# Theranova

DESIGNED FOR:

Baxter

Theranova

MEMBRANE: **MCO** (PAES/PVP, BPA-free)

### HDx THERAPY ENABLED BY THERANOVA\*

HDx therapy (expanded HD) is the next evolution in hemodialysis, as it targets the efficient removal of large-middle molecules (LMM)<sup>1</sup>, many of which have been linked to the development of inflammation, cardiovascular disease, and other comorbidities in dialysis patients.<sup>2,3</sup> With HDx therapy, **Theranova** provides superior removal of large-middle molecules compared with standard HD and HDF modalities and it does so using regular HD workflow and infrastructure.<sup>4</sup>

HDx therapy is enabled by the **Theranova** dialyzer series, which combines diffusion and convection along the hollow fiber.<sup>2</sup> It features an innovative Medium Cut-Off (MCO) membrane that combines a higher permeability for large-middle molecules than that of high-flux dialyzers, used in both conventional HD and HDF therapies, while maintaining stable albumin levels.<sup>5,6</sup>

# PROVIDE EXPANDED HD, RETAIN HD SIMPLICITY

- Markedly greater clearances and intradialytic reduction ratios for middle molecules than regular HD – at ordinary blood flow rates<sup>4</sup>
- Superior removal of large-middle molecules compared to HD and HDF modalities<sup>4</sup>

evone.

- Limited albumin removal of between 1 and 4 grams per session, with demonstrated stable albumin levels over 6 months.<sup>5,6</sup> Same result in albumin removal rate was observed in vitro in treatments up to 8 hours<sup>19</sup>
- Compatible with any HD monitor<sup>7,8</sup>

# WITH BAXTER'S LATEST DIALYZER INNOVATION, COMING CLOSER TO THE NATURAL KIDNEY<sup>9,10</sup>

- High permeability to large-middle molecules
- Effective selectivity by size exclusion
- Enhanced convective transport through augmented internal filtration
- Effective retention of endotoxins equivalent to other dialysis membranes<sup>11</sup>

## CLINICAL AND PATIENT-REPORTED OUTCOMES

- While HDx therapy may offer the potential to improve access to care and to help improve the effectiveness and quality of care, it may simultaneously offer dialysis service providers and healthcare systems alike the opportunity to reduce the total cost of care, primarily driven by potential reduction of cardiovascular events, infections, medication usage, all-cause hospitalizations, hospitalization rate and length of stay<sup>6,12,13,14,15</sup>
- HDx therapy may improve patient-reported outcomes including symptom burden, restless leg syndrome (CRLS) criteria, pruritus, and dialysis recovery time<sup>14,16,17,18</sup>

# THERANOVA SPECIFICATIONS

| MATERIALS       | THERANOVA 400 | THERANOVA 500                                                                     |  |
|-----------------|---------------|-----------------------------------------------------------------------------------|--|
| Membrane        | Medium        | Medium Cut Off<br>Polyarylethersulfone and Polyvinylpyrrolidone blend<br>BPA-free |  |
|                 |               |                                                                                   |  |
| Potting         | Polyuretha    | Polyurethane (PUR)                                                                |  |
| Housing         | Polycarbo     | Polycarbonate (PC)                                                                |  |
| Gaskets         | Silicone ru   | Silicone rubber (SIR)                                                             |  |
| Protection caps | Polypropy     | Polypropylene (PP)                                                                |  |
| Sterilization   | Ste           | Steam                                                                             |  |
| Sterile barrier | Tyv           | Tyvek                                                                             |  |
| Sterite barrier | Tyv           | en                                                                                |  |

#### SPECIFICATIONS

| OI LOII IOAIIONO                           |                  |         |  |
|--------------------------------------------|------------------|---------|--|
| UF-Coefficient (mL/(h*mmHg))*              | 48               | 59      |  |
| KoA urea*                                  | 1482             | 1630    |  |
| Blood Compartment<br>volume (mL)           | 91               | 105     |  |
| Minimum recommended<br>priming volume (mL) | 300              |         |  |
| Maximum TMP (mmHg)                         | 600              |         |  |
| Q <sub>B</sub> (mL/min)                    | 200-600          | 200-600 |  |
| Storage conditions                         | <30°C (or <86°F) |         |  |
| Units per box                              | 24               |         |  |
| Gross/net weight (g)                       | 229/170          | 246/190 |  |
|                                            |                  |         |  |

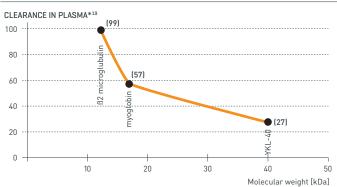
#### MEMBRANE

| Effective Membrane Area (m²)                            | 1.7         | 2.0 |
|---------------------------------------------------------|-------------|-----|
| Fiber inner diameter (µm)                               | 180         |     |
| Fiber wall thickness (µm)                               | 35          |     |
| Sieving profile<br>– before blood exposure <sup>9</sup> |             |     |
| MWCO (cut-off) [kDa]                                    | 56 +/-3     |     |
| MWRO (retention onset) [kDa]                            | 9.4 +/- 0.2 |     |

\* According to EN 1283/ISO 8637-1:

UF-Coefficient: measured with bovine blood, Hct 32%, Pct 60g/L, 37°C

KoA urea: calculated at  $\Omega_{g}$ =300 mL/min,  $\Omega_{o}$ =500mL/min, UF=0 mL/min – Sieving coefficients: measured with human plasma,  $\Omega_{g}$ =300 mL/min, UF=60 mL/min


Sleving coefficients: measured with numan plasma, Q<sub>B</sub>=300 mL/min, 0F=60 mL/r
Clearances Aqueous: measured at UF=0 mL/min, ±10% (±20% Cyt. C, ±30% Myo.)

#### SIEVING COEFFICIENT [%]<sup>20</sup>



YKL-40 = Chitnase-3-Like Protein 1

#### CLEARANCES IN VITRO



\*In Vitro Theranova 400\*\* analysis performed at: QB = 300 mL/min, QD = 500, UF =10 mL/min \*\* YKL-40 is referenced for both Theranova 400 and 500

| CLEARANCES IN AQUEOUS SOLUTION [mL/min]*               | THERANOVA 400 | THERANOVA 500 |
|--------------------------------------------------------|---------------|---------------|
| Urea (60 Da) (Q <sub>B</sub> -Q <sub>D</sub> , mL/min) |               |               |
| 200/500                                                | 198           | 199           |
| 300/500                                                | 282           | 285           |
| 400/500                                                | 344           | 351           |
| 400/800                                                | 376           | 381           |
| 500/800                                                | 445           | 454           |
| Phosphate (95 Da)                                      |               |               |
| 200/500                                                | 192           | 194           |
| 300/500                                                | 261           | 267           |
| 400/500                                                | 311           | 320           |
| 400/800                                                | 345           | 354           |
| 500/800                                                | 400           | 413           |
| Creatinine (113 Da)                                    |               |               |
| 200/500                                                | 194           | 196           |
| 300/500                                                | 269           | 274           |
| 400/500                                                | 323           | 331           |
| 400/800                                                | 357           | 365           |
| 500/800                                                | 416           | 428           |
| Vitamin B12 (1.4 kDa)                                  |               |               |
| 200/500                                                | 164           | 169           |
| 300/500                                                | 207           | 215           |
| 400/500                                                | 239           | 249           |
| 400/800                                                | 267           | 280           |
| 500/800                                                | 301           | 317           |
| Inulin (5.2 kDa)                                       |               |               |
| 200/500                                                | 133           | 139           |
| 300/500                                                | 161           | 170           |
| 400/500                                                | 183           | 193           |
| 400/800                                                | 204           | 216           |
| 500/800                                                | 225           | 241           |
| Cytochrome C (12 kDa)                                  |               |               |
| 200/500                                                | 122           | 128           |
| 300/500                                                | 146           | 155           |
| 400/500                                                | 165           | 175           |
| 400/800                                                | 183           | 196           |
| 500/800                                                | 202           | 217           |
| Myoglobin (17 kDa)                                     |               |               |
| 200/500                                                | 104           | 110           |
| 300/500                                                | 123           | 130           |
| 400/500                                                | 137           | 147           |
| 400/800                                                | 152           | 163           |
| 500/800                                                | 166           | 180           |

#### Theranova dialyzers are indicated for treatment of chronic and acute renal failure by Hemodialysis. For safe and proper use of the device, please refer to the Instructions for Use

Rosner M, Reis T, Husain-Syed, et al. Classification of Uremic Toxins and Their Role in Kidney Failure. *Clin J Am Soc Nephrol.* 2021;16(12):1918-1928.
Ronco C, et al. The rise of Expanded Hemodialysis. *Blood Purit.* 2017;44:1–VIII. Doi: 10.1159/000476012.
Hutchison CA, Wolley M. The Rationale for Expanded Hemodialysis Therapy (HDx). *Contrib Nephrol.* 2017; 191:142-52.
Kirsch AH, Lyko R, Nilsson LG, et al. Performance of hemodialysis with novel medium cut-off dialyzers. *Nephrol Dial Transpl.* 2017; 32(1):165-72.
Keiner DE, Falzon L, Skoufos L, et al. Efficacy and safety of expanded hemodialysis with the Theranova 400 dialyzer: a randomized controlled trial. *Clin J Am Soc Nephrol.* 2020; 15:1310-1319.
Molano-Trivino A, Sanabria M, Vesga J, Buitrago G, Sanchez R, Rivera A. Effectiveness of medium cut-off vs high flux dialyzers: a propensity score matching cohort study. *In Nephrol Dial Transport.* 2021;36:468-0948; i486-1487.
Baxter Data on File. Theranova Limited Controlled Distribution Report. 2016.
Baxter.Theranova 400/500 Instructions For Use. 2021; N50 648 rev 006.
Boschetti-de-Fierro A, Vudik H, et al. Medium cut-off membranes – closer to the natural kidney removal function. *Int J Artif Organs.* 2017; 40(7):328-334.
Scherpes E, Glorieux G, Eloot S, et al. Assessment of the association between increasing membrane pore size and endotoxin permeability using a novel experimental dialysis simulation set-up. *BMC Nephrology.* 2019;15(1):182-389.
Controlled trial of medium cut-off versus high-flux dialyzers on quality of Life outcomes in maintenance hemodialysis patients. *Sci Rep.* 2020;10(1):1-11.
Blackowicz MJ, Falzon L, Beck W, Tran H, Weiner DE. Economic evaluation of expanded hemodialysis with the Theranova 400 dialyzer: A post hoc evaluation of a randomized clinical trial in the United States. *Hemodialysis International.* 2022.
Churan

The products meet the applicable provisions of Annex I (Essential Requirements) and Annex II (Full quality assurance system of the Council Directive 93/42/EEC of 14 June 1993, amended by Directive 2007/47/EC)

Baxter, HDx, MC0, and Theranova are trademarks of Baxter International Inc. or its subsidiaries.

GBU-RC46-210017 v1.1 - May 2022

MANUFACTURER Gambro Dialysatoren GmbH Holger-Crafoord-Strasse 26 72379 Hechingen Germany

#### renalcare.baxter.com/therapies/hdx

Baxter Healthcare Corporation One Baxter Parkway Deerfield, IL 60015 USA 1-800-422-9837