2.7 Achromatism

Since achromatism is a first-order property, achromatic balance can be determined through the application of thin-lens equations.

2.7.1 Primary achromatism

For a series of thin lenses in close contact, the longitudinal chromatic aberration is given by

$$\Delta l = -f^2 \left(\frac{\Phi_1}{V_1} + \frac{\Phi_2}{V_2} \right)$$
 (2.20)

for a thin-lens doublet where

and

$$V = \frac{\left(n_M - 1\right)}{\left(n_S - n_L\right)},\tag{2.21}$$

$$\Phi = 1/f, \qquad (2.22)$$

and n_{M} , n_{s} , and n_{L} are the mid-, short-, and long-wavelength indices of refraction. For a thin-lens achromatic doublet, two wavelengths will come to focus when

$$f_{a} = f\left(\frac{V_{a} - V_{b}}{V_{a}}\right)$$
$$f_{b} = \int \left(\frac{V_{b} - V_{a}}{V_{b}}\right).$$
(2.23)

To make a positive achromat, combine a positive low-dispersion element with a negative high-dispersion element:

3 to 5 µm:	silicon is low dispersion ($V = 250$)
	germanium is high dispersion ($V = 107$)
	$f = 100: f_a = 57.2, f_b = -133.6$
8 to 12 µm:	germanium is low dispersion ($V = 1073$)
	zinc selenide is high dispersion ($V = 58$)
	$f = 100: f_a = 94.6, f_b = -1750.$