Übung Nr. 4 zur Vorlesung Einführung in die Numerik, Winter 2012/13

Aufgabe 4.1: (Experimentelle Konvergenzraten) Gegeben seien die Zahlenfolgen

h	a_h	b_h	c_h
1/2	1.07627	1.70051	0.429204
1/4	0.604185	1.71382	0.00455975
1/8	0.320317	1.71716	1.68691e-05
1/16	0.164945	1.71800	1.62880e-08
1/32	0.0836993	1.71821	3.96572e-12
1/64	0.0421601	1.71826	2.22045e-16
1/128	0.0211582	1.71828	

Die Konvergenzordnung einer Folge $x_h \to 0$ sei die größte Zahl ϱ so dass $x_h = \mathcal{O}(h^\varrho)$ gilt. Sie kann berechnet werden als

$$\varrho = \frac{1}{\log 2} \lim_{h \to 0} \log \left| \frac{x_h}{x_{\frac{h}{2}}} \right|.$$

- (a) Bestimmen Sie eine Approximation der Konvergenzordnung ϱ für a_h . Welche Zeilen der Tabelle benutzen sie dazu am besten? Wie verifizieren Sie Ihr Ergebnis?
- (b) Sei $b = \lim_{h\to 0} b_h$. Bestimmen Sie ohne b zu kennen die "intrinsische" Konvergenzordnung der Folge $b-b_h$. Nutzen Sie dazu die Darstellung $b-b_h=b-b_{h/2}+b_{h/2}-b_h$ und ggf. Eigenschaften der geometrischen Reihe, um die Formel

$$\varrho \approx \frac{1}{\log 2} \log \left| \frac{b_h - b_{\frac{h}{2}}}{b_{\frac{h}{2}} - b_{\frac{h}{4}}} \right|$$

zu rechtfertigen.

(c) Kommentieren Sie die Frage der Konvergenzordnung der Folge c_n

Aufgabe 4.2: (Orthogonale Polynome II)

- (a) Sei w(x) eine nicht-negative Funktion auf \mathbb{R} , die zumindest auf einem Intervall echt positiv ist. Verifizieren Sie mit Blick auf den letzten Aufgabenzettel, dass durch die Form $\langle p,q\rangle_w:=\int_{\mathbb{R}}w(x)p(x)q(x)\,dx$ ein Skalarprodukt auf \mathcal{P}_n definiert wird.
- (b) Es sei durch $\{p_1, \ldots, p_n\}$ eine Basis von \mathcal{P}_n gegeben. Man zeige, dass durch den *Gram-Schmidt-Algorithmus*:

$$w_1 := \frac{p_1}{\|p_1\|_w},$$

$$v_k := p_k - \sum_{i=1}^{k-1} \langle p_k, w_i \rangle_w w_i, \qquad w_k := \frac{v_k}{\|v_k\|_w}, \quad k = 2, \dots, n,$$

eine Orthonormalbasis $\{w_1, \dots, w_n\}$ des Raums \mathcal{P}_n erzeugt wird. Hierbei ist $\langle ., . \rangle_w$ ein beliebiges Skalarprodukt und $||v||_w = \sqrt{\langle v, v \rangle_w}$.

Aufgabe 4.3: (Orthogonale Polynome III)

(a) Zeigen Sie, dass durch die Rekursionsformel

$$p_{-1}(x) = 0$$

$$p_0(x) = 1$$

$$p_{k+1}(x) = (x - a_k)p_k(x) - b_k p_{k-1}(x) \quad k = 0, 1, \dots$$

mit Koeffizienten

$$a_k = \frac{\langle tp_k, p_k \rangle}{\langle p_k, p_k \rangle}$$
$$b_k = \frac{\langle tp_k, p_{k-1} \rangle}{\langle p_{k-1}, p_{k-1} \rangle}$$

eine Folge orthogonaler Polynome bezüglich des Skalarprodukts $\langle \cdot, \cdot \rangle$ für $k=0,1,\ldots$ definiert wird, die die Zusatzbedingung $p_k \in \mathcal{P}_k$ erfüllen.

(b) Verifizieren Sie die Behauptung aus der Vorlesung, dass $\langle p_{k+1}, q \rangle = 0$ für alle $q \in \mathcal{P}_k$.

Aufgabe 4.4: (Zusatzaufgabe) Benutzen Sie Romberg-Quadratur für die summierte Trapezregel mit Schrittweiten h=(b-a)/n und h/2 zur Approximation des Integrals $I(f)=\int_a^b f(x)\,dx$. Zeigen Sie, dass das Ergebnis gleich dem der summierten Simpsonregel mit Schrittweite h ist.