

BIODIVERSITY CHANGE ACROSS THE CORAL SEA MARINE PARK OVER THE PAST DECADE INCLUDING IMPACTS OF SEVERE HEATWAVES

2022 Heather F, Stuart-Smith R, Cooper A, Oh E, Turak E, and Edgar G

Citation

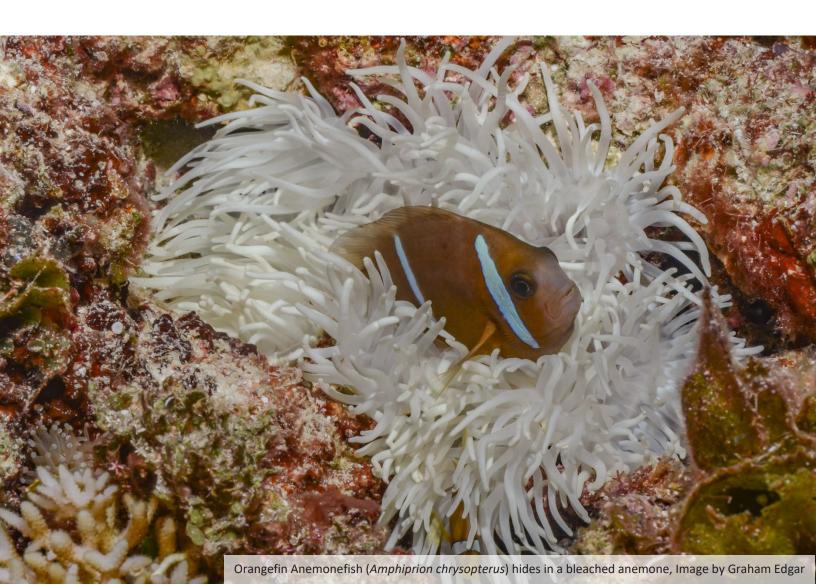
Heather F, Stuart-Smith R, Cooper A, Oh E, Turak E, and Edgar G (2022) Biodiversity change across the Coral Sea Marine Park over the past decade including impacts of severe heatwaves. Reef Life Survey Foundation Incorporated.

Copyright and disclaimer

© 2022 RLSF To the extent permitted by law, all rights are reserved, and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of The Reef Life Survey Foundation.

Important disclaimer

The RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, The RLSF (including its volunteers and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.


Images

Graham Edgar Rick Stuart-Smith and Antonia Cooper

Table of Contents

LIST OF ACRONYMS	6
EXECUTIVE SUMMARY	7
INTRODUCTION	10
METHODS	13
RESULTS	20
DISCUSSION	53
ACKNOWLEDGEMENTS	58
REFERENCES	59
APPENDICES	61

List of Figures

FIGURE 15. LARGE FISH BIOMASS (B20) OF CORAL SEA REEFS OVER THREE TIME PERIODS, SEPARATED BY TWO MAJOR HEATWAVE EVENTS.
Error bars represent ± 1 SE. Large fish biomass varied by reef (p < 0.001) and between time periods (p = 0.011). See Table 5 for full statistics
FIGURE 16. LARGE FISH BIOMASS (B20) PER 500 M ² BY PROTECTION STATUS. ERROR BARS REPRESENT ± 1 SE. NEWLY ZONED NATIONAL
PARK REFERS TO ZONES DECLARED NATIONAL PARK ZONES (IN 2018) THAT WERE NOT PREVIOUSLY WITHIN AN IUCN IA OR II ZONE.
FIGURE 17. COMMUNITY TEMPERATURE INDEX (CTI) VALUES FOR FISH COMMUNITIES SURVEYED AT 19 REEFS, WITHIN 4 REGIONS, IN THE
Coral Sea. Error bars represent ±1 SE of the mean site-level CTI value
FIGURE 18. COMMUNITY GENERALISATION INDEX (CGI) VALUES FOR FISH COMMUNITIES SURVEYED AT 19 REEFS, WITHIN 4 CORAL SEA
REGIONS. ERROR BARS REPRESENT ± 1 SE OF THE MEAN SITE-LEVEL CGI VALUE
FIGURE 19. CHANGE IN HERBIVOROUS FISH BIOMASS OVER TWO HEATWAVE EVENTS. DATA IN THE LEFT MAP SHOW CHANGE IN HERBIVOROUS
FISH BIOMASS (KG) FROM PRE 2016 SURVEYS TO THOSE BETWEEN 2016 AND 2020 (I.E. MEAN HERBIVOROUS FISH BIOMASS AT EACH
SITE IN 2017-2020 MINUS MEAN BIOMASS PRE 2016). MIDDLE MAP SHOWS CHANGE IN HERBIVOROUS FISH BIOMASS VALUES FROM
POST 2020 SURVEYS MINUS 2017-2020 VALUES, WHILE RIGHT MAP SHOWS OVERALL NET CHANGE IN HERBIVOROUS FISH BIOMASS
PER SITE FROM PRE 2016 SURVEYS TO POST 2020 SURVEYS. REDS REPRESENT A REDUCTION IN HERBIVOROUS FISH BIOMASS THROUGH
TIME AND BLUES AN INCREASE
FIGURE 20. MEAN BIOMASS (KG PER 500 M ²) OF HERBIVOROUS FISHES ON SURVEYS AT 18 CORAL SEA REEFS OVER THREE TIME PERIODS,
separated by two major heatwave events. Error bars represent ±1 SE of the mean site-level biomass. Herbivorous
FISH BIOMASS VARIED BY REEF (P < 0.001) AND BETWEEN TIME PERIODS (P = 0.001). SEE TABLE 6 FOR FULL STATISTICS
FIGURE 21. HERBIVOROUS FISH BIOMASS PER 500 M ² BY PROTECTION STATUS. ERROR BARS REPRESENT ± 1 SE. NEWLY ZONED NATIONAL
PARK REFERS TO ZONES DECLARED NATIONAL PARK ZONES (IN 2018) THAT WERE NOT PREVIOUSLY WITHIN AN IUCN IA OR II ZONE.
FIGURE 22. CHANGE IN MACROINVERTEBRATE SPECIES RICHNESS (NUMBER OF SPECIES PER 100 M ²) OVER TWO HEATWAVE EVENTS. DATA
IN THE LEFT MAP SHOW CHANGE IN MACROINVERTEBRATE RICHNESS FROM PRE 2016 SURVEYS TO THOSE BETWEEN 2016 AND 2020
(I.E. MEAN MACROINVERTEBRATE RICHNESS AT EACH SITE IN 2017-2020 MINUS MEAN RICHNESS PRE 2016). MIDDLE MAP SHOWS
CHANGE IN MACROINVERTEBRATE RICHNESS FROM POST 2020 SURVEYS MINUS 2017-2020 VALUES, WHILE RIGHT MAP SHOWS
OVERALL NET CHANGE IN MACROINVERTEBRATE RICHNESS PER SITE FROM PRE 2016 SURVEYS TO POST 2020 SURVEYS. REDS
REPRESENT A REDUCTION IN MACROINVERTEBRATE SPECIES RICHNESS THROUGH TIME AND BLUES AN INCREASE
FIGURE 23. NUMBER OF MACROINVERTEBRATE SPECIES RECORDED ON A SURVEY (100 M ²) ACROSS 18 REEFS, IN FOUR REGIONS OF THE
CORAL SEA. ERROR BARS REPRESENT ± 1 SE OF THE MEAN SITE-LEVEL RICHNESS. MACROINVERTEBRATE RICHNESS VARIED BY REEF (P
< 0.001), BETWEEN TIME PERIODS (P = 0.015), AND VARIED DIFFERENTLY WITH TIME PERIOD AT DIFFERENT REEFS (SIGNIFICANT
INTERACTION BETWEEN REEF AND TIME PERIOD, P < 0.001). SEE TABLE 8 FOR FULL STATISTICS
FIGURE 24. CHANGE IN SEA URCHIN DENSITY (NUMBER OF INDIVIDUALS PER 100 M ²) OVER TWO HEATWAVE EVENTS. DATA IN THE LEFT MAP
show change in sea urchin density from pre 2016 surveys to those between 2016 and 2020 (i.e. mean sea urchin
density at each site in 2017-2020 minus mean density pre 2016). Middle map shows change in sea urchin density from
POST 2020 SURVEYS MINUS 2017-2020 VALUES, WHILE RIGHT MAP SHOWS OVERALL NET CHANGE IN SEA URCHIN DENSITY PER SITE
FROM PRE 2016 SURVEYS TO POST 2020 SURVEYS. REDS REPRESENT A REDUCTION IN SEA URCHIN DENSITY THROUGH TIME AND BLUES
AN INCREASE42
FIGURE 25. SEA URCHIN DENSITY (INDIVIDUALS PER 100 M ²) AT 18 REEFS IN FOUR REGIONS OF THE CORAL SEA, AT THREE TIME POINTS
BEFORE DURING AND AFTER TWO MAJOR HEATWAVE EVENTS IN 2016 AND 2020. ERROR BARS REPRESENT ±1 SE of the mean site-
level density. Total urchin density varied by reef (p < 0.001) and by the reefs varies differently with time period reefs
(SIGNIFICANT INTERACTION BETWEEN REEF AND TIME PERIOD, P = 0.015). URCHIN DENSITY SIGNIFICANTLY INCREASED IN THE WRECK
REEFS FROM PRE-2016 TO 2016-2020 (P = 0.002). SEE TABLE 9 FOR FULL STATISTICS
FIGURE 26. FREQUENCY OF OCCURRENCE (PERCENT OF SURVEYS WITH AN OBSERVATION) OF A SUBSET OF IUCN THREATENED SPECIES
OBSERVED ACROSS ALL SITES SURVEYED IN THE CORAL SEA. FOR A LIST OF ALL THREATED SPECIES OBSERVED SEE TABLE 1345
FIGURE 27. CHANGE IN SHARK BIOMASS OVER TWO HEATWAVE EVENTS. DATA IN THE LEFT MAP SHOW CHANGE IN SHARK BIOMASS (KG)
FROM PRE 2016 SURVEYS TO THOSE BETWEEN 2016 AND 2020 (I.E. MEAN SHARK BIOMASS AT EACH SITE IN 2017-2020 MINUS
MEAN BIOMASS PRE 2016). MIDDLE MAP SHOWS CHANGE IN SHARK BIOMASS VALUES FROM POST 2020 SURVEYS MINUS 2017-
2020 VALUES, WHILE RIGHT MAP SHOWS OVERALL NET CHANGE IN SHARK BIOMASS PER SITE FROM PRE 2016 SURVEYS TO POST 2020
SURVEYS. REDS REPRESENT A REDUCTION IN SHARK BIOMASS THROUGH TIME AND BLUES AN INCREASE

FIGURE 28. MEAN BIOMASS (KG) OF SHARKS ON SURVEYS AT 18 CORAL SEA REEFS OVER THREE TIME PERIODS, SEPARATED BY TWO MAJOR HEATWAVE EVENTS. ERROR BARS REPRESENT ± 1 SE OF THE MEAN SITE-LEVEL BIOMASS. SHARK BIOMASS VARIED BY REEF (P = 0.003) FIGURE 29. SHARK BIOMASS PER 500 M² BY PROTECTION STATUS. ERROR BARS REPRESENT ± 1 SE. NEWLY ZONED NATIONAL PARK REFERS FIGURE 30. CHANGE IN SEA SNAKE DENSITY (NUMBER OF INDIVIDUALS PER 500 M²) OVER TWO HEATWAVE EVENTS. DATA IN THE LEFT MAP SHOW CHANGE IN SEA SNAKE DENSITY FROM PRE 2016 SURVEYS TO THOSE BETWEEN 2016 AND 2020 (I.E. MEAN SEA SNAKE DENSITY AT EACH SITE IN 2017-2020 MINUS MEAN DENSITY PRE 2016). MIDDLE MAP SHOWS CHANGE IN SEA SNAKE DENSITY FROM POST 2020 SURVEYS MINUS 2017-2020 VALUES, WHILE RIGHT MAP SHOWS OVERALL NET CHANGE IN SEA SNAKE DENSITY PER SITE FROM PRE 2016 SURVEYS TO POST 2020 SURVEYS. REDS REPRESENT A REDUCTION IN SEA SNAKE DENSITY THROUGH TIME AND BLUES AN FIGURE 31. SEA SNAKE DENSITY (INDIVIDUALS PER 500 M^2) At 18 REEFS IN THE CORAL SEA. ERROR BARS REPRESENT ± 1 SE OF THE MEAN SITE-LEVEL DENSITY. SEA SNAKE DENSITY VARIED BY REEF (P < 0.001), BUT NOT WITH TIME PERIOD. SEE TABLE 11 FOR FULL STATISTICS. MARION REEF SHOWED A SIGNIFICANT DECLINE IN SEA SNAKE DENSITY FROM PRE-2016 TO 2016-2020 (P = 0.04), AND FIGURE 32. CHANGE IN SEA CUCUMBER DENSITY (NUMBER OF INDIVIDUALS PER 100 M²) OVER TWO HEATWAVE EVENTS. DATA IN THE LEFT MAP SHOW CHANGE IN SEA CUCUMBER DENSITY FROM PRE 2016 SURVEYS TO THOSE BETWEEN 2016 AND 2020 (I.E. MEAN SEA CUCUMBER DENSITY AT EACH SITE IN 2017-2020 MINUS MEAN DENSITY PRE 2016). MIDDLE MAP SHOWS CHANGE IN SEA CUCUMBER DENSITY FROM POST 2020 SURVEYS MINUS 2017-2020 VALUES, WHILE RIGHT MAP SHOWS OVERALL NET CHANGE IN SEA CUCUMBER DENSITY PER SITE FROM PRE 2016 SURVEYS TO POST 2020 SURVEYS. REDS REPRESENT A REDUCTION IN SEA CUCUMBER DENSITY FIGURE 33. LOG DENSITY (INDIVIDUALS PER 100 M²) OF SEA CUCUMBERS IN 18 REEFS IN FOUR REGIONS OF THE CORAL SEA. ERROR BARS REPRESENT ± 1 SE OF THE MEAN SITE-LEVEL DENSITY. SEA CUCUMBER DENSITY VARIED BY REEF (P < 0.001), BUT NOT WITH TIME

Brown Booby (Sula leucogaster) at Kenn Reefs. Image by Graham Edgar

List of Tables

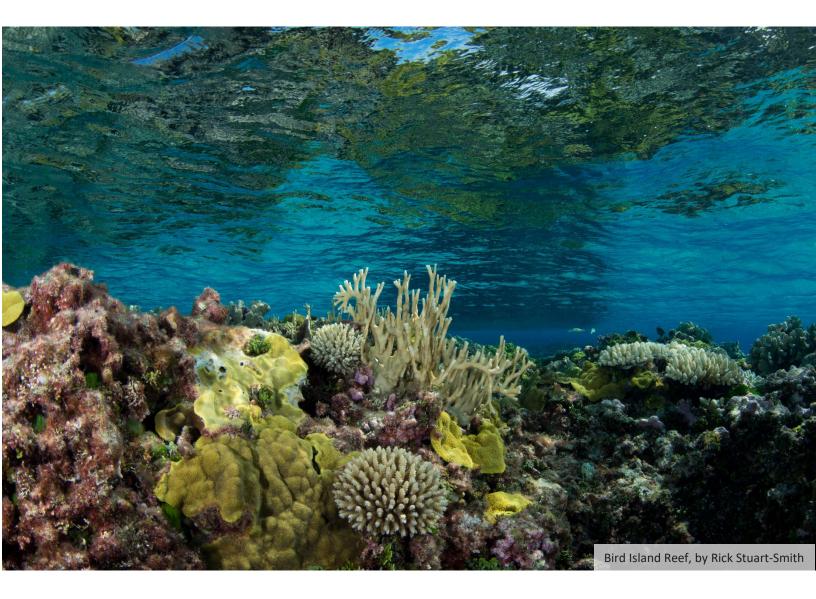
List of Acronyms

ACRONYM	DESCRIPTION
RLS	Reef Life Survey
B20	Biomass of fish greater than or equal to 20 cm in total length
СТІ	Community Temperature Index
CGI	Community Generalisation Index
CCA	Crustose Coralline Algae

Executive Summary

Results described here are based on three sets of surveys of shallow reef biodiversity across all major reef systems in the Coral Sea Marine Park (CSMP). Initial surveys undertaken by Reef Life Survey (RLS) divers in 2012-2015 represent the only Park-wide baseline of reef condition prior to the implementation of the 2018 CSMP management plan and also prior to recent marine heatwaves. Subsequent Park-wide surveys followed two extreme heatwaves with associated bleaching. This report was commissioned by Parks Australia, with a primary focus of using data from these three time periods (a) to assess changes in reef biodiversity in relation to management, including the recently declared Habitat Protection and National Park Zones (2018) as well as IUCN Ia and II zones from the previous Coral Sea Commonwealth Marine Reserve; (b) to understand the ecological impacts of the 2020 heatwave (and associated coral bleaching event) in the context of normal interannual variation and changes resulting from the 2016 heatwave; and (c) to assess overall net change across the marine park over the last decade.

Ecological surveys were conducted by trained RLS divers led by University of Tasmania researchers along 793 50-m transects at 143 sites distributed along the length of the CSMP. Data collected from each site consisted of abundance and size of fishes, abundance of mobile macroinvertebrates and cryptic fishes, and percentage cover of sessile biota.


Total hard coral cover on shallow reefs across the CSMP decreased from 17% of the benthic cover on baseline surveys (2012-2015) to 14% following the 2020 bleaching event (equivalent to a 17% loss of the live hard coral cover observed on baseline surveys). Both 2016 and 2020 heatwave events resulted in similar overall declines (from 17.1% to 15.7% to 14.3% absolute cover), although data for the 2020 heatwave are preliminary as many southern reefs, where greatest impacts are likely, have not been recently assessed by Reef Life Survey. Most coral taxa in the far north region of Ashmore and Boot Reefs recovered from declines associated with the 2016 heatwave by 2021; however, the majority of reefs elsewhere in the CSMP showed overall decline through the last decade, with greatest coral loss occurring in the area extending between Osprey Reef, Bougainville Reef, and reefs in the Willis Islets.

The total biomass of reef fishes also showed widespread and significant decline across the CSMP over the past decade (from mean of 125.42 kg to 118.07 kg per 500 m²). This biomass decrease, which reflects declining populations of large-bodied fish species, did not appear to be influenced by protection status within the CSMP. Further investigation is needed to determine the ultimate magnitude of fish biomass loss and its cause. Possible factors that should be considered are recreational fishing effort expanding in the CSMP, negative heatwave impacts that manifest after a lag, and natural stochastic variability.

A consistent shift in the reef fish community across the CSMP was evident through time, particularly for reefs in the central region after the 2020 heatwave. This heatwave was accompanied by a reduction in regional differences, with increased similarity of north and south fish faunas to the central fauna (i.e. increased homogenisation).

The mobile macro-invertebrate fauna also showed changing patterns of abundance through time. Species richness generally increased in the early survey years then declined more recently, although patterns were highly patchy between reefs. This patchiness was partly driven by differing taxonomic composition on reefs, with sea urchins predominant in the south and relatively rare further north. Sea urchin densities more than doubled between the first and second survey periods when averaged across all reefs.

Only four species listed as threatened under the EPBC Act were sighted, all turtles; however, a total of 61 species listed as threatened on the IUCN Red List were recorded, primarily sea cucumbers, corals, giant clams, turtles, and large-bodied or small range endemic fishes. None showed consistent population declines over the past decade. Amongst other species of conservation concern, sea snake densities declined in synchrony with the 2016 heatwave, with little apparent subsequent recovery. The most substantial declines in observed sea snake abundances occurred at the two reefs with highest initial densities – Marion and Saumarez.

Recommendations

- Undertake a targeted investigation of possible causes of broad-scale declines in large fishes, including the potential impact of any fishing, both illegal within the CSMP and legal when animals move outside the CSMP boundary. Such investigation may include obtaining a better understanding of the amount and patterns of recreational fishing pressure across the CSMP, and more targeted species-level analyses of reef monitoring data.
- Further investigate and monitor the key drivers of change in reef biodiversity across the region. Cost-effective management needs better understanding about local, regional and global stressors, and appropriate benchmarks of management success.
- Undertake additional surveys of southern reefs within the next two years to better understand impacts of the 2016 and 2020 heatwaves on reefs in the south. Recent data from southern reefs (additional to Saumarez) would allow future investigations to more accurately assess CSMP-wide changes spanning both heatwaves. Ongoing monitoring should be continued across the full span of the CSMP at an interval of 3-5 years.
- In collaboration with Traditional Owners when the Management Plan is reviewed, consider increased protection from fishing for Boot Reef as a sanctuary for higher predators in the far north, a location for high-end dive tourism, and a scientific reference area with a near intact coral reef food web.

Introduction

The Coral Sea Marine Park (CSMP) is one of the largest and most isolated marine parks in the world, encompassing almost 990,000 km² of the Coral Sea, 15,000 km² of which include shallow reef systems (Heap and Harris, 2008). The CSMP extends east of the Great Barrier Reef Marine Park (GBRMP) from the latitudes of Bundaberg in southern Queensland to the border with Papua New Guinea, encompassing all waters of the Coral Sea that fall within Australia's exclusive economic zone. It is one of 58 Australian Marine Parks (AMPs) that together cover 2,762,724 km² of ocean surrounding Australia (<u>https://parksaustralia.gov.au/marine/</u>), following a fivefold expansion on 1 July 2018, when management plans covering a complex arrangement of park zones were enacted.

The Coral Sea was initially declared a conservation zone in 2009 and proclaimed a Commonwealth Marine Reserve in 2012, prior to the implementation of the 2018 management plan under the Australian Marine Park networks. It is divided into multiple management zones, each assigned an IUCN category. Two former Nature Reserves were incorporated into the CSMP: the Coringa-Herald and Lihou Reef National Nature Reserves. These were proclaimed as IUCN category la reserves in 1982 and prohibited recreational and commercial fishing.

The Coral Sea is considered amongst the 4% of the ocean that remains least affected by human impacts, one of the last remaining 'pristine' seas (Ceccarelli et al., 2013, McKinnon et al., 2014). Approximately 30 reefs, shoals and seamounts lie within the Australian Coral Sea, hosting a high percentage of its biodiversity. The distribution of these reefs across the Coral Sea from the Great Barrier Reef to the fringing reefs of New Caledonia and elsewhere are far reaching, creating critical stepping-stones linking the Western Pacific and the Great Barrier Reef (Ceccarelli et al., 2013).

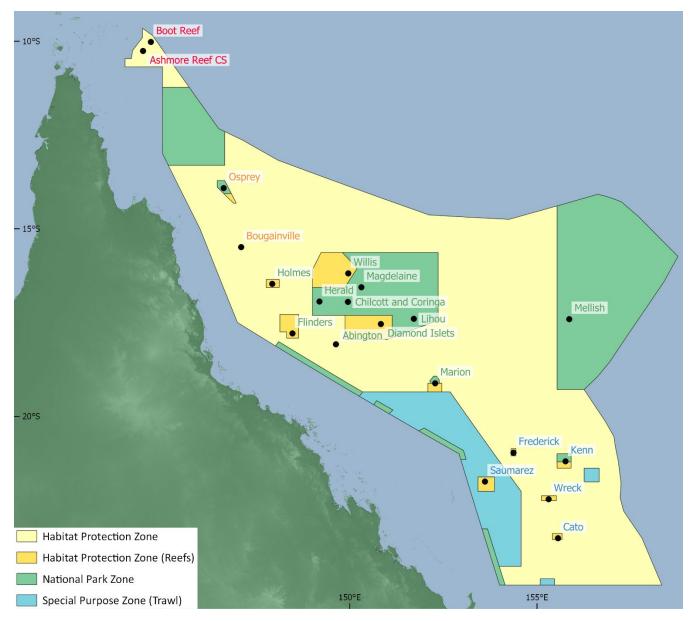
Torres Strait Islanders and coastal Aboriginal people of Cape York continue to assert inherited rights and responsibilities over Sea Country within and adjacent to the CSMP. Some reefs have been managed by Traditional Owners for thousands of years. The use of natural resource forms part of traditional culture and spirituality. The Meriam People's Sea Country extends over the Ashmore Reef region. An Indigenous turtle fishery operates in this area using hand collection and traditional spear methods. More recent human heritage also exists in the Coral Sea Marine Park, with at least 45 historic shipwrecks, dating back to at least the early 1800s.

The first park-wide surveys of reef biodiversity were undertaken by Reef Life Survey (RLS) teams between 2012 and 2015 (Edgar et al., 2015, Edgar et al., 2017a). These surveys not only provided a baseline of the overall spatial patterns in natural values found on shallow reefs against which change through time can be assessed over broad scales, but also provided new biogeographical insights of national management importance. For example, CSMP reefs represent the only locations in Australian waters with fish and large mobile invertebrate species assemblages typical of oceanic Pacific islands. Although located within a few hundred kilometres from the Great Barrier Reef (GBR), reef communities on CSMP reefs are much more closely affiliated to those on the oceanic islands and atolls of Tonga, Samoa, and Niue which lie more than 2,500 km distant (Edgar et al., 2015, Edgar et al., 2020). CSMP reef communities are thus distinct from the GBR, highlighting the existence of a characteristic Coral Sea ecoregion within the Australian EEZ. Coral reefs in the CSMP also support species listed as threatened, migratory or cetacean under the EPBC Act, and remain a stronghold for sea snakes, which are declining in many other regions of the world.

Coral reefs managed in the CSMP are far offshore and not threatened by land-based pressures such as run-off, pollution and urban development. Instead, major threats to the biodiversity and natural values of CSMP reefs include cyclones and marine heatwaves, along with associated coral mortality. Another pressure is recreational, commercial, and illegal, unreported and unregulated (IUU) fishing. Cyclones are believed to have played a role in shaping the regional patterns in coral cover reported in RLS baseline surveys, leading to reduced coral cover on reefs in the central region (Edgar et al., 2015). Yet, despite low coral cover, the same surveys found central CSMP reefs to support a relatively high biomass of reef fishes, especially within the areas protected in the former IUCN Ia zones (Edgar et al., 2015, Edgar et al., 2020).

Three of the largest marine heatwaves recorded in the region have occurred since the RLS surveys. The spatial distribution of prolonged elevated water temperatures differed between 2016, 2017 and 2020 heatwaves (Hoey et al., 2021). The 2017 heatwave generated little detectable impact, whereas the 2016 and 2020 heatwaves caused considerable coral bleaching and mortality (Stuart-Smith et al., 2018, Hoey et al., 2021). The 2016 heatwave resulted in unexpected effects on some reef fish communities in the CSMP and Great Barrier Reef, including increasing numbers of particular fish species, but overall impacts at the scale of the CSMP have not been assessed. Likewise, no quantitative comparisons have previously been possible between impacts of the 2016 and 2020 heatwaves (i.e. involving data pre-2016, post-2020, and also the intervening period), let alone any assessment of the net overall impacts for reef biodiversity in the CSMP over the last decade.

The 2016 and 2020 heatwaves may have impacted fishes directly through elevated temperatures on metabolic, demographic and ecological processes (Day et al., 2018, Stuart-Smith et al., 2017, Mellin et al., 2016), or indirectly through changes in their coral habitats (Wilson et al., 2006). The abundance of large reef fishes and sharks are important contributors to the global uniqueness of the CSMP reefs and are believed to be the result of isolation from human populations and limited historical fishing pressure (Ceccarelli et al., 2013, Edgar et al., 2015). Unknown impacts of recent heatwaves on these distinct natural values may be compounded by a threat of IUU fishing, and relatively poorly understood patterns and changes in recreational fishing pressure. Teasing apart the influence of multiple factors responsible for supporting and maintaining the large fish and shark biomass on CSMP reefs will be difficult. A necessary step is understanding how biomass has been changing in relation to recent heatwaves (and associated coral cover changes), and the effectiveness of the management zones designed to protect biodiversity values into the future.


Aims

Following the initial baseline surveys by Reef Life Survey teams in 2012-2015, this report outlines results of the analysis of data from two CSMP-wide follow-up survey efforts that spanned the two major heatwaves in 2016 and 2020. The analyses and report were funded by Parks Australia, with a primary focus of using data from these three time periods (a) to assess changes in reef biodiversity in relation to management, including the recently declared Habitat Protection and National Park zones (2018) as well as IUCN Ia zones from the previous Coral Sea Commonwealth Marine Reserve; (b) to understand the ecological impacts of the 2020 heatwave (and associated coral bleaching event) in the context of normal interannual variation and changes resulting from the 2016 heatwave; and (c) to assess overall change across the CSMP over the last decade.

Methods

Reef Life Survey (RLS) divers surveyed a total of 793 transects across 143 sites in the Coral Sea Marine Park between 2012 and 2021 (Figure 1). All surveys were conducted following the standardised underwater visual census methods applied globally by the Reef Life Survey (RLS). RLS involves recreational divers trained to a scientific level of data-gathering to make it possible to conduct ecological surveys across broad geographic areas in a cost-effective manner. RLS divers partner with management agencies and university researchers to undertake detailed assessment of biodiversity on coral and rocky reefs, but all divers and boat crew do so in a voluntary capacity. A summary of these methods is provided here. Full details can be downloaded at: www.reeflifesurvey.com/methods.

Each RLS survey involves three distinct searches undertaken along a 50 m transect line. Divers estimated the: (i) abundance and body size of fishes (Method 1), (ii) abundance of large mobile macroinvertebrates, giant clams and cryptic fishes (Method 2), and (iii) percent cover of sessile biota (Method 3). Two transects were generally surveyed per site (Appendix Table 1), generally parallel at different depths. Depths surveyed were restricted by the slope of individual reefs, but, where possible, were selected to encompass a wide depth range (e.g. 6 and 14 m). The same depth strata were repeated on subsequent site visits. Constraints associated with diving bottom time and air consumption generally limited depths to above 16 m. Underwater visibility and depth were recorded at the time of each survey, with visibility measured as the furthest distance at which large objects could be seen along the transect line, and depth as the depth contour followed by the diver when setting the transect line.

Figure 1. Map of reef locations surveyed by RLS divers within the Coral Sea from 2012 to 2021. Reef names are coloured by their region within the CSMP; far north (red), north (orange), central (green), and south (blue).

Fish Surveys (Method 1)

All fish species sighted within 5 m x 50 m blocks either side of the transect line were recorded on waterproof paper as divers swam slowly along the line (Figure 2). The number and estimated size category of each species were also recorded. Animals were sized into bins by total fish length (from snout to tip of tail) closest to 25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 500, 625 mm, and 125 mm categories above. All species sighted within the blocks were recorded, including a small proportion (<2%) with unknown identity. Photographs were used to later confirm identities with appropriate taxonomic experts, as necessary. In occasional circumstances when no photograph was available, taxa were recorded to the highest taxonomic resolution for which there was confidence (e.g. genus or family, if not species). Other large pelagic animals such as mammals, sea snakes, turtles and cephalopods are also recorded during the Method 1 fish survey, but not considered in analyses focusing on fishes (sea snakes are considered separately). Species observed outside the boundaries of the survey blocks or after the fish survey had been completed were recorded as 'Method 0'. Such records are a presence record for the time and location but were not used in quantitative analyses at the site level. 'Method 0' sightings were also made of invertebrates and any other notable species.

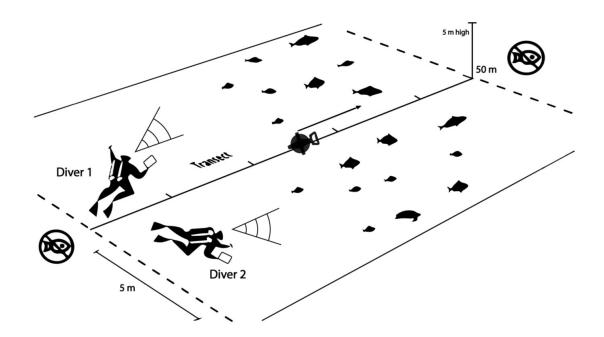


Figure 2. Summary of the Reef Life Survey fish survey (Method 1) approach.

Macroinvertebrate and Cryptic fishes Survey (Method 2)

Large macroinvertebrates (echinoderms, molluscs and crustaceans > 2.5 cm) and cryptic fishes were surveyed along the same transect lines set for fish surveys. Divers swam near the seabed, up each side of the transect line, recording all mobile macroinvertebrates and cryptic fishes on the reef surface within 1 m of the line (Figure 3). This required searching along crevices and undercuts, but without moving rocks or disturbing corals. Cryptic fishes include those from predefined families that are inconspicuous and closely associated with the seabed (and are thus disproportionately overlooked during general Method 1 fish surveys). The global list of families defined as cryptic for the purpose of RLS surveys can be found in the online methods manual (<u>www.reeflifesurvey.com/methods</u>). As data from Method 2 were collected in blocks of a different width to protocols applied for Method 1, and were analysed separately from those data, individuals of cryptic fishes known to already be recorded on Method 1 were also recorded as part of Method 2. Sizes were estimated for cryptic fishes within the same size bins as for Method 1.

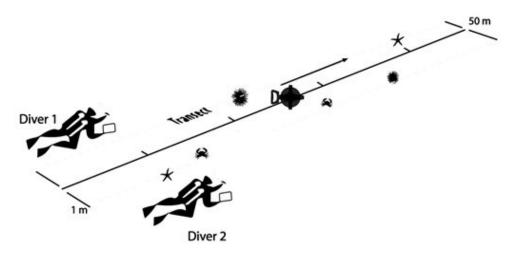


Figure 3. Summary of the Reef Life Survey macroinvertebrate and cryptic fish survey (Method 2) approach.

Photo-quadrats of benthic cover (Method 3)

Information on the percentage cover of sessile animals and macroalgae along the transect lines set for fish and invertebrate surveys was obtained using 20 photo-quadrats taken every 2.5 m along the 50 m transect. Digital photo-quadrats were taken vertically downward from a height sufficient to encompass an area of approximately 0.3 m x 0.3 m.

The percentage cover of different macroalgal, coral, sponge and other attached invertebrate species was obtained from photo-quadrats by recording the coral species or functional group observed under each of five points overlaid on each image, such that 100 points were usually counted for each transect (thus percentage cover was calculated as the number of points each group was scored under).

Functional groups for photo-quadrat processing comprised the standard 50 categories applied in broadscale analysis of RLS data, which are aligned with the CATAMI benthic imagery classification system (Althaus et al. 2015). A coral specialist, Dr Emre Turak, digitised corals in all photoquadrats to provide the highest possible taxonomic resolution and consistency in identifications. Most corals could be identified to the species level. Images have been archived and are available for processing at any resolution through the future.

Statistical analyses

For most sites, two transects were surveyed, each at a different depth. Because community types encountered along individual transects within a site were generally more similar to transects at similar depths at other sites, rather than transects at other depths within the same site, each transect was regarded as an independent sample in analyses. Thus, the unit of replication was total value(s) per pair of adjoining transect blocks (i.e. per 500 m² for fishes and per 100 m² for mobile macroinvertebrates). Sessile biota percent cover was expressed as percent cover per transect.

Collection of body length data of fishes, along with species identity and abundance, allows for the calculation of species-specific biomass estimates. Fish body mass was calculated from body length estimates using species-level length-weight relationships obtained from Fishbase (Froese and Pauly, 2010; www.fishbase.org). In cases where species-level length-weight coefficients are not available they are taken from similar-shaped species. When length–weight relationships were described in Fishbase in terms of standard length or fork length rather than total length, additional length-length relationships provided in Fishbase allowed conversion to total length, as estimated by divers. For improved accuracy in biomass estimates, the bias in divers' perception of fish size underwater was additionally corrected using the mean relationship provided in Edgar et al. (2004), where a consistent bias was found amongst divers that led to underestimation of small fish sizes and overestimation of large fish sizes. Note that estimates of fish abundance made by divers can be greatly affected by fish behaviour for many species (Edgar et al., 2004); consequently, biomass determinations, like abundance estimates, can reliably be compared only in a relative sense (i.e. for comparisons with data collected using the same methods) rather than providing an accurate absolute estimate of fish biomass for a patch of reef.

Four distinct regions have been identified in the CSMP on the basis of biogeographic patterns in the reef fauna, as outlined in the previous RLS report (Edgar et al., 2015, Edgar et al., 2017a); the far north, north, central and south. Reefs surveyed in each of these regions are shown in Figure 1, and are considered separately in many analyses.

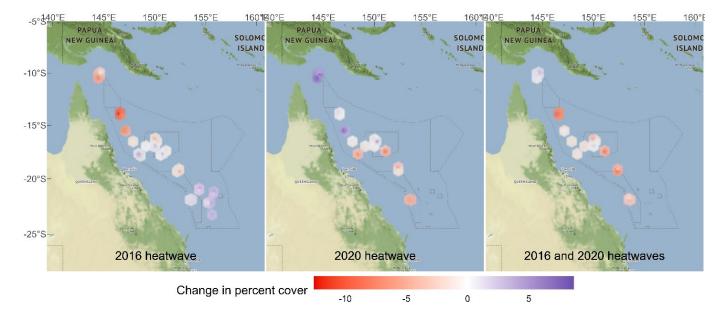
Surveys were grouped into three time periods for consideration of the major 2016 and 2020 heatwave impacts – 1. prior to May 2016; 2. Jun 2016 - May 2020; 3. post Jun 2020.

Univariate statistics

A range of univariate metrics were calculated from the survey data. For fishes these included total biomass estimates, species richness, biomass within trophic groups, and three indicators of reef condition: the biomass of large fishes (B20), community temperature index (CTI) and community generalisation index (CGI). B20 is a global indicator of fishing impacts, with previous analyses revealing lower values in regions of higher fishing impact around Australia (Stuart-Smith et al., 2017). It is calculated as the sum of biomass for all individuals on any survey that are in the 20 cm size class or larger, regardless of species identity. CTI is an indicator of the thermal affinities of the species and responds to sea temperature changes (Stuart-Smith et al., 2015). CTI is calculated as the mean of the thermal affinity of the species present within a survey, weighted by the log of the abundance of the species on the survey. The thermal affinity of the species is the midpoint of each species' thermal distribution (i.e., the temperature range experienced across its full geographic distribution). CGI is similar to CTI in being a community weighted mean, but instead of the thermal affinity used as a trait indicating species temperature preferences, a trait indicating habitat niche breadth is used to indicate whether species generally occupy a wide or narrow range of reef habitat types (Stuart-Smith et al., 2021). CGI has been shown to increase following bleaching and cyclone associated mortality of corals, as a result of a shift in fish species composition towards those that are more generalist (are typically found in a wider range of reef habitats).

For both mobile macroinvertebrates and cryptic fishes, metrics calculated included total abundance and species richness. For sessile biota, metrics included percent cover of various functional/taxonomic groups (crustose coralline algae (CCA), live coral, macroalgae, and turf). All metrics represent mean values per transect area, that is per 500 m² for fishes (Method 1), and 100 m² for mobile macroinvertebrates and cryptic fishes (Method 2).

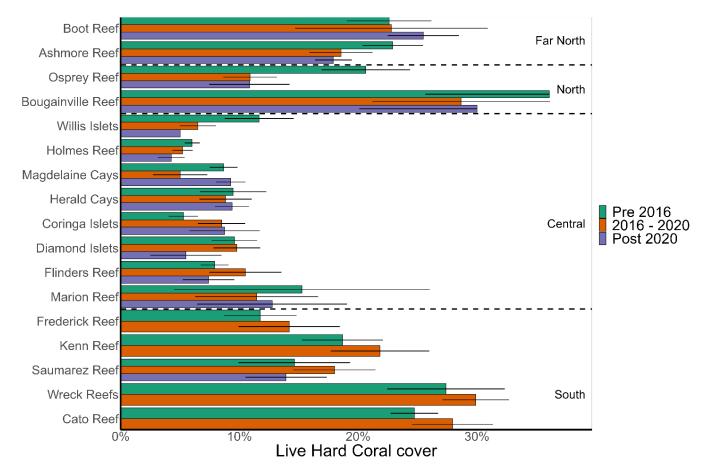
Statistical significance of univariate analyses was assessed using fixed-effects analysis of variance (ANOVA) models, with the reef in which a site is located (see Figure 1) and the survey period (pre-2016, 2016-20, post-2020) as fixed effects. Densities were averaged across transects within each site then across sites within each reef for input into models. ANOVAs were fitted using the 'Anova' function of the 'car' package (Fox and Weisberg, 2019) in R (R Core Team, 2021). Heatmaps of change were created using inverse-distance weighted (IDW) interpolation of site-level means (e.g. mean biomass change) and creating a raster using the 'raster' package (Hijmans, 2021) in R.

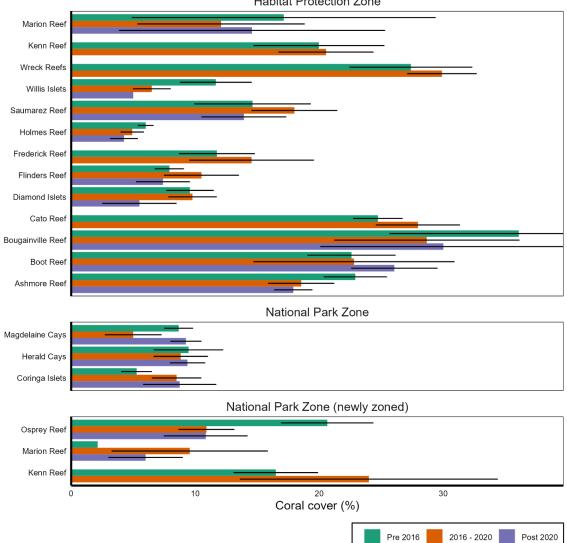

Multivariate statistics

Fish, cryptic fish, macroinvertebrate and sessile biota communities were investigated using nonmetric multi-dimensional scaling (nMDS). nMDS is a dimension reduction approach, minimising many dimensions (e.g., the abundance of species A, abundance of species B... etc.) into two dimensions (here termed nMDS1 and nMDS2) whilst maintaining as much of the dissimilarity as possible. The loss of information when reducing dimensions is termed 'stress,' which ranges from 0 to 1, with values less than 0.15 representing a 'good fit' (Dugard et al., 2010). nMDS was performed using the 'metaMDS' function within the 'vegan' package (Oksanen et al., 2020) in R using Bray-Curtis distances. Raw abundance data were log(x+1) transformed to minimise the relative importance of dominant species at a site.

Statistical significance of differences between multivariate groups was assessed using fixedeffects permutational multivariate analysis of variance (PERMANOVA) models, with the reef (see Figure 1) and the survey year as fixed effects. PERMANOVA models were fitted using the 'adonis' function of the 'vegan' package in R (Oksanen et al., 2020).

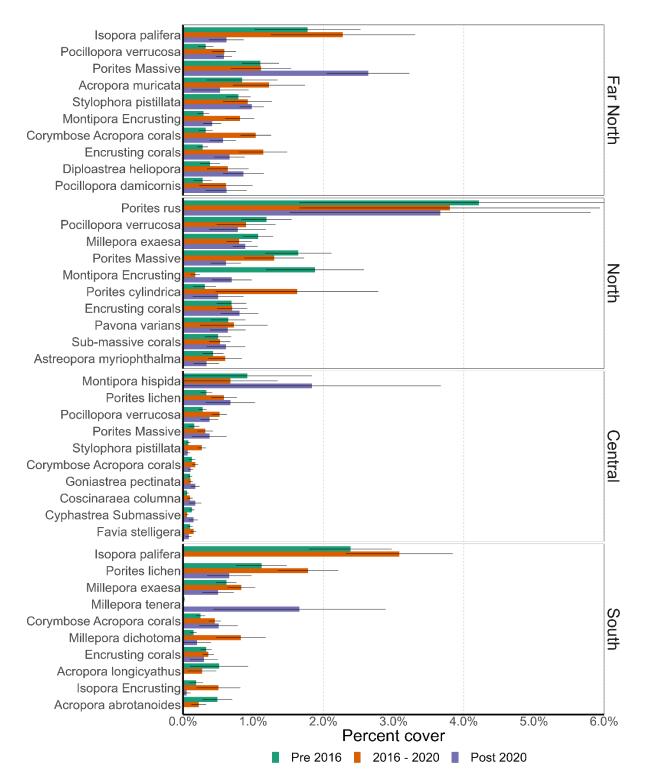
Results Benthic community


A total of 281 stony coral taxa and 5 hydrocorals were identified from photo-quadrats across the span of the CSMP. The magnitude of change in total cover of hard corals differed greatly between CSMP reefs. The change was likely as a result of the 2016 and 2020 marine heatwaves and associated coral bleaching events (Figure 4). The most severe coral cover declines subsequent to the 2016 event occurred in the northern and far northern reefs, while southern reefs showed minor increases in coral cover or no change. In contrast, the 2020 heatwave resulted in declines across reefs in the southern half of the CSMP whereas cover on far northern reefs increased. The net outcome of both heatwaves was that declines in coral cover have prevailed, and the overall cover of living hard corals is now less than when the first RLS surveys were undertaken.


Figure 4. Change in percent cover of Live Hard Corals on CS reefs across two major bleaching events. Data in the left map show change in coral cover from pre 2016 surveys to those between 2016 and 2020 (i.e. mean of live hard coral cover at each site in 2017-2020 minus mean live hard coral cover pre 2016). Middle map shows change in coral cover values from post 2020 surveys minus 2017-2020 values, while right map shows overall net change in coral cover per site from pre 2016 surveys to post 2020 surveys. All values are absolute change in percent cover, i.e. a loss of 10% represents an estimated reduction in overall live hard coral cover values. Reds represent a reduction in coral cover through time and blues an increase.

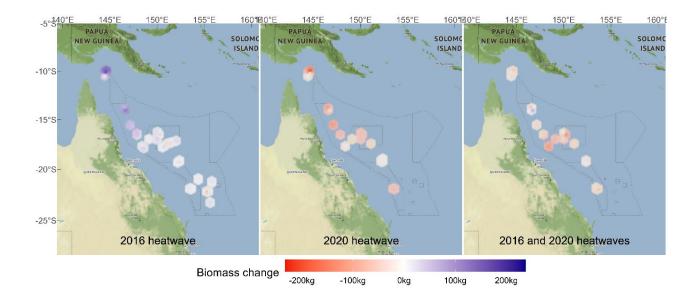
When assessed at the reef level, changes in hard coral cover showed consistent trends within the separate regions, although overall change through time across the whole CSMP was not

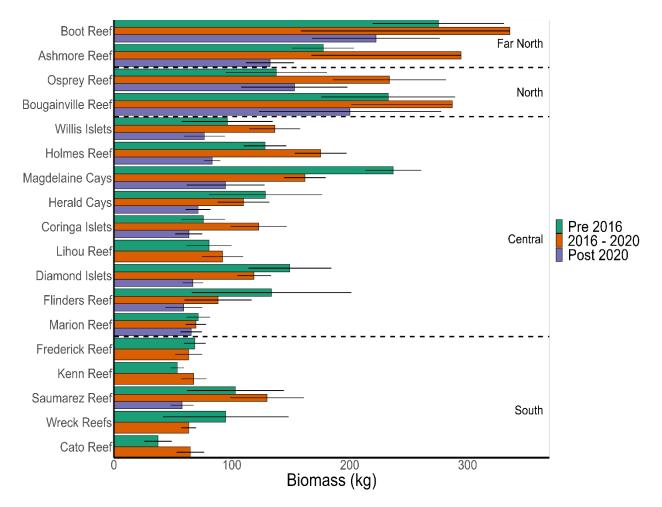
statistically significant (Figure 5). Northern reefs (Osprey and Bougainville Reefs) and some central reefs (Willis and Magdelaine) show the impact of the 2016 heatwave to be associated with the largest coral cover reductions across all reefs and time periods monitored. No post 2020 coral cover data are available for southern reefs other than Saumarez Reef, but all the southern reefs showed increases from pre 2016 to the 2016-2020 period. The net change in live hard coral cover from the pre 2016 surveys to the post 2020 surveys was a minor (and non-significant) decline of ~2.8% (17.1% to 14.3%). Patterns of change were not directly associated with management status (Figure 6), with no significant differences between Habitat Protection and National Park zones (including 'no-fishing' zones that existed prior to the 2018 CSMP management plan).


Figure 5. Changes in total Live Hard Coral cover by reef and region. Error bars represent ± 1 SE. Coral cover varies significantly between reefs (p < 0.001), but not between time periods. See Table 2 for full statistics. All values are absolute change in percent cover. Patterns shown here differ slightly from those described in Figure 1 heatmaps because means reflect data from all sites in each reef, rather than only the subset of sites that were surveyed in both time intervals, as in heatmap comparisons.

Habitat Protection Zone

Figure 6. Live hard coral cover by protection status. Error bars represent \pm 1 SE. Newly zoned national park refers to zones declared National Park Zones (in 2018) that were not previously within an IUCN Ia or II zone.


Plots depicting taxon-specific trends in corals (Figure 7) indicated substantial declines in *Isopora palifera* and *Acropora muricata* in the far north in the most recent surveys, while massive species of *Porites* and encrusting *Montipora* species declined in the north. *Isopora palifera* declined from the dominant coral species (by % cover) at Saumarez Reef in the first two periods to not being recorded in any photo-quadrats from the same sites in the post 2020 period. *Porites lichen* also declined in the south following the 2020 heatwave, although, as for *I. palifera*, this can only be confirmed for Saumarez Reef.


Figure 7. Changes in the cover of the dominant coral taxa (by percent cover) for each of the four regions in the Coral Sea Marine Park, and each time period (Pre 2016 heatwave, 2016-2020, Post 2020 heatwave). Error bars represent \pm 1 SE. Patterns shown here differ slightly from those described in Figure 1 heatmaps because means reflect data from all sites in each reef, rather than only the subset of sites that were surveyed in both time intervals, as in heatmap comparisons.

Fish community

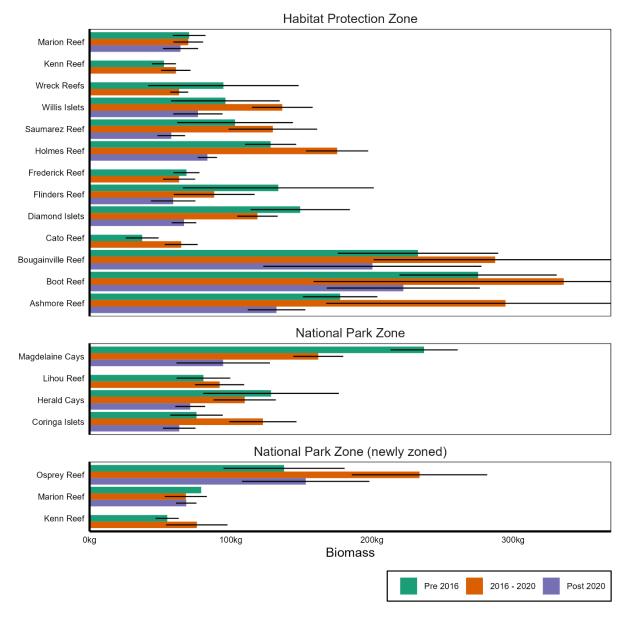
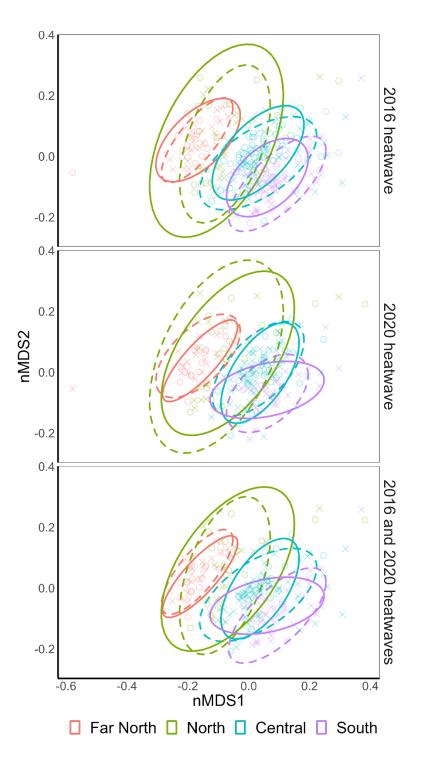
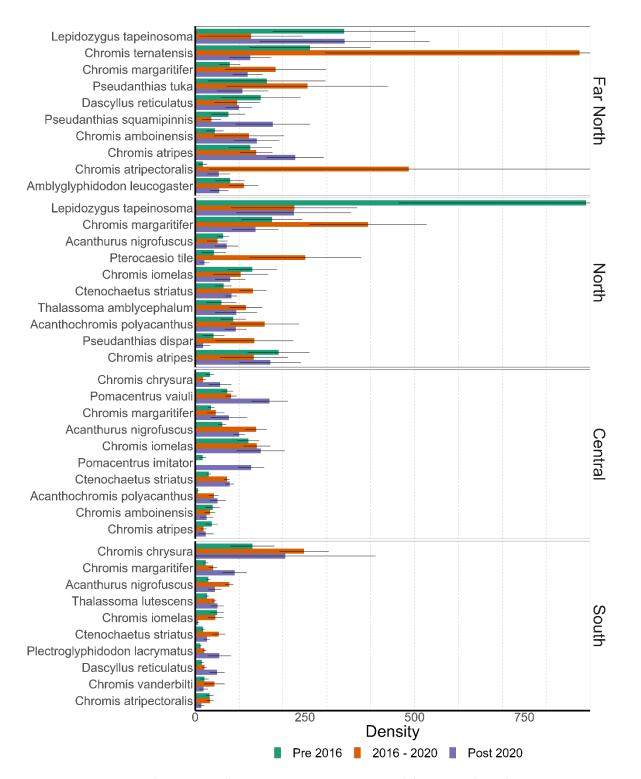

A total of 676 species of bony fishes (Actinopterygii), 11 sharks and rays (Elasmobranchii), and 9 reptiles were recorded during surveys across the span of the Coral Sea Marine Park. Trends in fish communities also reflected larger regional scale patterns associated with heatwaves and coral bleaching (Figure 8, Figure 9), much more so than responses to management and zoning (Figure 10). Regional gains in biomass at the north and north-west reefs associated with the 2016 heatwave were largely reversed during the 2020 heatwave, with significant biomass decline across reefs from 2016-2020 to post 2020 surveys (Appendix Table 3), greatest at central reefs (Figure 9). A net overall reduction in fish biomass of 7.34 kg (125.42 kg to 118.07 kg) per 500 m² was observed at the scale of the CSMP from pre 2016 to post 2020 surveys. No significant difference in biomass change was observed between sites in Habitat Protection and National Park zones (including those which existed prior to the new management plan for the CSMP in 2018; Figure 10). In general, sites with highest fish biomass exhibited the greatest declines, reducing the variation between reefs to a more consistent level across the Park. Sites in the National Park Zone at Magdelaine Cays showed the most pronounced reductions in fish biomass from pre 2016 to post 2020, on average.

Figure 8. Change in total fish biomass over two heatwave events. Data in the left map show change in total fish biomass (kg) from pre 2016 surveys to those between 2016 and 2020 (i.e. mean fish biomass at each site in 2017-2020 minus mean biomass pre 2016). Middle map shows change in biomass values from post 2020 surveys minus 2017-2020 values, while right map shows overall net change in biomass per site from pre 2016 surveys to post 2020 surveys. Reds represent a reduction in fish biomass through time and blues an increase.


Figure 9. Total fish biomass of Coral Sea reefs over three time periods. Error bars represent \pm 1 SE. Fish biomass varied by reef (p < 0.001) and between time periods (p < 0.001). See Table 3 for full statistics.


Figure 10. Fish biomass per 500 m² by protection status. Error bars represent \pm 1 SE. Newly zoned national park refers to zones declared National Park Zones (in 2018) that were not previously within an IUCN Ia or II zone.

Changes in fish community structure also occurred over the regional scale of the CSMP, with broadly shifting composition and abundance of species over the course of the two major heatwaves leading to fish community structures in 2020 that were more similar between far north and south than observed in previous surveys (Figure 11). In other words, the net outcome of both heatwaves was for the reefs in the south and far north to become more similar to those at central reefs, generating a regional 'homogenisation' effect. This is evident in Figure 11 where the red (far north) and purple (south) ellipses nearly touch each other post-2020 (solid ellipses, bottom plot), whereas more widely separated pre-2016 (dashed ellipses). Note that the stress level for the MDS plot was high (0.22), indicating that the plots are not a good representation of multivariate patterns, and require caution in interpretation.

The PERMANOVA confirmed a significant interaction between time period and region, however, indicating that community change through time did differ between regions. Investigation of trends in each of the most abundant species recorded along transects in each region revealed complex and variable patterns (Figure 12), suggesting that overall community level change was also complex and driven by a large combination of shifting abundances and occurrences of coral reef fishes across the broader seascape.

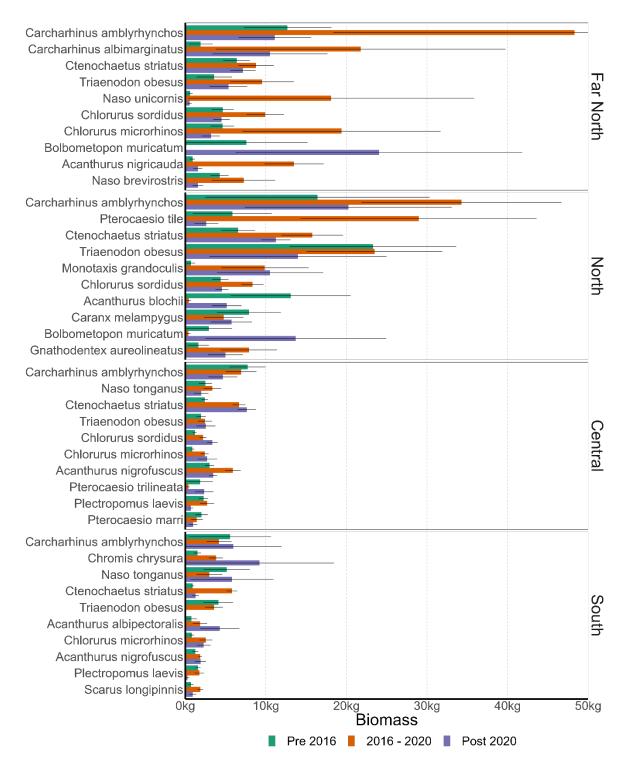
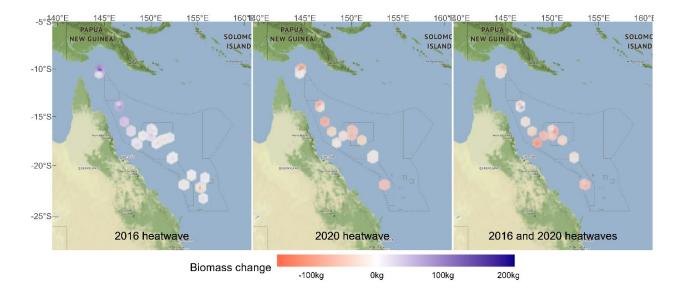

Figure 11. Change in fish community structure over two heatwave events. Community compositions at a site are represented by a single point in the two-dimensional space using non-metric multidimensional scaling (nMDS). Crosses and dotted ellipses infer the position before the heatwave(s), circles and solid ellipses infer the position after the heatwave(s). Orange = far north, Green = north, Blue = central, Purple = south. Stress = 0.22. Fish community structure significantly differed between regions (p < 0.001), between time periods (p < 0.001), and change in community structure through time differed among regions (p < 0.001). See Table 4 for full statistics.

Figure 12. Dominant fish species (by mean density per transect) for each of the four regions in the Coral Sea Marine Park, and for each time period (Pre 2016 heatwave, 2016-2020, Post 2020 heatwave). Error bars represent ± 1 SE.


Sharks, surgeonfishes, fusiliers and parrotfishes dominated fish biomass across transects (Figure 13), and varied considerably in responses over time, albeit with more reductions than increases. Declines in shark and coral trout biomass appeared to be relatively consistent between regions and years, especially in terms of declines from the 2016-2020 to post 2020 periods.

When large fish biomass was considered in aggregate using the B20 indicator (Figure 14, Figure 15), trends largely reflected those in total fish biomass. Declines in B20 observed in the south from pre 2016 to 2016-2020 were more obvious than changes in total fish biomass, however, and may have potentially been exacerbated up to the post 2020 period, although survey data are lacking for most southern reefs in this period. No effect of zoning on B20 change was observed (Figure 16).

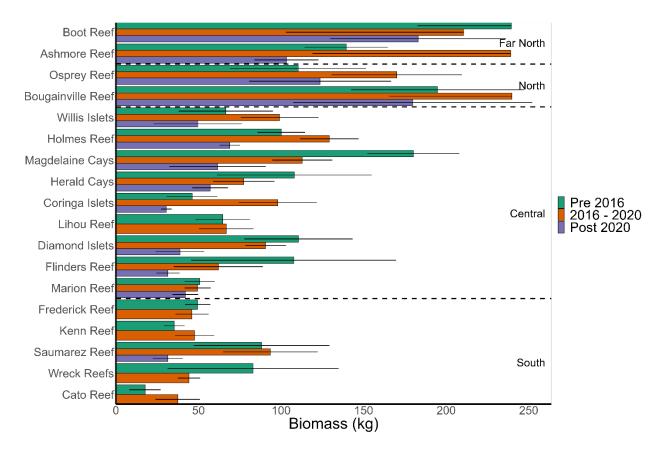


Figure 13. Dominant fish species (by mean biomass per transect) for each of the four regions in the Coral Sea, and each time period (Pre 2016 heatwave, 2016-2020, Post 2020 heatwave). Error bars represent ± 1 SE.

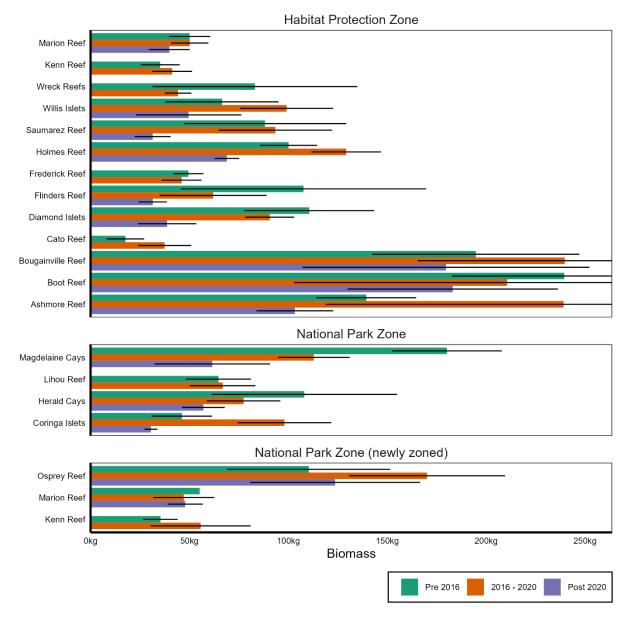
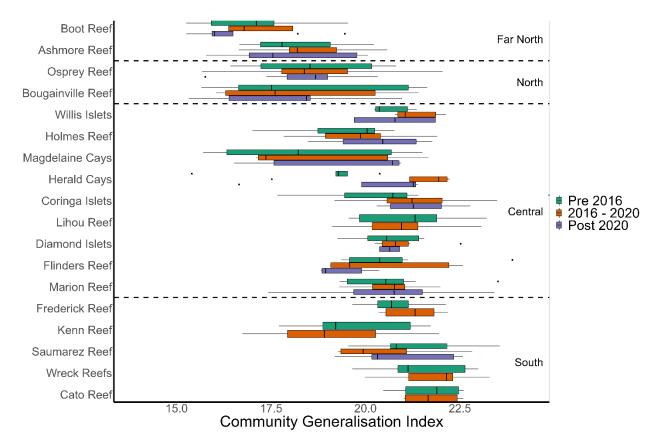

Large Fish biomass (B20)

Figure 14. Change in Large fish biomass (B20) over two heatwave events. Data in the left map show change in B20 (kg) from pre 2016 surveys to those between 2016 and 2020 (i.e. mean B20 at each site in 2017-2020 minus mean B20 pre 2016). Middle map shows change in B20 values from post 2020 surveys minus 2017-2020 values, while right map shows overall net change in B20 per site from pre 2016 surveys to post 2020 surveys. Reds represent a reduction in large fish biomass through time and blues an increase.

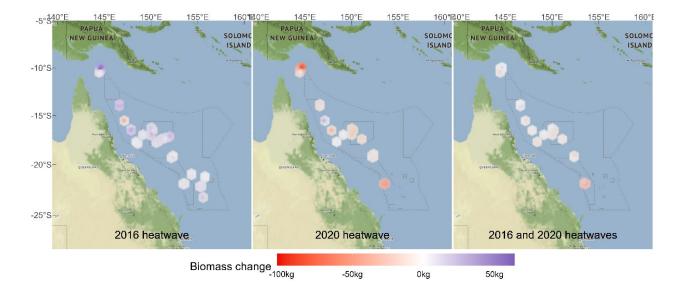
Figure 15. Large fish biomass (B20) of Coral Sea reefs over three time periods, separated by two major heatwave events. Error bars represent ± 1 SE. Large fish biomass varied by reef (p < 0.001) and between time periods (p = 0.011). See Table 5 for full statistics.

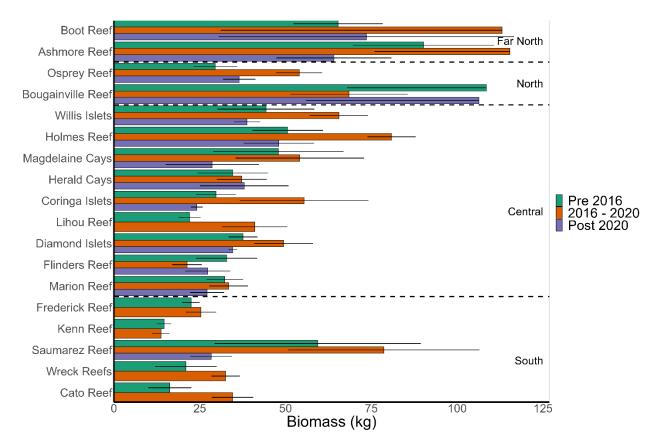
Figure 16. Large fish biomass (B20) per 500 m² by protection status. Error bars represent \pm 1 SE. Newly zoned national park refers to zones declared National Park Zones (in 2018) that were not previously within an IUCN Ia or II zone.


Fish Community Temperature Index (CTI) and Community Generalisation Index (CGI)

Spatial patterns in CTI showed a latitudinal gradation of fishes preferring warmer seas in the northern CSMP to those with cooler affinities in the south (Figure 17), although limited evidence existed for systematic change in values through time. Some declines in CTI previously identified in the central reefs associated with the 2016 heatwave have either continued or subsided, meaning that these reefs now have relatively 'cooler' fish communities than in baseline RLS surveys prior to 2016.

Figure 17. Community Temperature Index (CTI) values for fish communities surveyed at 19 reefs, within 4 regions, in the Coral Sea. Error bars represent ± 1 SE of the mean site-level CTI value.


The distribution of CGI values across reefs also shows a spatial trend towards more habitat specialist fishes in the north and generalists in the south, although this was not as strong as the trend in CTI. Change in CGI through time was not significant at the scale of the CSMP and whole period.


Figure 18. Community Generalisation Index (CGI) values for fish communities surveyed at 19 reefs, within 4 Coral Sea regions. Error bars represent ± 1 SE of the mean site-level CGI value.

Herbivorous fish biomass

Trends in herbivorous fish biomass on transects also followed similar broad regional trends to those in total biomass, with increases in the far north from the 2016 heatwave reversed during the 2020 heatwave, and a general pattern of net decline across the CSMP through all time periods (Figure 19, Figure 20). Changes in herbivorous fish biomass did not differ significantly between management zones (Figure 21).

Figure 19. Change in herbivorous fish biomass over two heatwave events. Data in the left map show change in herbivorous fish biomass (kg) from pre 2016 surveys to those between 2016 and 2020 (i.e. mean herbivorous fish biomass at each site in 2017-2020 minus mean biomass pre 2016). Middle map shows change in herbivorous fish biomass values from post 2020 surveys minus 2017-2020 values, while right map shows overall net change in herbivorous fish biomass per site from pre 2016 surveys to post 2020 surveys. Reds represent a reduction in herbivorous fish biomass through time and blues an increase.

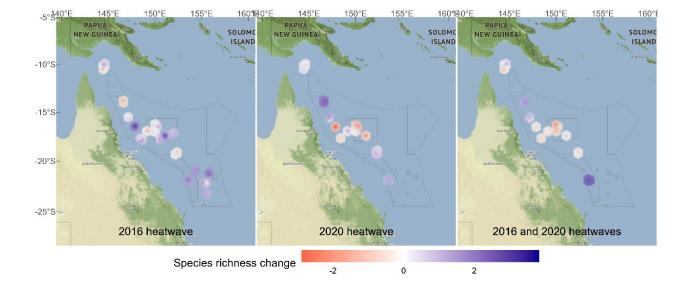
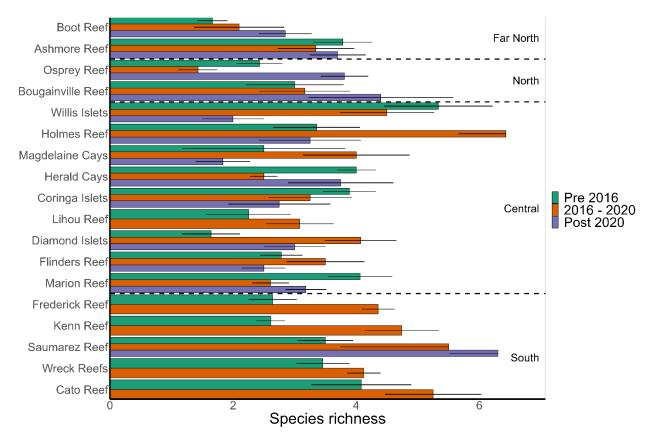


Figure 20. Mean biomass (kg per 500 m²) of herbivorous fishes on surveys at 18 Coral Sea reefs over three time periods, separated by two major heatwave events. Error bars represent \pm 1 SE of the mean site-level biomass. Herbivorous fish biomass varied by reef (p < 0.001) and between time periods (p = 0.001). See Table 6 for full statistics.

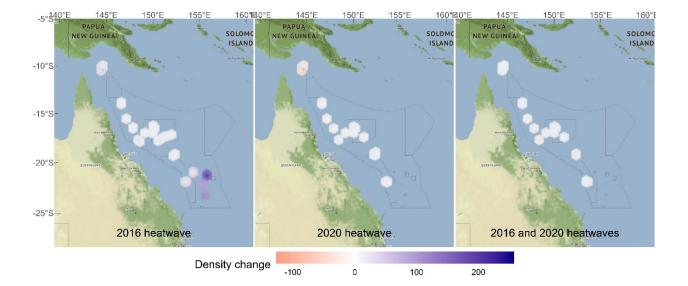
Figure 21. Herbivorous fish biomass per 500 m² by protection status. Error bars represent \pm 1 SE. Newly zoned national park refers to zones declared National Park Zones (in 2018) that were not previously within an IUCN Ia or II zone.

Mobile macroinvertebrate community

Macroinvertebrates


Figure 22. Change in macroinvertebrate species richness (number of species per 100 m²) over two heatwave events. Data in the left map show change in macroinvertebrate richness from pre 2016 surveys to those between 2016 and 2020 (i.e. mean macroinvertebrate richness at each site in 2017-2020 minus mean richness pre 2016). Middle map shows change in macroinvertebrate richness from post 2020 surveys minus 2017-2020 values, while right map shows overall net change in macroinvertebrate richness per site from pre 2016 surveys to post 2020 surveys. Reds represent a reduction in macroinvertebrate species richness through time and blues an increase.

For mobile macro-invertebrates, a total of 120 gastropod, 2 cephalopod, 29 crustacean, 20 sea star, 22 holothurian, 23 crinoid, and 12 sea urchin species were observed by divers during surveys in the Coral Sea Marine Park. Seven giant clam species were also recorded.


Mobile macroinvertebrate richness changed in a highly patchy manner over the 2016 heatwave period, while changes observed over the 2020 heatwave appear to have been stronger and contributed most to patterns of net change over the entire period (Figure 22, Figure 23). A slight increase in the number of mobile macroinvertebrate species recorded per transect was observed at Osprey and Saumarez Reefs, while some declines occurred on central reefs.

Sea urchins were the dominant members of the mobile macroinvertebrate community at southern Coral Sea reefs but were comparatively scarce on central and northern reefs. An increase in sea urchin densities was observed in the south as a result of the 2016 heatwave (Figure 24, Figure 25) (mostly for species *Diadema setosum* and *Diadema savignyi*, and for

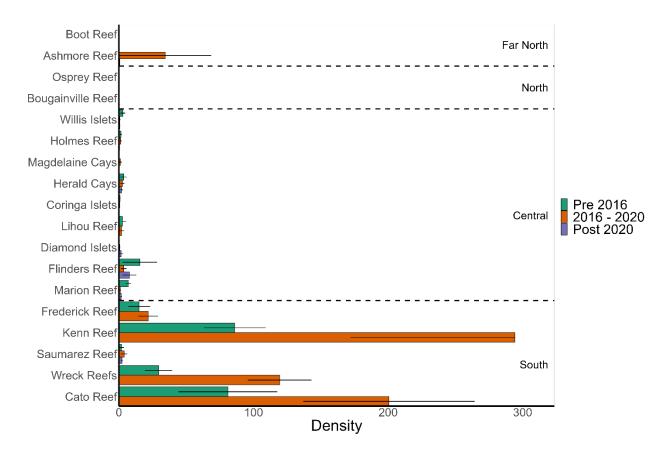

locations Wreck Reefs, Cato Reef and Kenn Reef), but data were too limited to investigate the effects of the 2020 heatwave; Saumarez Reef was the only reef surveyed in the south in the most recent period, but has low sea urchin densities, as do most other regions for which the effects of the 2020 heatwave could be investigated. Sea cucumber density varied among reefs but did not change significantly through time (Figure 32, Figure 33).

Figure 23. Number of macroinvertebrate species recorded on a survey (100 m²) across 18 reefs, in four regions of the Coral Sea. Error bars represent \pm 1 SE of the mean site-level richness. Macroinvertebrate richness varied by reef (p < 0.001), between time periods (p = 0.015), and varied differently with time period at different reefs (significant interaction between reef and time period, p < 0.001). See Table 8 for full statistics.

Figure 24. Change in sea urchin density (number of individuals per 100 m²) over two heatwave events. Data in the left map show change in sea urchin density from pre 2016 surveys to those between 2016 and 2020 (i.e. mean sea urchin density at each site in 2017-2020 minus mean density pre 2016). Middle map shows change in sea urchin density from post 2020 surveys minus 2017-2020 values, while right map shows overall net change in sea urchin density per site from pre 2016 surveys to post 2020 surveys. Reds represent a reduction in sea urchin density through time and blues an increase.

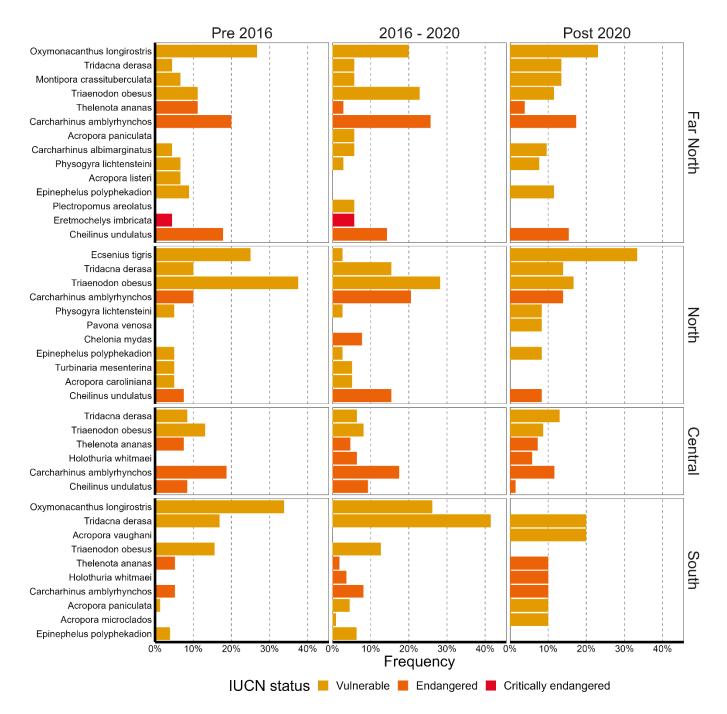
Figure 25. Sea urchin density (individuals per 100 m²) at 18 reefs in four regions of the Coral Sea, at three time points before during and after two major heatwave events in 2016 and 2020. Error bars represent \pm 1 SE of the mean site-level density. Total urchin density varied by reef (p < 0.001) and by the reefs varies differently with time period reefs (significant interaction between reef and time period, p = 0.015). Urchin density significantly increased in the Wreck Reefs from Pre-2016 to 2016-2020 (p = 0.002). See Table 9 for full statistics.

Taxa of conservation concern

Threatened species

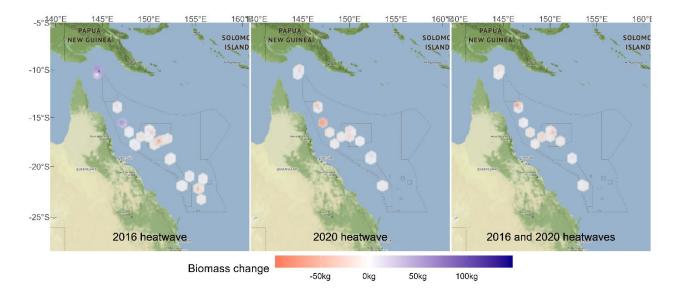
Four turtle species that are listed as threatened under the EPBC Act were observed during surveys in the CSMP (Table 12). Many more species (n = 61) were recorded that are listed as threatened on the IUCN Red List, including holothurians, giant clams and fishes (Table 13). Most of these were infrequently scored on surveys, although the giant clam *Tridacna derasa* and the Humphead Maori wrasse *Cheilinus undulatus* were observed frequently. Although the latter was observed on fewer transects in the central and southern regions after the 2016-2020 period, none of the threatened species showed a consistently strong decrease or increase in the number of sites where present between any period. In addition to listed threatened species, a number of other taxa of conservation concern—sharks and sea snakes—were also observed in moderately high numbers, highlighting the importance of the CSMP for conservation.

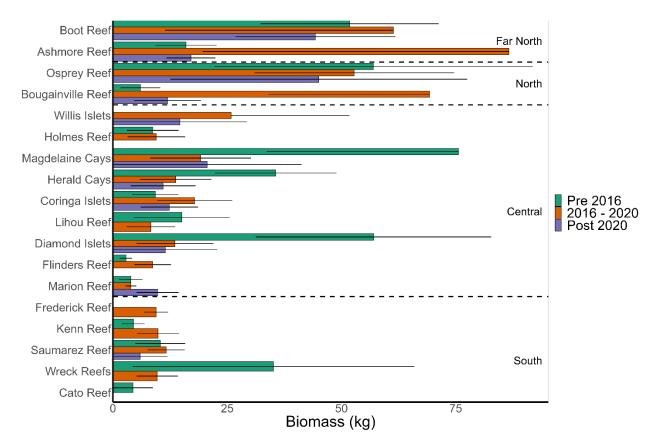
Eretmochelys imbricata


Caretta caretta

Natator depressus

Chelonia mydas


Plate 1 Four turtle species were observed during surveys in the Coral Sea Marine Park. All are listed as threatened under the EPBC Act.


Figure 26. Frequency of occurrence (percent of surveys with an observation) of a subset of IUCN threatened species observed across all sites surveyed in the Coral Sea. For a list of all threated species observed see Table 13.

Sharks

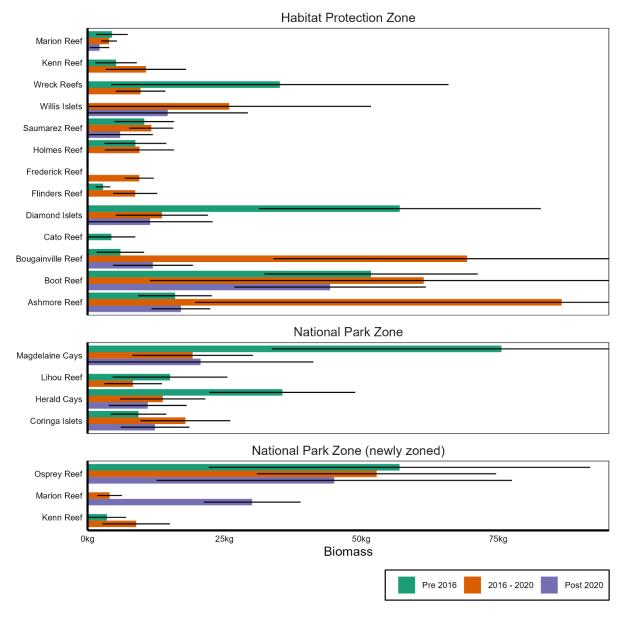

The biomass of sharks on reef surveys was highly variable among sites, reefs, regions and times (Figure 27, Figure 28). Although not statistically significant across the full span of the CSMP (Appendix Table 7), large declines in mean shark biomass values occurred in some central and north reefs over the 2016 heatwave period and have not shown subsequent signs of recovery. Changes in shark biomass over the entire study duration were not significantly associated with management zone (Figure 29, Appendix Table 7).

Figure 27. Change in shark biomass over two heatwave events. Data in the left map show change in shark biomass (kg) from pre 2016 surveys to those between 2016 and 2020 (i.e. mean shark biomass at each site in 2017-2020 minus mean biomass pre 2016). Middle map shows change in shark biomass values from post 2020 surveys minus 2017-2020 values, while right map shows overall net change in shark biomass per site from pre 2016 surveys to post 2020 surveys. Reds represent a reduction in shark biomass through time and blues an increase.

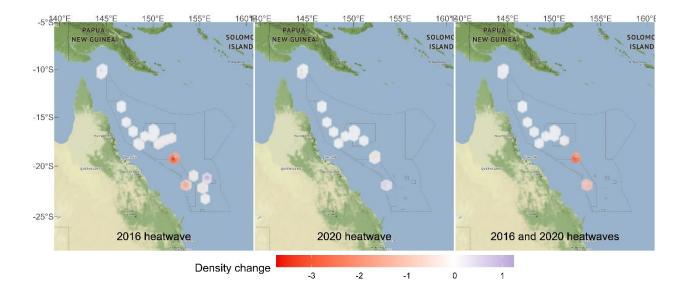
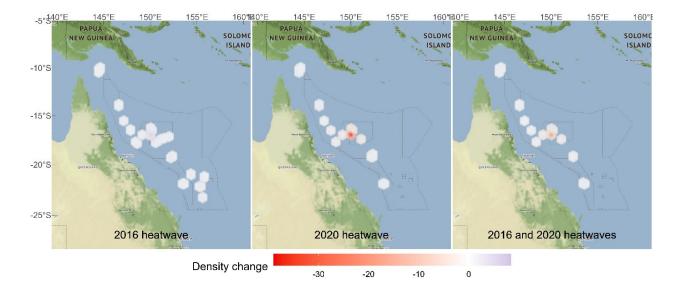
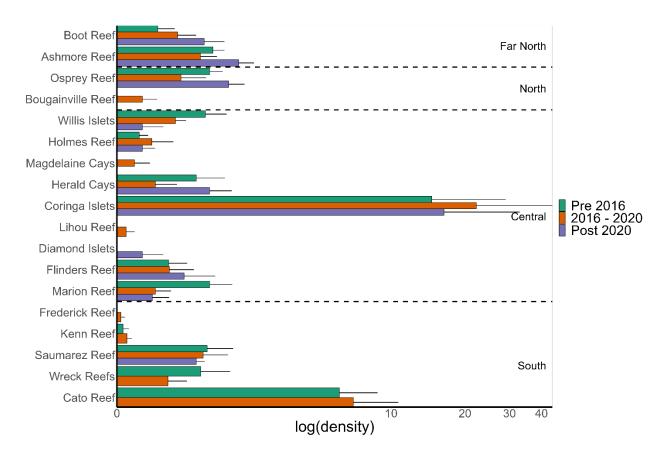


Figure 28. Mean biomass (kg) of sharks on surveys at 18 Coral Sea reefs over three time periods, separated by two major heatwave events. Error bars represent \pm 1 SE of the mean site-level biomass. Shark biomass varied by reef (p = 0.003) but not between time periods across the span of the CSMP. See Table 7 for full statistics.

Figure 29. Shark biomass per 500 m² by protection status. Error bars represent \pm 1 SE. Newly zoned national park refers to zones declared National Park Zones (in 2018) that were not previously within an IUCN Ia or II zone.

Sea snakes


Figure 30. Change in sea snake density (number of individuals per 500 m²) over two heatwave events. Data in the left map show change in sea snake density from pre 2016 surveys to those between 2016 and 2020 (i.e. mean sea snake density at each site in 2017-2020 minus mean density pre 2016). Middle map shows change in sea snake density from post 2020 surveys minus 2017-2020 values, while right map shows overall net change in sea snake density per site from pre 2016 surveys to post 2020 surveys. Reds represent a reduction in sea snake density through time and blues an increase.


Figure 31. Sea snake density (individuals per 500 m²) at 18 reefs in the Coral Sea. Error bars represent \pm 1 SE of the mean site-level density. Sea snake density varied by reef (p < 0.001), but not with time period. See Table 11 for full statistics. Marion Reef showed a significant decline in sea snake density from Pre-2016 to 2016-2020 (p = 0.04), and remained statistically different from the Pre-2016 density in Post-2020 (p = 0.002).

Sea snakes were abundant on southern Coral Sea reefs, rare on reefs in the far north and absent from the reefs in between. The 2016 heatwave had a substantial effect on sea snake densities in the south and at Marion Reef, where populations did not recover or change much in the following period up to the post 2020 surveys (Figure 30, Figure 31). High variability between sites resulted in non-significant overall net change from pre 2016 to post 2020 at the scale of the CSMP, but the declines at Marion Reef were significant, and sea snake densities observed in post 2020 surveys were only around one quarter of those observed in the pre-2016 surveys of this reef. A decline observed at Saumarez Reef at the time of the 2016 heatwave has also persisted, with sea snake numbers remaining relatively low through to the post 2020 period.

Sea cucumbers

Figure 32. Change in sea cucumber density (number of individuals per 100 m²) over two heatwave events. Data in the left map show change in sea cucumber density from pre 2016 surveys to those between 2016 and 2020 (i.e. mean sea cucumber density at each site in 2017-2020 minus mean density pre 2016). Middle map shows change in sea cucumber density from post 2020 surveys minus 2017-2020 values, while right map shows overall net change in sea cucumber density per site from pre 2016 surveys to post 2020 surveys. Reds represent a reduction in sea cucumber density through time and blues an increase.

Figure 33. Log density (individuals per 100 m²) of sea cucumbers in 18 reefs in four regions of the Coral Sea. Error bars represent \pm 1 SE of the mean site-level density. Sea cucumber density varied by reef (p < 0.001), but not with time period. See Table 10 for full statistics.

Sea cucumber densities remained exceptionally stable through both periods of investigation (Figure 32 and Figure 33). The only major exception was a decline at Willis Islets, where the population decreased in both periods. This decline may be fishing related as Willis Islets remains open to sea cucumber extraction, whereas other nearby islands (Magdelaine, Coringa and Herald) remain closed.

Discussion

The goals of this report were to assess change in reef ecological condition and natural values across the Coral Sea Marine Park, as observed through three Park-wide surveys by Reef Life Survey teams. Analysis of survey data allowed (a) changes in reef biodiversity through time to be partitioned among reefs surveyed in recently declared Habitat Protection and National Park zones (2018) as well as IUCN Ia and II zones from the previous Coral Sea Commonwealth Marine Reserve; and (b) the ecological impacts of the 2020 heatwave (and associated coral bleaching event) to be compared with changes resulting from the 2016 heatwave, and overall net change in reef fish and invertebrate communities from 2012 to 2021. The results indicate that:

- 1. Regional-scale biodiversity change most likely associated with environmental conditions (heatwaves and associated bleaching) dominated responses of reef communities and overwhelmed any potential signals of management zone-related change; and
- 2. Reef communities exhibited substantially different responses to the 2016 and 2020 heatwaves. These responses differed not only in terms of the spatial footprint of changing coral cover, but also in the direction and magnitude of changes in reef fish and invertebrate communities.

Effects of marine protected areas on reef biodiversity are typically first observed in fish communities, for example through changes in the biomass of large fishes and top predators (such as sharks and jacks) (Edgar et al., 2014, Coleman et al., 2015). In this study, the majority of fish metrics appeared to capture a consistent signal of decline through time and across the CSMP, including total fish biomass, the biomass of large fishes (B20), sharks and herbivorous fishes. No statistically significant difference in these changes was attributable to the three zone types considered. In combination with the consistency in change among metrics, this suggests broad regional drivers of change, rather than local ecological responses, including to particular management strategies.

Spatial patterns among zones in the Coral Sea have previously been reported (Edgar et al., 2015), in which reef sites in the former IUCN Ia zones at Coringa-Herald and Lihou supported 71% more large fish biomass and 94% more sharks compared to similar reefs outside these zones where fishing was allowed. In this assessment of change through this timeframe across the whole of CSMP, fish biomass declined within these zones, at rates equivalent to (and sometimes greater than) reefs in Habitat Protection Zones and recently declared National Park Zones (2018 management plan). A lack of management response in terms of change through time should not be unexpected, however, as fishing pressure is considered low throughout the CSMP, and new zones have not been in place for sufficient time to accrue substantial benefits of protection.

Regardless of the causes, the observed declines in key metrics of reef fish ecological condition are concerning, as they indicate erosion of the natural values that make the CSMP globally

unique. Declines in sharks on reefs where formerly abundant is a particular concern, with the CSMP one of the global hotspots for shark diversity and biomass (Edgar et al., 2017b). Although causes for the fish declines are unknown and could relate to factors other than fishing (see below), declines in sharks potentially relate to illegal, unreported and unregulated (IUU) fishing. A management recommendation is thus to further investigate potential for illegal fishing for sharks, and other causes of decline in fishes more broadly. Such investigation should include obtaining a better understanding of the amount and patterns of recreational fishing pressure across the CSMP, and more targeted species-level analyses of the RLS and JCU reef monitoring datasets.

The second key outcome of these analyses was that the two major heatwaves spanned by surveys had very different impacts on reef communities. Differences in the spatial footprint of thermal anomalies and residual impacts of previous bleaching events may explain trends in coral cover change (see below) and potentially the 'homogenisation' of reef fish community structure (convergence on northern and southern fish communities towards structures more similar to the central region) (Hoey et al., 2021). Reverse trajectories of total reef fish biomass between the 2016 and 2020 bleaching events, patterns in herbivorous fish biomass change, and a 'cooling' of fish communities in the central reefs (i.e. reduced CTI values), however, collectively suggest that drivers of change may be more complicated than the 'simple' explanations associated with habitat loss (coral cover declines from bleaching mortality) and extreme temperatures (affecting distributions and abundance of resident species). Trends at Magdelaine Cays particularly illustrate this. These reefs are protected in a National Park Zone, experienced coral cover declines from the 2016 bleaching, but subsequent recovery, while declines in fish biomass, sharks, mobile invertebrate richness and CTI persisted.

Factors contributing to recent fish biomass decline in the CSMP thus remain speculative, although lags following bleaching events are possible, given delays of months to years between coral death and disintegration of coral structure (e.g. Glynn, 1994). Many fish species respond to the structural character of coral reefs for refuge rather than living coral as a food source (Wilson et al., 2008), while others capitalise on the surprisingly high productivity of small invertebrates on dead corals coated with turfs (Fraser et al., 2021). Heatwaves can also increase mobility of fishes, including large predatory species such as coral trout (Brown et al., 2021). Such uncertainty on the causes of biodiversity change makes it difficult to understand the extent to which management responses (through CSMP zoning or regulations associated with sources of human disturbance) may provide benefits and halt or reverse declines in condition. A key recommendation is further investigation of the possible drivers of change in reef biodiversity across the region. Effective management likely needs better understanding about what is and is not presently manageable, but importantly, ongoing monitoring results need to be put into appropriate context in terms of agreed benchmarks of management success.

Trends in hard coral cover across the CSMP appear more easily explainable by the spatial footprint of the 2016 and 2020 heatwaves and bleaching events as reefs showing largest coral declines were also most impacted by high temperatures (Stuart-Smith et al., 2018, Hoey et al., 2021). Total coral cover declines were most severe at reefs in the north following the 2016 event, with mean coral cover almost halving to ca. 10% at Osprey Reef and declining by a fifth to 18% at Ashmore Reef in the far north. Declines in central reefs and signs of declines in the south (which were confirmed and reported in Hoey et al., 2021) were observed following the 2020 heatwave, which led to an overall decline of 2.8% in live hard corals from pre 2016 heatwave to post 2020 heatwave.

Decreasing populations of coral taxa often relate to species' sensitivity to heat stress. Declines observed through the 2020 heatwave for coral taxa such as massive *Porites* may therefore stand out because cover of more heat-sensitive coral taxa (such as branching and tabular *Acropora*) was already low; i.e. losses of more sensitive taxa probably occurred prior to both the 2016 and 2020 heatwaves. Nevertheless, *Isopora palifera* appears sensitive to bleaching but was the dominant taxon in the far north and south regions in the pre-2016 surveys, declining to a rare taxon on the same reefs post-2020.

Moderate declines in coral cover around 2020 on southern Coral Sea reefs reported by Hoey et al. (2021) could not be confirmed for most reefs in our study, given that only Saumarez Reef was surveyed in the south in the post-2020 period. However, declines observed in this study at Saumarez from the 2020 heatwave were substantial, in line with results of Hoey et al (2021). Nevertheless, data from early surveys by RLS teams at Saumarez in 2013 indicated that coral cover had been increasing up until the 2020 heatwave and provide a different perspective on bleaching impact at this reef by suggesting the 2020 declines only marginally exceeded gains in the years preceding 2020. In other words, the presence of baseline data from 2013, in this case, indicates only minor net reductions associated with the 2020 heatwave, in the context of the cover observed only seven years prior. Even though post-2020 data were not available for other reefs in the south, increases in coral cover equivalent to those observed at Saumarez occurred across all the southern reefs surveyed by RLS from original surveys in 2013 to the 2016-2020 period.

It is therefore possible that the losses reported from the 2020 bleaching event for the four other surveyed reefs in the south are less severe when considered in the context of this longer time frame. Differences in interpretation of impacts illustrated by these different baseline years (the 'shifting baselines' phenomenon) of course apply more broadly, in that the magnitude of impacts observed through CSMP surveys are all limited to the context of the last decade, and may appear more or less severe in the context of the last 20-40 years, for example. This is unavoidable given the relatively short time the Coral Sea reefs have been studied in comparison to the nearby Great Barrier Reef. Given prior RLS surveys of reefs in the south provide context also spanning the **2016 bleaching event, a further recommendation in this report is to survey the other southern**

reefs within two years. This would allow future studies to better assess CSMP-wide changes spanning the 2020 heatwave. Ongoing monitoring should be continued across the full span of the CSMP at an interval of 3-5 years.

Also related to shifting baselines, Ashmore and Boot Reef have previously been identified as 'bright spots' (Hoey et al., 2021), in large part due to the high biomass of fishes including sharks observed in 2018 surveys. Although total fish and shark biomass tended to decline through the decadal period of investigation at Ashmore and Boot Reefs, these reefs still remain relatively pristine by global standards, with Boot Reef maintaining the highest fish biomass across the CSMP. However, fish biomass observed in 2018 surveys, from which the original 'bright spots' categorisation was made, followed a substantial increase in total and large fish biomass that accompanied the 2016 heatwave. Surveys by RLS teams recorded ~48% increase in fish biomass at Ashmore and Boot Reefs from 2015 to 2016 (post-heatwave), and declines in sharks, B20 and total fish biomass since then. In post-2020 surveys, such values were below pre-2016 values at both reefs, which could potentially tarnish the status of these reefs as bright spots. More positively, coral cover did not decrease at these remote northern reefs over time, but rather showed minor (non-significant) increase.

Because of its extremely large area and great distance from any populated settlement (other than the small meteorological station at Willis Island), the Coral Sea Marine Park provides refuge to globally significant populations of many threatened taxa that have been overexploited to the point of local extirpation elsewhere. Included amongst these taxa are species of sea cucumber, giant clam, turtle, shark and bony fish. Threatened reef species surveyed on CSMP reefs showed inconsistent changes through time, largely a consequence of small population density and stochastic sightings, nevertheless no threatened species showed a consistent and substantial decline.

The CSMP also hosts large populations of several sea snake species. These persisted through the period of study, albeit with a major decline coincident with the 2016 heatwave at the reef with highest initial densities (Marion Reef), then subsequent stability (Edgar et al., 2020). A critical outstanding scientific question relates to the identity of drivers of sea snake loss, including the absence of these reptiles from reefs across the central region.

With respect to possible management actions to safeguard biodiversity values across the full span of the CSMP, priority should be given to safeguarding a reef ecosystem within the far north region as an IUCN II reserve. This is currently the only region within the CSMP lacking a highly protected reef. The fauna recorded on Ashmore and Boot reefs reflects a unique combination of regional species and geomorphic types, and includes species present in the more sheltered lagoonal habitats of the networked continental shelf reefs and species more typical of highly exposed and isolated oceanic reefs. Due to proximity to the Coral Triangle, just to the north, a rich Indo-Pacific reef assemblage is present that is more diverse than elsewhere in the CSMP. Importantly, large predators remain highly abundant despite the reefs being open to fishing, their

remoteness likely protecting them from overexploitation. Prevailing currents are expected to provide good connectivity with the reefs nearby, both on the shelf and in the Coral Sea. Their seemingly intact community structure also suggests the potential for high resilience from heating stress.

Thus, through the longer term as the Management Plan is reviewed, we recommend consideration be given to fully protecting the ecosystem at Boot Reef. This is the obvious location for a sanctuary zone in the far north as smaller and more remote than Ashmore Reef, isolated from other reefs by deep water, and with highest shark biomass in the CSMP. Shark densities at Boot Reef were only exceeded by densities at the Kermadecs Islands amongst Pacific nations investigated by Reef Life Survey divers (Edgar et al., 2017a), indicating that this reef comprises one of the few remaining locations across the Pacific with a near intact food web, including a full complement of higher predators.

This recommended change to zoning should only occur with the support of Mer Traditional Owners, who need to be engaged well before Management Plan review. Although some loss of fishing grounds would occur with a zoning change, multiple benefits would accrue, including potential for high-end dive tourism with divers worldwide attracted to accessible reefs with nearpristine shark numbers and a full range of coral habitats, and greater recognition of sea country ownership leading to co-management opportunities.

Acknowledgements

The contributions of all divers and vessel crew who contributed their time and expertise to field data collection are gratefully acknowledged: Derek Shields, Mark Shepherd, Joe Shields, Ian Donaldson, Sam Griffiths, Stuart Kininmonth, Antonia Cooper Tim Crawford, Bill Barker, Bob Edgar, Anna Edgar, German Soler, Don Love, Garrick Smith. Funding was provided for field surveys and analysis from the Ian Potter Foundation, Minderoo Foundation, Winifred Violet Scott Foundation and Parks Australia.

References

- BROWN, C. J., MELLIN, C., EDGAR, G. J., CAMPBELL, M. D. & STUART-SMITH, R. D. 2021. Direct and indirect effects of heatwaves on a coral reef fishery. *Glob Chang Biol*, 27, 1214-1225.
- CECCARELLI, D. M., MCKINNON, A. D., ANDRÉFOUËT, S., ALLAIN, V., YOUNG, J., GLEDHILL, D. C., FLYNN, A., BAX, N. J., BEAMAN, R. & BORSA, P. 2013. The coral sea: Physical environment, ecosystem status and biodiversity assets. *Advances in marine biology*, 66, 213-290.
- COLEMAN, M., BATES, A., STUART-SMITH, R., MALCOLM, H., HARASTI, D., JORDAN, A., KNOTT, N., EDGAR, G. & KELAHER, B. P. 2015. Functional traits reveal early responses in marine reserves following protection from fishing. *Diversity and Distributions*, 21, 876-887.
- DAY, P. B., STUART-SMITH, R. D., EDGAR, G. J., BATES, A. E. & SCHOEMAN, D. 2018. Species' thermal ranges predict changes in reef fish community structure during 8 years of extreme temperature variation. *Diversity and Distributions*, 24, 1036-1046.
- DUGARD, P., TODMAN, J. & STAINES, H. 2010. *Approaching multivariate analysis: A practical introduction, 2nd ed,* New York, NY, US, Routledge/Taylor & Francis Group.
- EDGAR, G., CECCARELLI, D., STUART-SMITH, R. & COOPER, A. 2017a. Biodiversity survey of Ashmore Reef (Coral Sea) and comparison with surrounding reefs. . Report for Parks Australia, Department of the Environment. : Reef Life Survey Foundation Incorporated.
- EDGAR, G. J., ALEXANDER, T. J., LEFCHECK, J. S., BATES, A. E., KININMONTH, S. J., THOMSON, R. J., DUFFY, J. E., COSTELLO, M. J. & STUART-SMITH, R. D. 2017b. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity. *Science advances*, **3**, e1700419.
- EDGAR, G. J., BARRETT, N. S. & MORTON, A. J. 2004. Biases associated with the use of underwater visual census techniques to quantify the density and size-structure of fish populations. *Journal of Experimental Marine Biology and Ecology*, 308, 269-290.
- EDGAR, G. J., CECCARELLI, D. M. & STUART-SMITH, R. D. 2015. Assessment of coral reef biodiversity in the Coral Sea. Unpublished report to Parks Australia.
- EDGAR, G. J., COOPER, A., BAKER, S. C., BARKER, W., BARRETT, N. S., BECERRO, M. A., BATES, A. E., BROCK, D., CECCARELLI, D. M., CLAUSIUS, E., DAVEY, M., DAVIS, T. R., DAY, P. B., GREEN, A., GRIFFITHS, S. R., HICKS, J., HINOJOSA, I. A., JONES, B. K., KININMONTH, S., LARKIN, M. F., LAZZARI, N., LEFCHECK, J. S., LING, S. D., MOONEY, P., OH, E., PÉREZ-MATUS, A., POCKLINGTON, J. B., RIERA, R., SANABRIA-FERNANDEZ, J. A., SEROUSSI, Y., SHAW, I., SHIELDS, D., SHIELDS, J., SMITH, M., SOLER, G. A., STUART-SMITH, J., TURNBULL, J. & STUART-SMITH, R. D. 2020. Establishing the ecological basis for conservation of shallow marine life using Reef Life Survey. *Biological Conservation*, 252.
- EDGAR, G. J., STUART-SMITH, R. D., WILLIS, T. J., KININMONTH, S., BAKER, S. C., BANKS, S., BARRETT, N. S., BECERRO, M. A., BERNARD, A. T. & BERKHOUT, J. 2014. Global conservation outcomes depend on marine protected areas with five key features. *Nature*, 506, 216-220.
- FOX, J. & WEISBERG, S. 2019. An R Companion to Applied Regression, Thousand Oaks, CA, Sage.
- FRASER, K. M., STUART-SMITH, R. D., LING, S. D. & EDGAR, G. J. 2021. High biomass and productivity of epifaunal invertebrates living amongst dead coral. *Marine Biology*, 168.
- FROESE, R. & PAULY, D. 2010. FishBase. Fisheries Centre, University of British Columbia.
- GLYNN, P. W. 1994. State of Coral-Reefs in the Galapagos-Island Natural Vs Anthropogenic Impacts. *Marine Pollution Bulletin*, 29, 131-140.
- HEAP, A. D. & HARRIS, P. T. 2008. Geomorphology of the Australian margin and adjacent seafloor. *Australian Journal of Earth Sciences*, 55, 555-585.
- HIJMANS, R. J. 2021. raster: Geographic Data Analysis and Modeling.
- HOEY, A., HARRISON, H., MCCLURE, E., BURN, D., BARNETT, A., CRESSWELL, B., DOLL, P., GALBRAITH, G. & PRATCHETT, M. 2021. Coral Sea Marine Park Coral Reef Health Survey 2021. Report prepared for Parks Australia.

- MCKINNON, A. D., WILLIAMS, A., YOUNG, J., CECCARELLI, D., DUNSTAN, P., BREWIN, R. J., WATSON, R., BRINKMAN, R., CAPPO, M., DUGGAN, S., KELLEY, R., RIDGWAY, K., LINDSAY, D., GLEDHILL, D., HUTTON, T. & RICHARDSON, A. J. 2014. Tropical marginal seas: priority regions for managing marine biodiversity and ecosystem function. *Ann Rev Mar Sci*, 6, 415-37.
- MELLIN, C., MOUILLOT, D., KULBICKI, M., MCCLANAHAN, T. R., VIGLIOLA, L., BRADSHAW, C. J., BRAINARD, R. E., CHABANET, P., EDGAR, G. J., FORDHAM, D. A., FRIEDLANDER, A. M., PARRAVICINI, V., SEQUEIRA, A. M., STUART-SMITH, R. D., WANTIEZ, L. & CALEY, M. J. 2016. Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges. *Nat Commun*, 7, 10491.
- OKSANEN, J., BLANCHE, F. G., FRIENDLY, M., KINDT, R., LEGENDRE, P., MCGLINN, D., MINCHIN, P. R., O'HARA, R. B., SIMPSON, G. L., SOLYMOS, P., STEVENS, M. H. H., SZOECS, E. & WAGNER, H. 2020. vegan: Community Ecology Package. R package version 2.5-7 ed.
- R CORE TEAM 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
- STUART-SMITH, R. D., BROWN, C. J., CECCARELLI, D. M. & EDGAR, G. J. 2018. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. *Nature*, 560, 92-96.
- STUART-SMITH, R. D., EDGAR, G. J., BARRETT, N. S., BATES, A. E., BAKER, S. C., BAX, N. J., BECERRO, M. A., BERKHOUT, J., BLANCHARD, J. L., BROCK, D. J., CLARK, G. F., COOPER, A. T., DAVIS, T. R., DAY, P. B., DUFFY, J. E., HOLMES, T. H., HOWE, S. A., JORDAN, A., KININMONTH, S., KNOTT, N. A., LEFCHECK, J. S., LING, S. D., PARR, A., STRAIN, E., SWEATMAN, H. & THOMSON, R. 2017. Assessing National Biodiversity Trends for Rocky and Coral Reefs through the Integration of Citizen Science and Scientific Monitoring Programs. *Bioscience*, 67, 134-146.
- STUART-SMITH, R. D., EDGAR, G. J., BARRETT, N. S., KININMONTH, S. J. & BATES, A. E. 2015. Thermal biases and vulnerability to warming in the world's marine fauna. *Nature*, 528, 88-92.
- STUART-SMITH, R. D., MELLIN, C., BATES, A. E. & EDGAR, G. J. 2021. Habitat loss and range shifts contribute to ecological generalization among reef fishes. *Nat Ecol Evol*, **5**, 656-662.
- WILSON, S. K., DOLMAN, A. M., CHEAL, A. J., EMSLIE, M. J., PRATCHETT, M. S. & SWEATMAN, H. P. A. 2008. Maintenance of fish diversity on disturbed coral reefs. *Coral Reefs*, 28, 3-14.
- WILSON, S. K., GRAHAM, N. A. J., PRATCHETT, M. S., JONES, G. P. & POLUNIN, N. V. C. 2006. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? *Global Change Biology*, 12, 2220-2234.

Appendices

Survey sites

Table 1. Survey site details and the number of surveys perform at each site each time period. Pre = 2012-2016, Mid = 2016-2020, and Post = 2021-2021

Site code	Reef name	Region	Latitude	Longitude	Pre	Mid	Post
CS189	Ashmore Reef	far north	-10.447	144.4335	2	2	4
CS185	Ashmore Reef	far north	-10.4453	144.4492	2	2	4
CS187	Ashmore Reef	far north	-10.4414	144.4529	2	2	4
CS188	Ashmore Reef	far north	-10.4412	144.4302	2	2	4
CS186	Ashmore Reef	far north	-10.4342	144.4524	2	2	4
CS192	Ashmore Reef	far north	-10.3766	144.5328	2	-	4
CS191	Ashmore Reef	far north	-10.3745	144.5339	2	2	4
CS190	Ashmore Reef	far north	-10.2992	144.5215	2	2	-
CS198	Ashmore Reef	far north	-10.2326	144.5868	2	2	-
CS197	Ashmore Reef	far north	-10.2273	144.5896	2	2	-
CS195	Ashmore Reef	far north	-10.2177	144.5954	2	2	-
CS212	Ashmore Reef	far north	-10.1459	144.5701	2	2	-
CS211	Ashmore Reef	far north	-10.1441	144.5763	2	2	-
CS199	Ashmore Reef	far north	-10.1433	144.4407	2	-	2
CS200	Ashmore Reef	far north	-10.1156	144.4578	2	2	2
CS204	Boot Reef	far north	-10.1051	144.6851	2	1	2
CS201	Ashmore Reef	far north	-10.0761	144.4715	2	-	2
CS193	Boot Reef	far north	-10.0388	144.692	2	2	4
CS194	Boot Reef	far north	-10.0348	144.6989	2	-	2
CS208	Boot Reef	far north	-9.98877	144.6913	2	2	2
CS205	Boot Reef	far north	-9.98595	144.6792	1	-	1
CS209	Boot Reef	far north	-9.97456	144.694	3	2	4
CS207	Boot Reef	far north	-9.96837	144.6946	1	2	3
CS175	Bougainville Reef	north	-15.4908	147.0872	2	2	2
CS173	Bougainville Reef	north	-15.4889	147.1072	2	2	2
CS171	Bougainville Reef	north	-15.4886	147.0903	2	2	-
CS174	Bougainville Reef	north	-15.4843	147.1076	2	2	2
CS172	Bougainville Reef	north	-15.4825	147.0993	2	2	2
CS176	Bougainville Reef	north	-15.4814	147.1045	2	2	2
CS178	Osprey Reef	north	-13.9938	146.6907	2	2	2
CS177	Osprey Reef	north	-13.9856	146.6914	2	2	2
CS179	Osprey Reef	north	-13.9756	146.6755	2	2	2
CS180	Osprey Reef	north	-13.9669	146.6672	2	2	2
CS181	Osprey Reef	north	-13.9662	146.6806	2	2	2

Site code	Reef name	Region	Latitude	Longitude	Pre	Mid	Post
CS157	Osprey Reef	north	-13.8954	146.5576	2	2	-
CS155	Osprey Reef	north	-13.8914	146.5531	2	2	2
CS182	Osprey Reef	north	-13.8903	146.5725	2	2	2
CS183	Osprey Reef	north	-13.8872	146.5673	2	2	2
CS156	Osprey Reef	north	-13.883	146.5624	2	2	2
CS158	Osprey Reef	north	-13.87	146.5777	2	2	2
CS153	Osprey Reef	north	-13.8554	146.6246	2	2	2
CS154	Osprey Reef	north	-13.854	146.6254	2	2	2
CS184	Osprey Reef	north	-13.8012	146.5461	2	1	2
CS1	Marion Reef	central	-19.297	152.2352	2	8	-
CS3	Marion Reef	central	-19.2848	152.2208	2	8	-
CS2	Marion Reef	central	-19.2844	152.212	2	8	-
CS232	Marion Reef	central	-19.2586	152.3479	-	4	2
CS6	Marion Reef	central	-19.258	152.3418	2	8	2
CS5	Marion Reef	central	-19.2532	152.3482	2	8	2
CS219	Marion Reef	central	-19.2429	152.3554	-	4	2
CS4	Marion Reef	central	-19.2303	152.3259	2	8	2
CS233	Marion Reef	central	-19.1766	152.2663	-	2	2
CS234	Marion Reef	central	-19.1662	152.2712	-	2	2
CS7	Marion Reef	central	-19.1254	152.3881	2	8	2
CS8	Marion Reef	central	-19.0953	152.3871	2	8	2
CS220	Marion Reef	central	-18.9867	152.3451	-	2	2
CS221	Marion Reef	central	-18.9855	152.3412	-	4	2
CS122	Flinders Reef	central	-17.8772	148.5117	2	2	-
CS123	Flinders Reef	central	-17.829	148.5051	2	2	-
CS113	Diamond Islets	central	-17.7747	150.6328	2	2	
CS126	Flinders Reef	central	-17.7167	148.4387	2	2	2
CS127	Flinders Reef	central	-17.7151	148.4373	2	2	2
CS125	Flinders Reef	central	-17.7142	148.4445	2	-	2
CS111	Diamond Islets	central	-17.713	150.7345	2	2	-
CS110	Diamond Islets	central	-17.7118	150.7369	2	2	_
CS128	Flinders Reef	central	-17.7058	148.4606	2	2	2
CS129	Flinders Reef	central	-17.703	148.4618	2	2	2
CS123	Diamond Islets	central	-17.4353	148.4018	2	2	2
CS103	Diamond Islets	central	-17.4333	151.0703	1	2	2
CS104 CS102	Diamond Islets	central	-17.4347	151.0713	2	2	-
	Diamond Islets						Z
CS101		central	-17.4143	151.0726	2	2	-
CS100	Lihou Reef	central	-17.3584	151.5299	2	2	-
CS92	Lihou Reef	central	-17.1253	152.0759	2	2	-
CS170	Lihou Reef	central	-17.119	152.0003	1	2	-
CS95	Lihou Reef	central	-17.1168	152.0008	2	2	-
CS94	Lihou Reef	central	-17.116	151.9976	1	2	-

Site code	Reef name	Region	Latitude	Longitude	Pre	Mid	Post
C506	Libou Roof	control	17 11 77	151.0600	C	n	
CS96 CS17	Lihou Reef Coringa Islets	central central	-17.1137 -16.9716	151.9606 149.9048	2 2	2 2	-
CS17	-	central	-16.9613	149.9048	2	2	-
CS18 CS10	Coringa Islets		-16.9613	149.9055	2	2	-
	Herald Cays	central			2		- 2
CS134 CS11	Coringa Islets	central central	-16.9366	150.0009 149.197	2	2 2	2
	Herald Cays		-16.9365				
CS14	Coringa Islets	central	-16.9357	149.9941	2	- 2	2
CS132	Coringa Islets	central	-16.9316	149.9904	2		- 2
CS130	Coringa Islets	central	-16.9313	149.999	2	2	2
CS131	Coringa Islets	central	-16.9301	150.002	2	2	2
CS12	Herald Cays	central	-16.9301	149.1933	2	2	1
CS13	Herald Cays	central	-16.9282	149.2023	2	2	2
CS16	Coringa Islets	central	-16.9225	150.0114	2	2	-
CS15	Coringa Islets	central	-16.9225	150.0065	2	2	-
CS9	Herald Cays	central	-16.9219	149.2	2	2	2
CS139	Magdelaine Cays	central	-16.5338	150.2685	2	2	2
CS140	Magdelaine Cays	central	-16.5309	150.2697	2	2	2
CS141	Magdelaine Cays	central	-16.521	150.2771	2	2	2
CS147	Holmes Reef	central	-16.5127	147.8403	2	2	-
CS148	Holmes Reef	central	-16.5081	147.8402	2	2	2
CS149	Holmes Reef	central	-16.5049	147.8414	2	2	2
CS146	Holmes Reef	central	-16.4997	147.8435	2	2	2
CS150	Holmes Reef	central	-16.4949	147.8493	2	2	2
CS151	Holmes Reef	central	-16.4759	147.8661	2	2	-
CS152	Holmes Reef	central	-16.4682	147.8647	2	2	-
CS143	Willis Islets	central	-16.2991	149.9629	2	2	2
CS145	Willis Islets	central	-16.2927	149.9614	2	2	2
CS144	Willis Islets	central	-16.286	149.9596	2	2	-
CS22	Cato Reef	south	-23.2549	155.5546	2	2	-
CS21	Cato Reef	south	-23.2529	155.5516	2	2	-
CS20	Cato Reef	south	-23.2473	155.5348	2	2	-
CS24	Cato Reef	south	-23.2447	155.5423	2	2	-
CS25	Cato Reef	south	-23.244	155.5489	2	2	-
CS23	Cato Reef	south	-23.2404	155.557	2	2	-
CS41	Wreck Reefs	south	-22.1977	155.2944	2	2	-
CS39	Wreck Reefs	south	-22.1899	155.3555	2	4	-
CS42	Wreck Reefs	south	-22.186	155.176	2	2	-
CS38	Wreck Reefs	south	-22.1859	155.3558	2	4	-
CS36	Wreck Reefs	south	-22.1854	155.3617	2	4	-
CS31	Wreck Reefs	south	-22.1768	155.474	2	4	-
CS44	Wreck Reefs	south	-22.1763	155.1646	2	2	-
CS45	Wreck Reefs	south	-22.1758	155.178	2	2	_

Site code	Reef name	Region	Latitude	Longitude	Pre	Mid	Post
CS32	Wreck Reefs	south	-22.1731	155.477	2	4	-
CS34	Wreck Reefs	south	-22.1708	155.4546	1	2	-
CS35	Wreck Reefs	south	-22.1687	155.4508	2	4	-
CS33	Wreck Reefs	south	-22.1636	155.4538	2	4	-
CS50	Saumarez Reef	south	-21.9174	153.5797	2	2	2
CS51	Saumarez Reef	south	-21.9163	153.5867	2	2	2
CS48	Saumarez Reef	south	-21.8973	153.5376	2	2	2
CS47	Saumarez Reef	south	-21.8966	153.5435	2	2	2
CS46	Saumarez Reef	south	-21.8517	153.5212	2	-	2
CS52	Kenn Reef	south	-21.2571	155.7542	2	2	-
CS55	Kenn Reef	south	-21.2535	155.7609	2	4	-
CS54	Kenn Reef	south	-21.2507	155.7583	2	4	-
CS56	Kenn Reef	south	-21.248	155.7636	2	4	-
CS57	Kenn Reef	south	-21.2454	155.765	2	4	-
CS61	Kenn Reef	south	-21.2087	155.7698	2	3	-
CS59	Kenn Reef	south	-21.2037	155.7659	2	2	-
CS60	Kenn Reef	south	-21.2028	155.7728	2	4	-
CS58	Kenn Reef	south	-21.1999	155.7658	2	4	-
CS72	Frederick Reef	south	-21.0204	154.3727	2	4	-
CS71	Frederick Reef	south	-21.0203	154.3699	2	4	-
CS65	Frederick Reef	south	-21.0065	154.392	2	2	-
CS63	Frederick Reef	south	-21.0003	154.3944	2	2	-
CS64	Frederick Reef	south	-20.9979	154.3937	2	2	-
CS73	Frederick Reef	south	-20.937	154.3957	2	4	-
CS74	Frederick Reef	south	-20.9362	154.3972	2	4	-

Table 2. ANOVA output results of the Live Hard coral cover (%) by reef and time period (Pre 2016, 2016 to 2020, and Post 2020). For plot see Figure 5.

Variable	Factor	Df	Sum Sq	Mean Sq	F value	p value
Live Hard Coral cover	Reef	16	18055.81	1128.488	7.394	<.001***
	Time period	2	243.573	121.787	0.798	0.451
	Reef*Time period	24	1499.954	62.498	0.409	0.994
	Residuals	265	40447.01	152.63		

Variable	Factor	Df	Sum Sq	Mean Sq	F value	p value
Biomass (log, kg)	Reef	17	62.735	3.69	7.592	<.001***
	Time period	2	7.708	3.854	7.928	<.001***
	Reef*Time period	29	7.995	0.276	0.567	0.966
	Residuals	298	144.852	0.486		

Table 3. ANOVA output results of the log fish biomass by reef and time period (Pre 2016, 2016 to 2020,and Post 2020). For plot see Figure 9.

Table 4. PERMANOVA output of fish community structure by region and time period (Pre 2016, 2016 to2020, and Post 2020). For nMDS plot see Figure 11.

Factor	Df	Sum Sq	Mean Sq	F value	p value
Region	3	13.394	4.465	24.902	<.001***
Time period	2	1.779	0.889	4.961	<.001***
Region*Time period	6	2.291	0.382	2.13	<.001***
Residuals	335	60.059	0.179		
Total	346	77.523			

Table 5. ANOVA output results of log large fish biomass (B20) by Reef and time period (Pre 2016, 2016 to 2020, and Post 2020). For plot see Figure 15.

Variable	Factor	Df	Sum Sq	Mean Sq	F value	p value
Biomass (log, kg)	Reef	17	88.394	5.2	5.831	<.001***
	Time period	2	8.094	4.047	4.538	0.011*
	Reef*Time period	29	17.842	0.615	0.69	0.886
	Residuals	298	265.753	0.892		

Table 6. ANOVA output results of log herbivorous fish biomass by Reef and time period (Pre 2016, 2016 to 2020, and Post 2020). for plot, see Figure 20.

Variable	Factor	Df	Sum Sq	Mean Sq	F value	p value
Biomass (log, kg)	Reef	17	59.554	3.503	6.957	<.001***
	Time period	2	6.857	3.428	6.809	0.001**
	Reef*Time period	29	12.114	0.418	0.83	0.721
	Residuals	298	150.055	0.504		

Variable	Factor	Df	Sum Sq	Mean Sq	F value	p value
Biomass (log, kg)	Reef	17	117.544	6.914	2.259	0.003**
	Time period	2	9.255	4.628	1.512	0.222
	Reef*Time period	29	75.008	2.586	0.845	0.699
	Residuals	298	912.272	3.061		

Table 7. ANOVA output results of log shark biomass by Reef and time period (Pre 2016, 2016 to 2020, and Post 2020).

Table 8. ANOVA output results of log macroinvertebrate richness by Reef and time period (Pre 2016, 2016 to 2020, and Post 2020). For plot, see Figure 23.

Variable	Factor	Df	Sum Sq	Mean Sq	F value	p value
Species richness	Reef	17	171.44	10.085	4.31	<.001***
	Time period	2	19.868	9.934	4.246	0.015*
	Reef*Time period	29	198.686	6.851	2.928	<.001***
	Residuals	298	697.258	2.34		

Table 9. ANOVA output results of log urchin density (number of individuals per 100 m²) by Reef and time period (Pre 2016, 2016 to 2020, and Post 2020).

Variable	Factor	Df	Sum Sq	Mean Sq	F value	p value
Density (log)	Reef	17	652.853	38.403	53.046	<.001***
	Time period	2	3.197	1.599	2.208	0.112
	Reef*Time period	29	35.855	1.236	1.708	0.015*
	Residuals	298	215.738	0.724		

Table 10. ANOVA output results of log sea cucumber density (number of individuals per 100 m²) by Reef and time period (Pre 2016, 2016 to 2020, and Post 2020). For plot, see Figure 33.

Variable	Factor	Df	Sum Sq	Mean Sq	F value	p value
Density (log)	Reef	17	35.162	2.068	5.105	<.001***
	Time period	2	1.359	0.68	1.677	0.189
	Reef*Time period	29	4.527	0.156	0.385	0.999
	Residuals	298	120.73	0.405		

Table 11. ANOVA output results of log sea snake density (number of individuals per 100 m²) by Reef andtime period (Pre 2016, 2016 to 2020, and Post 2020).

Variable	Factor	Df	Sum Sq	Mean Sq	F value	p value
Density (log)	Reef	17	24.829	1.461	14.59	<.001***
	Time period	2	0.193	0.097	0.966	0.382
	Reef*Time period	29	4.223	0.146	1.455	0.066
	Residuals	298	29.832	0.1		

Table 12. List of species listed as threatened under the EPBC Act

Species	Class	# sites observed
Chelonia mydas	Reptilia	11
Eretmochelys imbricata	Reptilia	9
Caretta caretta	Reptilia	1
Natator depressus	Reptilia	1

Table 13. List of IUCN threatened species and the number of sites at which they were observed.

Species	Class	IUCN status	# sites observed
Oxymonacanthus longirostris	Actinopterygii	Vulnerable	54
Cheilinus undulatus	Actinopterygii	Endangered	44
Ecsenius tigris	Actinopterygii	Vulnerable	24
Epinephelus polyphekadion	Actinopterygii	Vulnerable	19
Bolbometopon muricatum	Actinopterygii	Vulnerable	16
Plectropomus areolatus	Actinopterygii	Vulnerable	4
Coris bulbifrons	Actinopterygii	Vulnerable	1
Acropora paniculata	Anthozoa	Vulnerable	14
Montipora crassituberculata	Anthozoa	Vulnerable	13
Physogyra lichtensteini	Anthozoa	Vulnerable	13
Acropora polystoma	Anthozoa	Vulnerable	9
Acropora listeri	Anthozoa	Vulnerable	8
Turbinaria reniformis	Anthozoa	Vulnerable	8
Montipora caliculata	Anthozoa	Vulnerable	7
Acropora verweyi	Anthozoa	Vulnerable	6
Turbinaria mesenterina	Anthozoa	Vulnerable	5
Acropora microclados	Anthozoa	Vulnerable	4
Acropora vaughani	Anthozoa	Vulnerable	4
Turbinaria stellulata	Anthozoa	Vulnerable	4
Acanthastrea brevis	Anthozoa	Vulnerable	3
Acanthastrea hemprichii	Anthozoa	Vulnerable	3
Isopora cuneata	Anthozoa	Vulnerable	3
Pavona bipartita	Anthozoa	Vulnerable	3

Species	Class	IUCN status	# sites observed
Pocillopora danae	Anthozoa	Vulnerable	3
Acropora aculeus	Anthozoa	Vulnerable	2
Acropora caroliniana	Anthozoa	Vulnerable	2
Acropora globiceps	Anthozoa	Vulnerable	2
Astreopora cucullata	Anthozoa	Vulnerable	2
Galaxea astreata	Anthozoa	Vulnerable	2
Heliofungia actiniformis	Anthozoa	Vulnerable	2
Isopora brueggemanni	Anthozoa	Vulnerable	2
Pavona decussata	Anthozoa	Vulnerable	2
Pavona venosa	Anthozoa	Vulnerable	2
Platygyra yaeyamaensis	Anthozoa	Vulnerable	2
Turbinaria peltata	Anthozoa	Vulnerable	2
Acropora abrolhosensis	Anthozoa	Vulnerable	1
Acropora anthocercis	Anthozoa	Vulnerable	1
Acropora echinata	Anthozoa	Vulnerable	1
Acropora lovelli	Anthozoa	Vulnerable	1
Leptoseris yabei	Anthozoa	Vulnerable	1
Lobophyllia dentatus	Anthozoa	Vulnerable	1
Montipora australiensis	Anthozoa	Vulnerable	1
Montipora capricornis	Anthozoa	Vulnerable	1
Montipora corbettensis	Anthozoa	Vulnerable	1
Seriatopora dendritica	Anthozoa	Vulnerable	1
Triaenodon obesus	Elasmobranchii	Vulnerable	73
Carcharhinus amblyrhynchos	Elasmobranchii	Endangered	68
Carcharhinus albimarginatus	Elasmobranchii	Vulnerable	10
Pateobatis fai	Elasmobranchii	Vulnerable	3
Aetobatus ocellatus	Elasmobranchii	Vulnerable	2
Carcharhinus melanopterus	Elasmobranchii	Vulnerable	1
Nebrius ferrugineus	Elasmobranchii	Vulnerable	1
Urogymnus asperrimus	Elasmobranchii	Vulnerable	1
Thelenota ananas	Holothuroidea	Endangered	27
Holothuria whitmaei	Holothuroidea	Endangered	16
Actinopyga miliaris	Holothuroidea	Vulnerable	6
Holothuria nobilis	Holothuroidea	Endangered	5
Actinopyga mauritiana	Holothuroidea	Vulnerable	4
Chelonia mydas	Reptilia	Endangered	8
Eretmochelys imbricata	Reptilia	Critically endangered	7
Caretta caretta	Reptilia	Vulnerable	1

Species	Class	# sites	Species	Class	# sites
Ctenochaetus striatus	Actinopterygii	222	Neopomacentrus bankieri	Actinopterygii	1
Gomphosus varius	Actinopterygii	222	Neopomacentrus cyanomos	Actinopterygii	1
Labroides dimidiatus	Actinopterygii	222	Ogilbyina queenslandiae	Actinopterygii	1
Acanthurus nigrofuscus	Actinopterygii	212	Ostorhinchus apogonoides	Actinopterygii	1
Zanclus cornutus	Actinopterygii	209	Ostorhinchus cavitensis	Actinopterygii	1
Parupeneus multifasciatus	Actinopterygii	207	Ostorhinchus compressus	Actinopterygii	1
Halichoeres hortulanus	Actinopterygii	204	Ostorhinchus taeniophorus	Actinopterygii	1
Thalassoma lutescens	Actinopterygii	202	Oxycheilinus bimaculatus	Actinopterygii	1
Chromis margaritifer	Actinopterygii	200	Oxycheilinus celebicus	Actinopterygii	1
Chlorurus sordidus	Actinopterygii	197	Paracaesio sordida	Actinopterygii	1
Forcipiger flavissimus	Actinopterygii	195	Parapercis schauinslandii	Actinopterygii	1
Anampses neoguinaicus	Actinopterygii	194	Parapercis xanthozona	Actinopterygii	1
Plectroglyphidodon lacrymatus	Actinopterygii	193	Parupeneus indicus	Actinopterygii	1
Halichoeres biocellatus	Actinopterygii	191	Pentapodus paradiseus	Actinopterygii	1
Thalassoma hardwicke	Actinopterygii	191	Pervagor melanocephalus	Actinopterygii	1
Chaetodon pelewensis	Actinopterygii	190	Phyllogobius platycephalops	Actinopterygii	1
Pomacentrus vaiuli	Actinopterygii	183	Platax boersii	Actinopterygii	1
Naso lituratus	Actinopterygii	178	Plectropomus oligacanthus	Actinopterygii	1
Oxycheilinus unifasciatus	Actinopterygii	178	Pomacanthus semicirculatus	Actinopterygii	1
Paracirrhites arcatus	Actinopterygii	175	Pomacentrus nagasakiensis	Actinopterygii	1
Chlorurus microrhinos	Actinopterygii	169	Pomacentrus tripunctatus	Actinopterygii	1
Dascyllus reticulatus	Actinopterygii	168	Premnas biaculeatus	Actinopterygii	1
Lutjanus bohar	Actinopterygii	168	Pristicon trimaculatus	Actinopterygii	1
Pseudocheilinus hexataenia	Actinopterygii	168	Pseudanthias pictilis	Actinopterygii	1
Chromis iomelas	Actinopterygii	167	Pseudanthias pleurotaenia	Actinopterygii	1
Plectropomus laevis	Actinopterygii	165	Pseudanthias rubrizonatus	Actinopterygii	1
Hemigymnus fasciatus	Actinopterygii	162	Pseudochromis cyanotaenia	Actinopterygii	1
Zebrasoma velifer	Actinopterygii	162	Ptereleotris heteroptera	Actinopterygii	1
Labroides bicolor	Actinopterygii	156	Pterocaesio pisang	Actinopterygii	1
Monotaxis grandoculis	Actinopterygii	156	Rhinecanthus lunula	Actinopterygii	1
Centropyge vrolikii	Actinopterygii	155	Rhinecanthus verrucosus	Actinopterygii	1
Chaetodon citrinellus	Actinopterygii	153	Salarias fasciatus	Actinopterygii	-
Plectroglyphidodon johnstonianus	Actinopterygii	152	Sargocentron tiereoides	Actinopterygii	1
Zebrasoma scopas	Actinopterygii	152	Scolopsis margaritifer	Actinopterygii	1
Caranx melampygus	Actinopterygii	151	Scolopsis monogramma	Actinopterygii	1
Canthigaster valentini	Actinopterygii	144	Scomberoides tol	Actinopterygii	1
Chaetodon plebeius	Actinopterygii	144	Scomberomorus commerson	Actinopterygii	1
Stegastes fasciolatus	Actinopterygii	144	Scomberomorus queenslandicus	Actinopterygii	1
Thalassoma amblycephalum	Actinopterygii	144	Scorpaenodes parvipinnis	Actinopterygii	1
Paracirrhites forsteri	Actinopterygii	142	Scorpaenopsis oxycephala	Actinopterygii	1
Chaetodon mertensii	Actinopterygii	139	Selar crumenophthalmus	Actinopterygii	1

Table 14. Species list and frequency of observation at a site.

Species	Class	# sites	Species	Class	# sites
Eviota guttata	Actinopterygii	138	Selaroides leptolepis	Actinopterygii	1
Myripristis kuntee	Actinopterygii	136	Sphyraena helleri	Actinopterygii	1
Scarus niger	Actinopterygii	136	Sphyraena qenie	Actinopterygii	1
Ctenochaetus binotatus	Actinopterygii	135	Stegastes apicalis	Actinopterygii	1
Chaetodon lunulatus	Actinopterygii	134	Stegastes lividus	Actinopterygii	1
Macropharyngodon meleagris	Actinopterygii	134	Synchiropus bartelsi	Actinopterygii	1
Naso tonganus	Actinopterygii	132	Synchiropus moyeri	Actinopterygii	1
Scarus chameleon	Actinopterygii	131	Synodus jaculum	Actinopterygii	1
Chromis agilis	Actinopterygii	129	Taeniamia zosterophora	Actinopterygii	1
Scarus altipinnis	Actinopterygii	128	Thalassoma purpureum	Actinopterygii	1
Chaetodon auriga	Actinopterygii	126	Trimma capostriatum	Actinopterygii	1
Chromis atripes	Actinopterygii	125	Trimma nasa	Actinopterygii	1
Naso unicornis	Actinopterygii	125	Valenciennea longipinnis	Actinopterygii	1
Pomacentrus philippinus	Actinopterygii	125	Stylophora pistillata	Anthozoa	88
Scarus longipinnis	Actinopterygii	124	Pocillopora verrucosa	Anthozoa	85
Thalassoma nigrofasciatum	Actinopterygii	124	Corymbose Acropora corals	Anthozoa	81
Acanthurus pyroferus	Actinopterygii	123	Encrusting corals	Anthozoa	80
Cephalopholis urodeta	Actinopterygii	122	Porites lichen	Anthozoa	74
Stethojulis bandanensis	Actinopterygii	121	Sub-massive corals	Anthozoa	73
Neoniphon sammara	Actinopterygii	117	Porites Massive	Anthozoa	72
Acanthurus lineatus	Actinopterygii	115	Montipora Encrusting	Anthozoa	69
Pygoplites diacanthus	Actinopterygii	115	Isopora palifera	Anthozoa	57
Macolor niger	Actinopterygii	114	Goniastrea pectinata	Anthozoa	52
Acanthurus nigricans	Actinopterygii	113	Cyphastrea Submassive	Anthozoa	49
Heniochus chrysostomus	Actinopterygii	113	Favia stelligera	Anthozoa	49
Arothron nigropunctatus	Actinopterygii	112	Pavona varians	Anthozoa	46
Chaetodon flavirostris	Actinopterygii	109	Astreopora myriophthalma	Anthozoa	45
Plectroglyphidodon dickii	Actinopterygii	109	Acropora cerealis	Anthozoa	41
Chromis vanderbilti	Actinopterygii	108	Goniastrea edwardsi	Anthozoa	35
Bodianus axillaris	Actinopterygii	106	Pocillopora damicornis	Anthozoa	35
Acanthochromis polyacanthus	Actinopterygii	105	Porites vaughani	Anthozoa	35
Acanthurus blochii	Actinopterygii	104	Leptoria phrygia	Anthozoa	34
Hipposcarus longiceps	Actinopterygii	104	Leptastrea Submassive	Anthozoa	33
Aphareus furca	Actinopterygii	103	Massive corals	Anthozoa	32
Chrysiptera taupou	Actinopterygii	103	Coscinaraea columna	Anthozoa	31
Ptereleotris evides	Actinopterygii	103	Tabular Acropora corals	Anthozoa	29
Chromis chrysura	Actinopterygii	102	Favia pallida	Anthozoa	27
Parupeneus cyclostomus	Actinopterygii	102	Acropora loripes	Anthozoa	26
Acanthurus nigricauda	Actinopterygii	101	Montipora Submassive	Anthozoa	25
Chaetodon kleinii	Actinopterygii	100	Favites abdita	Anthozoa	24
Chaetodon trifascialis	Actinopterygii	99	Merulina ampliata	Anthozoa	24
Ctenochaetus cyanocheilus	Actinopterygii	97	Acropora humilis	Anthozoa	23
Halichoeres trimaculatus	Actinopterygii	97	Symphyllia recta	Anthozoa	23

Species	Class	# sites	Species	Class	# sites
Chromis xanthura	Actinopterygii	96	Acropora	Anthozoa	22
Gnathodentex aureolineatus	Actinopterygii	96	Favites Encrusting	Anthozoa	22
Monotaxis heterodon	Actinopterygii	96	Leptastrea Encrusting	Anthozoa	22
Anampses twistii	Actinopterygii	94	Echinopora lamellosa	Anthozoa	21
Parupeneus pleurostigma	Actinopterygii	93	Pocillopora meandrina	Anthozoa	21
Sufflamen chrysopterum	Actinopterygii	92	Acropora gemmifera	Anthozoa	20
Scarus frenatus	Actinopterygii	89	Acropora muricata	Anthozoa	20
Thalassoma quinquevittatum	Actinopterygii	89	Pocillopora eydouxi	Anthozoa	20
Thalassoma lunare	Actinopterygii	88	Acropora nasuta	Anthozoa	19
Chromis lepidolepis	Actinopterygii	86	Echinopora gemmacea	Anthozoa	19
Chromis ternatensis	Actinopterygii	85	Acropora longicyathus	Anthozoa	18
Naso brevirostris	Actinopterygii	84	Astrea curta	Anthozoa	18
Scarus schlegeli	Actinopterygii	84	Cyphastrea Encrusting	Anthozoa	18
Chromis amboinensis	Actinopterygii	81	Lobophyllia hemprichii	Anthozoa	18
Myripristis berndti	Actinopterygii	81	Porites cylindrica	Anthozoa	18
Ostracion meleagris	Actinopterygii	81	Porites Submassive	Anthozoa	18
Centropyge flavissima	Actinopterygii	80	Acropora austera	Anthozoa	17
Cirrhilabrus punctatus	Actinopterygii	80	Acropora valida	Anthozoa	17
Pomacentrus bankanensis	Actinopterygii	80	Pocillopora	Anthozoa	17
Acanthurus dussumieri	Actinopterygii	79	Porites rus	Anthozoa	17
Chaetodon ephippium	Actinopterygii	79	Seriatopora hystrix	Anthozoa	17
Acanthurus olivaceus	Actinopterygii	78	Acropora hyacinthus	Anthozoa	16
Aprion virescens	Actinopterygii	78	Fungia	Anthozoa	16
Cephalopholis argus	Actinopterygii	77	Acropora abrotanoides	Anthozoa	15
Synodus variegatus	Actinopterygii	76	Diploastrea heliopora	Anthozoa	15
Chromis atripectoralis	Actinopterygii	75	Favia matthaii	Anthozoa	15
Pterocaesio tile	Actinopterygii	75	Favia Submassive	Anthozoa	15
Epinephelus merra	Actinopterygii	74	Favites halicora	Anthozoa	15
Oxycheilinus digramma	Actinopterygii	73	Acropora cytherea	Anthozoa	14
Oxycheilinus digramma	Actinopterygii	73	Acropora lutkeni	Anthozoa	14
Chaetodon ulietensis	Actinopterygii	71	Acropora paniculata	Anthozoa	14
Amblyglyphidodon curacao	Actinopterygii	70	Acropora secale	Anthozoa	14
Chaetodon melannotus	Actinopterygii	70	Acropora tenuis	Anthozoa	14
Coris gaimard	Actinopterygii	70	Digitate corals (live)	Anthozoa	14
Nemateleotris magnifica	Actinopterygii	70	Favites Submassive	Anthozoa	14
Abudefduf vaigiensis	Actinopterygii	69	Montipora grisea	Anthozoa	14
Gnatholepis cauerensis	Actinopterygii	69	Solid plate corals	Anthozoa	14
Naso vlamingii	Actinopterygii	68	Acropora Bushy arborescent	Anthozoa	13
Oxymonacanthus longirostris	Actinopterygii	68	Acropora grandis	Anthozoa	13
Parupeneus crassilabris	Actinopterygii	68	Goniastrea retiformis	Anthozoa	13
Acanthurus thompsoni	Actinopterygii	67	Hydnophora exesa	Anthozoa	13
Cheilodipterus macrodon	Actinopterygii	67	Montipora crassituberculata	Anthozoa	13
Coris aygula	Actinopterygii	67	Physogyra lichtensteini	Anthozoa	13

Species	Class	# sites	Species	Class	# sites
Bodianus mesothorax	Actinopterygii	66	Acropora Staghorn	Anthozoa	12
Chaetodon unimaculatus	Actinopterygii	65	Isopora Encrusting	Anthozoa	12
Mulloidichthys vanicolensis	Actinopterygii	65	Pavona maldivensis	Anthozoa	12
Pempheris oualensis	Actinopterygii	65	Seriatopora caliendrum	Anthozoa	12
Parapercis queenslandica	Actinopterygii	64	Favites complanata	Anthozoa	11
Pomacentrus coelestis	Actinopterygii	64	Isopora Submassive	Anthozoa	11
Chaetodon ornatissimus	Actinopterygii	63	Pavona duerdeni	Anthozoa	11
Dascyllus trimaculatus	Actinopterygii	63	Acanthastrea echinata	Anthozoa	10
Pomacentrus imitator	Actinopterygii	62	Branching corals	Anthozoa	10
Mulloidichthys flavolineatus	Actinopterygii	61	Coscinaraea exesa	Anthozoa	10
Cetoscarus ocellatus	Actinopterygii	60	Foliose/Plate corals	Anthozoa	10
Cheilinus undulatus	Actinopterygii	60	Leptoseris mycetoseroides	Anthozoa	10
Aulostomus chinensis	Actinopterygii	59	Phymastrea magnistellata	Anthozoa	10
Chromis weberi	Actinopterygii	58	Platygyra sinensis	Anthozoa	10
Macolor macularis	Actinopterygii	58	Acropora polystoma	Anthozoa	9
Cantherhines pardalis	Actinopterygii	57	Echinopora horrida	Anthozoa	9
Centropyge heraldi	Actinopterygii	57	Galaxea fascicularis	Anthozoa	9
Sargocentron caudimaculatum	Actinopterygii	57	Goniastrea Submassive	Anthozoa	9
Centropyge bicolor	Actinopterygii	56	Montipora Solid plates	Anthozoa	9
Cheilinus trilobatus	Actinopterygii	56	Oxypora lacera	Anthozoa	9
Epibulus insidiator	Actinopterygii	56	Platygyra contorta	Anthozoa	9
Paraluteres prionurus	Actinopterygii	56	Acropora listeri	Anthozoa	8
Eviota prasites	Actinopterygii	54	Coeloseris mayeri	Anthozoa	8
Myripristis violacea	Actinopterygii	54	Favia rotumana	Anthozoa	8
Balistapus undulatus	Actinopterygii	53	Leptastrea pruinosa	Anthozoa	8
Siganus argenteus	Actinopterygii	53	Platygyra pini	Anthozoa	8
Parupeneus barberinus	Actinopterygii	52	Turbinaria reniformis	Anthozoa	8
Pterocaesio marri	Actinopterygii	52	Acropora florida	Anthozoa	7
Chaetodon lineolatus	Actinopterygii	51	Favia favus	Anthozoa	7
Cheilinus chlorourus	Actinopterygii	51	Gardineroseris planulata	Anthozoa	7
Cheilodipterus quinquelineatus	Actinopterygii	51	Leptastrea purpurea	Anthozoa	7
Lutjanus kasmira	Actinopterygii	51	Montipora caliculata	Anthozoa	7
Amblyglyphidodon leucogaster	Actinopterygii	50	Stony corals	Anthozoa	7
Cirripectes stigmaticus	Actinopterygii	50	Stylocoeniella guentheri	Anthozoa	7
Stegastes nigricans	Actinopterygii	50	Acropora granulosa	Anthozoa	6
Cirrhitichthys falco	Actinopterygii	48	Acropora selago	Anthozoa	6
Acanthurus auranticavus	Actinopterygii	47	Acropora verweyi	Anthozoa	6
Caesio caerulaurea	Actinopterygii	47	Astreopora gracilis	Anthozoa	6
Helcogramma chica	Actinopterygii	47	Astreopora Submassive	Anthozoa	6
Hemitaurichthys polylepis	Actinopterygii	47	Cyphastrea microphthalma	Anthozoa	6
Labropsis australis	Actinopterygii	47	Favia lizardensis	Anthozoa	6
Pseudanthias squamipinnis	Actinopterygii	47	Galaxea horrescens	Anthozoa	6
Centropyge tibicen	Actinopterygii	46	Goniopora Submassive	Anthozoa	6

Species	Class	# sites	Species	Class	# sites
Chromis retrofasciata	Actinopterygii	46	Montipora Foliose	Anthozoa	6
Meiacanthus atrodorsalis	Actinopterygii	46	Montipora nodosa	Anthozoa	6
Scarus rubroviolaceus	Actinopterygii	46	Montipora undata	Anthozoa	6
Acanthurus nigroris	Actinopterygii	45	Pavona clavus	Anthozoa	6
Bodianus loxozonus	Actinopterygii	45	Platygyra daedalea	Anthozoa	6
Labrichthys unilineatus	Actinopterygii	45	Platygyra Submassive	Anthozoa	6
Pomacanthus imperator	Actinopterygii	45	Platygyra verweyi	Anthozoa	6
Pomacentrus lepidogenys	Actinopterygii	45	Stylophora subseriata	Anthozoa	6
Pomacentrus magniseptus	Actinopterygii	45	Acropora clathrata	Anthozoa	5
Acanthurus albipectoralis	Actinopterygii	44	Acropora Digitate	Anthozoa	5
Cheilinus oxycephalus	Actinopterygii	44	Acropora divaricata	Anthozoa	5
Cypho purpurascens	Actinopterygii	44	Acropora monticulosa	Anthozoa	5
Lutjanus gibbus	Actinopterygii	44	Cyphastrea serailia	Anthozoa	5
Naso caesius	Actinopterygii	44	Favites russelli	Anthozoa	5
Pervagor alternans	Actinopterygii	44	Goniastrea australensis	Anthozoa	5
Plectropomus leopardus	Actinopterygii	43	Hydnophora microconos	Anthozoa	5
Pomacentrus amboinensis	Actinopterygii	43	Isopora Columnar or digitate	Anthozoa	5
Pseudocheilinus evanidus	Actinopterygii	43	Leptastrea inaequalis	Anthozoa	5
Scarus psittacus	Actinopterygii	43	Montipora danae	Anthozoa	5
Ostracion cubicus	Actinopterygii	41	Montipora verrucosa	Anthozoa	5
Oxycheilinus orientalis	Actinopterygii	41	Organ-pipe coral (Tubipora)	Anthozoa	5
Amphiprion chrysopterus	Actinopterygii	40	Phymastrea valenciennesi	Anthozoa	5
Chaetodon reticulatus	Actinopterygii	40	Turbinaria mesenterina	Anthozoa	5
Plotosus lineatus		40	Acanthastrea Submassive	Anthozoa	4
	Actinopterygii				
Halichoeres prosopeion	Actinopterygii	39	Acropora digitifera	Anthozoa	4
Serranocirrhitus latus	Actinopterygii	39	Acropora microclados	Anthozoa	4
Amblyglyphidodon aureus	Actinopterygii	38	Acropora vaughani	Anthozoa	4
Balistoides viridescens	Actinopterygii	38	Coral Species	Anthozoa	4
Heniochus monoceros	Actinopterygii	38	Goniopora tenuidens	Anthozoa	4
Plectorhinchus picus	Actinopterygii	38	Isopora Branching	Anthozoa	4
Pomacentrus brachialis	Actinopterygii	38	Montipora aequituberculata	Anthozoa	4
Pseudanthias pascalus	Actinopterygii	38	Montipora floweri	Anthozoa	4
Pterocaesio trilineata	Actinopterygii	38	Pavona explanulata	Anthozoa	4
Acanthurus xanthopterus	Actinopterygii	37	Porites Encrusting	Anthozoa	4
Halichoeres marginatus	Actinopterygii	37	Stylophora	Anthozoa	4
Pseudanthias tuka	Actinopterygii	37	Stylophora Branching	Anthozoa	4
Anampses caeruleopunctatus	Actinopterygii	36	Symphyllia Submassive	Anthozoa	4
Cheilinus fasciatus	Actinopterygii	36	Tubipora	Anthozoa	4
Anampses geographicus	Actinopterygii	35	Turbinaria frondens	Anthozoa	4
Chromis viridis	Actinopterygii	35	Turbinaria stellulata	Anthozoa	4
Scarus oviceps	Actinopterygii	35	Acanthastrea brevis	Anthozoa	3
Echeneis naucrates	Actinopterygii	34	Acanthastrea hemprichii	Anthozoa	3
Naso hexacanthus	Actinopterygii	34	Acropora carduus	Anthozoa	3

Species	Class	# sites	Species	Class	# sites
Scolopsis bilineata	Actinopterygii	34	Acropora elseyi	Anthozoa	3
Amphiprion akindynos	Actinopterygii	32	Acropora intermedia	Anthozoa	3
Chrysiptera talboti	Actinopterygii	31	Acropora latistella	Anthozoa	3
Forcipiger longirostris	Actinopterygii	31	Acropora pulchra	Anthozoa	3
Heniochus varius	Actinopterygii	31	Acropora sarmentosa	Anthozoa	3
Lethrinus olivaceus	Actinopterygii	31	Astreopora listeri	Anthozoa	3
Pomachromis richardsoni	Actinopterygii	31	Bottlebrush Acropora corals	Anthozoa	3
Sargocentron diadema	Actinopterygii	31	Echinopora Encrusting	Anthozoa	3
Stegastes gascoynei	Actinopterygii	31	Echinopora mammiformis	Anthozoa	3
Variola louti	Actinopterygii	31	Heliopora coerulea (blue coral)	Anthozoa	3
Chaetodon lunula	Actinopterygii	30	Isopora cuneata	Anthozoa	3
Chromis kennensis	Actinopterygii	30	Lobophyllia corymbosa	Anthozoa	3
Hologymnosus annulatus	Actinopterygii	30	Lobophyllia hataii	Anthozoa	3
Melichthys vidua	Actinopterygii	30	Montipora hoffmeisteri	Anthozoa	3
Myripristis vittata	Actinopterygii	30	Montipora monasteriata	Anthozoa	3
Kyphosus cinerascens	Actinopterygii	29	Montipora tuberculosa	Anthozoa	3
Cirrhilabrus laboutei	Actinopterygii	28	Mycedium elephantotus	Anthozoa	3
Dascyllus aruanus	Actinopterygii	28	Pavona bipartita	Anthozoa	3
Myripristis murdjan	Actinopterygii	28	Pavona Submassive	Anthozoa	3
Scarus forsteni	Actinopterygii	28	Pocillopora danae	Anthozoa	3
Anampses femininus	Actinopterygii	27	Seriatopora	Anthozoa	3
Chaetodon vagabundus	Actinopterygii	27	Tubastrea	Anthozoa	3
Caranx ignobilis	Actinopterygii	26	Acropora aculeus	Anthozoa	2
Cetoscarus bicolor	Actinopterygii	26	Acropora caroliniana	Anthozoa	2
Coris dorsomacula	Actinopterygii	26	Acropora globiceps	Anthozoa	2
Ecsenius fourmanoiri	Actinopterygii	26	Acropora millepora	Anthozoa	2
Pterocaesio digramma	Actinopterygii	26	Acropora robusta	Anthozoa	2
Belonoperca chabanaudi	Actinopterygii	25	Acropora samoensis	Anthozoa	2
Canthigaster bennetti	Actinopterygii	25	Acropora yongei	Anthozoa	2
Carangoides orthogrammus	Actinopterygii	25	Astrea annuligera	Anthozoa	2
Ecsenius tigris	Actinopterygii	25	Astreopora cucullata	Anthozoa	2
Epinephelus polyphekadion	Actinopterygii	25	Branching Acropora	Anthozoa	2
Neocirrhites armatus	Actinopterygii	25	Cyphastrea	Anthozoa	2
Pomacentrus moluccensis	Actinopterygii	25	Digitate corals	Anthozoa	2
Halichoeres chrysus	Actinopterygii	24	Echinophyllia Encrusting	Anthozoa	2
Halichoeres margaritaceus	Actinopterygii	24	Favia	Anthozoa	2
Plagiotremus laudandus	Actinopterygii	24	Favites flexuosa	Anthozoa	2
Plagiotremus tapeinosoma	Actinopterygii	24	Galaxea astreata	Anthozoa	2
Chromis alpha	Actinopterygii	23	Goniopora lobata	Anthozoa	2
Chromis xanthochira	Actinopterygii	23	Heliofungia actiniformis	Anthozoa	2
Gymnocranius euanus	Actinopterygii	23	Hydnophora rigida	Anthozoa	2
Valenciennea strigata	Actinopterygii	23	Isopora brueggemanni	Anthozoa	2
Gymnothorax javanicus	Actinopterygii	23	Isopora elizabethensis	Anthozoa	2

Species	Class	# sites	Species	Class	# sites
Novaculichthys taeniourus	Actinopterygii	22	Leptoseris Foliose	Anthozoa	2
Parapercis clathrata	Actinopterygii	22	Leptoseris Submassive	Anthozoa	2
Parapercis millepunctata	Actinopterygii	22	Lobophyllia	Anthozoa	2
Plectorhinchus chaetodonoides	Actinopterygii	21	Lobophyllia pachysepta	Anthozoa	2
Bolbometopon muricatum	Actinopterygii	20	Montipora incrassata	Anthozoa	2
Cantherhines dumerilii	Actinopterygii	20	Pavona decussata	Anthozoa	2
Ctenogobiops pomastictus	Actinopterygii	20	Pavona minuta	Anthozoa	2
Helcogramma striata	Actinopterygii	20	Pavona venosa	Anthozoa	2
Macropharyngodon kuiteri	Actinopterygii	20	Platygyra Encrusting	Anthozoa	2
Acanthurus grammoptilus	Actinopterygii	19	Platygyra ryukyuensis	Anthozoa	2
Bodianus dictynna	Actinopterygii	19	Platygyra yaeyamaensis	Anthozoa	2
Neoniphon opercularis	Actinopterygii	19	Psammocora nierstraszi	Anthozoa	2
Parupeneus ciliatus	Actinopterygii	19	Psammocora profundacella	Anthozoa	2
Amphiprion perideraion	Actinopterygii	18	Symphyllia agaricia	Anthozoa	2
Carangoides plagiotaenia	Actinopterygii	18	Symphyllia radians	Anthozoa	2
Epinephelus fasciatus	Actinopterygii	18	Tubastrea coccinea	Anthozoa	2
Hemigymnus melapterus	Actinopterygii	18	Turbinaria Encrusting	Anthozoa	2
Pteragogus enneacanthus	Actinopterygii	18	Turbinaria Foliose	Anthozoa	2
Scomberoides lysan	Actinopterygii	18	Turbinaria peltata	Anthozoa	2
Thalassoma jansenii	Actinopterygii	18	Acanthastrea Encrusting	Anthozoa	1
Acanthurus triostegus	Actinopterygii	17	Acropora abrolhosensis	Anthozoa	1
Amphiprion melanopus	Actinopterygii	17	Acropora anthocercis	Anthozoa	1
Chaetodon baronessa	Actinopterygii	17	Acropora Arborescent table	Anthozoa	1
Cirrhilabrus scottorum	Actinopterygii	17	Acropora chesterfieldensis	Anthozoa	1
Dischistodus melanotus	Actinopterygii	17	Acropora echinata	Anthozoa	1
Eviota melasma	Actinopterygii	17	Acropora Encrusting	Anthozoa	1
Halichoeres nebulosus	Actinopterygii	17	Acropora lovelli	Anthozoa	1
Pristiapogon kallopterus	Actinopterygii	17	Acropora microphthalma	Anthozoa	1
Rhinecanthus rectangulus	Actinopterygii	17	Acropora subulata	Anthozoa	1
Scarus globiceps	Actinopterygii	17	Acropora torihalimeda	Anthozoa	1
Ucla xenogrammus	Actinopterygii	17	Anacropora Branching	Anthozoa	1
Abudefduf sexfasciatus	Actinopterygii	16	Astreopora Encrusting	Anthozoa	1
Calotomus carolinus	Actinopterygii	16	Columnar corals	Anthozoa	1
Chlorurus bleekeri	Actinopterygii	16	Coscinaraea Encrusting	Anthozoa	1
Istigobius rigilius	Actinopterygii	16	Coscinaraea Submassive	Anthozoa	1
Pervagor janthinosoma	Actinopterygii	16	Ctenactis crassa	Anthozoa	1
Pteragogus cryptus	Actinopterygii	16	Cyphastrea Branching	Anthozoa	1
Sufflamen bursa	Actinopterygii	16	Cyphastrea decadia	Anthozoa	1
Canthigaster amboinensis	Actinopterygii	15	Echinopora pacificus	Anthozoa	1
Canthigaster janthinoptera	Actinopterygii	15	Favia amicorum	Anthozoa	1
Cephalopholis leopardus	Actinopterygii	15	Favia rotundata	Anthozoa	1
Chaetodon bennetti	Actinopterygii	15	Favites pentagona	Anthozoa	1
Cirrhilabrus exquisitus	Actinopterygii	15	Fungia concinna	Anthozoa	1

Species	Class	# sites	Species	Class	# sites
Fusigobius neophytus	Actinopterygii	15	Fungia horrida	Anthozoa	1
Istigobius decoratus	Actinopterygii	15	Goniopora columna	Anthozoa	1
Koumansetta rainfordi	Actinopterygii	15	Goniopora Columnar or digitate	Anthozoa	1
Lepidozygus tapeinosoma	Actinopterygii	15	Goniopora Encrusting	Anthozoa	1
Naso annulatus	Actinopterygii	15	Hydnophora Encrusting	Anthozoa	1
Plectorhinchus lineatus	Actinopterygii	15	Hydnophora grandis	Anthozoa	1
Synodus dermatogenys	Actinopterygii	15	Isopora	Anthozoa	1
Amphiprion clarkii	Actinopterygii	14	Leptastrea transversa	Anthozoa	1
Coris batuensis	Actinopterygii	14	Leptoseris	Anthozoa	1
Ecsenius aequalis	Actinopterygii	14	Leptoseris Encrusting	Anthozoa	1
Hologymnosus doliatus	Actinopterygii	14	Leptoseris hawaiiensis	Anthozoa	1
Lethrinus nebulosus	Actinopterygii	14	Leptoseris scabra	Anthozoa	1
Neoglyphidodon nigroris	Actinopterygii	14	Leptoseris yabei	Anthozoa	1
Parapercis australis	Actinopterygii	14	Lobophyllia dentatus	Anthozoa	1
Siganus punctatus	Actinopterygii	14	Merulina scabricula	Anthozoa	1
Siganus vulpinus	Actinopterygii	14	Montipora australiensis	Anthozoa	1
Synodus binotatus	Actinopterygii	14	Montipora capricornis	Anthozoa	1
Anampses meleagrides	Actinopterygii	13	Montipora Columnar or digitate	Anthozoa	1
Caesio teres	Actinopterygii	13	Montipora corbettensis	Anthozoa	1
Cephalopholis cyanostigma	Actinopterygii	13	Montipora efflorescens	Anthozoa	1
Eviota sebreei	Actinopterygii	13	Montipora foliosa	Anthozoa	1
Kyphosus bigibbus	Actinopterygii	13	Montipora foveolata	Anthozoa	1
Plagiotremus rhinorhynchos	Actinopterygii	13	Montipora informis	Anthozoa	1
Priacanthus hamrur	Actinopterygii	13	Montipora palawanensis	Anthozoa	1
Pseudocheilinus octotaenia	Actinopterygii	13	Montipora peltiformis	Anthozoa	1
Pseudocoris yamashiroi	Actinopterygii	13	Podabacia crustacea	Anthozoa	1
Saurida nebulosa	Actinopterygii	13	Porites	Anthozoa	1
Amblygobius phalaena	Actinopterygii	12	Porites Branching	Anthozoa	1
Caesio lunaris	Actinopterygii	12	Porites Columnar or digitate	Anthozoa	1
Plectorhinchus lessonii	Actinopterygii	12	Porites Solid plates	Anthozoa	1
Pomacentrus reidi	Actinopterygii	12	Psammocora Submassive	Anthozoa	1
Amblyeleotris steinitzi	Actinopterygii	11	Psammocora superficialis	Anthozoa	1
Eviota atriventris	Actinopterygii	11	Sandalolitha robusta	Anthozoa	1
Exallias brevis	Actinopterygii	11	Seriatopora dendritica	Anthozoa	1
Gobiodon quinquestrigatus	Actinopterygii	11	Stylocoeniella Encrusting	Anthozoa	1
Gymnocranius superciliosus	Actinopterygii	11	Tubastrea micranthus	Anthozoa	1
Halichoeres melanurus	Actinopterygii	11	Fromia indica	Asteroidea	16
Halichoeres ornatissimus	Actinopterygii	11	Linckia multifora	Asteroidea	15
Neoniphon argenteus	Actinopterygii	11	Culcita novaeguineae	Asteroidea	9
Parupeneus barberinoides	Actinopterygii	11	Celerina heffernani	Asteroidea	6
Scarus dimidiatus	Actinopterygii	11	Echinaster luzonicus	Asteroidea	5
Scarus flavipectoralis	Actinopterygii	11	Gomophia watsoni	Asteroidea	5

Species	Class	# sites	Species	Class	# sites
Canthigaster axiologus	Actinopterygii	10	Linckia laevigata	Asteroidea	5
Carangoides ferdau	Actinopterygii	10	Fromia monilis	Asteroidea	4
Caranx lugubris	Actinopterygii	10	Neoferdina cumingi	Asteroidea	4
Chromis fumea	Actinopterygii	10	Acanthaster planci	Asteroidea	3
Gymnosarda unicolor	Actinopterygii	10	Fromia milleporella	Asteroidea	3
Heniochus acuminatus	Actinopterygii	10	Mithrodia clavigera	Asteroidea	3
Labropsis xanthonota	Actinopterygii	10	Choriaster granulatus	Asteroidea	2
Macropharyngodon negrosensis	Actinopterygii	10	Linckia guildingi	Asteroidea	2
Paracanthurus hepatus	Actinopterygii	10	Dactylosaster cylindricus	Asteroidea	1
Parapercis hexophtalma	Actinopterygii	10	Echinaster callosus	Asteroidea	1
Pentapodus aureofasciatus	Actinopterygii	10	Fromia hemiopla	Asteroidea	1
Stegastes punctatus	Actinopterygii	10	Leiaster leachi	Asteroidea	1
Anyperodon leucogrammicus	Actinopterygii	9	Nardoa novaecaledoniae	Asteroidea	1
Caesio cuning	Actinopterygii	9	Neoferdina insolita	Asteroidea	1
Cephalopholis miniata	Actinopterygii	9	Tridacna maxima	Bivalvia	185
Choerodon fasciatus	Actinopterygii	9	Tridacna crocea	Bivalvia	96
Chrysiptera flavipinnis	Actinopterygii	9	Tridacna derasa	Bivalvia	79
Ctenogobiops mitodes	Actinopterygii	9	Tridacna squamosa	Bivalvia	70
Ecsenius stictus	Actinopterygii	9	Tridacna gigas	Bivalvia	24
Gobiodon citrinus	Actinopterygii	9	Hippopus hippopus	Bivalvia	4
Naso brachycentron	Actinopterygii	9	Tridacna noae	Bivalvia	1
Neoglyphidodon melas	Actinopterygii	9	Octopus cyanea	Cephalopoda	3
Ostorhinchus properuptus	Actinopterygii	9	Sepia latimanus	Cephalopoda	1
Ptereleotris zebra	Actinopterygii	9	Oxycomanthus bennetti	Crinoidea	50
Elagatis bipinnulata	Actinopterygii	8	Himerometra robustipinna	Crinoidea	26
Gymnothorax meleagris	Actinopterygii	8	Cenolia glebosus	Crinoidea	9
Heniochus singularius	Actinopterygii	8	Anneissia bennetti	Crinoidea	8
Lutjanus rivulatus	Actinopterygii	8	Comanthus mirabilis	Crinoidea	8
Ostorhinchus cyanosoma	Actinopterygii	8	Comaster schlegelii	Crinoidea	7
Ostorhinchus nigrofasciatus	Actinopterygii	8	Tropiometra afra	Crinoidea	7
Paracentropyge multifasciata	Actinopterygii	8	Comanthus suavia	Crinoidea	5
Parapercis multiplicata	Actinopterygii	8	Oligometra serripinna	Crinoidea	5
Pictichromis coralensis	Actinopterygii	8	Cenometra bella	Crinoidea	4
Pomacentrus chrysurus	Actinopterygii	8	Himerometra magnipinna	Crinoidea	4
Pomacentrus wardi	Actinopterygii	8	Clarkcomanthus littoralis	Crinoidea	3
Pseudobalistes fuscus	Actinopterygii	8	Clarkcomanthus luteofuscum	Crinoidea	3
Trimma benjamini	Actinopterygii	8	Comaster nobilis	Crinoidea	3
Acanthurus mata	Actinopterygii	7	Amphimetra tessellata	Crinoidea	1
Amblyeleotris wheeleri	Actinopterygii	7	Capillaster multiradiatus	Crinoidea	1
Arothron meleagris	Actinopterygii	7	Clarkcomanthus comanthipinna	Crinoidea	1
Arothron stellatus	Actinopterygii	7	Comanthus alternans	Crinoidea	1
Cheilodipterus artus	Actinopterygii	7	Comanthus briareus	Crinoidea	1

Species	Class	# sites	Species	Class	# sites
Dischistodus pseudochrysopoecilus	Actinopterygii	7	Comanthus gisleni	Crinoidea	1
Eviota pellucida	Actinopterygii	7	Comanthus parvicirrus	Crinoidea	1
Fistularia commersonii	Actinopterygii	7	Comaster multifidus	Crinoidea	1
Fusigobius signipinnis	Actinopterygii	7	Stephanometra indica	Crinoidea	1
Kyphosus vaigiensis	Actinopterygii	7	Echinometra mathaei	Echinoidea	149
Lutjanus quinquelineatus	Actinopterygii	7	Diadema savignyi	Echinoidea	49
Macropharyngodon ornatus	Actinopterygii	7	Echinothrix calamaris	Echinoidea	22
Malacanthus brevirostris	Actinopterygii	7	Diadema setosum	Echinoidea	11
Ostracion solorensis	Actinopterygii	7	Echinothrix diadema	Echinoidea	7
Paracirrhites hemistictus	Actinopterygii	7	Heterocentrotus mamillatus	Echinoidea	6
Pseudobalistes flavimarginatus	Actinopterygii	7	Heterocentrotus mamillatus	Echinoidea	6
Pseudochromis fuscus	Actinopterygii	7	Phyllacanthus imperialis	Echinoidea	6
Siganus corallinus	Actinopterygii	7	Tripneustes gratilla	Echinoidea	3
Siganus punctatissimus	Actinopterygii	7	Eucidaris metularia	Echinoidea	1
Thalassoma trilobatum	Actinopterygii	7	Parasalenia poehlii	Echinoidea	1
Amblyeleotris guttata	Actinopterygii	6	Prionocidaris callista	Echinoidea	1
Bodianus perditio	Actinopterygii	6	Carcharhinus amblyrhynchos	Elasmobranchii	110
Canthigaster papua	Actinopterygii	6	Triaenodon obesus	Elasmobranchii	91
Caranx sexfasciatus	Actinopterygii	6	Carcharhinus albimarginatus	Elasmobranchii	13
Chaetodon aureofasciatus	Actinopterygii	6	Aetobatus ocellatus	Elasmobranchii	3
Chrysiptera biocellata	Actinopterygii	6	Pateobatis fai	Elasmobranchii	3
Cirripectes castaneus	Actinopterygii	6	Nebrius ferrugineus	Elasmobranchii	2
Gobiodon histrio	Actinopterygii	6	Neotrygon kuhlii	Elasmobranchii	2
Gracila albomarginata	Actinopterygii	6	Taeniura meyeni	Elasmobranchii	2
Grammatorcynus bilineatus	Actinopterygii	6	Carcharhinus melanopterus	Elasmobranchii	1
Lotilia klausewitzi	Actinopterygii	6	Hemiscyllium ocellatum	Elasmobranchii	1
Myripristis adusta	Actinopterygii	6	Taeniura lymma	Elasmobranchii	1
Plectroglyphidodon imparipennis	Actinopterygii	6	Phyllidiella pustulosa	Gastropoda	59
Plectropomus maculatus	Actinopterygii	6	Tectus pyramis	Gastropoda	56
Sargocentron ittodai	Actinopterygii	6	Thuridilla gracilis	Gastropoda	44
Saurida gracilis	Actinopterygii	6	Thuridilla gracilis	Gastropoda	44
Sphyraena barracuda	Actinopterygii	6	Drupella cornus	Gastropoda	40
Taeniamia fucata	Actinopterygii	6	Conus miles	Gastropoda	27
Trimma lantana	Actinopterygii	6	Chromodoris elisabethina	Gastropoda	22
Aioliops novaeguineae	Actinopterygii	5	Conus flavidus	Gastropoda	20
Chaetodon rafflesii	Actinopterygii	5	Lambis truncata	Gastropoda	20
Chrysiptera rollandi	Actinopterygii	5	Cerithium nodulosum	Gastropoda	17
Cirrhilabrus cyanopleura	Actinopterygii	5	Vasum turbinellus	Gastropoda	17
Ctenogobiops tangaroai	Actinopterygii	5	Chromodoris lochi	Gastropoda	13
Eviota sigillata	Actinopterygii	5	Vasum ceramicum	Gastropoda	13
Lutjanus fulvus	Actinopterygii	5	Phyllidia coelestis	Gastropoda	11
Myripristis amaena	Actinopterygii	5	Pteraeolidia semperi	Gastropoda	10

Species	Class	# sites	Species	Class	# sites
Pempheris schwenkii	Actinopterygii	5	Turbo argyrostomus	Gastropoda	10
Platax pinnatus	Actinopterygii	5	Cerithium echinatum	Gastropoda	9
Pomacentrus adelus	Actinopterygii	5	Conus distans	Gastropoda	9
Pterois antennata	Actinopterygii	5	Lambis lambis	Gastropoda	8
Scarus ghobban	Actinopterygii	5	Pteraeolidia ianthina	Gastropoda	8
Siganus fuscescens	Actinopterygii	5	Chelidonura inornata	Gastropoda	7
Trimma readerae	Actinopterygii	5	Latirolagena smaragdulus	Gastropoda	7
Acanthurus leucocheilus	Actinopterygii	4	Phyllidia varicosa	Gastropoda	7
Aethaloperca rogaa	Actinopterygii	4	Rochia nilotica	Gastropoda	7
Apolemichthys trimaculatus	Actinopterygii	4	Conus emaciatus	Gastropoda	6
Bryaninops natans	Actinopterygii	4	Cypraea tigris	Gastropoda	6
Centropyge loricula	Actinopterygii	4	Drupa morum	Gastropoda	6
Cheilodipterus isostigmus	Actinopterygii	4	Drupa ricinus	Gastropoda	6
Chelmon marginalis	Actinopterygii	4	Lambis scorpius	Gastropoda	6
Chromis analis	Actinopterygii	4	Tectus virgatus	Gastropoda	6
Epinephelus lanceolatus	Actinopterygii	4	Thuridilla neona	Gastropoda	6
Epinephelus tauvina	Actinopterygii	4	Astralium rhodostomum	Gastropoda	5
Eviota bifasciata	Actinopterygii	4	Conus marmoreus	Gastropoda	5
Gnatholepis anjerensis	Actinopterygii	4	Drupa rubusidaeus	Gastropoda	5
Grammistes sexlineatus	Actinopterygii	4	Lambis chiragra	Gastropoda	5
Halichoeres chloropterus	Actinopterygii	4	Latirus gibbulus	Gastropoda	5
Lethrinus erythracanthus	Actinopterygii	4	Latirus polygonus	Gastropoda	5
Meiacanthus ditrema	Actinopterygii	4	Phyllidia elegans	Gastropoda	5
Meiacanthus lineatus	Actinopterygii	4	Phyllidiella lizae	Gastropoda	5
Meiacanthus phaeus	Actinopterygii	4	Trochus maculatus	Gastropoda	5
Meiacanthus reticulatus	Actinopterygii	4	Cassis cornuta	Gastropoda	4
Odonus niger	Actinopterygii	4	Conus capitaneus	Gastropoda	4
Pictichromis paccagnellae	Actinopterygii	4	Conus lividus	Gastropoda	4
Plectropomus areolatus	Actinopterygii	4	Conus virgo	Gastropoda	4
Pleurosicya mossambica	Actinopterygii	4	Chromodoris annae	Gastropoda	3
Pseudodax moluccanus	Actinopterygii	4	Chromodoris willani	Gastropoda	3
Pterois volitans	Actinopterygii	4	Conus coronatus	Gastropoda	3
Rhinecanthus aculeatus	Actinopterygii	4	Conus leopardus	Gastropoda	3
Scarus rivulatus	Actinopterygii	4	Conus litteratus	Gastropoda	3
Siganus puellus	Actinopterygii	4	Conus miliaris	Gastropoda	3
Stegastes albifasciatus	Actinopterygii	4	Conus musicus	Gastropoda	3
Strongylura incisa	Actinopterygii	4	Conus rattus	Gastropoda	3
Trimma taylori	Actinopterygii	4	Coralliophila neritoidea	Gastropoda	3
Aluterus scriptus	Actinopterygii	3	Hypselodoris bullockii	Gastropoda	3
Amanses scopas	Actinopterygii	3	Conomurex luhuanus	Gastropoda	2
Arothron mappa	Actinopterygii	3	Conus imperialis	Gastropoda	2
Bodianus anthioides	Actinopterygii	3	Conus sanguinolentus (cf)	Gastropoda	2
Bodianus diana	Actinopterygii	3	Conus vexillum	Gastropoda	2

Species	Class	# sites	Species	Class	# sites
Cephalopholis sexmaculata	Actinopterygii	3	Cyerce nigricans	Gastropoda	2
Chaetodon punctatofasciatus	Actinopterygii	3	Drupina grossularia	Gastropoda	2
Chaetodon semeion	Actinopterygii	3	Gourmya gourmyi	Gastropoda	2
Chromis caudalis	Actinopterygii	3	Gymnodoris citrina	Gastropoda	2
Chrysiptera brownriggii	Actinopterygii	3	Mitra contracta	Gastropoda	2
Cirrhilabrus lineatus	Actinopterygii	3	Nembrotha cristata	Gastropoda	2
Cirrhitus pinnulatus	Actinopterygii	3	Peristernia nassatula	Gastropoda	2
Ctenogobiops feroculus	Actinopterygii	3	Pleuroploca trapezium	Gastropoda	2
Diodon hystrix	Actinopterygii	3	Rhinoclavis fasciata	Gastropoda	2
Ecsenius australianus	Actinopterygii	3	Rhinoclavis sinensis	Gastropoda	2
Epinephelus maculatus	Actinopterygii	3	Roboastra gracilis	Gastropoda	2
Gobiodon okinawae	Actinopterygii	3	Tambja morosa	Gastropoda	2
Kyphosus sectatrix	Actinopterygii	3	Carminodoris estrelyado	Gastropoda	1
Labroides pectoralis	Actinopterygii	3	Chicoreus brunneus	Gastropoda	1
Lutjanus monostigma	Actinopterygii	3	Chicoreus ramosus	Gastropoda	1
Luzonichthys waitei	Actinopterygii	3	Chromodoris dianae	Gastropoda	1
Naso thynnoides	Actinopterygii	3	Conus boeticus	Gastropoda	1
Ostorhinchus angustatus	Actinopterygii	3	Conus muriculatus	Gastropoda	1
Ostorhinchus aureus	Actinopterygii	3	Conus mustelinus	Gastropoda	1
Ostorhinchus neotes	Actinopterygii	3	Conus planorbis	Gastropoda	1
Platax teira	Actinopterygii	3	Conus pulicarius	Gastropoda	1
Plectorhinchus albovittatus	Actinopterygii	3	Conus striatus	Gastropoda	1
Plectroglyphidodon phoenixensis	Actinopterygii	3	Conus varius	Gastropoda	1
Pomacentrus grammorhynchus	Actinopterygii	3	Coryphellina albomarginata	Gastropoda	1
Pomacentrus nigromarginatus	Actinopterygii	3	Coryphellina rubrolineata	Gastropoda	1
Pomacentrus pavo	Actinopterygii	3	Doriprismatica dendrobranchia	Gastropoda	1
Priacanthus blochii	Actinopterygii	3	Epidendrium billeeanum	Gastropoda	1
Sargocentron microstoma	Actinopterygii	3	Glossodoris cincta	Gastropoda	1
Scarus festivus	Actinopterygii	3	Goniobranchus coi	Gastropoda	1
Stethojulis strigiventer	Actinopterygii	3	Goniobranchus decorus	Gastropoda	1
Trachinotus blochii	Actinopterygii	3	Goniobranchus geometricus	Gastropoda	1
Apogon limenus	Actinopterygii	2	Goniobranchus sinensis	Gastropoda	1
Arothron caeruleopunctatus	Actinopterygii	2	Goniobranchus verrieri	Gastropoda	1
Bryaninops erythrops	Actinopterygii	2	Halgerda aurantiomaculata	Gastropoda	1
Bryaninops yongei	Actinopterygii	2	Halgerda tessellata	Gastropoda	1
Cantherhines fronticinctus	Actinopterygii	2	Haliotis ovina	Gastropoda	1
Canthigaster epilampra	Actinopterygii	2	Harpago chiragra	Gastropoda	1
Caracanthus maculatus	Actinopterygii	2	Hypselodoris maculosa	Gastropoda	1
Carangoides fulvoguttatus	Actinopterygii	2	Latirus lanceolatus	Gastropoda	1
Caranx papuensis	Actinopterygii	2	Lentigo lentiginosus	Gastropoda	1
Cephalopholis microprion	Actinopterygii	2	Lotoria lotoria	Gastropoda	1
Chaetodon meyeri	Actinopterygii	2	Mancinella armigera	Gastropoda	1

Species	Class	# sites	Species	Class	# sites
Chromileptes altivelis	Actinopterygii	2	Melo amphora	Gastropoda	1
Chrysiptera starcki	Actinopterygii	2	Mitra stictica	Gastropoda	1
Cirripectes chelomatus	Actinopterygii	2	Monetaria annulus	Gastropoda	1
Coradion altivelis	Actinopterygii	2	Morula uva	Gastropoda	1
Cyprinocirrhites polyactis	Actinopterygii	2	Nebularia chrysostoma	Gastropoda	1
Decapterus macarellus	Actinopterygii	2	Notodoris citrina	Gastropoda	1
Diagramma pictum	Actinopterygii	2	Noumea simplex	Gastropoda	1
Dischistodus prosopotaenia	Actinopterygii	2	Oliva amethystina	Gastropoda	1
Epinephelus hexagonatus	Actinopterygii	2	Peristernia australiensis	Gastropoda	1
Epinephelus quoyanus	Actinopterygii	2	Petalifera ramosa	Gastropoda	1
Epinephelus tukula	Actinopterygii	2	Philinopsis pilsbryi	Gastropoda	1
Glyptoparus delicatulus	Actinopterygii	2	Phyllidia ocellata	Gastropoda	1
Hemiglyphidodon plagiometopon	Actinopterygii	2	Phyllodesmium briareum	Gastropoda	1
Hoplolatilus starcki	Actinopterygii	2	Pleuroploca filamentosa	Gastropoda	1
Leptoscarus vaigiensis	Actinopterygii	2	Purpura dumosa	Gastropoda	1
Lethrinus semicinctus	Actinopterygii	2	Ranularia pyrum	Gastropoda	1
Ogilbyina novaehollandiae	Actinopterygii	2	Roboastra luteolineata	Gastropoda	1
Oxycheilinus nigromarginatus	Actinopterygii	2	Talparia talpa	Gastropoda	1
Platax orbicularis	Actinopterygii	2	Thorunna furtiva	Gastropoda	1
Pleurosicya micheli	Actinopterygii	2	Thuridilla carlsoni	Gastropoda	1
Pomacanthus sexstriatus	Actinopterygii	2	Bohadschia argus	Holothuroidea	44
Pomacentrus australis	Actinopterygii	2	Stichopus chloronotus	Holothuroidea	35
Pomacentrus nigromanus	Actinopterygii	2	Thelenota ananas	Holothuroidea	35
Pristiapogon exostigma	Actinopterygii	2	Holothuria atra	Holothuroidea	30
Pristiapogon fraenatus	Actinopterygii	2	Bohadschia graeffei	Holothuroidea	21
Pseudanthias ?cooperi	Actinopterygii	2	Bohadschia graeffei	Holothuroidea	21
Pseudanthias huchtii	Actinopterygii	2	Holothuria whitmaei	Holothuroidea	16
Pseudojuloides cerasinus	Actinopterygii	2	Holothuria fuscorubra	Holothuroidea	14
Pseudolabrus guentheri	Actinopterygii	2	Holothuria edulis	Holothuroidea	8
Sargocentron tiere	Actinopterygii	2	Actinopyga mauritiana	Holothuroidea	7
Scarus tricolor	Actinopterygii	2	Actinopyga miliaris	Holothuroidea	7
Scarus xanthopleura	Actinopterygii	2	Holothuria nobilis	Holothuroidea	7
Signigobius biocellatus	Actinopterygii	2	Thelenota anax	Holothuroidea	4
Stethojulis interrupta	Actinopterygii	2	Actinopyga palauensis	Holothuroidea	2
Stethojulis trilineata	Actinopterygii	2	Holothuria hilla	Holothuroidea	2
Sufflamen fraenatum	Actinopterygii	2	Holothuria scabra	Holothuroidea	2
Synodus rubromarmoratus	Actinopterygii	2	Stichopus hermanni	Holothuroidea	2
Trimma tevegae	Actinopterygii	2	Synapta maculata	Holothuroidea	2
Variola albimarginata	Actinopterygii	2	Thelenota rubrolineata	Holothuroidea	2
Zoramia viridiventer	Actinopterygii	2	Actinopyga lecanora	Holothuroidea	1
Abudefduf bengalensis	Actinopterygii	1	Holothuria (Semperothuria) cinerascens	Holothuroidea	1
Abudefduf whitleyi	Actinopterygii	1	Holothuria fuscopunctata	Holothuroidea	1

Species	Class	# sites	Species	Class	# sites
Acanthocybium solandri	Actinopterygii	1	Millepora exaesa	Hydrozoa	78
Acanthopagrus australis	Actinopterygii	1	Millepora dichotoma	Hydrozoa	27
Acanthurus achilles	Actinopterygii	1	Millepora branching	Hydrozoa	6
Acanthurus guttatus	Actinopterygii	1	Millepora tenera	Hydrozoa	5
Amblyeleotris fasciata	Actinopterygii	1	Millepora spp.	Hydrozoa	1
Amblygobius nocturnus	Actinopterygii	1	Dardanus lagopodes	Malacostraca	63
Anampses melanurus	Actinopterygii	1	Calcinus minutus	Malacostraca	54
Aphareus rutilans	Actinopterygii	1	Trapezia rufopunctata	Malacostraca	14
Assessor flavissimus	Actinopterygii	1	Calcinus lineapropodus	Malacostraca	12
Assessor macneilli	Actinopterygii	1	Calcinus morgani	Malacostraca	7
Atrosalarias holomelas	Actinopterygii	1	Clibanarius seurati	Malacostraca	7
Blenniella paula	Actinopterygii	1	Cymo quadrilobatus	Malacostraca	6
Calloplesiops altivelis	Actinopterygii	1	Dardanus guttatus	Malacostraca	6
Canthidermis maculata	Actinopterygii	1	Odontodactylus scyllarus	Malacostraca	6
Chaetodon guentheri	Actinopterygii	1	Dardanus megistos	Malacostraca	5
Chaetodon oxycephalus	Actinopterygii	1	Tylocarcinus styx	Malacostraca	4
Chaetodon rainfordi	Actinopterygii	1	Calcinus gaimardii	Malacostraca	3
Cheilodipterus parazonatus	Actinopterygii	1	Percnon guinotae	Malacostraca	3
Chlorurus japanensis	Actinopterygii	1	Trapezia cymodoce	Malacostraca	3
Choerodon graphicus	Actinopterygii	1	Aniculus retipes	Malacostraca	2
Chromis nitida	Actinopterygii	1	Calcinus pulcher	Malacostraca	2
Chrysiptera caesifrons	Actinopterygii	1	Dardanus gemmatus	Malacostraca	2
Chrysiptera glauca	Actinopterygii	1	Paguritta corallicola	Malacostraca	2
Cirrhilabrus ?scottorum	Actinopterygii	1	Panulirus longipes	Malacostraca	2
Cirripectes filamentosus	Actinopterygii	1	Achaeus japonicus	Malacostraca	1
Coradion chrysozonus	Actinopterygii	1	Aniculus erythraeus	Malacostraca	1
Coris bulbifrons	Actinopterygii	1	Calcinus elegans	Malacostraca	- 1
Coris pictoides	Actinopterygii	1	Ciliopagurus strigatus	Malacostraca	1
Ctenogobiops maculosus	Actinopterygii	1	Dardanus scutellatus	Malacostraca	1
Dendrochirus zebra	Actinopterygii	1	Gonodactylus platysoma	Malacostraca	1
Diodon holocanthus	Actinopterygii	1	Notosceles serratifrons	Malacostraca	1
Diodon liturosus	Actinopterygii	1	Panulirus versicolor	Malacostraca	1
Diplogrammus goramensis	Actinopterygii				
		1	Tetralia cinctipes	Malacostraca	1
Ecsenius bicolor	Actinopterygii	1	Trapezia flavopunctata	Malacostraca	1
Ecsenius yaeyamaensis	Actinopterygii	1	Aipysurus laevis	Reptilia	59
Enneapterygius tutuilae	Actinopterygii	1	Chelonia mydas	Reptilia	11
Epinephelus cyanopodus	Actinopterygii	1	Eretmochelys imbricata	Reptilia	9
Epinephelus howlandi	Actinopterygii	1	Aipysurus duboisii	Reptilia	7
Eviota punctulata	Actinopterygii	1	Acalyptophis peronii	Reptilia	6
Exyrias akihito	Actinopterygii	1	Emydocephalus annulatus	Reptilia	5
Gorgasia galzini	Actinopterygii	1	Caretta caretta	Reptilia	1
Gymnocranius microdon	Actinopterygii	1	Hydrophis elegans	Reptilia	1
Gymnothorax eurostus	Actinopterygii	1	Natator depressus	Reptilia	1

Species	Class	# sites	Species		Class	# sites
Gymnothorax favagineus	Actinopterygii	1	Pseudobicer	os bedfordi	Rhabditophora	1
Gymnothorax flavimarginatus	Actinopterygii	1	Pseudoceros	s gravieri	Rhabditophora	1
Gymnothorax thrysoideus	Actinopterygii	1	Pseudoceros	s liparus	Rhabditophora	1
Gymnothorax undulatus	Actinopterygii	1	Thysanostor	na flagellatum	Scyphozoa	1
Halichoeres hartzfeldii	Actinopterygii	1	Pseudoceros	s monostichos	Turbellaria	2
Halichoeres leucurus	Actinopterygii	1	Pseudobicer	os gloriosus	Turbellaria	1
Halichoeres scapularis	Actinopterygii	1	Pseudoceros	s bimarginatus	Turbellaria	1
Lethrinus rubrioperculatus	Actinopterygii	1	Pseudoceros	s dimidiatus (cf)	Turbellaria	1
Lethrinus xanthochilus	Actinopterygii	1	Pseudoceros	s ferrugineus	Turbellaria	1
Lutjanus argentimaculatus	Actinopterygii	1	Pseudoceros	s sapphirinus	Turbellaria	1
Lutjanus semicinctus	Actinopterygii	1	Zebrasoma	velifer	Actinopterygii	162
Macropharyngodon choati	Actinopterygii	1	Ctenochaetu	ıs cyanocheilus	Actinopterygii	97
Meiacanthus grammistes	Actinopterygii	1	Centropyge	flavissima	Actinopterygii	80
Myrichthys maculosus	Actinopterygii	1	Parapercis a	ustralis	Actinopterygii	14
Myripristis hexagona	Actinopterygii	1	Canthigaste	r papua	Actinopterygii	6
Myripristis pralinia	Actinopterygii	1	Centropyge	loricula	Actinopterygii	4
Naso caeruleacauda	Actinopterygii	1	Iniistius pavo	0	Actinopterygii	1
Neoglyphidodon polyacanthus	Actinopterygii	1	Oxycercichth	hys veliferus	Actinopterygii	1
Neopomacentrus azysron	Actinopterygii	1				