The eye

(lens, vitreous body, chambers, accomodation)

Zsuzsanna Tóth, PhD Semmelweis University, Department of Anatomy, Histology- and Embryology

Parts of the eye

From prof. Ágoston Szél

Sagittal

Formation of the image

Bulbus oculi-decentralized optical system

Reduced eye: idealized model

F: focal point, P: principal point, N: nodal point

Optical axis (linea visus) : an imaginary line passing from the midpoint of the visual field to the fovea centralis.

Horizontal

Optical elements of the eye

N determines bending of light rays.

- Cornea: provides 80% of refracting power of the eye, air/cornea interface, tears!
- 2. Aqueous humor.
- Cristalline lens: provides 20% of refracting power
- 4. Vitreous body.

Refractive errors of the eye

myopia - nearsightedness

hypermetropia-farsightedness

Diopter (D, 1/m) = 1 / focal lenght (m)

Chambers of the eye, corneoscleral juntion

Camera anterior bulbi:

innermost surface of cornea (endothel), iris, lens in the pupil

• Spongiosa sclerae:

at the irido-corneal angle, spongy structure, a trabecular meshwork of connective tissue covered by <u>endothelial cells</u>, meridional muscles of the ciliary body partly originate here

- Torus sclerae (scleral spur):
 - a thickening of the sclera,
 - insertion point for the trabeculae,
 - place of origin for ciliary muscles and the pectinate ligaments of iris.
- Camera posterior bulbi:

behind the iris extending to the vitreous body, (corona ciliaris, fibrae zonulares, lens).

The chambers communicate.

Ciliary body

© Elsevier Ltd. Stevens & Lowe: Human Histology 3E www.studentconsult.com

Ciliary muscles:

- oblique(Brücke), radial, circular (Müller) muscles
- parasympathetically innervated,
- in mammals it is a smooth muscle
- melanocytes, elastic tissue
- role in accomodation and drainage of aqueous humor

Vascular layer:

- continous with the vascular lamina of the choroid,
- fenestrated capillaries
- production of aqueous humor

Epithelium:

- pars ciliaris retinae,
- double layered columnar cells
- secretion of aqueous humor

Epithelium ciliare – aqueous humor

Structure:

- typical of secretory epithelia
- basal laminas, tight junctions between NPE cells:

blood-aqueous barrier

Aqueous humor:

- an ultrafiltrate of blood,
- NaCl is actively secreted ,
- water follows the NaCl movement,
- maintains the intraocular pressure,
- provides nutrition for the cornea, lens, vitreous body, retina,
- relative composition to the plasma:
 lower protein and glucose content,
 higher amino acid, lactate, ascorbic acid content,
- there is a slight divergence of light rays passing from the cornea

Flow of the aqueous humor – conventional pathway

- The composition is changing during the flow (metabolic demands, waste).
- Dinamics of the production and the outflow rate has to be in balance to maintain the intraocular pressure.

Flow of the aqueous humor – non-conventional or uveoscleral outflow

- Not a distinct pathway, the aqueous humor leaves the anterior chamber through, around, and between tissues (ciliary body, sclera).
- Accounts for 30% of the total outflow at the age of 25-30, then it is less prominent.
- Prostaglandin analogues increase the uveoscleral outflow. Primary choice in the treatment for glaucoma!

Increase of the intraocular pressure- glaucoma

- optic nerve damage, irreversible blindness
- 70 million people worldwide

1. Primary, open-angle (chronic) glaucoma:

clogging of the drainage canals, develops slowly by age, symptoms and damage are usually not noticed in time, both eyes are affected.

2. Primary, angle-closure glaucoma (acute) glaucoma:

a sudden rise in intraocular pressure, anatomically narrow angle between the iris and cornea, closure happens for a stimulus that opens the pupil (eye drops, drugs, darkness), immediate medical attention is needed, runs in families, one eye is affected usually.

- **3.** Congenital glaucoma: incorrect development of the eye.
- 4. Secondary glaucoma: trauma, inflammation, steroid treatment

Acute glaucoma

Lens crystallina

- Elastic, biconvex elliptical structure.
- Continues to grow throughout a person's lifetime.
- Avascular.
- Held in place by the zonular fibers.
- Becomes more rigid by age-presbiopia.

Lens development I.

OV: optic vesilcle, LP: lens placode Ple: presumptive lens epithelium LV: lens vesicle

Lens development II.

 matured fibers (inner core or nucleus)

Structure of the lens

- continous growing,
- fibers have nuclei only in the cortex,
- Secondary fibers are not long enough:
 - \rightarrow elliptical shape
 - \rightarrow lens sutures

Lens sutures:

- anterior and posterior radi lentis,
- ends of the opposite side fibers interdigitate,
- resemble a the letter "Y" in embryonic lenses ,
- becomes increasingly complex later

Lens-histology

- Lens capsule:

- anteriorly it is thicher till the equator
- produced by the lens epithelium,
- a thick basal lamina (10-20μm),
- collagen IV, proteoglicans, fibronecin, laminin,
- zonular fibers are inserted to it

epithelium anterius-lens epithelium:

- a single layer of cuboidal cells on the anterior surface
- apical surfaces are in connection with the lens fibers
- germinative zone at the equator-lifetime

fibrae lentis-lens fibers:

- 7-10 mm long, develop from epithelial cells
- primary or secondary
- densely packed concentric lamellae "onion like"
- cell organells only in younger fibers in the outher cortex,
- cytoplasm is filled with crystallins (α , β , γ , 90%)

Optical aberrations

Corrections:

- 1. The pupil covers the edges of the lens (average pupil size: 4mm, lens diameter: 9mm).
- 2. Crystallins increase the refractive index of the lens and have a decreasing concentration gradient from the centrum to the perifery. The lens has a variable refractive index.

Laser polarimetry of the refractive plane

Cataract

cataracta=water fall (greek)

- lens of the eye becomes darkened or opaque
- after 60 it has an increasing prevalence
- crystallins aggregate, ion and water concentrations change
- risk factors: diabetes, UV exposure, steroid treatment, family history
- surgical replacment with plastic lens

Accomodation

ACCOMMODATION IN THE NORMAL EYE

Corpus vitreum-Vitreous body

Development of the eye, 6th week

- Occupies the vitreous chamber behind the lens.
- Jelly like, transparent:
- 98% water (humor vitreus) and hyaluronate,
- 2% stroma vitreum collagen.
- Membrana hyaloidea: anteriorly only, hyalocytes-hyaluronate and collagen production.
- Canalis hyaloideus: developmental remnant- hyaloid artery.
- Floaters: dark moving spots in the field of vision. Inhomegenities in the vitreous body.

Picasso: Eyes

Dali: Eye