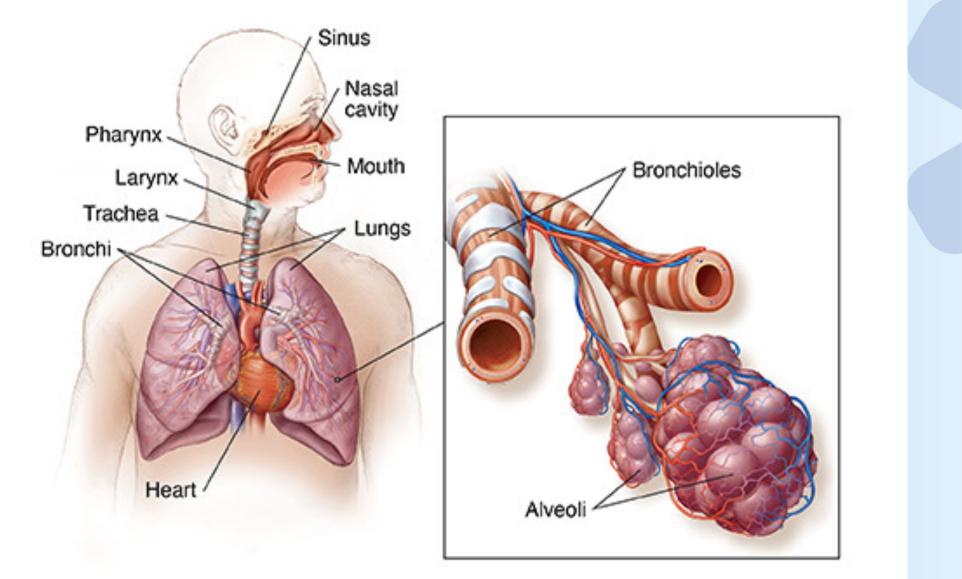
Restrictive and obstructive lung disorders

By Maria W. Lied

Content


1. Properties of the lung volumes

- \rightarrow Principe of V/Q
- \rightarrow Lung volumes

2. Obstructive lung disorders

- \rightarrow Asthma
- \rightarrow COPD
- 3. Restrictive lung disorders
 - \rightarrow Idiopathic pulmonary fibrosis
 - \rightarrow Exposure-related restrictive lung diseases
 - \rightarrow Sarcoidosis

Ventilation and perfusion Definition

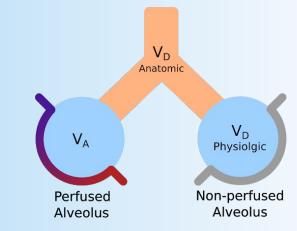
Ventilation (V)

The movement of air between the atmosphere and the lungs

$$\frac{V}{Q}$$
 ratio

Perfusion (Q) The delivery of blood to the alveoli

Diffusion


Gas exchange

↓V/Q

↑V/Q

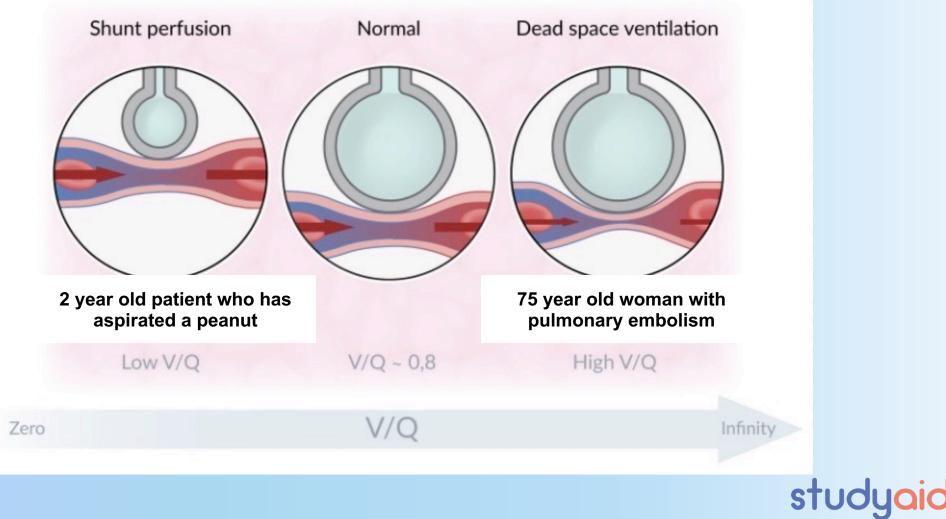
Dead space

Anatomic dead space

The parts of the respiratory system that conduct air but do not participate in gas exchange

Physiologic dead space

The volume of inspired air that does not participate in gas exchange


Physiologic conditions

Physiologic dead space = anatomic dead space

Pathologic conditions Physiologic dead space > anatomic dead space → V/Q mismatch

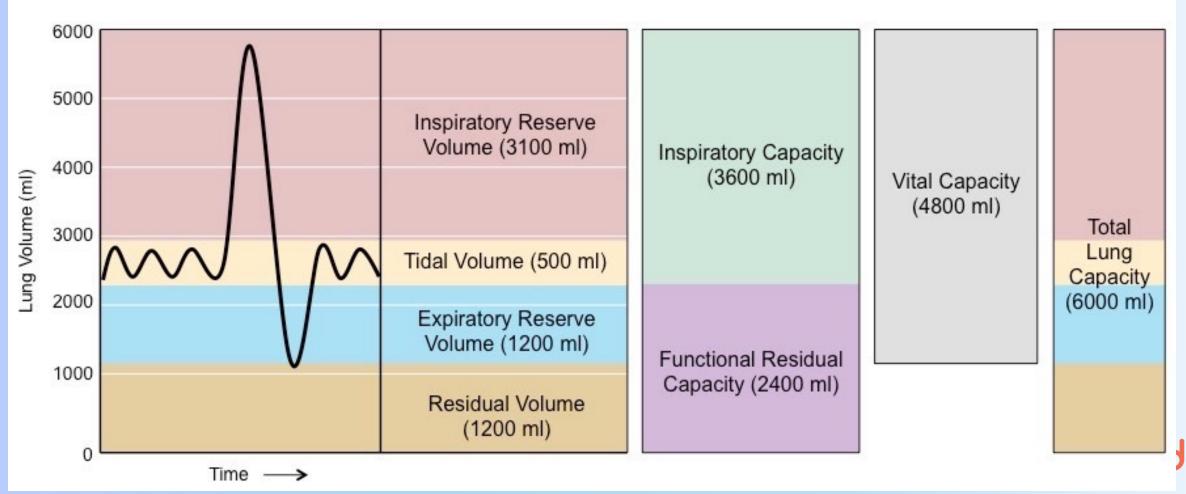
Ventilation/perfusion mismatch

Spirometry

Forced vital capacity (FVC)

 \rightarrow Maximum amount of air a person can inhale after a forceful exhalation.

Functional residual capacity (FRC)


ightarrow Volume remaining in the lungs after a normal, passive exhalation

Total lung capacity (TLC)

 \rightarrow Volume of air of inhalation and exhalation under volunteer and unvolunteered activity

$\boldsymbol{\mathsf{FEV}}_1$

 \rightarrow Proportion of a person's vital capacity that they can expire within the first second of forced expiration.

Obstructive lung disorder

Increased resistance to airflow caused by narrowing/obstruction of airways.

= makes it harder to breathe out

Restrictive lung disorder

Imparied ability for the lungs to expand.

= makes it harder to breathe in

Content

- 1. Properties of the lung volumes
- \rightarrow Principe of V/Q
- \longrightarrow Lung volumes
- 2. Obstructive lung disorders
 - \rightarrow Asthma
 - \rightarrow COPD
- 3. Restrictive lung disorders
 - \rightarrow Idiopathic pulmonary fibrosis
 - \rightarrow Exposure-related restrictive lung diseases
 - \rightarrow Sarcoidosis

Obstructive lung disorders

 \rightarrow ASTHMA \rightarrow COPD

Asthma

The most common chronic disorder of childhood

Persistent, dry cough

Weezing on expiration 🔀

Difficulty to breathe

- \rightarrow Upper respiratory tract infections
- ightarrow In relation to physical activity

Allergic asthma

- Child
- Eczema
- Family history
- <u>Responsive</u> to ICS

Non-allergic asthma

- Adult
- Smoker
- Construction worker living in cities with bad air quality
- Obese
- Stress
- <u>Not responsive</u> to ICS
- *ICS = inhaled corticosteroids

Pathomorphology note: The mucus of an asthmatic patient contain: Curschmann spirals

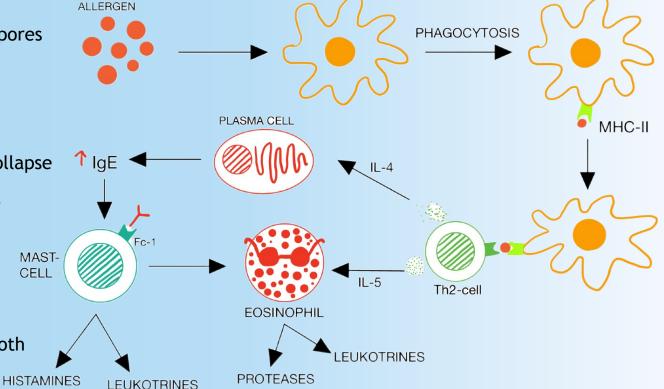
Charcot-Leyden crystals

Pathogenesis of allergic asthma

A type 1 hypersensitivity reaction (IgE)

1. Bronchial hyperresponsiveness

Triggered by inhalation of an antigen: dust, pollen, pet hair, mold spores Lead to activation of Th_2 -cells which cause release of cytokines

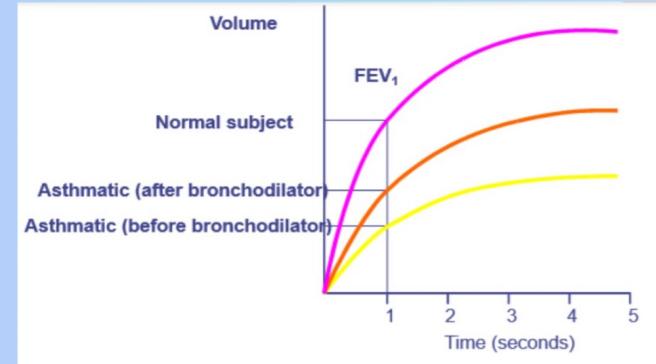

2. Bronchial inflammation

- Edema of bronchioles & smooth muscle contraction \rightarrow bronchial collapse

- Increased mucus production

3. Endobronchial obstruction

Trouble breathing Out = obstructive lung disorder Bronchospasm, increased mucus production and hypertrophy of smooth muscle cells \rightarrow REVERSIBLE



Chronic hypertrophy of smooth muscle cells can lead to fibrosis of lung tissue \rightarrow IRREVERSIBLE

Diagnosis

- Typical clinical features of asthma
- Demonstration of reversible bronchial obstruction
 With the use of bronchodilators.
 Significant improvement: >12% improvement of FEV₁

Asthma can also be partly diagnosed based on measurements of nitric oxide exhaled. Epithelial cells in inflammation of airways produce NO ;))

Chronic obstructive pulmonary disorder

COPD

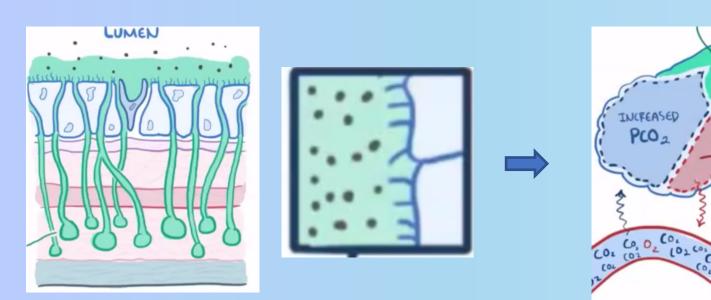
 \rightarrow Bronchitis \rightarrow Emphysema

Key facts about COPD

- Divided into chronic bronchitis and emphysema.
- Third leading cause of death.
- Characterized by <u>irreversible</u> airflow obstruction due to chronic inflammation of the small airways and parenchymal destruction.

Risk factors:

- Smoking (90%)
- Air pollution
- Upper respiratory tract infections
- α-1 antitrypsin deficiency (emphysema)

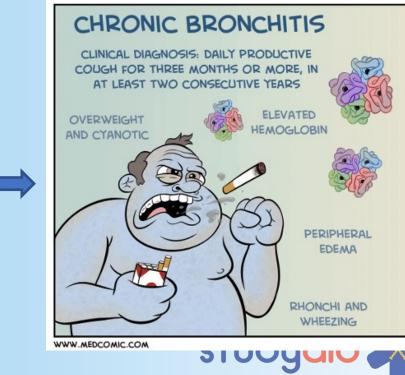

UWAGA: Patients usually present with both chronic bronchitis AND emphysema, the distinction of the 2 diseases is mainly for exams 😔

Pathogenesis - chronic bronchitis

- 1. Long-time exposure of irritant
- 2. Hyperplasia and hypertrophy of mucus glands

Bronchial mucus cells in bronchi Goblet cells in bronchioles

3. CO₂ build up


4. Hypercapnia and hypoxemia

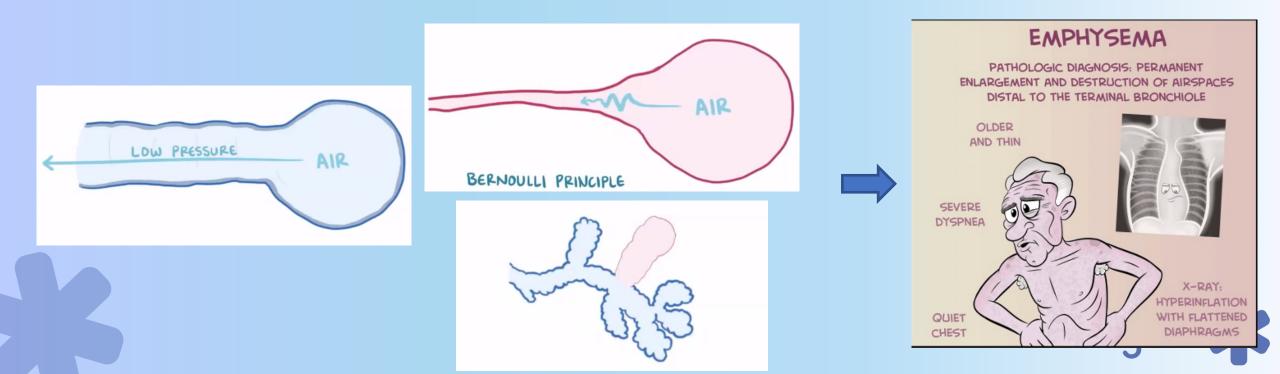
Hypercapnia: An elevation in arterial CO₂-levels

Hypoxemia: The below-normal level of oxygen in your blood, specially in arteries.

"The blue bloater"

PO,

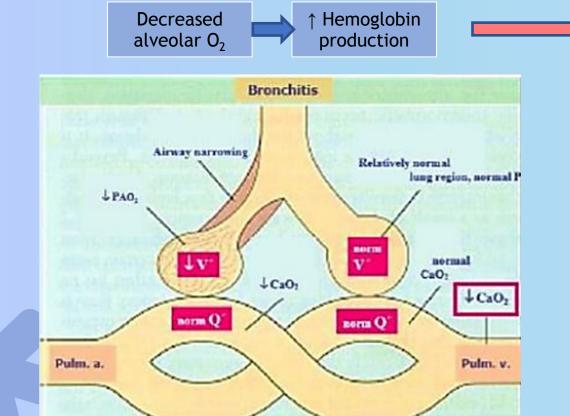
Pathogenesis - Emphysema


1. Long-time exposure to irritants

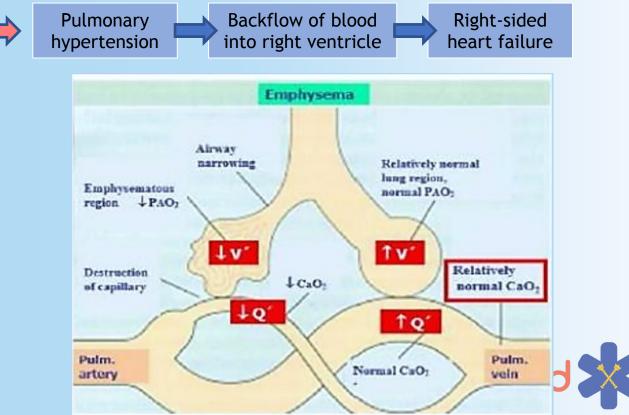
2. Hypersensitivity reaction

Activation of neutrophils Release of proteases (elastase) *Conversional and Conversional Activity Conversion and Conversional Activity and Conversional Ac*

4. Airways collapse during ventilation


Causes "air trapping" "The pink puffer"

Summary


Chronic bronchitis Cyanotic

Decreased alveolar O_2 , but with normal perfusion causes decreased systemic O_2 .

Emphysema Non-cyanotic

Destruction of vessels causes a shunt towards functioning alveoli/ parts of the lungs.

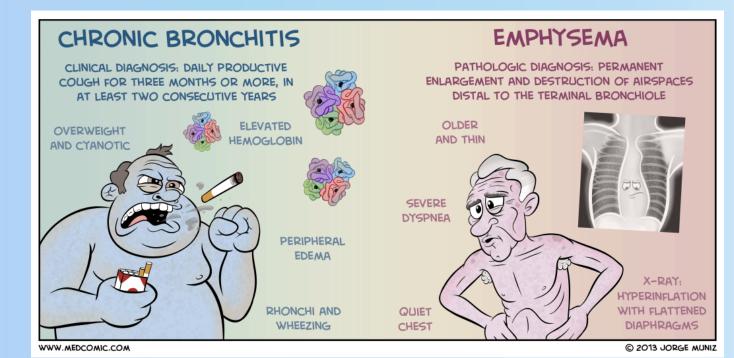
Chronic bronchitis "The blue bloater"

Defined by clinical presentation:

Productive cough for at least 3 months over 2 consecutive years

Clinical signs and symptoms:

- Productive cough
- Cyanotic
- Wheezing/crackles on inspiration
- Overweight/peripheral edema
- Increased hemoglobin-levels
- Dyspnea

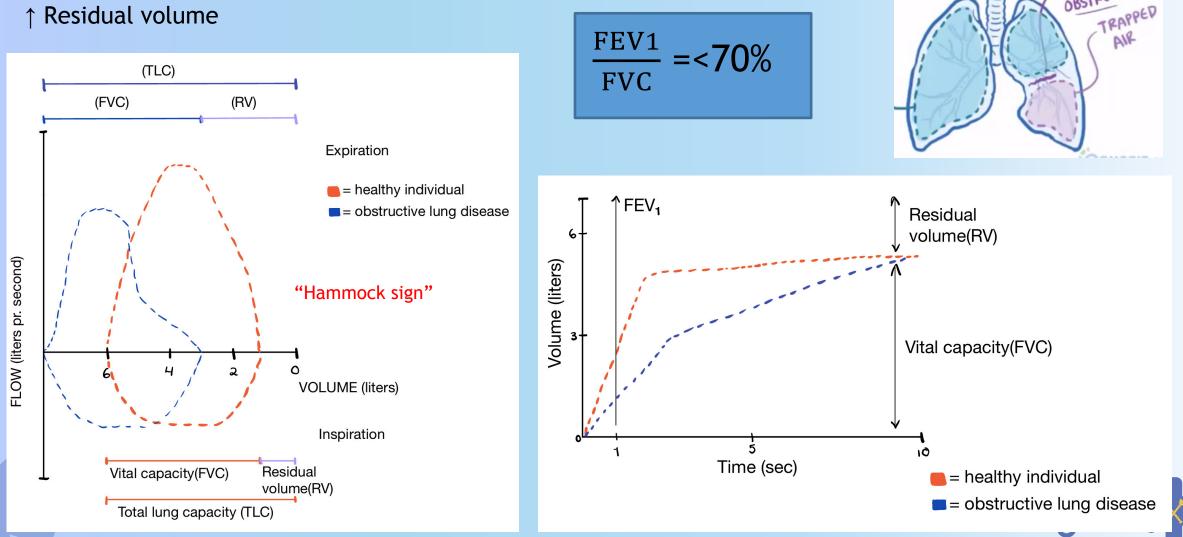

Emphysema "The pink puffer"

Defined by structural presentation:

Permanent enlargement and destruction of pulmonary airways distally to the terminal bronchioles

Clinical signs and symptoms:

- Dyspnea
- Acyanotic, but pink skin
- Huge "Barrel chest"
- Skinny
- Pursed lip breathing



Pulmonary function test - characteristics

AIRWAY OBSTRUCTED

- ↑ Total lung capacity
- **Residual volume** ↑

Content

- 1. Properties of the lung volumes
- \rightarrow Principe of V/Q
- —→ Lung volumes
- 2. Obstructive lung disorders
- —→ Asthma
- $\rightarrow \text{COPD}$
- 3. Restrictive lung disorders
 - \rightarrow Idiopathic pulmonary fibrosis
 - \rightarrow Exposure-related restrictive lung diseases
 - \rightarrow Sarcoidosis

10 minute break

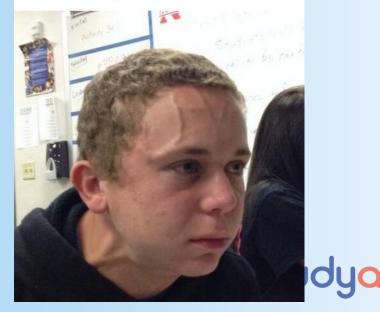
Restrictive lung disorders

→ Idiopathic pulmonary fibrosis
 → Exposure-related restrictive lung disorders
 → Sarcoidosis

Idiopathic pulmonary fibrosis

Symptoms:

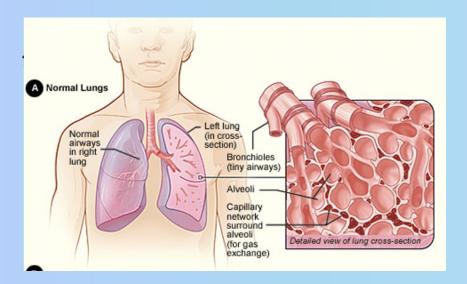
Progressive disorder - <u>symptoms worsen over</u> <u>time</u>

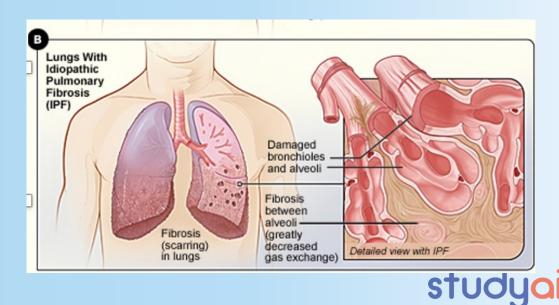

- Coughing
- Shortness of breath
- Cyanosis
- Digital clubbing
- Acid reflux/GERD
- Over time: Significant respiratory failure lungs loose functional tissue

Risk factors:

- Being male
- Old age
- Cigarette smoking

Me holding my breath when passing a smoker to not die of second hand smoking:

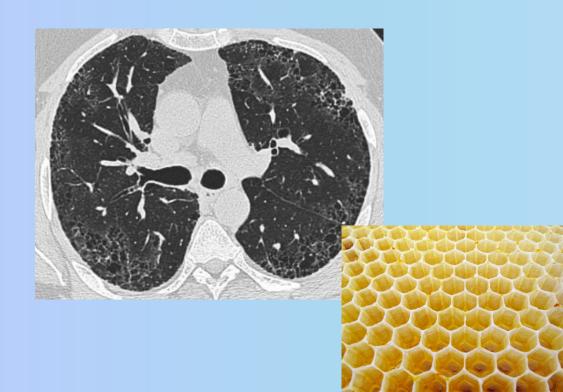

Pathogenesis of IPF


- 1. Damage to alveolar membrane Type 1-cells release TGFB-1
- 2. Type 1-cells stimulate type 2cells

Type 2 cells starts to proliferate uncontrollably Type 2 cells stimulate production of fibroblast 3. Uncontrollable production of fibroblast

Fibroblast produce reticular fibers and elastic fibers

4. Thickening of interstitial layer Too much reticular fibers and elastic fibers lead to "stiff" lung, with no compliance



Diagnosis and treatment

- "Honeycomb appearance"
- Thickening of interstitial walls

- Supplemental oxygen
- Antifibrotic medication
- Treat symptoms Acid reflux: Proton-pump inhibitors Hydrokodon: Cough
- Lung transplant

 \rightarrow Only slows progression, does not stop the disease

Hypersensitivity pneumonitis

- Farmers lung Inhalation of actinomyces in hay
- Pigeon breeders lung Inhalation of proteins in bird poop or feathers
- Chemical worker`s lung

Symptoms:

Acute- type:

- Fever
- Shortness of breath
- Chest tightness
- Headaches

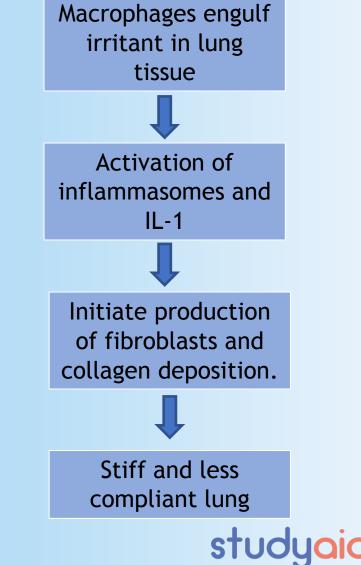
Chronic- type:

 Sustained shortness of breath

Pneumoconiosis

Exposure related restrictive lung disorder

• Asbestosis


Caused by inhalation of asbestos

Silicosis

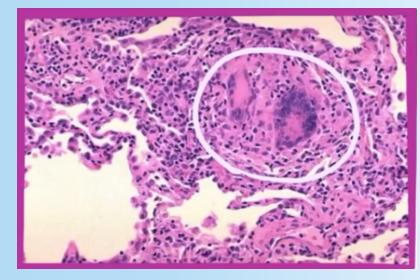
Caused by inhaling silica dust

• Coal worker`s pneumoconiosis

Referred to as "black lung" Caused by inhaling coal mine dust

Diagnosis

(More important for pathomorphology)


Chest X-ray

• Diffuse infiltrate

Biopsy of lung tissue (Bronchoalveolar lavage)

- Small granulomas
- Lymphocyte infiltration in alveolar walls

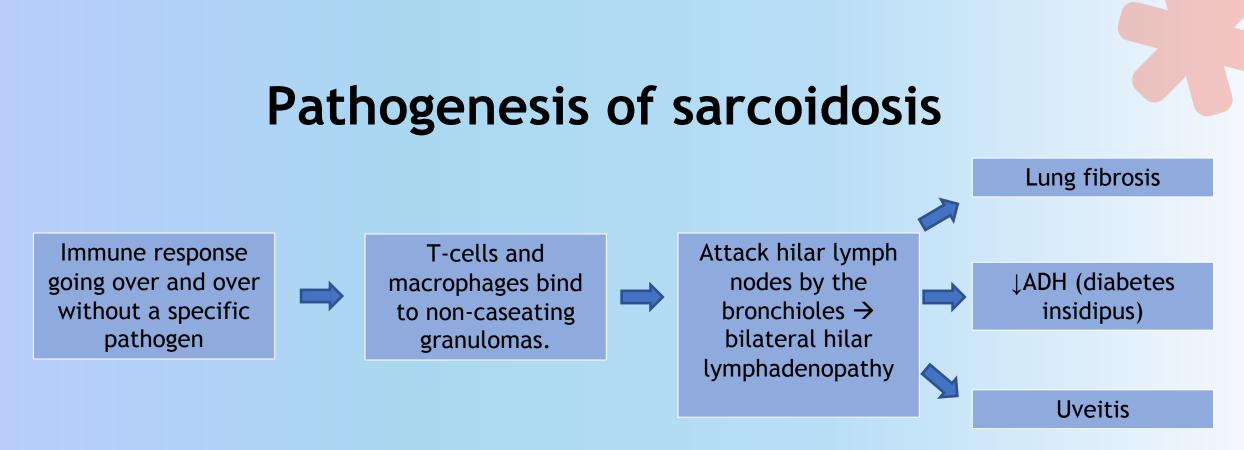
A day at your GP-office

70-year-old Mrs. Pani Biedronka comes in to your GPoffice for her routine checkup. She is not a woman that likes to complain, but today she has a concern she wants to share with you. Lately she has been experiencing loss of breath when she goes to the bathroom, fever and coughing. She has a family history of restrictive lung disease and had tuberculosis and Lyme disease as a child.

AUSCULTATION
- Bilateral crackles heard at base of lung

Sarcoidosis

Your stereotypical patient:


- African woman
- Patient with family history of sarcoidosis
- Patient that has previously been exposed to tuberculosis or Borrelia (lyme disease)

Symptoms:

Usually appear asymptomatic

- Fever
- Weight loss
- Fatigue
- Shortness of breath & coughing
- Tender leg nodules
- Vision changes

- Pathogenesis is not fully understood.
- Systemic disease characterized by non-ceasing granulomas
- The non-caseating can attack everywhere in the body.

Pathomorphology note: The non-caseating granulomas contain:

- <u>No</u> necrotic tissue
- Fibroblasts
- Lymphocytes
- Fibrous tissue
- Multinucleated giant cells
- Schaumann`s bodies
- Asteroid bodies

Diagnosis

(more important for pathomorphology)

Chest X-ray or CT-scan

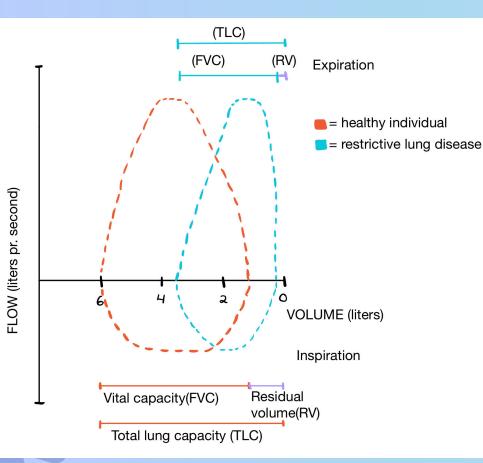
• Bilateral hilar lymphadenopathy

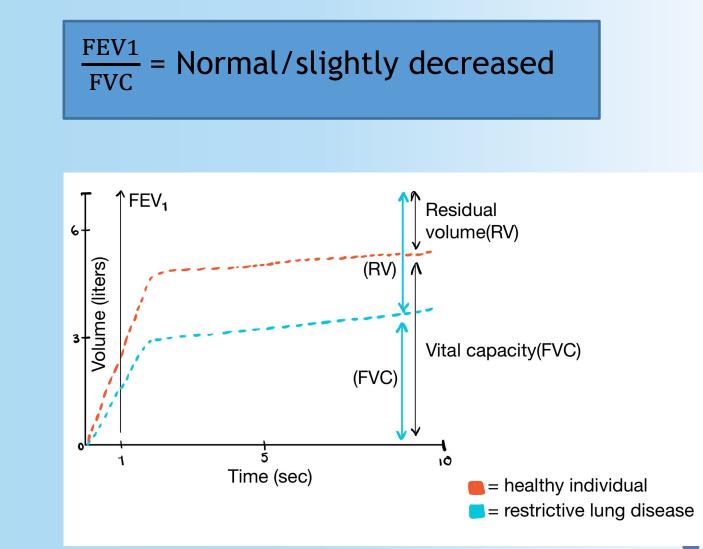
Blood tests

↑ Calcium

Excess vitamin D from macrophages

Angiotensin converting enzyme (ACE) Produced by T-cells


Bronchoalveolar lavage (biopsy)


 \uparrow T-cells infiltration in lung

Pulmonary function test- characteristics

- \downarrow Total lung capacity
- ↓ Forced vital capacity
- \downarrow Residual volume

	Obstructive Lung diseases		Restrictive Lung diseases		
	Asthma	COPD (Emphysema + Chronic Bronchitis)	Idiopathic Pulmonary Fibrosis	Sarcoidosis	
Clinical Presentation	Young child, difficulty breathing (dyspnea), audible wheezing (on expiration) and chest tightness	Dyspnea with history of smoking, barrel shaped chest Productive cough	Older patient with progressive dyspnea and a dry cough	asymptomatic young woman.	
Symptoms + Pathogenesis	<u>Dyspnea + chest tightness</u> – Bronchoconstriction from Bronchospasm (due to mast cell degranulation) <u>Wheezing</u> – mucus plugs that obstruct exhalation	<u>Dyspnea</u> – Collapse of bronchioles due to loss of elastic fibers (Emphysema) <u>Productive cough</u> – Mucus gland hyperplasia and hypersecretion	Progressive dyspnea – Excessive fibrosis cause decreased lung compliance	Non-caseating granulomas in different parts of the body may cause symptoms	
Diagnosis	Clinical symptoms that are reversible on administration of Bronchodilators (β2- agonists)	Emphysema – X-Ray Chronic Bronchitis is clinical – Greater than 3 months of productive cough in 2 consecutive years	Exclusion "honeycomb appearance"	Exclusion	
Spirometry	FEV1 = ↓↓ FVC = ↓ or normal FEV1/FVC = ↓	FEV1 = ↓↓ FVC = ↓ or normal FEV1/FVC = ↓	FEV1 = ↓ or Normal FVC = ↓↓ FEV1/FVC = Normal or ↑	FEV1 = ↓ or Normal FVC = ↓↓ FEV1/FVC = Normal or ↑	