

Center for Information Services and High Performance Computing (ZIH)

Theorie und Einsatz von Verbindungseinrichtungen in parallelen Rechnersystemen

Dynamische Verbindungsnetzwerke

29. Juni 2012

Andy Georgi

INF 1046 Nöthnitzer Straße 46 01187 Dresden

0351 - 463 38783

Einführung

2 Klassifizierung

- 3 Einstufige Netze
- 4 Mehrstufige Einpfadnetze
- 5 Mehrstufige Mehrpfadnetze
- 6 Literaturverzeichnis

- Steuerung von Verbindungen mit Hilfe von aktiven Koppelelementen
- Topologische Parameter Grad und Durchmesser nicht maßgebend

- Allgemeines Modell eines dynamischen Verbindungsnetzwerks:
 - Verteilung der Koppelelemente auf k Schaltstufen
 - Schaltstufe j mit $0 \le j < k$ enthält u_i Koppelelemente
 - Verbindung der Schaltstufen über statische Verbindungsstrukturen
 - Ein Koppelelement $S_{i,j}$ besitzt $E_{i,j}$ Eingänge und $A_{i,j}$ Ausgänge

Einführung III

CHNISCHE

DRESDEN

Abbildung: Allgemeines Modell eines dynamischen Verbindungsnetzwerks

2 Klassifizierung

- Einstufige vs. mehrstufige Netze
- Einpfad- vs. Mehrpfadnetze
- Blockierend vs. blockierungsfrei vs. rearrangierbar

Einstufige vs. mehrstufige Netze

Abhängig von der Anzahl der Stufen werden Netze mit k = 1 als *einstufig* (*single stage*) und Netze mit k > 1 als *mehrstufig* (*multi-stage*) bezeichnet.

Einpfad- vs. Mehrpfadnetze

Existiert genau ein Weg von jedem Knoten zu jedem anderen Knoten, so spricht man von *Einpfadnetzen (single path interconnects)*. Verfügt das Netz dagegen über alternative Wege zwischen einem Sender und einem Empfänger, so handelt es sich um ein *Mehrpfadnetz (multiple path interconnect)*.

Blockierend vs. blockierungsfrei vs. rearrangierbar

In Abhängigkeit der erlaubten Permutationsmöglichkeiten ist ein Netz blockierend, wenn zu einem Zeitpunkt nicht alle Eingänge auf jeden Ausgang abgebildet werden können, *rearrangierbar*, wenn ggf. nach einer Rekonfigurationen alle Permutationen erlaubt sind oder *blockierungsfrei*, wenn bereits ohne Rekonfiguration bestehender Verbindungen jeder Eingang auf einen beliebigen Ausgang abgebildet werden kann.

3 Einstufige Netze

- Kreuzschienenverteiler
- Shuffle-Exchange-Netz

Definition

Kreuzschienenverteiler (Crossbars) bestehen aus horizontalen und vertikalen Bussystemen. An jedem Kreuzungspunkt (*Koppelpunkt*) befindet sich ein Schalter mit dessen Hilfe der vertikal verlaufende Bus mit dem horizontal verlaufenden Bus verbunden werden kann.

Kreuzschienenverteiler II

Abbildung: 4x4 Kreuzschienenverteiler

Kreuzschienenverteiler II

Abbildung: 4x4 Kreuzschienenverteiler

Kreuzschienenverteiler III

Abbildung: 4x4 KSV mit Eingangspufferung

ECHNISCHE

DRESDEN

Abbildung: 4x4 KSV mit Eingangspufferung und Steuerlogik

• Shuffle:

- Verschiebung des höchstwertigen Bits auf die niederwertigste Position
- Realisierung durch die Verbindungsstruktur
- Exchange:
 - Invertierung des niederwertigsten Bits
 - Umsetzung durch aktive Koppelelemente

Shuffle-Exchange-Netz II

Abbildung: Statisches (links) und dynamisches (rechts) Shuffle-Exchange-Netz

Mehrstufige Einpfadnetze

- Banyan-Netz
- Omega-Netz
- Generalized-Cube-Netz

Definition

Banyan-Netze [GoL73] werden durch ihre Graphenrepräsentation definiert. Der Graph eines *Banyan-Netzes* besteht aus drei verschiedenen Knoten:

- Basisknoten: Knoten ohne Eingangskanten
- Zwischenknoten: Knoten mit Ein- und Ausgangskanten
- Apex-Knoten: Knoten ohne Ausgangskanten

Die fundamentale Eigenschaft des *Banyan-Graphen* besteht darin, dass exakt ein Weg von jedem *Basisknoten* zu jedem *Apex-Knoten* exisitert.

Abbildung: Banyan-Graph (links) und Banyan-Netz (rechts)

Definition

Ein Omega-Netz [Law75] mit N Ein- und Ausgängen besteht aus n = Id(N)Schaltstufen, mit jeweils N/2 Beta-Zellen, wobei die Leitungsführung zwischen den Stufen der Shuffle-Exchange-Funktion entspricht. Vom Eingang zum Ausgang sind die Stufen in absteigender Reihenfolge, von n - 1 bis 0, nummeriert. Die Indizierung der Ein- und Ausgänge erfolgt hingegen in aufsteigender Reihenfolge von 0 bis N - 1 und ist in allen Stufen identisch.

• Verteilte Steuerung durch die zu vermittelnden Nachrichten

• Gegeben:

- Quelle $Q = q_{n-1} q_{n-2} \dots q_1 q_0$
- Senke $S = s_{n-1} s_{n-2} \dots s_1 s_0$
- Gesucht:
 - Routing-Tag $T = t_{n-1} t_{n-2} \dots t_1 t_0$

XOR-Routing

Bei Einsatz des *XOR-Routings* wird das *n* Bit lange Routing-Tag *T* aus der bitweisen Exklusiv-Oder-Verknüpfung von Q und S gebildet:

$$T = Q \oplus S = t_{n-1} t_{n-2} \dots t_1 t_0$$

Destination Routing

Bei Verwendung des *Destination Routings* impliziert die Zieladresse das Routing-Tag. Das Koppelelement der Stufe k untersucht dabei die Bitposition k von S und leitet die Nachricht an den oberen Ausgang, wenn $s_k = 0$ oder an den unteren Ausgang wenn $s_k = 1$.

Konflikterkennung

Ein Konflikt tritt auf, sobald zwei oder mehr Kommunikationen an Stufe k gleichzeitig den selben Ausgangsport P_k nutzen wollen. Ist die Quelle Q mit der Senke S verbunden und soll nun die Quelle Q' mit der Senke S' verbunden werden, tritt demzufolge an Stufe k genau dann ein Konflikt auf, wenn $P_k = P'_k$.

Definition

Generalized-Cube-Netze [SiS87] sind topologisch äquivalent zu Omega-Netzen. Die Indizierung der Schaltstufen erfolgt vom Eingang zum Ausgang in absteigender Reihenfolge. Die Indizes der Ein- und Ausgänge liegen zwischen 0 und N - 1, wobei sich diese an einer Beta-Zelle in Stufe k ausschließlich in Bit k unterscheiden:

$$P_{up} = p_{n-1} \ p_{n-2} \ \dots \ p_k \ \dots \ p_1 \ p_0$$

$$P_{down} = p_{n-1} \ p_{n-2} \ \dots \ \bar{p}_k \ \dots \ p_1 \ p_0$$

Zudem ist der Ausgang P der Stufe k immer mit dem Eingang P der Stufe k - 1 verbunden.

- Beibehaltung des Index bei einer straight-Operation
- Ein exchange entspricht der cube-Funktion
- Fallunterscheidung am Koppelelement der Stufe k:
 - $q_k = s_k$: straight
 - $q_k \neq s_k$: cross

- Weitere, zu den Omega-Netzen, topologisch äquivalente Verbindungsnetzwerke:
 - Indirect-Binary-n-Cube-Netz [Pea77]
 - Flip-Netz [Bat76]
 - Baseline-Netz [WuF80]

6 Mehrstufige Mehrpfadnetze

- Clos-Netz
- Beneš-Netz

Definition

Das *Clos-Netz* [Clo53] besteht aus drei Schaltstufen, wobei in Stufe k die Anzahl der Koppelelemente durch den Parameter r_k , die Anzahl der Eingänge pro Koppelelement durch m_k und die der Ausgänge durch n_k definiert ist. Weiterhin gilt $m_2 = r_1$, $m_3 = r_2$, $n_1 = r_2$ und $n_2 = r_3$, womit ein dreistufiges Netz durch die fünf Parameter m_1 , n_3 , r_1 , r_2 und r_3 vollständig definiert wird. Die Verbindung der Schaltstufen erfolgt über die Perfect-Shuffle-Funktion, wobei jedes Koppelelement der ersten und letzten Stufe mit jedem Koppelelement der der mittleren Stufe verbunden wird.

Abbildung: Symmetrisches Clos-Netz mit q = 4, n = 2 und $r_2 = 3$

Center for Information Services 8

High Performance Computing

Theorem (1)

Ein Clos-Netz ist dann und nur dann streng blockierungsfrei für 1-zu-1-Verbindungen, wenn $r_2 \ge m_1 + n_3 - 1$. Ein symmetrisches Netz ist demnach genau dann streng blockierungsfrei, wenn $r_2 \ge 2n - 1$.

Theorem (2)

Ein Clos-Netz ist genau dann rearrangierbar, wenn $r_2 \ge max(m_1, n_3)$. Ein symmetrisches Netz mit $m_1 = n_3 = n$ ist demnach genau dann rearrangierbar, wenn $r_2 \ge n$.

- Aufbau einer Verbindung zwischen den Koppelelementen A und B
- Umsetzung mit Hilfe der Paull'schen Verbindungsmatrix [Pau62]
- Da $r_2 \ge max(m_1, n_3)$ gilt eine der folgenden Bedingungen:
 - Es existiert mind. ein KE der mittleren Stufe welches weder in Reihe A noch in Spalte B existiert
 - In Reihe A exisitiert ein KE C der mittleren Stufe, das nicht in Spalte S erscheint, und es existiert in Spalte B ein KE D der mittleren Stufe das nicht in Reihe A existiert

Rekonfiguration in rearrangierbaren Clos-Netzen II

Fall 1:

• Aufbau der Verbindung über das KE welches weder in Reihe A noch in Spalte B existiert

Fall 2:

- Suchen des Eintrags C in Reihe A der nicht in Spalte B existiert
- Suchen des Eintrags D in Spalte B der nicht in Reihe A existiert
- Abwechselnde Fortsetzung des Vorgangs bis kein *C* oder *D* mehr auf gleicher Reihe bzw. Spalte gefunden wird
- Rekonfiguration des Netzes indem entlang des Suchwegs alle C durch D und alle D durch C ersetzt werden
- Aufbau der Verbindung über KE *D* welches jetzt weder in Reihe *A* noch in Spalte *B* vorkommt

Rekonfigurationsbeispiel I

Paull'sche Matrix:

Abbildung: Verbindungsaufbau von Knoten 1 zu Knoten 8 führt zu Blockierung

Rekonfigurationsbeispiel II

Paull'sche Matrix:

Abbildung: Rearrangierung bestehender Verbindungen führt zu Blockierungsfreiheit

- Ziel: Verringerung der Komplexität der KE eines Clos-Netzes
- Umsetzung: Rekursiver Aufbau aus 2x2 Crossbars

Allgemeine Konstruktion

Die Grundlage des Konstruktionsprinzips eines Beneš-Netzes [Ben64, Ben65] bildet ein dreistufiges symmetrisches Clos-Netz nit N Ein- und Ausgängen. Einund Ausgangsstufen sind aus Betazellen aufgebaut, woraus unmittelbar folgt, dass die mittlere Stufe aus zwei $N/2 \times N/2$ Koppelelementen bestehen muss. Diese wird rekursiv ersetzt bis für $N = 2^n$ Ein- und Ausgänge die 2n - 1 Stufen erreicht wurden.

Abbildung: Erster Rekursionsschritt

Beispiel II - Beneš-Netz mit N=8

Abbildung: Zweiter Rekursionsschritt

Schleifenalgorithmus [OpT71]:

Initialisierung:

Der Algorithmus beginnt mit dem Eingangskoppelelement 0, welches mit ${\cal S}$ bezeichnet wird.

Vorwärtsschleife:

Ein nicht verbundener Eingang von S wird über das obere KE der mittleren Stufe mit dem korrekten Ausgang am 2x2-KE D verbunden. Falls keine Verbindung erforderlich ist, gehe zu Schritt 4.

8 Rückwärtsschleife:

Der benachbarte Ausgang von D wird über das untere KE der mittleren Stufe mit dem korrekten Eingang am Koppelelement S'verbunden. Ist keine Verbindung erforderlich, gehe zu Schritt 4. Andernfalls setze S = S' und gehe zu Schritt 2.

Beginne neue Schleife:

Sind alle notwendigen Verbindungen aufgebaut, beende den Algorithmus. Andernfalls wähle ein noch nicht voll konfiguriertes Eingangskoppelelement als *S* und gehe zu Schritt 2.

Beispiel - Schleifenalgorithmus

Verbindungen in einem Beneš-Netz mit N=8: $\{(0,6), (1,0), (6,7), (7,1)\}$

📎 [BuC91] J. R. Burke, C. Chen, T.-Y. Lee, D. P. Agrawal Performance analysis of single stage interconnection networks, 1991. IEEE Transactions on Computers, Band C-40, S. 357-365

📎 [WuF81] C.-L. Wu, T. Y. Feng The universality of the shuffle-exchange network, 1981. IEEE Transactions on Computers, Band C-30, S. 324-332

📎 [GoL73] G. R. Goke, G. J. Lipovski Banyan networks for partitioning multiprocessor systems, 1973. First Annual Symposium on Computer Architecture, S. 21-28

📎 [Law75] D. H. Lawrie Access and alignment of data in an array processor, 1975. IEEE Transactions on Computers, Band C-24, S. 1145-1155

嗪 [SiS87] H. J. Siegel, S. D. Smith Study of multistage SIMD interconnection networks, 1987. Fifth Annual Symposium on Computer Architecture, S. 223-229

📎 [Pea77] M. C. Pease III

The indirect binary n-cube microprocessor array, 1977. IEEE Transactions on Computers, Band C-26, S. 458-473

🍉 [Bat76] K. E. Batcher The flip network in STARAN, 1976. International Conference on Parallel Processing, S. 65-71

📎 [WuF80] C.-L. Wu, T. Y. Feng On a class of multistage interconnection networks, 1980. IEEE Transactions on Computers, Band C-29 S. 694-702

[Clo53] C. Clos

A study of non-blocking switching networks, 1953. Bell System Technical Journal, Band 32, S. 406-424

📎 [Pau62] M. C. Paull Reswitching of connection networks, 1962. Bell System Technical Journal, Band 41, S. 833-855

📎 [Ben64] V. E. Benes Optimal rearrangeable multistage interconnection networks, 1964. Bell System Technical Journal, Band 41, S. 1641-1656

📎 [Ben65] V. E. Benes

Mathematical Theory of Connecting Networks and Telephone Traffic, 1965

Academic Press, New York

🌘 [OpT71] D. C. Opferman, N.T. Tsao-Wu On a class of rearrangeable switching networks, 1971. Bell System Technical Journal, Band 50, S. 1579-1600

