
Procedural creation of corals using Lindenmayer systems and
OSL shaders in Blender Cycles
Course TNM084 - ’Procedural images’ at LiU

Samuel Svensson
samsv787@student.liu.se
Linköpings university
Norrköping, Sweden

ABSTRACT
This report describes the theory and process of implementing Lin-
denmayer systems (L-systems) and Open Shading Lanugage (OSL)
using the tool Blender to create realistic hard and soft corals in an
aesthetic way. The aim of the project is to combine several tools
in Blender together with OSL shading to produce a final underwa-
ter scene for displaying the procedurally generated structures and
shaders.

1 INTRODUCTION
Procedurally generating objects and patterns have since the early
80s been a way of creating something that is not specifically hand-
made (3D-modelling or texturing), but instead computed as a result
of an input to a mathematical function. Traditionally the CPU has
been used to generate terrain which is then rendered by the GPU.
This is usually very memory consuming and is not capable of pro-
ducing particularly interesting terrain since it is based on height
fields. However, it is possible to generate complex procedural ter-
rain quickly using the GPU by utilizing threading and operations on
the fragment (pixel) shader. The GPU allows parallell computations,
a high compute density and built-in hardware acceleration which
is useful for linear algebra calculations. [1]

The Lindenmayer systems are used to procedurally generate
hierchical structures using axioms and given rules which are then
iteratively applied to a mesh several times. The L-systems can be
used to create anything from a simple plant to a Mandelbrot fractal
system.

The Open shading language (OSL) was designed by Sony Image-
works engineers to compute photorealistic textures based on Pixar’s
RenderMan and has been used in many award-winning productions

[2]. Using a combination of surface and displacement shaders writ-
ten in OSL, this report will try to reproduce a high-quality scene of
corals to be used in the final render.

2 LINDENMAYER SYSTEMS
The hungarian biologist Aristid Lindenmayer devoted his life study-
ing multicelullar organisms such as plants. With his knowledge he
developed a type of formal language called Lindenmayer systems (L-
system) to model the behaviour of how plant cells grow. L-systems
can be used to model organic-like plants, trees and mandelbrot sets
to name a few examples. This is something that can be applied in
the computer graphics field where it is possible to create biological
structures rooted deep in the theory of algorithms.

Aristid later published his book "Algorithmic beauty of botany"
where he described in detail several geometric features such as
symmetrical leaf venation patterns, the rotational symmetry of
roses and the arrangements of scales in pine cones. This way of
describing something organic using mathematical algorithms is
something truly remarkable and serves as the main motivation for
this project.

2.1 Blender Animation Nodes
Blender is a free 3D software which can be used for f.e rigging,
animating, simulating and rendering. It is also open-source which
makes it possible for developers to create their own internal plugins
[10]. Animation Nodes by Jacques Lucke is a node-based visual
scripting system which offers L-system compabilities [11].

One of the main drawbacks of using this hierarchical system
is that the mesh has no self-awareness and will collide with itself.
For use in a 2D environment such as an image this effect is quite
forgiving since it might not be seen. In a 3D perspective, such as

1

Samuel Svensson

a real-time rendered videogame it might become a nuisance since
mesh clipping might occur.

When generating structures using L-systems a set of commands
which determine the spatial behavior of the Turtle (structure). The
symbol F represents a move forward motion with a set step size.
The step size is how far a single forward motion moves the turtle
in a given direction. Using the default 90 degree angle a single F
will move 1 step size upwards on the z-axis. By adding a + or - the
turtle will rotate either left or right by the given angle. It is also
possible to return to the previous position of the turtle by using [
and] which resembles a push/pop stack command.

The axiom (string) of characters gets rewritten on each iteration
according to given replacement rules. Assume the following axiom:

F + F (1)
with the rule (redefining the definition symbol F on each itera-

tion):
F = F − F (2)

After one iteration (generation) the following string would result
in:

F + F − F + F (3)

(a) Resulting Turtle, genera-
tion 1

(b) Resulting Turtle, genera-
tion 2

Some of the most basic commands used in the L-system context
are shown in table 1 below. The full list of commands can be seen
in Appendix A.1.

Table 1: Turtle interpretations of basic symbols

Symbol Interpretation

F Move forward and draw geometry
f Move forward without drawing geometry
[Branch start (push)
] Branch end (pop)
+ Rotate (90 degrees right)
- Rotate (90 degrees left)

2.2 Staghorn coral
The Staghorn Coral (Acropora cervicornis) is a type of hard coral
with stony, cylindrical branches and is mainly found through-out
the Caribbeans, South-east Asia and the Atlantic ocean. The height
of its branches are limited to wave strength and usually have white,
pointy ends. The texture of its surface is slightly rough with a

Figure 2: The Staghorn coral, photo by Paul Humann

yellowish or orange tint. To create a similar structure with L-system
we apply an Edge to Tube modifier to create a tube-like geometry
mesh around the generated path. We can then use the following
axiom:

[∼ A][∼ A] (4)
together with two defined rules A and B

A = [TF ∼ A[+AF [FB][FFB][FFFB]]] (5)

B = [∼ FFFB][∼ FFFB] (6)
Both axiom and the rules use the ∼ command which will for each
iteration generate new branches recursively with random angles.
It is then possible to generate the rest of the structure by using
a chain of rotations and pop/push commands together with our
newly defined rule recursively. These operations can be used to
create a staghorn coral structure with a similar spatial behavior.

(a) Generation 1 (b) Generation 2

(c) Generation 3 (d) Generation 6

2

Procedural rendering of corals using L-systems and OSL shaders

Since this generates a lot of vertices the generation index is kept
to a low number. This allows us to keep the vertex count low in the
rendered final scene.

3 OSL SHADING
The Open Shading Language (OSL) is designed for programming
shaders and was originally implemented by Sony Imageworks. It
has a similar syntax to C and it was originally made for the Arnold
renderer in 3DSMax but is also implemented for Blender since its
2.65 version release. For this project Blender’s physically based
path tracer render engine Cycles is going to be used. It is possi-
ble to create materials, lights, displacement or patterns using the
OSL language itself. To be able to create custom OSL scripts the
Experimental features setting must be turned on and it is currently
only possible to compile OSL code if the shader is rendered on the
CPU. Although Cycles has no real render-time displacement, the
experimental features setting will enable true displacement and
adaptive subdivision. This means that we are free to displace the
mesh with the use of noise functions to create realistic surfaces.

OSL is also different from other shading languages such as GLSL
because it does not have a light loop. This might make OSL more
limited but it allows for shader optimization and makes sure all
shaders can be importance sampled [6].

3.1 Staghorn coral
As mentioned before, the Staghorn has a rough surface with a
yellow or orange tint. It’s branches sprout out in seemingly random
directions, keeping a uniform thickness, except for the tips which
are pointy from water erosion.

It is worth mentioning that all shaders implemented all consist
of a simple diffuse shader for the color and a combination of noise
functions to displace the surface. These two properties are then
dragged into the material output node in Blender.

Because of the time constraints a very simple OSL shader was
implemented for the staghorn coral.

The diffuse BSDF outputs a color processed with the Oren Nayar
reflectance model. This model is often preferred for rough surfaces
in computer graphics rather than the Phong reflection model which
is primarily used for smooth surfaces. The Oren-Nayar modelled
surface consists of sets of facets with different slopes and is assumed
being Lambertian (Surface is equally bright from all directions). The
distribution of facets is often specified with the help of a Gaussian
distribution with the standard deviation being a measure of how
rough the surface will be. The normal and roughness amount is fed
into the model and is then multiplied to the output color.

Since most corals display a rough appearance (from water ero-
sion) in their surface this diffuse shader will be used throughout all
implemented OSL shaders.

shade r n o d e _ d i f f u s e _ b s d f (
c o l o r Co lor = c o l o r (0 . 5 0 , 0 . 0 8 5 , 0 . 0) ,
f l o a t Roughness = 0 . 0 ,
normal Normal = N ,
ou tpu t c l o s u r e c o l o r BSDF = 0)

{
BSDF = Color ∗ oren_nayar (Normal , Roughness) ;

}

The staghorn coral (and the other corals) all use a version of
signed Perlin-like gradient noise (named after professor Kenneth H.
Perlin) in the range [-1,1]. Noise in its most basic form is a function
which returns uncorrelated values in a seemingly random order
(but still deterministic).

To add distortion to the noise, a version of fractal noise is added
which is actually based on Perlin noise. It works by overlaying
layers of Perlin noise but with half as large and half as strong,
which is the equivalent of fractal noise with two octaves/iterations.

// "safe" Perlin (

f l o a t s a f e _ s n o i s e (v e c t o r 3 p)
{

f l o a t f = no i s e ("snoise" , p) ;
if (i s i n f (f))

return 0 . 0 ;
return f ;

}
// Random offset generation

v e c t o r 3 r andom_ve c t o r 3 _o f f s e t (f l o a t seed)
{

return v e c t o r 3 (1 0 0 . 0 + no i s e ("hash" , seed , 0 . 0) ∗ 1 0 0 . 0 ,
1 0 0 . 0 + no i s e ("hash" , seed , 1 . 0) ∗ 1 0 0 . 0 ,
1 0 0 . 0 + no i s e ("hash" , seed , 2 . 0) ∗ 1 0 0 . 0) ;

}
// Generate noise texture

f l o a t n o i s e _ t e x t u r e (v e c t o r 3 co , f l o a t d e t a i l ,
f l o a t d i s t o r t i o n)

{
v e c t o r 3 p = co ;
if (d i s t o r t i o n != 0 . 0) {

p += v e c t o r 3 (s a f e _ s n o i s e (p +
r andom_ve c t o r 3 _o f f s e t (0 . 0)) ∗ d i s t o r t i o n ,

s a f e _ s n o i s e (p +
r andom_ve c t o r 3 _o f f s e t (1 . 0)) ∗ d i s t o r t i o n ,

s a f e _ s n o i s e (p +
r andom_ve c t o r 3 _o f f s e t (2 . 0)) ∗ d i s t o r t i o n) ;

}
f l o a t v a l u e = f r a c t a l _ n o i s e (p , d e t a i l) ;
Co lor = c o l o r (va lue ,

f r a c t a l _ n o i s e (p +
r andom_ve c t o r 3 _o f f s e t (3 . 0) , d e t a i l) ,

f r a c t a l _ n o i s e (p +
r andom_ve c t o r 3 _o f f s e t (4 . 0) , d e t a i l)) ;

return va lue ;
}

The noise texture is then added to a shader with some parameters
to be able to easily adjust the appearance later on.

shade r No i s eTex tu r e (
v e c t o r 3 Vec to r = v e c t o r 3 (0 , 0 , 0) ,
f l o a t S c a l e = 5 . 0 ,
f l o a t D e t a i l = 1 6 . 0 ,
f l o a t D i s t o r t i o n = 5 . 0 ,
ou tpu t f l o a t Fac = 0 . 0)

{
v e c t o r 3 p = Vec to r ;

p ∗= S c a l e ;

Fac = n o i s e _ t e x t u r e (p , De t a i l , D i s t o r t i o n) ;
}

This noise shader is then fed into another shader which uses the
built-in transform function which allows us to transform normals
to different coordinate systems. In this instance we’re using it to

3

Samuel Svensson

transform the normals from common space to object space. We
then normalize and alter them according to the given parameters.
Afterwards we transform them to world space so that the material
output can calculate the final displacement on the mesh.
shade r node_d i sp l a c emen t (

f l o a t Height = 0 . 3 ,
f l o a t M id l e v e l = 0 . 5 ,
f l o a t S c a l e = 1 . 0 ,
normal Normal = N ,
ou tpu t v e c t o r D i sp l a cement = v e c t o r (0 . 0 , 0 . 0 , 0 . 0))

{
D i sp l acement = Normal ;
D i sp l acement = t r an s f o rm ("object" , D i sp l acement) ;
// Normalize

Disp l acement = no rma l i z e (D i sp l a cement)
∗ (He ight − Mid l e v e l) ∗ S c a l e ;

// Transform from object to world space

Disp l acement = t r an s f o rm ("object" , "world" ,
D i sp l acement) ;

}

The final rendered coral with its shader for this project can be seen
in Figure 4.

Figure 4: Rendered Staghorn coral

3.2 Leather coral
The Sarcophyton Alcyoniidae, or more commonly known as the
Leather coral has a very particular geometry which maximizes
surface area in a minimal space. The geometry consists of flared
mushroom-shaped top and protruding lobes or ridges. This coral
gets most of its energy from photosynthesis, where a high amount
of surface area is beneficial. This also helps to collect microscopic
organisms in a very efficient manner.

The geometry is very similar to hyperbolic planes in the mathe-
matical world. To create a similar geometry in Blender an add-on
was added, called Sverchok, which is a powerful parametric tool
for generating and constructing mathematically complex meshes.
We can then use a scripted Sverchok node and load the following
python-script made by the developer Elfnor which will generate a
hyperbolic surface [4].

A subdivision modifier and cloth modifier are applied to the
hyperbolic surface. A vertex group is selected in the middle of the
surface which are then used to pin the mesh such that the cloth
simulation does not affect these vertices. This results in the mesh

Figure 5: Leather coral, photo by Chaloklum Diving

folding itself over it when physics are applied. We can allow self-
collision to prevent mesh clipping and then connect a new OSL
shader. A solidifier modifier is applied to add thickness to the mesh
and specifically the rims for further realism.

(a) Regular hyperbolic plane
(b) Simulated hyperbolic
plane

The Leather coral shader is similarly to the Staghorn shader.
It uses a diffuse BSDF to output a yellow, and slightly greenish
color. Then the noise function from 3.1 is used to displace it further.
Arguably, the applied modifiers do most work here but the results
are rather convincing.

3.3 Stone Coral
To further experiment with different procedural functions another
coral was created. Unlike the previously produced corals, this one
was not based on a specific real life coral species. The shader setup is
sequential in the sense where the output of one noise function acts
as input into another. For sake of clarity, the noise functions were
separated into their own custom script nodes to help debugging
and add better flexibility when changing parameters. The stone
coral shader uses a combination of Musgrave, fractal and Voronoi
noise to achieve a circular appearance with jagged ridges.

The stone coral uses the same diffuse BSDF shader from 3.1 but
with a very different displacement.

The Musgrave noise function (named after Dr. F. Kenton Mus-
grave) evaluates Perlin noise and allows for greater flexibility in
how the octaves are combined. The type of Musgrave noise is
based on fractional Brownian Motion because of its homogenous
and isotropic properties.

Musgrave noise is quite similiar to fractal noise functions in
the sense that it continuously adds smaller and smaller detailed
noise to it. For each noise signal/wave we have octaves which gets

4

Procedural rendering of corals using L-systems and OSL shaders

compressed horizontally by reducing its wavelength by half at the
same time as its amplitude does exponentially. This is the purest
form of fBM [8]. This creates the self-similarity we can see in nature.
We also have two parameters, Lacunarity and Gain, which control
how small the next fractal iterations will be, as well as the intensity
of those sub patterns.

f l o a t noise_musgrave_fBm (v e c t o r 3 coord ,
f l o a t H, f l o a t l a c u n a r i t y , f l o a t o c t a v e s)
{

v e c t o r 3 p = coord ;
f l o a t v a l u e = 0 . 0 ;
f l o a t exp = 1 . 0 ;
f l o a t pwHL = pow (l a c u n a r i t y , −H) ;

for (i n t i = 0 ; i < (i n t) o c t a v e s ; i ++) {
v a l u e += s a f e _ s n o i s e (p) ∗ exp ;
exp ∗= pwHL ;
p ∗= l a c u n a r i t y ;

}

f l o a t rmd = o c t a v e s − f l o o r (o c t a v e s) ;
if (rmd != 0 . 0) {

v a l u e += rmd ∗ s a f e _ s n o i s e (p) ∗ exp ;
}

return va lue ;
}

shade r MusgraveNoise (
po i n t Vec to r = P ,
f l o a t MusgraveSca le = 1 0 . 0 ,
f l o a t MusgraveDe ta i l = 5 . 0 ,
f l o a t MusgraveDimension = 2 . 0 ,
f l o a t MusgraveLacunar i ty = 1 . 0 ,
ou tpu t f l o a t MusgraveFac = 0 . 0)

{

// Define properties

f l o a t d imens ion = max (MusgraveDimension ,
1e − 5) ;

f l o a t o c t a v e s = clamp (MusgraveDeta i l ,
0 . 0 , 1 6 . 0) ;

f l o a t l a c u n a r i t y = max (MusgraveLacunar i ty ,
1e − 5) ;

v e c t o r 3 s = Vec to r ;

v e c t o r 3 p = s ∗ MusgraveSca le ;
MusgraveFac = noise_musgrave_fBm (p , dimension ,

l a c u n a r i t y , o c t a v e s) ;
}

The MusgraveFac feeds into a noise function 3.1 and then we
introduce Voronoi noise (also known as cellular noise, named after
mathematician Georgy Voronoy) to the shader. Voronoi is based on
distance fields where we calculated the closest distance to a given
feature point in each cell as well as its position and color (F1) [9].
The Voronoi helps create the circular pattern we can see in the final
render where the feature points are the centroids. The Perlin noise
simply distorts the distances to create further randomness.

f l o a t v o r on o i _ d i s t a n c e (v e c t o r 3 a , v e c t o r 3 b)
{

// Euclidean distance

return d i s t a n c e (a , b) ;
}

// Voronoi Noise F1 3D

void vo rono i _ f 1_3d (
v e c t o r 3 coord ,
f l o a t randomness ,
ou tpu t f l o a t ou tD i s t ance ,
ou tpu t c o l o r outColor ,
ou tpu t v e c t o r 3 o u t P o s i t i o n)

{
v e c t o r 3 c e l l P o s i t i o n = f l o o r (coord) ;
v e c t o r 3 l o c a l P o s i t i o n = coord − c e l l P o s i t i o n ;

f l o a t minDis tance = 8 . 0 ;
v e c t o r 3 t a r g e t O f f s e t , t a r g e t P o s i t i o n ;
for (i n t k = −1; k <= 1 ; k++) {

for (i n t j = −1; j <= 1 ; j ++) {
for (i n t i = −1; i <= 1 ; i ++) {

v e c t o r 3 c e l l O f f s e t = v e c t o r 3 (i , j , k) ;
v e c t o r 3 p o i n t P o s i t i o n = c e l l O f f s e t +
h a s h _ v e c t o r 3 _ t o _ v e c t o r 3 (c e l l P o s i t i o n + c e l l O f f s e t)

∗ randomness ;
f l o a t d i s t a n c eToPo i n t = v o r ono i _ d i s t a n c e (p o i n t P o s i t i o n , l o c a l P o s i t i o n) ;
if (d i s t a n c eToPo i n t < minDis tance) {

t a r g e t O f f s e t = c e l l O f f s e t ;
minDis tance = d i s t a n c eToPo i n t ;
t a r g e t P o s i t i o n = p o i n t P o s i t i o n ;

}
}

}
}
o u tD i s t an c e = minDis tance ;
// Only output color used

ou tCo lo r = h a s h _ v e c t o r 3 _ t o _ c o l o r (c e l l P o s i t i o n + t a r g e t O f f s e t) ;
o u t P o s i t i o n = t a r g e t P o s i t i o n + c e l l P o s i t i o n ;

}

The color is then used as an input to the displacement code in
3.1 simililarly to the other implemented shaders. The final render
of the detailed surface shader can be seen in Figure 7.

Figure 7: Stone coral details

4 RESULTS
Three very visually different corals were created, the Staghorn
coral, the Leather coral and a generic stone coral. All three corals

5

Samuel Svensson

each have a surface shader written in OSL which consists of a
combination of different types of noise to either displace or modify
the color accordingly.

Figure 8: Final Staghorn coral

Figure 9: Final Leather coral

Figure 10: Final stone coral

4.1 Scene creation
Combining these procedurally generated and shaded corals we are
able to create a diverse underwater scene in Blender. To simulate
realism the camera’s depth of field were enabled together with
reflective caustics.

A plane simulating the water’s surface was created using the OSL
noise with a built-in transparent BSDF surface shader. A point light
was positioned above the camera with a relatively high strength.
Giving the transparent BSDF a high transmission value allows the
light rays to travel through the plane, thus simulating volumetric
lighting, also known as God rays. This is currently the only way to
create this effect in Blender.

Another plane was created and displaced with the before men-
tioned noise functions to create a sea floor. The plane was given
a simple diffuse shader with a yellow/beige tint with some added
roughness to resemble sand.

Figure 11: Displaced sea floor with low scaled noise

Several basic geometries were added to give the scene a more
natural look and provide space for the stone coral shader to be ren-
dered onto. Some of these rocks were as described before, displaced
planes using noise. These planes were given a bump map to further
increase realism.

Figure 12: Stone geometries added into the scene

The coral structures were placed at random locations to resemble
a coral reef environment.

6

Procedural rendering of corals using L-systems and OSL shaders

Figure 13: Corals structures in place

(a) Partly rendered image of
scene setup

(b) Scene setup with volumet-
rics

Figure 15: Final render of without volumetrics (water)

Figure 16: Final render of underwater scene

Below are two over-looking behind the scenes figures of how
the scene is arranged in the world.

Finally, the cameras y-position was keyframed and animated to
render a short 4 second video. The staghorn corals were also given
a wave modifier which animates the objects in world space by a
given speed during the animation to simulate currents affecting
them.

5 DISCUSSION
There are several different approaches that could have been made
to improve the corals. Regarding the staghorn coral I was never
able to create the pointy ends on each branch. Some experiments
were made to bevel the edges but since the L-system generates
connected tubes it was difficult to only apply a bevel effect to the
furthest branches. If the mesh was baked as a single mesh it might
have been possible to reduce the diameter depending on distance
from the closest branch, as well as the origin to the stalk. It was also
difficult to implement different colors depending on an individual
point displacement height. I would’ve preferred to have white ends
on the branches as well as on smaller bumps to resemble water
erosion.

Furthermore, the generation of the staghorn coral generated a
tremendous amount of vertices, especially when combined with
subdivision. This put a lot of stress on my machine which only has
16GB of RAM.

The staghorn corals are currently animated using the wave mod-
ifier which is a built-in tool which is very useful when you want
something animated quickly in a sine wave fashion. Another popu-
lar method would be to generate a texture of the final noise, apply
it to the mesh and then unwrap it to create a UV map. It is then
possible to animate the UV-coordinates in a shader such that it
looks like the mesh is moving.

One of the advantages of creating OSL shaders is that it can be
used universally in other advanced renderers. OSL can therefore
be shared and used in many different ways. It is commonly used
for creating VFX or feature film animation which makes it a useful
language to learn.

If performance is important, a more efficient noise type could be
used called Simplex noise. Simplex noise improves on some disad-
vantages Perlin noise has, like its inefficiency in higher dimensions
and directional artefacts. Although Simplex is a bit harder to imple-
ment, it might be beneficial to look further into it if computational
cost needs to be improved. Professor Stefan Gustavsson has written
a detailed paper on this [7].

6 FUTUREWORK
As mentioned in 5 there is a lot of room for improvement. A more
detailed staghorn shader with height-dependent colors and pointy
edges.

It would’ve been also interesting to experimentwith Boid-simulations
for fishes to swim around in schools. This might be more suitable
for a real-time rendering situtation and would require a radically
different approach regarding lighting, mesh sizes and volumetric
calculations.

7

Samuel Svensson

REFERENCES
[1] Greg Surma, Easy Filters - Intro to GPU Pixel Shaders, Towardsdatascience.com,

2019-09-01
https://towardsdatascience.com/easy-filters-intro-to-gpu-pixel-shaders-
156dac92b895

[2] Sony,Advanced shading language for production GI renderers, Sony Pictures Im-
ageworks
http://opensource.imageworks.com/?p=osl
https://github.com/imageworks/openshadinglanguage

[3] Aristid Lindenmayer Advanced shading language for production GI renderers,
http://algorithmicbotany.org/papers/abop/abop.pdf

[4] Elfnor Look, Think, Make,
https://github.com/elfnor/hyperbolic-coral

[5] Nortikin Sverchok Blender tool,
https://github.com/nortikin/sverchok

[6] Blender Open Shading Language,
https://docs.blender.org/manual/en/latest/render/shader-nodes/osl.html

[7] prof. Stefan Gustavsson, LiU Simplex noise demystified,
http://weber.itn.liu.se/ stegu76/TNM084-2019/simplexnoise.pdf

[8] Inigo Quilez Fractional Brownian Motion,
http://iquilezles.org/www/articles/fbm/fbm.htm

[9] Inigo Quilez Voronoi edges,
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

[10] Blender Foundation Home website,
https://www.blender.org/

[11] Jacques Lucke Animation Nodes,
https://github.com/JacquesLucke/animation-nodes

A APPENDICES
A.1 More turtle interpretations of symbols

Table 2: Turtle interpretations of symbols

Symbol Interpretation

F Move forward and draw geometry
f Move forward without drawing geometry
[Branch start (push)
] Branch end (pop)
+ Rotate (90 degrees right)
- Rotate (90 degrees left)
& Rotate (Pitch up)
∧ Rotate (Pitch down)
\ Rotate (Roll clockwise)
/ Rotate (Roll counter-clockwise)
∼ Rotate (Random angle)
" Scale (Step size)
! Scale (Width)
T Tropism (Gravity)

8

	Abstract
	1 Introduction
	2 Lindenmayer systems
	2.1 Blender Animation Nodes
	2.2 Staghorn coral

	3 OSL Shading
	3.1 Staghorn coral
	3.2 Leather coral
	3.3 Stone Coral

	4 Results
	4.1 Scene creation

	5 Discussion
	6 Future work
	References
	A Appendices
	A.1 More turtle interpretations of symbols

