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Parental Care
Patterns, Proximate and Ultimate 
Causes, and Consequences

Tina A. Barbasch, Ross DeAngelis, Justin Rhodes, and Peter M. Buston

15.1 � INTRODUCTION

Parents can go to incredible lengths to improve the sur-
vival of their offspring (Royle et al. 2014). Yet, care is often 
costly and given at the expense of other activities, such as 
foraging or territory defence, resulting in stark tradeoffs 
(Stearns 1989). The tradeoffs involved in parenting are 
particularly interesting in species with biparental care, as 
parents must not only assess their own condition, but also 
the motivations of their partner. Moreover, the proximate 
mechanisms underlying the expression of parental care can 
influence whether and how parents respond to the demands 
of parenting: selection for parental care can result in the 
evolution of mechanisms and ontogenies that facilitate plas-
ticity in parental care; however, both mechanistic and onto-
genetic causes can also impose constraints on how parents 
to respond to their environments (Sinervo and Svensson 
1998). Thus, there are several important questions con-
cerning parental care that arise: how do parents success-
fully raise offspring despite the demands, tradeoffs, and 
constraints involved in parenting? How do parents adjust 
their behavior in response to environmental changes? How 
do parents adjust their behavior in response to the behavior 
of their partner? And finally, how does the parental brain 
manage the multiple, often competing demands involved 
with parenting? Answering these questions is critical to 
understanding how much care offspring receive from their 
parents, which influences offspring fate and has ecological 
and evolutionary consequences for future generations.

Anemonefishes are an attractive system for studying 
parental care in part because their tractability allows for 
comprehensive studies of both proximate and ultimate 
causes in the lab and the field. While there is interspecific 

variation in anemonefish parental care (Allen 1972; Ghosh 
et al. 2012), the general pattern of care can be described as 
follows. Anemonefish live in social groups composed of a 
breeding pair and a small number of non-breeding subordi-
nates (see Chapter 14). The breeding pair lay eggs together 
up to three times per lunar month for many years (Buston 
and Elith 2011; Thomas and Prakash 2015; Seymour et al. 
2018; see Chapter 13). A few days before breeding, parents 
first clear a nest site on a hard substrate near the base of 
the anemone (Moyer and Bell 1976; Green and McCormick 
2005; Ghosh et al. 2012). Once a clutch is laid, both parents 
care for the eggs for six to nine days, during which time the 
male provides the majority of care (Green and McCormick 
2005; Ghosh et  al. 2012). Direct care takes the form of 
mouthing or nipping eggs, fanning the clutch, and defending 
against intruders and egg predators (Moyer and Bell 1976; 
Moyer 1980; Green and McCormick 2005), all of which 
collectively enhance embryo survival (Moyer and Sawyers 
1973; Ghosh et al. 2012). As embryos develop, parental care 
increases, which may reflect responsiveness to increased 
metabolic needs or increased reproductive value of older 
clutches (Green and McCormick 2005; Ghosh et al. 2012). 
On the night of hatching, parents provide additional care, 
which may serve to synchronize hatching and facilitate the 
transition of the benthic embryos to pelagic larvae (Moyer 
and Bell 1976; Ross 1978; Pacaro et al. 2022). Parental care 
ceases with hatching and the larvae disperse (Jones et al. 
2005; see Chapter 20) before setting into another anemone 
(Elliott et al. 1995; see Chapter 16).

Here, we review the most recent work on parental care in 
anemonefishes. We focus on the two species whose paren-
tal care has been studied most extensively in the last five 
years: the clown anemonefish Amphiprion percula and its 
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sister taxon, the false clown anemonefish Amphiprion ocel-
laris. First, tapping into the rich literature on phenotypic 
plasticity and animal personalities, we consider how par-
ents respond to changes in resource availability and social 
roles. Second, linking to recent theoretical advances in the 
study of parental care, we consider how parents respond to 
changes in each other’s behavior (i.e., how parents negoti-
ate care). Third, we discuss a rare and interesting form of 
parental care that occurs in anemonefishes as a byproduct 
of their social system: step-fathering. Fourth, we dive into 
the proximate mechanisms underlying parental care. This 
chapter complements chapters on reproduction (Chapter 
13) and dispersal (Chapter 20), revealing the central role 
that parents play in the life cycle and population dynamics 
of anemonefishes. Our goal is to provide the reader with a 
review of the most recent advances in anemonefish parental 
care research and highlight promising future directions.

15.2 � PLASTICITY AND PERSONALITY 
OF PARENTAL CARE

15.2.1 � Plasticity and Personality of Parental 
Care in Response to Changes in Resources

Plasticity, the capacity of individuals to respond to environ-
mental changes by modifying traits or behaviors, is critical to 
our understanding of whether and how populations can per-
sist under environmental change (West-Eberhard 2003). In 
the clown anemonefish Amphiprion percula, parental care is 
plastic in response to changes in resource availability, reflect-
ing the vital role of habitat quality on reproductive success. A 
field study revealed that in groups that occupied large anem-
ones and in groups supplemented with food, females laid 
more eggs and both males and females increased time spent 
tending to those eggs (Barbasch et  al. 2020). Additionally, 
there was support for a causal pathway linking anemone size 
and reproductive success through effects on egg-laying by 
females and parental care by males (Figure 15.1; Barbasch 
et al. 2020). Combined these results indicate that plasticity in 
reproduction and parental care in response to short- and long-
term changes in resource availability can generate among-
group variation in embryo survival and larval production 

(Box 15.1; Barbasch et  al. 2020). Troublingly, A. percula 
may be particularly susceptible to environmental degrada-
tion due to the strong effects of anemone quality on repro-
ductive success (Salles et al. 2016). Plasticity in reproduction 
and parental care, if adaptive, may allow parents to optimize 
reproductive output to take advantage of short-term increases 
in resource availability, while limiting investment in costly 
reproduction when resources are scarce. Therefore, plasticity 
provides some hope for the capacity for population persis-
tence in the face of their rapidly changing environment.

BOX 15.1: CONSEQUENCES OF 
VARIATION IN PARENTAL CARE

Parents play a pivotal role in offspring development, 
but not all parents are good parents. Variation in 
parental care, within and among individuals, may 
have cross-generational consequences by influencing 
the number and quality of offspring that survive and 
reproduce (Mousseau and Fox 1998). In anemone-
fishes, parental care is positively related to the num-
ber of offspring produced (larval number, Figure 15.1; 
Barbasch et al. 2020; also Ghosh et al. 2012), and the 
number of offspring produced is related to recruit-
ment success (Figure 15.1; Saenz-Agudelo et al. 2015). 
Whether parental care is also related to the quality of 
offspring produced is an outstanding question (lar-
val quality, Figure 15.1). In anemonefishes, larvae 
undergo a dispersal phase after which they attempt to 
recruit to an anemone – this is a phase during which 
the chances of success may be 1 in 10,000. The dis-
tance a larva disperses and whether it can recruit are 
major determinants of population connectivity and 
structure (see Chapters 17). Dispersal distance can 
be related to larval size and swimming performance 
(Leis 2007; Nanninga and Manica 2018; Majoris et al. 
2019), yet little is known about the role of parental 
care in generating variation in these traits (Figure 
15.1). Experimental tests of parental effects on larval 
size, swimming ability, and local recruitment, will 
provide new insights into the consequences of varia-
tion in parental care for population dynamics.

FIGURE 15.1  Parental care plays a central role in the population dynamics of anemonefishes. Hypothesized causal pathway showing 
the central role that parental care plays in linking anemone size to recruitment success in the clown anemonefish Amphiprion percula 
(adapted from Barbasch et al. 2020). Solid arrows represent relationships between habitat traits, fish traits, and reproduction which have 
empirical support in A. percula (see text); double-headed arrow represents a relationship between male and female care with no hypoth-
esized causal direction, and dashed arrows represent hypothesized relationships that remain untested in A. percula. The (+) indicates a 
positive association, the (–) a negative association, and the (?) an untested, hypothesized relationship.
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In addition to plasticity, individuals can exhibit “person-
alities”, consistent behavioral traits maintained across con-
texts. Plasticity might be favoured by selection if it allows 
for adaptive responses to environmental changes, but it is 
not immediately apparent why personality variation would 
be maintained by selection (Dingemanse and Wolf 2013; 
Alonzo 2015). In the clownfish Amphiprion percula and the 
false clownfish A. ocellaris, individuals differ from each 
other and are repeatable through time and across contexts 
in parental behaviors (DeAngelis et  al. 2017; Barbasch 
and Buston 2018), raising the question of why this varia-
tion exists. One adaptive explanation is that personalities 
can reflect stable among-individual differences in state 
(e.g., size, age, or physiological condition) (Dingemanse 
and Wolf 2010), which might exist in anemonefishes due to 
variation among groups in habitat quality. Larger or higher-
quality anemones result in resident fish that grow larger, 
reproduce more, and provide more care than residents of 
smaller or lower-quality anemones (Chausson et  al. 2018; 
Salles et  al. 2020; Barbasch et  al. 2020). Additionally, 
personality may be due to mechanistic constraints, for 
example, due to pleiotropy or limited ability to express the 
optimal phenotype across all environments (Alonzo 2015). 
One important future step in understanding why personali-
ties exist is to determine to what extent they are heritable, 
and if so, whether they are adaptive.

Plasticity and personality are not mutually exclusive, 
reflected in individual-by-environment interactions, IxE 
(Royle et al. 2014). It is not intuitive why this IxE variation 
exists – why would individuals respond differently to the 
same environmental changes? In A. percula, the average 
level of parental care increases in response to an increase 
in food availability, but individuals vary significantly in the 
magnitude and direction of this response (Barbasch and 
Buston 2018). One plausible adaptive explanation for an 
IxE interaction in anemonefish parental care centres around 
social contexts. Models reveal that consistent behavioral 
types may favour individuals that modify their behavior 
in response to their social partner, which selects for indi-
viduals that are consistent in their responses, resulting in 
co-existence of responsive and non-responsive individuals 
(Wolf et al. 2011). This model may help explain IxE varia-
tion in anemonefish, as parents must interact repeatedly 
to coordinate offspring care. Even if IxE variation is not 
heritable or adaptive, its existence can have consequences 
for populations, as IxE can theoretically stabilize popula-
tion-level responses to environmental changes simply due 
to the diversity of existing responses (West-Eberhard 2003; 
Dingemanse and Wolf 2013).

15.2.2 � Plasticity and Personality of Parental 
Care in Response to Sex Change

In addition to exhibiting plasticity of care in response to 
changes in ecological context (resource availability), anem-
onefishes also exhibit plasticity of care in response to 
changes in social roles (across sex change). Anemonefishes 
are protandrous hermaphrodites and individuals have 

the capacity to change sex from male to female (Chapter 
12). Therefore, any average differences between males 
and females in parental care reflect plasticity across sex 
change. Although A. percula and A. ocellaris males and 
females differ in their average level of care, representing 
within-individual plasticity (DeAngelis and Rhodes 2016; 
Barbasch and Buston 2018), parental care may also be cor-
related across sex change, such that males that provide a 
relatively high level of care also provide a relatively high 
level of care as a female, representing personality across 
sex change.

If male and female care optima differ, cross-sex correla-
tions, as might occur in Amphiprion, suggest that there may 
be some mechanistic constraint on the independent evo-
lution of male and female parenting behavior (Box 15.2). 
One hypothesis is that constraints on plasticity in the 
expression of isotocin and arginine vasotocin, which have 
antagonistic effects on parental care and territory defence 
(see “Mechanisms Underlying Parental Care”), could help 
explain variation among individuals in parental care. Future 
studies exploring the behavioral and molecular mecha-
nisms underlying how a single individual can rapidly and 
dramatically shift parental roles, as well as the constraints 
involved, will ultimately help us understand why individual 
variation in parental care exists.

BOX 15.2: FUNCTION OF FEMALE CARE

In A. percula, male care is a strong predictor of 
embryo survival (Figure 15.1; Barbasch and Buston 
2018; Barbasch et al. 2020); however, the function of 
female care is less clear. During the day, A. percula 
females spend time in proximity to the clutch (referred 
to as tending) but do very little mouthing and next to 
no fanning (Barbasch and Buston 2018). The amount 
of time a female spends tending is sensitive to food 
availability, suggesting that females may face a trad-
eoff between tending and other activities like forag-
ing (Barbasch and Buston 2018). If female tending 
does not enhance offspring survival, why do females 
engage in tending at all? One hypothesis is simply 
that we have not had the statistical power to detect an 
effect of female tending on embryo survival. An alter-
native hypothesis is that female tending has more to 
do with monitoring clutch development, in preparation 
for their involvement on the night of hatching (Pacaro 
2022). Another alternative is that female tending is 
indicative of her monitoring her partner’s efforts, as 
part of a negotiation over levels of care (Barbasch 
et  al. 2021). Finally, it’s also plausible that selection 
for male care is strong and selection against low lev-
els of female care is weak, meaning that female care 
may be a case of intergender hitchhiking (Clint et al. 
2012) in these sex-changing fish. Novel experiments 
manipulating levels of female tending are needed to 
understand the function of female care.
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15.3 � NEGOTIATIONS OVER CARE

In the previous section, we demonstrated that parents 
exhibit plasticity in response to changing ecological con-
ditions and social roles. However, anemonefishes are bipa-
rental, and thus A. percula parents are also faced with 
variation in the social environment created by interactions 
with their partner. In species with biparental care, conflict 
arises between parents because each parent benefits from 
shifting the burden of care to their partner. Theory predicts 
that parents should respond to each other to reach a negoti-
ated settlement over how much care each should provide 
(McNamara et al. 1999).

While the theory is sound, a test of a series of negotia-
tion models in A. percula revealed that no current models 
fully explain whether and how anemonefish parents negoti-
ate (Barbasch et  al. 2021). When one parent was experi-
mentally handicapped via fin clipping, the other parent 
seemingly did not respond: males tended just as much 
when the female was handicapped and females tended just 
as much when the male was handicapped. However, when 
one parent was handicapped, pairs did not face any con-
sequences in terms of larval production, suggesting that 
parents are fully compensating in some way for changes in 
their partner’s effort.

Apparent full compensation, as seen in A. percula, 
presents an evolutionary conundrum, because if parents 
are completely making up for reductions in their partner’s 
effort, one parent should cease care altogether, resulting in 
uniparental care as the evolutionary outcome (McNamara 
et  al. 1999). One explanation is that, in A. percula, there 
may not be sufficient conflict to be resolved by negotiation. 
Actual conflict might be low because ecological constraints 
and the social hierarchy within groups enforce coopera-
tion (Chapter 14; Rueger et al. 2018; Branconi et al. 2020). 
However, potential conflict still exists because the non-
breeding group members can rapidly replace either mem-
ber of the breeding pair, thus serving as future reproductive 
opportunities (Buston 2004a).

The role of conflict in negotiations could be tested by 
manipulating the presence/absence of non-breeders. Conflict 
should theoretically be greater in groups with non-breeders, 
which represent future mates for the breeding pair, than in 
groups without non-breeders (Buston 2004a; Chapter 14). If 
non-breeders were experimentally removed, parental inter-
ests would become strongly (if not fully) aligned, and thus 
full compensation for a reduction in partner effort makes 
sense. However, when non-breeders are present and one 
parent is experimentally handicapped, such generosity is 
not predicted. Both parents have other options, in the form 
of non-breeders, if their partner is unable to provide suf-
ficient care, therefore the predictions of negotiation models 
are expected to hold. Another potential explanation for full 
compensation in negotiations is that parental care was not 
sufficiently reduced to incite conflict between parents. This 
hypothesis could be tested using phenotypic engineering to 
manipulate parental care at the mechanistic level (Nugent 

et al. 2019), for example by administering an isotocin recep-
tor antagonist, which is known to reduce direct egg care in 
A. ocellaris males and females (DeAngelis et al. 2020; see 
“Mechanisms Underlying Parental Care”) and determining 
the consequences for parental interactions and fitness.

15.4 � STEP-FATHERING AND 
ALLOPARENTAL CARE

Another evolutionary conundrum arises with the exis-
tence of alloparental care, parental care directed towards 
non-descendant offspring, because the benefits of care are 
accrued by distantly related or unrelated individuals (Emlen 
1991; Wisenden 1999). Anemonefishes live in social groups 
composed of a breeding pair and a small number of non-
breeders, setting the stage for alloparental care (see Chapter 
14). However, unlike many other species that occur in such 
social groups, non-breeding subordinates do not participate 
in alloparental care when the parents are present (Buston 
2004b). In anemonefishes, group members are unrelated 
and thus do not benefit from alloparental care in the tra-
ditional way via kin selection (Buston et al. 2007). Yet, in 
some anemonefishes, when one or both parents are removed 
while eggs are in the nest, the non-breeder will provide care 
(Yanagisawa and Ochi 1986; Phillips et al. 2020).

Adaptive explanations for alloparental care look for ben-
efits, including from helping relatives, acquiring breeding 
experience, or improving the chance of inheriting territo-
ries (Emlen and Vehrencamp 1983; Balshine-Earn et  al. 
1998). One hypothesis for anemonefish alloparental care is 
that providing care may allow non-breeders to escape pun-
ishment by the female – indeed, in A. clarkii, when males 
were experimentally removed, females were observed head-
butting and nudging the non-breeder towards the clutch, 
and the non-breeder began caring for the eggs (Yanagisawa 
and Ochi 1986). Alloparental care may be a form of recip-
rocal altruism (Trivers 1971), such that dominants allow 
non-breeders access to shelter within the anemone, and 
non-breeders reciprocate by caring for eggs upon the death 
of a breeder. In this context, punishment by females may 
serve as retaliation against those who fail to care for her 
eggs. A second hypothesis is that alloparental care strength-
ens the pair bond and provides parenting experience for the 
mate replacement (Yanagisawa and Ochi 1986; Phillips 
et al. 2020). Indeed, breeding experience is associated with 
increased male care and embryo survival (Buston and Elith 
2011; Phillips et  al. 2020). A third hypothesis is that the 
non-breeder would benefit from care even with both par-
ents removed if the larvae produced were to return to their 
natal anemone and become rapid mate replacements. While 
returns to the natal anemone are rare, they do occur (Salles 
et  al. 2016) and may be more common when anemones 
are undersaturated due to the loss of both parents (Buston 
2003). Discriminating among these hypotheses will require 
a series of carefully designed field experiments.

Non-adaptive explanations for alloparental care propose 
that it represents misdirected care due to the inability to 
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discriminate kin from non-kin (Jamieson 1989). In the lab, 
even when both biological parents are removed, A. ocel-
laris non-breeders care for eggs (Phillips et al. 2020). Thus, 
adaptive explanations involving strengthening the pair bond 
or avoiding punishment are not sufficient to explain allopa-
rental care here (though the third adaptive hypothesis, that 
the non-breeders care for the eggs to rapidly produce a new 
mate for themselves, cannot be ruled out). Additionally, the 
solo non-breeder should theoretically benefit from investing 
in growth and development into a female, rather than gain-
ing experience as a male (Phillips et  al. 2020). The non-
adaptive explanation is that caring for unrelated eggs is a 
side effect of selection for caring for descendant eggs and is 
maintained because long-term monogamy results in a low 
probability of a male encountering unrelated eggs.

15.5 � MECHANISMS UNDERLYING 
PARENTAL CARE

The brain mechanisms responsible for parental care are 
evolutionarily ancient. All social behaviors are regulated by 
neuroendocrine axes which include a series of highly evolu-
tionarily conserved interconnected sub-cortical brain areas, 
endocrine glands, neuro-peptides, neurotransmitters, and sex 
steroid hormones (Dulac et al. 2014; Rogers and Bales 2019). 
However, parental care is usually studied in animal models 
where the females are the primary caregivers of the offspring 
(Dulac et al. 2014). As a consequence, our understanding of 
paternal care at the neuroendocrine level is lacking in com-
parison to maternal care. While many of the substrates that 
regulate paternal care are likely shared with maternal care, 
others may differ, as males and females have sex-specific 
behaviors and dramatically different circulating sex steroid 
hormone levels that affect physiology and behavior (Ball 
et al. 2002; Nelson 2005). Additionally, females are primed 
for parenting, as changes in physiology occur during egg 
development, while cues for males are more subtle.

Anemonefish present an ideal model system for uncov-
ering mechanisms of male parental (paternal) care. One of 
the challenges in identifying brain mechanisms of paternal 
care is isolating paternal care from the many other behav-
iors that males perform simultaneously such as territoriality 
and courtship (Kleszczyńska et al. 2012; O’Connell et al. 
2012). In many anemonefish species, due to high depen-
dence on host anemones for protection and consequently 
high social isolation from other groups, parental behav-
ior can be examined in isolation from other confounding 
displays (Deangelis and Rhodes 2016). Furthermore, as 
described earlier, male A. ocellaris display alloparental 
care, so the entire breeding cycle can be dissociated from 
the display of paternal behaviors when a male that has never 
parented before (or is not currently parenting) is presented 
with eggs and they begin to display the paternal behaviors 
(Phillips et al. 2020). In male anemonefish, the appearance 
of eggs presents a rapid shift in behavior from non-parent-
ing to parenting (Rogers and Bales 2019). This dramatic 
change in behavior must also be reflected within the brain.

Paternal care consists not of one single behavior but a 
suite of behaviors (see “Introduction”). In male false clown 
anemonefish (Amphiprion ocellaris), a father robustly cares 
for his offspring to promote egg development, yet when 
potential predators arrive, he must vigorously guard his 
nest against predation. Hence, fathers switch parenting tac-
tics from egg tending to egg guarding in the presence of 
predators as simultaneously competitive demands neces-
sitate parents to make prudent decisions (DeAngelis et al. 
2020). These decisions to display different forms of parent-
ing are reflected by distinct mechanisms within the brain.

Two well-known neuro-peptides involved in regulating a 
variety of social behaviors appear to play a critical role in 
dynamically regulating the switch between nurturing and 
aggressive defence tactics. These are isotocin (oxytocin is 
the mammalian homolog) and arginine vasotocin (arginine 
vasopressin is the mammalian homolog). These neuro-
peptides are small proteins produced by neurons which act 
as signalling molecules within the brain (O’Connell and 
Hofmann 2012). Cell bodies containing these neuro-pep-
tides reside in the preoptic area of the hypothalamus while 
receptors are laden throughout the brain in other evolution-
arily conserved brain areas involved in regulating social 
behavior. Oxytocin has been well described for its role in 
female reproduction and maternal behavior as its release at 
parturition serves as a catalyst for physiological and behav-
ioral changes (Insel 2010). While less studied in males, it 
likely also functions to promote paternal behavior (Figure 
15.2). Arginine vasopressin has been broadly implicated in 
male behaviors which promote reproduction but has con-
sistently been recognized as important for aggression in 
teleosts (Kleszczyńska et al. 2012; O’Connell and Hofmann 
2011; Yaeger et al. 2014).

In A. ocellaris, pharmacological blockade of arginine 
vasotocin (V1a) receptors and isotocin receptors affected 
parental behaviors in opposite ways (DeAngelis et al. 2017). 
As expected, a blockade of isotocin receptors reduced the 
amount of nipping and fanning of the eggs without altering 
the time spent in the nest compared to saline controls. This 
is consistent with other findings in teleost fishes showing 
that, like mammals, isotocin signalling is critical for high 
levels of parental care, regardless of which sex is the pri-
mary caregiver.

More intriguing was that blockade of arginine vasoto-
cin V1a receptors actually increased the amount of direct 
parental care. Given the known role of arginine vasotocin 
signalling in aggression in teleosts, one explanation is that 
vigilance was blocked, which then resulted in a greater 
amount of time allotted to egg care. To test this hypoth-
esis, a follow-up experiment was conducted, in which nest 
predators were introduced while concurrently adminis-
tering either isotocin receptor or arginine vasotocin V1a 
receptor antagonists to males actively fathering. Here, 
the isotocin receptor antagonist again reduced parental 
care but also increased aggression. Conversely, the V1a 
antagonist reduced aggression while increasing direct egg 
care (DeAngelis et  al. 2020). These results suggest that 
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arginine vasotocin and isotocin signalling pathways act 
competitively in the regulation of two components of male 
parental care: as isotocin is blocked, more effort is allot-
ted towards aggression versus egg nurturing, and vice versa 
when arginine vasotocin is blocked. These studies further 
suggest isotocin and arginine vasotocin act independently 
in the regulation of simultaneously occurring competitive 
demands of fathers providing offspring care, which can be 
both nurturing and aggressive in offspring defence, provid-
ing insight into how the paternal brain manages the trad-
eoffs involved in parenting.

Given the evidence cited above that isotocin has a direct 
role in promoting paternal care in anemonefish, males 
were predicted to display a greater expression of isotocin 
receptors in their brains than females (since males are the 
primary caregivers of the eggs). Furthermore, isotocin 
receptor expression should be upregulated during active 
parental care in both sexes as compared to when they are 
not directly caring for eggs. As predicted, males displayed 
greater isotocin receptor expression compared to females, 
while active parents, both males and females, displayed 
increased isotocin receptor gene expression in the brain 
compared to non-parental individuals (DeAngelis et  al. 
2018). This supports a growing body of evidence that iso-
tocin signalling in the brain is regulated not only by the 
synthesis and release of isotocin from neurons but also 
by the density and/or distribution of isotocin receptors in 
the brain. These results imply that as receptor numbers 
increase, the signalling efficiency of isotocin also increases, 
promoting parental behavior. While both parents showed 
increased isotocin receptor gene expression in the brain, 
the effect was particularly pronounced in males, consistent 
with the observation that males are the primary caregivers 
of the eggs.

Taken together, these studies suggest that the ancient 
evolutionarily conserved signalling pathways of vasoto-
cin and isotocin interact with steroid hormones to regulate 
parental behavior in anemonefish and likely across verte-
brates (DeAngelis et  al. 2017, 2018, 2020). However, the 
brain is a complex heterogeneous organ that operates on a 
scale from molecules, to cells, to neural circuits. Here, we 
have highlighted only a small portion of the mechanisms 
that likely orchestrate parental care and provide insight into 
future promising opportunities in this model system.

15.6 � CONCLUSIONS AND PROSPECTS

Anemonefishes have provided novel insights into the indi-
vidual, social, ecological, physiological, and evolutionary 
factors that influence patterns of care. Field and laboratory 
studies have uncovered variation within and among individ-
uals, populations, and species, yet little is known about why 
this variation exists and what its consequences are. Future 
studies focusing on proximate and ultimate explanations 
for this variation are now possible. Studies into the mecha-
nisms underlying care have identified the neural pathways 
and brain regions regulating parental care, and emerging 
genomic methods (see Chapter 5) have opened the way for 
experimental manipulations of parental care at the mecha-
nistic level. Targeted manipulations of parental care in both 
males and females present a powerful tool for answering 
many outstanding questions, such as whether and how par-
ents negotiate, what the function of female care is, if any, 
and what the consequences of variation in care are for both 
parents and offspring. Parental behaviors have been well-
described within some species (Green and McCormick 
2005; Ghosh et al. 2012; DeAngelis et al. 2017; Barbasch 
and Buston 2018), but interspecific variation in care has not 

FIGURE 15.2  Activation of preoptic area isotocin neurons in good fathers. A. Representative section through the preoptic area of a 
fathering male A. ocellaris showing immunofluorescent detection of isotocin (IT, top left), the phosphorylated ribosomal protein (rpS6; 
top right), DAPI (bottom left), and all combined (bottom right). Performed by author. B. Percentage of IT cells co-labelled with the 
rpS6 activation marker in “good” and “bad” fathers (see Section 15.5) and C. as a function of the number of eggs lost. Standard errors 
shown. * indicates statistically significant by Fisher exact test. Methods: sexually naïve males (n = 8) were given batches of eggs to 
step-father for 90 min. Total number of fans, nips, time in nest, and number of eggs at the beginning and end were recorded. The males 
were then euthanized by cervical transection and brains sectioned and stained for IT and rpS6. A total of 392 IT cells were identified 
in the eight fish and each IT cell was subsequently analyzed for co-expression of rpS6 by focusing through the cell on the z-axis. Good 
and bad fathers were identified by median split of a composite fathering score considering total number of paternal behaviors, time in 
nest, and number of eggs lost.
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been systematically studied. Our growing knowledge of 
the interspecific and intraspecific variation in ecology and 
social system as well as our understanding of phylogenetic 
relationships among species (Litsios et  al. 2014; Rolland 
et  al. 2018; see Chapter 3) allows for future comparative 
analyses of parental care. Finally, studies exploring parental 
effects on larval traits can help uncover the consequences of 
parental care for future generations.
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