. Raij, S. Katkoori, and R. Dubey. “Point & Teleport Locomotion
Technique for Virtual Reality”. In: Proceedings of the annual Symposium on
Computer-Human Interaction in Play. 2016, pp. 205-216.

Alex Bradley, Haijiang Li, Robert Lark, and Simon Dunn. “BIM for Infrastructure:
An Overall Review and Constructor Perspective”. In: Automation in Construction
71 (2016), pp. 139-152.

John Brosz, Sheelagh Carpendale, and Miguel A Nacenta. “The Undistort Lens”.
In: Computer Graphics Forum. Vol. 30. 3. 2011, pp. 881-890.

John Brosz, Faramarz F Samavati, M Sheelagh T Carpendale, and Mario Costa
Sousa. “Single Camera Flexible Projection”. In: Proceedings of the 5th international
Symposium on Non-Photorealistic Animation and Rendering. 2007, pp. 33—42.

109

[41]

[42]

[45]

[46]

Giang Bui, Truc Le, Brittany Morago, and Ye Duan. “Point-Based Rendering
Enhancement via Deep Learning”. In: The Visual Computer 34.6 (2018), pp. 829
841.

Nicholas Burtnyk, Azam Khan, George Fitzmaurice, Ravin Balakrishnan, and
Gordon Kurtenbach. “Stylecam: Interactive Stylized 3D Navigation using Inte-
grated Spatial & Temporal Controls”. In: Proceedings of the 15th annual ACM
Symposium on User Interface Software and Technology. 2002, pp. 101-110.

Howard Butler, David C Finnegan, Peter J Gadomski, and Uday K Verma. “plas.
io: Open Source, Browser-Based WebGL Point Cloud Visualization”. In: AGU
Fall Meeting Abstracts 2014 (2014), IN23D-3749.

Matthew Carlberg, Peiran Gao, George Chen, and Avideh Zakhor. “Classifying
Urban Landscape in Aerial Lidar Using 3D Shape Analysis”. In: 16th IEEFE
International Conference on Image Processing. 2009, pp. 1701-1704.

Dong Chen, Ruisheng Wang, and Jiju Peethambaran. “Topologically Aware Build-
ing Rooftop Reconstruction from Airborne Laser Scanning Point Clouds”. In:
IEEE Transactions on Geoscience and Remote Sensing 55.12 (2017), pp. 7032—
7052.

Haiwei Chen, Samantha Chen, and Evan Suma Rosenberg. “Redirected Walking
in Irregularly Shaped Physical Environments with Dynamic Obstacles”. In: Pro-
ceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces. 2018.
Forthcoming.

K Choromanski, J Lobodecki, K Puchata, and W Ostrowski. “Development of
Virtual Reality Application for Cultural Heritage Visualization From Multi-Source
3D Data”. In: International Archives of the Photogrammetry, Remote Sensing &
Spatial Information Sciences (2019).

Martin Christen and Stephan Nebiker. “Visualisation of Complex 3D City Models
on Mobile Webbrowsers using Cloud-Based Image Provisioning”. In: ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences (2015).

Rémi Cura, Julien Perret, and Nicolas Paparoditis. “A Scalable and Multi-Purpose
Point Cloud Server (PCS) for Easier and Faster Point Cloud Data Management
and Processing”. In: ISPRS Journal of Photogrammetry and Remote Sensing 127
(2017), pp. 39-56.

Paolo Dabove, Nives Grasso, and Marco Piras. “Smartphone-Based Photogramme-
try for the 3D Modeling of a Geomorphological Structure”. In: Applied Sciences
9.18 (2019), p. 3884.

James L Davis and A Peter Annan. “Ground-Penetrating Radar for High-
Resolution Mapping of Soil and Rock Stratigraphy”. In: Geophysical prospecting
37.5 (1989), pp. 531-551.

110

References

[50]

M De La Calle, D Gémez-Deck, O Koehler, and F Pulido. “Point Cloud Visualiza-
tion in an Open Source 3D glob3”. In: International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences 38.5/W16 (2011).

David Deibe, Margarita Amor, and Ramén Doallo. “Big Data Storage Technologies:
A Case Study for Web-Based LiDAR Visualization”. In: Proceedings of the IEEE
International Conference on Big Data. IEEE. 2018, pp. 3831-3840.

David Deibe, Margarita Amor, and Ramén Doallo. “Supporting Multi-Resolution
Out-of-Core Rendering of Massive LiDAR Point Clouds through Non-Redundant
Data Structures”. In: International Journal of Geographical Information Science
33.3 (2019), pp. 593-617.

David Deibe, Margarita Amor, Ramén Doallo, David Miranda, and Miguel Cordero.
“GVLiDAR: An Interactive Web-Based Visualization Framework to Support
Geospatial Measures on LiDAR Data”. In: International Journal of Remote
Sensing 38.3 (2017), pp. 827-849.

Emanuel Demetrescu, Enzo d’Annibale, Daniele Ferdani, and Bruno Fanini. “Dig-
ital Replica of Cultural Landscapes: An Experimental Reality-Based Workflow to
Create Realistic, Interactive Open World Experiences”. In: Journal of Cultural
Heritage 41 (2020), pp. 125-141.

Petar Dobrev, Paul Rosenthal, and Lars Linsen. “An Image-Space Approach to
Interactive Point Cloud Rendering Including Shadows and Transparency”. In:
Computer Graphics and Geometry 12.3 (2010), pp. 2-25.

Juergen Dold and Jessica Groopman. “The Future of Geospatial Intelligence”. In:
Geo-Spatial Information Science 20.2 (2017), pp. 151-162.

Jiirgen Dollner. “Geospatial Artificial Intelligence: Potentials of Machine Learning
for 3D Point Clouds and Geospatial Digital Twins”. In: PFG-Journal of Pho-
togrammetry, Remote Sensing and Geoinformation Science 88.1 (2020), pp. 15—
24.

Jiirgen Déllner, Benjamin Hagedorn, and Jan Klimke. “Server-Based Rendering of
Large 3D Scenes for Mobile Devices using G-Buffer Cube Maps”. In: Proceedings
of the 17th International Conference on 3D Web Technology. 2012, pp. 97-100.

Pinliang Dong and Qi Chen. LiDAR Remote Sensing and Applications. CRC Press,
2017.

Jan UH Eitel, Bernhard Hofle, Lee A Vierling, Antonio Abellan, Gregory P Asner,
Jeffrey S Deems, Craig L Glennie, Philip C Joerg, Adam L LeWinter, Troy S
Magney, et al. “Beyond 3-D: The New Spectrum of Lidar Applications for Earth

and Ecological Sciences”. In: Remote Sensing of Environment 186 (2016), pp. 372
392.

Niklas Elmqvist and Philippas Tsigas. “A Taxonomy of 3D Occlusion Management
for Visualization”. In: IEEE Transactions on Visualization and Computer Graphics
14.5 (2008), pp. 1095-1109.

111

[70]

Jan Elseberg, Dorit Borrmann, and Andreas Niichter. “One Billion Points in the
Cloud — An Octree for Efficient Processing of 3D Laser Scans”. In: ISPRS Journal
of Photogrammetry and Remote Sensing 76 (2013), pp. 76-88.

Karim Farghaly, Fonbeyin Henry Abanda, Christos Vidalakis, and Graham Wood.
“Taxonomy for BIM and Asset Management Semantic Interoperability”. In: Journal
of Management in Engineering 34.4 (2018), pp. 1-13.

David N Ford and Charles M Wolf. “Smart Cities with Digital Twin Systems for
Disaster Management”. In: Journal of Management in Engineering 36.4 (2020),
p- 04020027.

Aidan Fuller, Zhong Fan, Charles Day, and Chris Barlow. “Digital Twin: En-
abling Technologies, Challenges and Open Research”. In: IEEE Access 8 (2020),
pp. 108952-108971.

Xiang Gao, Hainan Cui, Lingjie Zhu, Tianxin Shi, and Shuhan Shen. “Multi-Source
Data-Based 3D Digital Preservation of Largescale Ancient Chinese Architecture: A
Case Report”. In: Virtual Reality & Intelligent Hardware 1.5 (2019), pp. 525-541.

Zhenzhen Gao, Luciano Nocera, and Ulrich Neumann. “Visually-Complete Aerial
LiDAR Point Cloud Rendering”. In: Proceedings of the 20th International Confer-
ence on Advances in Geographic Information Systems. 2012, pp. 289-298.

Ali Ghaffarianhoseini, John Tookey, Amirhosein Ghaffarianhoseini, Nicola Nai-
smith, Salman Azhar, Olia Efimova, and Kaamran Raahemifar. “Building Informa-
tion Modelling (BIM) Uptake: Clear Benefits, Understanding its Implementation,
Risks and Challenges”. In: Renewable and Sustainable Energy Reviews 75 (2017),
pp- 1046-1053.

Enrico Gobbetti and Fabio Marton. “Layered Point Clouds: A Simple and Efficient
Multiresolution Structure for Distributing and Rendering Gigantic Point-Sampled
Models”. In: Computers € Graphics 28.6 (2004), pp. 815-826.

Michael Goesele, Jens Ackermann, Simon Fuhrmann, Carsten Haubold, Ronny
Klowsky, Drew Steedly, and Richard Szeliski. “Ambient point clouds for view
interpolation”. In: ACM Transactions on Graphics 29.4 (2010), 95:1-95:6.

Leonardo Gomes, Olga Regina Pereira Bellon, and Luciano Silva. “3D Reconstruc-
tion Methods for Digital Preservation of Cultural Heritage: A Survey”. In: Pattern
Recognition Letters 50 (2014), pp. 3-14.

Prashant Goswami, Fatih Erol, Rahul Mukhi, Renato Pajarola, and Enrico Gob-
betti. “An Efficient Multi-Resolution Framework for High Quality Interactive
Rendering of Massive Point Clouds using Multi-Way kd-Trees”. In: The Visual
Computer 29.1 (2013), pp. 69-83.

Chris Green. “Improved Alpha-tested Magnification for Vector Textures and
Special Effects”. In: Proceedings of ACM SIGGRAPH 2007 Courses. 2007, pp. 9—
18.

112

References

[73]

[74]

Markus Gross and Hanspeter Pfister. Point-Based Graphics. Elsevier, 2011.

Alberto Guarnieri, Nicola Milan, and Antonio Vettore. “Monitoring of Complex
Structure for Structural Control Using Terrestrial Laser Scanning (TLS) and
Photogrammetry”. In: International Journal of Architectural Heritage 7.1 (2013),
pp. 54-67.

Christian Giinther, Thomas Kanzok, Lars Linsen, and Paul Rosenthal. “A GPGPU-
Based Pipeline for Accelerated Rendering of Point Clouds”. In: 21 (2013), pp. 153—
161.

Tanishq Gupta and Holden Li. “Indoor Mapping for Smart Cities — An Affordable
Approach: Using Kinect Sensor and ZED Stereo Camera”. In: Proceedings of the
International Conference on Indoor Positioning and Indoor Navigation. IEEE.
2017, pp- 1-8.

Ralf Gutbell, Lars Pandikow, Volker Coors, and Yasmina Kammeyer. “A Frame-
work for Server Side Rendering using OGC’s 3D Portrayal Service”. In: Proceedings
of the 21st International Conference on Web3D Technology. 2016, pp. 137-146.

Benjamin Hagedorn, Simon Thum, Thorsten Reitz, Volker Coors, and Ralf Gut-
bell. OGC 3D Portrayal Service 1.0. OGC Implementation Standard 1.0. Open
Geospatial Consortium, Sept. 2017.

Mahmudul Hasan, Faramarz F Samavati, and Christian Jacob. “Multilevel Fo-
cus+Context Visualization using Balanced Multiresolution”. In: Proceedings of
the International Conference on Cyberworlds. IEEE. 2014, pp. 145-152.

John F Hughes, Andries Van Dam, Morgan McGuire, David F Sklar, James D
Foley, Steven K Feiner, and Kurt Akeley. Computer Graphics: Principles and
Practice (3rd ed.) Addison-Wesley Professional, 2013.

Dryver R Huston, Noel V Pelczarski, Brian Esser, and Kenneth R Maser. “Damage
Detection in Roadways with Ground Penetrating Radar”. In: Proceedings of the
8th International Conference on Ground Penetrating Radar. Vol. 4084. 2000,
pp- 91-94.

Young Hoon Jo and Seonghyuk Hong. “Three-Dimensional Digital Documentation
of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning
and Unmanned Aerial Vehicle Photogrammetry”. In: ISPRS International Journal
of Geo-Information 8.2 (2019), pp. 53—66.

Andreas Jochem, Bernhard Hofle, Volker Wichmann, Martin Rutzinger, and
Alexander Zipf. “Area-Wide Roof Plane Segmentation in Airborne LiDAR Point
Clouds”. In: Computers, Environment and Urban Systems 36.1 (2012), pp. 54-64.

Mikael Johansson. “Efficient Stereoscopic Rendering of Building Information
Models (BIM)”. In: Journal of Computer Graphics Techniques 5.3 (2016).

113

[84]

[83]

[89]

[93]

[94]

Zhizhong Kang and Zhao Lu. “The Change Detection of Building Models using
Epochs of Terrestrial Point Clouds”. In: Proceedings of the International Workshop
on Multi- Platform/Multi-Sensor Remote Sensing and Mapping. IEEE. 2011, pp. 1—-
6.

Thomas P Kersten, H-J Przybilla, Maren Lindstaedt, Felix Tschirschwitz, and
Martin Misgaiski-Hass. “Comparative Geometrical Investigations of Hand-Held
Scanning Systems”. In: International Archives of the Photogrammetry, Remote
Sensing € Spatial Information Sciences 41 (2016).

Hyeon-Joong Kim, A. Cengiz Oztireli, Markus Gross, and Soo-Mi Choi. “Adaptive
Surface Splatting for Facial Rendering”. In: Computer Animation and Virtual
Worlds 23.3-4 (2012), pp. 363-373.

Michel Kramer and Ralf Gutbell. “A Case Study on 3D Geospatial Applications
in the Web using State-of-the-Art WebGL Frameworks”. In: Proceedings of the
20th International Conference on 3D Web Technology. 2015, pp. 189-197.

Werner Kritzinger, Matthias Karner, Georg Traar, Jan Henjes, and Wilfried
Sihn. “Digital Twin in Manufacturing: A Categorical Literature Review and
Classification”. In: IFAC PapersOnLine 51.11 (2018), pp. 1016-1022.

Jeff de La Beaujardiere. “OpenGIS® Web Map Server Implementation Specifica-
tion. Version 1.3.0”. In: (2006).

Tobias Langner, Daniel Seifert, Bennet Fischer, Daniel Goehring, Tinosch Ganjineh,
and Raul Rojas. “Traffic Awareness Driver Assistance Based on Stereovision, Eye-
Tracking, and Head-Up Display”. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2016, pp. 3167-3173.

Franz Leberl, Arnold Irschara, Thomas Pock, Philipp Meixner, Michael Gruber,
Set Scholz, and Alexander Wiechert. “Point Clouds: Lidar versus 3D Vision”. In:
Photogrammetric Engineering € Remote Sensing 76.10 (2010), pp. 1123-1134.

Wenkai Li, Qinghua Guo, Marek K Jakubowski, and Maggi Kelly. “A New Method
for Segmenting Individual Trees from the Lidar Point Cloud”. In: Photogrammetric
Engineering & Remote Sensing 78.1 (2012), pp. 75-84.

Ying Liu, Lin Zhang, Yuan Yang, Longfei Zhou, Lei Ren, Fei Wang, Rong Liu,
Zhibo Pang, and M Jamal Deen. “A Novel Cloud-Based Framework for the Elderly
Healthcare Services Using Digital Twin”. In: IEEE Access 7 (2019), pp. 49088—
49101.

Yuanxin Liu and Jack Snoeyink. “A Comparison of Five Implementations of 3D
Delaunay Tessellation”. In: Combinatorial and Computational Geometry 52 (2005),
pp. 439-458.

Suresh K. Lodha, Darren M. Fitzpatrick, and David P. Helmbold. “Aerial Lidar
Data Classification using AdaBoost”. In: Sizth International Conference on 3-D
Digital Imaging and Modeling (3DIM). 2007, pp. 435—442.

114

References

[101]

[102]

103]

[104]

[105]

[106]

[107]

Facundo José Lopez, Pedro M Lerones, José Llamas, Jaime Gémez-Garcia-Bermejo,
and Eduardo Zalama. “A Review of Heritage Building Information Modeling (H-
BIM)”. In: Multimodal Technologies and Interaction 2.21 (2018), pp. 1-29.

Alexey Lukin. “Tips & Tricks: Fast Image Filtering Algorithms”. In: Proceedings
of GraphiCon. 2007, pp. 186—189.

Ryan Magargle, Lee Johnson, Padmesh Mandloi, Peyman Davoudabadi, Omkar
Kesarkar, Sivasubramani Krishnaswamy, John Batteh, and Anand Pitchaikani. “A
Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive
Maintenance of an Automotive Braking System”. In: Proceedings of the 12th
International Modelica Conference. 2017, pp. 35—46.

Oscar Martinez-Rubi, Stefan Verhoeven, Maarten Van Meersbergen, Peter Van
Oosterom, R GonAalves, Theo Tijssen, et al. “Taming the Beast: Free and Open-
Source Massive Point Cloud Web Visualization”. In: Proceedings of the Capturing
Reality Forum. The Servey Association. 2015.

Adam Marx. “Using Metaphor Effectively in User Interface Design”. In: Proceedings
of Conference on Human factors in Computing Systems. 1994, pp. 379-380.

Jane Matthews, Peter ED Love, Joshua Mewburn, Christopher Stobaus, and
Chamila Ramanayaka. “Building Information Modelling in Construction: Insights

from Collaboration and Change Management Perspectives”. In: Production Plan-
ning € Control 29.3 (2018), pp. 202-216.

Dimitri J Mavriplis. “An Advancing Front Delaunay Triangulation Algorithm
Designed for Robustness”. In: Journal of Computational Physics 117.1 (1995),
pp- 90-101.

Donald Meagher. “Geometric Modeling Using Octree Encoding”. In: Computer
graphics and image processing 19.2 (1982), pp. 129-147.

Niloy J. Mitra and An Nguyen. “Estimating Surface Normals in Noisy Point
Cloud Data”. In: Proceedings of the 19th Annual Symposium on Computational
Geometry. 2003, pp. 322-328.

Martin Mittring. “Finding Next Gen: Cryengine 2”. In: ACM SIGGRAPH 2007
courses. 2007, pp. 97-121.

Matthias Mueller and Benjamin Pross. “OGC WPS 2.0 Interface Standard. Version
2.0”. In: (2015).

Stephan Nebiker, Susanne Bleisch, and Martin Christen. “Rich Point Clouds in
Virtual Globes — A New Paradigm in City Modeling?” In: Computers, Environment
and Urban Systems 34.6 (2010), pp. 508-517.

Marc Nienhaus and Jiirgen Déllner. “Blueprint Rendering and Sketchy Drawings”.
In: GPU Gems 2 (2005), pp. 235-252.

115

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Edwin Nissen, Tadashi Maruyama, J Ramon Arrowsmith, John R Elliott, Aravin-
dhan K Krishnan, Michael E Oskin, and Srikanth Saripalli. “Coseismic Fault Zone
Deformation Revealed with Differential Lidar: Examples from Japanese Mw 7
Intraplate Earthquakes”. In: Farth and Planetary Science Letters 405 (2014),
pp- 244-256.

Christoph Oehlke, Rico Richter, and Jiirgen Déllner. “Automatic Detection and
Large-Scale Visualization of Trees for Digital Landscapes and City Models Based
on 3D Point Clouds”. In: Proceedings of the 16th Conference on Digital Landscape
Architecture. 2015, pp. 151-160.

M Olson, Ramsay Dyer, Hao Zhang, and Alla Sheffer. “Point Set Silhouettes via
Local Reconstruction”. In: Computers € Graphics 35.3 (2011), pp. 500-509.

Hany Omar, Lamine Mahdjoubi, and Gamal Kheder. “Towards an Automated
Photogrammetry-Based Approach for Monitoring and Controlling Construction
Site Activities”. In: Computers in Industry 98 (2018), pp. 172-182.

Peter van Oosterom, Oscar Martinez-Rubi, Milena Ivanova, Mike Horhammer,
Daniel Geringer, Siva Ravada, Theo Tijssen, Martin Kodde, and Romulo Gongalves.
“Massive Point Cloud Data Management: Design, Implementation and Execution
of a Point Cloud Benchmark”. In: Computers & Graphics 49 (2015), pp. 92-125.

Francesco Osti, Raffaele de Amicis, Christopher A Sanchez, Azara Betony Tilt,
Eric Prather, and Alfredo Liverani. “A VR Training System for Learning and
Skills Development for Construction Workers”. In: Virtual Reality 25.2 (2021),
pp. 523-538.

Steve Ostrowski, G Jozkow, Charles Toth, and Benjamin Vander Jagt. “Anal-
ysis of Point Cloud Generation from UAS Images”. In: ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 2.1 (2014),
p- 45.

Johannes Otepka, Sajid Ghuffar, Christoph Waldhauser, Ronald Hochreiter, and
Norbert Pfeifer. “Georeferenced Point Clouds: A Survey of Features and Point
Cloud Management”. In: ISPRS International Journal of Geo-Information 2.4
(2013), pp. 1038-1065.

Alice Paladini, Abhijit Dhanda, Miquel Reina Ortiz, Adam Weigert, Eslam Nofal,
A Min, M Gyi, S Su, Koen Van Balen, and Mario Santana Quintero. “Impact of
Virtual Reality Experience on Accessibility of Cultural Heritage”. In: The Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 42.2/W11 (2019), pp. 929-936.

Vista Equity Partners. An Introduction to Immersive Technologies. https://
www . vistaequitypartners. com/insights/an-introduction-to- immersive -
technologies/. Accessed: 2022-12-02. 2022.

https://www.vistaequitypartners.com/insights/an-introduction-to-immersive-technologies/
https://www.vistaequitypartners.com/insights/an-introduction-to-immersive-technologies/
https://www.vistaequitypartners.com/insights/an-introduction-to-immersive-technologies/

116

References

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Sebastian Pasewaldt, Amir Semmo, Matthias Trapp, and Jiirgen Déllner. “Multi-
Perspective 3D Panoramas”. In: International Journal of Geographical Information
Science 28.10 (2014), pp. 2030-2051.

Paola Passalacqua, Patrick Belmont, Dennis M Staley, Jeffrey D Simley, J Ramon
Arrowsmith, Collin A Bode, Christopher Crosby, Stephen B DeLong, Nancy F
Glenn, Sara A Kelly, et al. “Analyzing High Resolution Topography for Advancing
the Understanding of Mass and Energy Transfer Through Landscapes: A Review”.
In: Earth-Science Reviews 148 (2015), pp. 174-193.

George Pavlidis, Anestis Koutsoudis, Fotis Arnaoutoglou, Vassilios Tsioukas, and
Christodoulos Chamzas. “Methods for 3D Digitization of Cultural Heritage”. In:
Journal of Cultural Heritage 8.1 (2007), pp. 93-98.

Shmuel Peleg, Moshe Ben-Ezra, and Yael Pritch. “Omnistereo: Panoramic Stereo
Imaging”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
23.3 (2001), pp. 279-290.

Jorge Posada, Mikel Zorrilla, Ana Dominguez, Bruno Simoes, Peter Eisert, Didier
Stricker, Jason Rambach, Jiirgen Déllner, and Miguel Guevara. “Graphics and
Media Technologies for Operators in Industry 4.0”. In: IEEE Computer Graphics
and Applications 38.5 (2018), pp. 119-132.

Florent Poux, Roland Billen, Jean-Paul Kasprzyk, Pierre-Henri Lefebvre, and
Pierre Hallot. “A Built Heritage Information System Based on Point Cloud Data:
HIS-PC”. In: ISPRS International Journal of Geo-Information 9.10 (2020), p. 588.

Florent Poux, Romain Neuville, Pierre Hallot, Line Van Wersch, Andrea Luczfalvy
Jancs6, and Roland Billen. “Digital Investigations of an Archaeological Smart
Point Cloud: A Real Time Web-Based Platform to Manage the Visualisation of
Semantical Queries”. In: Conservation of Cultural Heritage in the Digital Era
(2017), pp. 581-588.

Florent Poux, Romain Neuville, Gilles-Antoine Nys, and Roland Billen. “3D
Point Cloud Semantic Modelling: Integrated Framework for Indoor Spaces and
Furniture”. In: Remote Sensing 10.9 (2018), p. 1412.

Federico Prandi, Federico Devigili, Marco Soave, Umberto Di Staso, and Raffaele
De Amicis. “3D Web Visualization of Huge CityGML Models”. In: International
Archives of the Photogrammetry, Remote Sensing € Spatial Information Sciences
40 (2015).

Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. “Auto Splats: Dynamic
Point Cloud Visualization on the GPU”. In: Proceedings of the FEurographics
Symposium on Parallel Graphics and Visualization. 2012, pp. 139-148.

I Puente, H Gonzélez-Jorge, J Martinez-Sanchez, and P Arias. “Review of Mobile
Mapping and Surveying Technologies”. In: Measurement 46.7 (2013), pp. 2127—
2145.

117

[129]

[130]
[131]

[132]

[133]

[134]

[135]

[136]

137]

[138]

[139)]

[140]

[141]

Imad L Al-Qadi and Samer Lahouar. “Measuring Layer Thicknesses with GPR
— Theory to practice”. In: Construction and Building Materials 19.10 (2005),
pp. 763-772.

Sharif Razzaque. “Redirected Walking”. PhD thesis. 2005.

Sharif Razzaque, Zachariah Kohn, and Mary C Whitton. “Redirected Walking”.
In: Proceedings of EUROGRAPHICS. 2001, pp. 105-106.

Sharif Razzaque, David Swapp, Mel Slater, Mary C Whitton, and Anthony Steed.
“Redirected Walking in Place”. In: Proceedings of the 8th Furographics Workshop
on Virtual Environments. 2002, pp. 123-130.

Tyler Read, Christopher A Sanchez, and Raffaele De Amicis. “Engagement and
Time Perception in Virtual Reality”. In: Proceedings of the Human Factors and
Ergonomics Society Annual Meeting. Vol. 65. 1. SAGE Publications Sage CA: Los
Angeles, CA. 2021, pp. 913-918.

Danijel Rebolj, Zoran Puc¢ko, Nenad Cus Babi¢, Marko Bizjak, and Domen
Mongus. “Point Cloud Quality Requirements for Scan-vs-BIM Based Automated
Construction Progress Monitoring”. In: Automation in Construction 84 (2017),
pp- 323-334.

Fabio Remondino, Fabio Menna, Anestis Koutsoudis, Christos Chamzas, and
Sabry El-Hakim. “Design and Implement a Reality-Based 3D Digitisation and
Modelling Project”. In: Proceedings of the Digital Heritage International Congress.
Vol. 1. IEEE. 2013, pp. 137-144.

Fabio Remondino, Maria Grazia Spera, Erica Nocerino, Fabio Menna, and
Francesco Nex. “State of the Art in High Density Image Matching”. In: The
photogrammetric record 29.146 (2014), pp. 144-166.

Fabio Remondino, Maria Grazia Spera, Erica Nocerino, Fabio Menna, Francesco
Nex, and Sara Gonizzi-Barsanti. “Dense Image Matching: Comparisons and Anal-
yses”. In: Proceedings of the Digital Heritage International Congress. Vol. 1. IEEE.
2013, pp. 47-54.

Rico Richter. “Concepts and Techniques for Processing and Rendering of Massive
3D Point Clouds”. PhD thesis. Universitdt Potsdam, 2018.

Rico Richter, Markus Behrens, and Jiirgen Déllner. “Object Class Segmentation
of Massive 3D Point Clouds of Urban Areas Using Point Cloud Topology”. In:
International Journal of Remote Sensing 34.23 (2013), pp. 8408-8424.

Rico Richter and Jiirgen Doéllner. “Concepts and Techniques for Integration, Anal-
ysis and Visualization of Massive 3D Point Clouds”. In: Computers, Environment
and Urban Systems 45 (2014), pp. 114-124.

Rico Richter and Jiirgen Dollner. “Out-of-core Real-time Visualization of Massive
3D Point Clouds”. In: Proceedings of the 7th International Conference on Computer
Graphics, Virtual Reality, Visualisation and Interaction in Africa. 2010, pp. 121—
128.

118

References

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

Rico Richter, Jan Eric Kyprianidis, and Jirgen Dollner. “Out-of-Core GPU-Based
Change Detection in Massive 3D Point Clouds”. In: Transactions in GIS 17.5
(2013), pp. 724-741.

Marcos Balsa Rodriguez, Enrico Gobbetti, Fabio Marton, Ruggero Pintus, Gio-
vanni Pintore, and Alex Tinti. “Interactive Exploration of Gigantic Point Clouds
on Mobile Devices”. In: Proceedings of the 13th International Symposium on
Virtual Reality, Archaeology and Cultural Heritage. 2012, pp. 57—64.

Pablo Rodriguez-Gonzalvez, Belen Jimenez Fernandez-Palacios, Angel Luis Mufioz-
Nieto, Pedro Arias-Sanchez, and Diego Gonzalez-Aguilera. “Mobile LiDAR System:
New Possibilities for the Documentation and Dissemination of Large Cultural
Heritage Sites”. In: Remote Sensing 9.3 (2017), p. 189.

Timo Ropinski, Klaus Hinrichs, and Frank Steinicke. “A Solution for the Focus and
Context Problem in Interactive Geovisualization Applications”. In: Proceedings of
the DMGIS Workshop on Dynamic and Multi-dimensional GIS. 2005, pp. 144-149.

Paul Rosenthal and Lars Linsen. “Image-Space Point Cloud Rendering”. In:
Proceedings of Computer Graphics International. 2008, pp. 136-143.

Jirgen Rofmann, Martin Hoppen, and Arno Biicken. “GML-Based Data Manage-
ment and Semantic World Modelling for a 4D Forest Simulation and Information
System”. In: International Journal of 3-D Information Modeling 3.3 (2014), pp. 50—
67.

Mathias Rothermel, Konrad Wenzel, Dieter Fritsch, and Norbert Haala. “SURE:
Photogrammetric Surface Reconstruction from Imagery”. In: Proceedings of the
LC3D Workshop. Vol. 8. 2. 2012.

Darius Riickert, Linus Franke, and Marc Stamminger. “Adop: Approximate Dif-
ferentiable One-Pixel Point Rendering”. In: ACM Transactions on Graphics 41.4
(2022), pp. 1-14.

S Rusinkiewicz and M Levoy. “QSplat: A Multiresolution Point Rendering System
for Large Meshes”. In: Proceedings of ACM SIGGRAPH. 2000, pp. 343-352.

Heinz Riither, Michael Chazan, Ralph Schroeder, Rudy Neeser, Christoph Held,
Steven James Walker, Ari Matmon, and Liora Kolska Horwitz. “Laser Scanning
for Conservation and Research of African Cultural Heritage Sites: The Case Study
of Wonderwerk Cave, South Africa”. In: Journal of Archaeological Science 36.9
(2009), pp. 1847-1856.

Takafumi Saito and Tokiichiro Takahashi. “Comprehensible Rendering of 3-D
Shapes”. In: SIGGRAPH Computer Graphics 24.4 (1990), pp. 197-206.

Hanan Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley Longman Publishing Co., Inc., 1990.

Hanan Samet. “The Quadtree and Related Hierarchical Data Structures”. In:
ACM Computing Surveys 16.2 (1984), pp. 187-260.

119

[155]

[156]
[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Bhuvaneswari Sarupuri, Simon Hoermann, Mary C Whitton, and Robert W Lin-
deman. “Evaluating and Comparing Game-controller based Virtual Locomotion
Techniques”. In: Proceedings of the Furographics Symposium on Virtual Environ-
ments. 2017.

Claus Scheiblauer. “Interactions with Gigantic Point Clouds”. PhD thesis. 2014.

Claus Scheiblauer and Michael Wimmer. “Out-of-Core Selection and Editing of
Huge Point Clouds”. In: Computers & Graphics 35.2 (2011), pp. 342-351.

Alexander Schoedon, Matthias Trapp, Henning Hollburg, and Jiirgen Dollner.
“Interactive Web-Based Visualization for Accessibility Mapping of Transportation
Networks”. In: Proceedings of the Eurographics Conference on Visualization. 2016,
pp. 79-83.

M. Schiitz and M. Wimmer. “Rendering Large Point Clouds in Web Browsers”. In:
Proceedings of the 19th Central European Seminar on Computer Graphics (2015),
pp- 83-90.

Markus Schiitz. “Massive Time-Lapse Point Cloud Rendering in Virtual Reality”.
In: Presentation at ACM SIGGRAPH (2016).

Markus Schiitz, Bernhard Kerbl, and Michael Wimmer. “Rendering Point Clouds
with Compute Shaders and Vertex Order Optimization”. In: Computer Graphics
Forum 40.4 (2021), pp. 115-126.

Markus Schiitz and Michael Wimmer. “High-Quality Point-Based Rendering
Using Fast Single-Pass Interpolation”. In: Proceedings of the Digital Heritage
International Congress. Vol. 1. IEEE. 2015, pp. 369-372.

Dominik Sibbing, Torsten Sattler, Bastian Leibe, and Leif Kobbelt. “SIFT-Realistic
Rendering”. In: Proceedings of the International Conference on 3D Vision (2013),
pp. 56—63.

Stephan Sigg, Raphael Fuchs, Robert Carnecky, and Ronald Peikert. “Intelli-
gent Cutaway Illustrations”. In: Proceedings of the IEEE Pacific Visualization
Symposium. IEEE. 2012, pp. 185-192.

Mel Slater, Anthony Steed, and Martin Usoh. “The Virtual Treadmill: A Naturalis-
tic Metaphor for Navigation in Immersive Virtual Environments”. In: Proceedings
of the Furographics Workshops on Virtual Environments. 1995, pp. 135-148.

Mel Slater, Martin Usoh, and Anthony Steed. “Taking Steps: The Influence of
a Walking Technique on Presence in Virtual Reality”. In: ACM Transactions on
Computer-Human Interaction 2.3 (1995), pp. 201-219.

Mario Soilan, Ana Sanchez-Rodriguez, Pablo del Rio-Barral, Carlos Perez-Collazo,
Pedro Arias, and Belén Riveiro. “Review of Laser Scanning Technologies and Their
Applications for Road and Railway Infrastructure Monitoring”. In: Infrastructures
4.4 (2019), p. 58.

120

References

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177)

[178]

[179]

Henry Sonnet, Sheelagh Carpendale, and Thomas Strothotte. “Integrating Ex-
panding Annotations with a 3D Explosion Probe”. In: Proceedings of the working
conference on Advanced Visual Interfaces. 2004, pp. 63-70.

Vladeta Stojanovic, Matthias Trapp, Rico Richter, Benjamin Hagedorn, and Jiirgen
Dollner. “Towards the Generation of Digital Twins for Facility Management Based
on 3D Point Clouds”. In: Proceeding of the 34th Annual ARCOM Conference.
2018, pp. 270-279.

Qi Sun, Anjul Patney, Li-Yi Wei, Omer Shapira, Jingwan Lun, Paul Asente,
Suwen Zhu, Morgan McGuire, David Luebke, and Arie Kaufman. “Towards
Virtual Reality Infinite Walking: Dynamic Saccadic Redirection”. In: Proceedings
of ACM SIGGRAPH. 2018.

Fei Tao, Fangyuan Sui, Ang Liu, Qinglin Qi, Meng Zhang, Boyang Song, Zirong
Guo, Stephen C-Y Lu, and AYC Nee. “Digital Twin-Driven Product Design Frame-
work”. In: International Journal of Production Research 57.12 (2019), pp. 3935—
3953.

Tee-Ann Teo and Chi-Min Chiu. “Pole-Like Road Object Detection from Mobile
LiDAR System using a Coarse-to-Fine Approach”. In: IEEFE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 8.10 (2015), pp. 4805—
4818.

Matthias Trapp, Tassilo Glander, Henrik Buchholz, and Jiirgen Déllner. “3D
Generalization Lenses for Interactive Focus+Context Visualization of Virtual City

Models”. In: Proceedings of the 12th International Conference on Information
Visualisation. IEEE. 2008, pp. 356-361.

Martin Usoh, Kevin Arthur, Mary C. Whitton, Rui Bastos, Anthony Steed, Mel
Slater, and Frederick P Brooks Jr. “Walking > Walking-in-place > Flying, in
Virtual Environments”. In: Proceedings of ACM SIGGRAPH. 1999, pp. 359-364.

Mikael Vaaraniemi, Martin Freidank, and Riidiger Westermann. “Enhancing the
Visibility of Labels in 3D Navigation Maps”. In: Lecture Notes in Geoinformation
and Cartography. 2012, pp. 23-40.

Juho-Pekka Virtanen, Antero Kukko, Harri Kaartinen, Anttoni Jaakkola, Tuomas
Turppa, Hannu Hyyppé, and Juha Hyyppa. “Nationwide Point Cloud — The Future
Topographic Core Data”. In: ISPRS International Journal of Geo-Information
6.8 (2017), p. 243.

Alex Vlachos. “Advanced VR Rendering”. In: Presentation at Game Developers
Conference. 2015.

Alex Vlachos. “Advanced VR Rendering Performance”. In: Presentation at Game
Developers Conference. 2016.

Maximilian Vogt, Adrian Rips, and Claus Emmelmann. “Comparison of iPad
Pro®’s LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning Solu-
tion”. In: Technologies 9.2 (2021), p. 25.

121

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)]

[190]

[191]

Jillian Walliss and Heike Rahmann. Landscape Architecture and Digital Technolo-
gies: Re-Conceptualising Design and Making. Routledge, 2016.

Michael Wand, Alexander Berner, Martin Bokeloh, Philipp Jenke, Arno Fleck,
Mark Hoffmann, Benjamin Maier, Dirk Staneker, Andreas Schilling, and Hans-
Peter Seidel. “Processing and Interactive Editing of Huge Point Clouds from 3D
Scanners”. In: Computers & Graphics 32.2 (2008), pp. 204—220.

Lujin Wang, Ye Zhao, Klaus Mueller, and Arie Kaufman. “The Magic Volume Lens:
An Interactive Focus+Context Technique for Volume Rendering”. In: Proceedings
of the IEEE Conference on Visualization. 2005, pp. 367-374.

Qian Wang and Min-Koo Kim. “Applications of 3D Point Cloud Data in the
Construction Industry: A Fifteen-Year Review from 2004 to 2018”. In: Advanced
Engineering Informatics 39 (2019), pp. 306-319.

Stefan Weinzierl, Paolo Sanvito, Frank Schultz, and Clemens Biittner. “The
Acoustics of Renaissance Theatres in Italy”. In: Acta Acustica united with Acustica
101.3 (2015), pp. 632-641.

Stephen Wessels, Heinz Ruther, Roshan Bhurtha, and Ralph Schroeder. “Design
and Creation of a 3D Virtual Tour of the World Heritage Site of Petra, Jordan”.
In: Proceedings of the AfricaGeo conference (2014), pp. 1-3.

Michael Wimmer and Claus Scheiblauer. “Instant points: Fast Rendering of
Unprocessed Point Clouds”. In: Furographics Symposium on Point-Based Graphics.
2006, pp. 129-137.

Matthias M Wloka and Eliot Greenfield. “The Virtual Tricorder: A Uniform
Interface for Virtual Reality”. In: Proceedings of the 8th annual ACM Symposium
on User interface and Software Technology. 1995, pp. 39-40.

Jainhua Wu and Leif Kobbelt. “Optimized Sub-Sampling of Point Sets for Surface
Splatting”. In: Computer Graphics Forum 23.3 (2004), pp. 643-652.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu,
Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, et al. “SAPIEN: A Simu-
1Ated Part-Based Interactive ENvironment”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 11097-11107.

Xuehan Xiong, Antonio Adan, Burcu Akinci, and Daniel Huber. “Automatic
Creation of Semantically Rich 3D Building Models from Laser Scanner Data”. In:
Automation in Construction 31 (2013), pp. 325-337.

Hui Xu, Minh X. Nguyen, Xiaoru Yuan, and Baoquan Chen. “Interactive Silhouette
Rendering for Point-Based Models”. In: Proceedings of the Eurographics Symposium
on Point-Based Graphics (2004), pp. 13-18.

122

References

[192]

193]

[194]

[195]

[196]

Zhihang Yao, Claus Nagel, Felix Kunde, Gyorgy Hudra, Philipp Willkomm,
Andreas Donaubauer, Thomas Adolphi, and Thomas H Kolbe. “3DCityDB - a
3D Geodatabase Solution for the Management, Analysis, and Visualization of
Semantic 3D City Models Based on CityGML”. In: Open Geospatial Data, Software
and Standards 3.1 (2018), pp. 1-26.

Sarah Younan and Cathy Treadaway. “Digital 3D models of Heritage Artefacts:
Towards a Digital Dream Space”. In: Digital Applications in Archaeology and
Cultural Heritage 2.4 (2015), pp. 240-247.

Jihun Yu and Greg Turk. “Reconstructing Surfaces of Particle-Based Fluids using
Anisotropic Kernels”. In: ACM Transactions on Graphics 32.1 (2013), 5:1-5:12.

Qian-Yi Zhou and Ulrich Neumann. “2.5D Building Modeling by Discovering
Global Regularities”. In: Computer Vision and Pattern Recognition. 2012, pp. 326—
333.

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus H. Gross.
“Surface Splatting”. In: Proceedings of ACM SIGGRAPH. 2001, pp. 371-378.

Statutory Declaration

I declare that I have developed and written the enclosed thesis completely by myself,
and have not used sources or means without declaration in the text. Any thoughts from
others or literal quotations are clearly marked. The thesis was not used in the same or in
a similar version to achieve an academic grading or is being published elsewhere.

Potsdam, December 6, 2022 M" —Df

(Place, Date) (Signature)

123

	Title
	Imprint

	Contents
	Abstract
	Zusammenfassung
	Introduction
	Motivation and Goals
	Intellectual Merit and Problem Statement

	Foundations and Background
	Terminology
	Point Clouds
	Enriched Point Clouds
	4D Point Clouds

	Data Acquisition
	Software Architectures for Enriched Point Clouds
	Spatial Data Structures
	Uniform Grids
	Quadtrees
	Octrees
	Kd-Trees
	Multi-Layered Data Structures

	Point Cloud Analytics Concepts
	Pipeline Architecture
	Memory and Resource Management

	Point Cloud Visualization Concepts
	Interactive Visualization of Enriched Point Clouds
	Immersive Visualization of Point Clouds using VR Technology
	Web-Based Rendering of Enriched Point Clouds

	Interactive Visualization of Enriched Point Clouds
	Introduction
	Visualization Concepts for Enriched Point Clouds
	Point-Based Rendering Techniques
	View-Dependent and Interactive See-Through Lenses

	Out-of-Core Rendering and Image Compositing
	Layered Multi-Resolution Kd-Tree
	Layered Kd-Tree Rendering
	Image Compositing

	Performance Evaluation and Results
	Conclusions

	Immersive Visualization of Point Clouds using VR Technology
	Introduction
	Rendering Optimization Techniques
	Performance Optimization
	Image Optimization

	Interaction and Locomotion Techniques
	Interaction
	Locomotion

	Performance Evaluation and Usability
	Rendering Performance
	User Study Setup
	User Study Results

	Conclusions and Future Work

	Web-Based Rendering of Enriched Point Clouds
	Introduction
	Requirements and Concepts
	Rendering Engine Implementation
	LoD and Data Subset Selection
	Rendering and Image Compositing
	Web-based Rendering

	Performance Evaluation
	Test Setup and Results

	Conclusions and Future Work

	Case Studies and Applications
	Combined Visual Exploration of GPR Data and Point Clouds for Road Environments
	System Overview
	Visualization Techniques
	Evaluation

	Web-Based Management and Monitoring of Large-Scale Urban Development Projects
	First Case Study: Collaborative Interaction with Enriched Point Clouds
	Second Case Study
	Third Case Study

	Conclusions and Future Research
	Acknowledgements
	List of Publications
	References

