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– Abstract –

Surfactants are surface active agents that accumulate at fluid interfaces and influence interfacial properties, e.g.

the surface tension. For single rising bubbles, even a small amount of surfactant causes Marangoni forces that

influence the bubble rise significantly. In this work, Direct Numerical Simulations (DNS) with an Arbitrary

Lagrangian-Eulerian (ALE) Interface-Tracking method are performed. The use of a subgrid-scale model enables

the simulation of realistic time and length scales and the comparison with experiments. The resolution require-

ments close to the interface are examined using 2D simulations to reduce the computational costs further. Then,

3D simulations of single rising bubbles under the influence of Triton-X100 are carried out, investigating different

bubble diameters and initial surfactant bulk concentrations. The 3D simulations provide new insights into the

transition from a helical motion into a zig-zag motion, which can only be observed in the presence of a surfactant.

Additionally, the reciprocal influence of the local surfactant distribution on the interface and the vortex structures

for path-unstable bubbles are analysed. Finally, the local surfactant distribution on the interface is modelled

using a data-driven approach. The model is based on the DNS data obtained from the 3D simulations and is

in good agreement with the validation data. In future work, the derived model can be used to improve existing

simplified models for the simulation of bubbly flows under the influence of surfactant.

Tenside sind oberflächenaktive Substanzen, die sich an fluiden Grenzflächen anlagern und die Eigenschaften

der Grenzfläche, wie beispielsweise die Oberflächenspannung, beeinflussen. Bei aufsteigenden Einzelblasen führt

bereits eine geringe Menge an Tensiden zu Marangoni-Kräften, die den Blasenaufstieg signifikant beeinflussen.

In dieser Arbeit werden Direkte Numerische Simulationen (DNS) mit einer Arbitrary Lagrangian-Eulerian (ALE)

Interface-Tracking Methode durchgeführt. Die Verwendung eines Subgridskalen-Modells ermöglicht die Simula-

tion von realistischen Zeit- und Längenskalen und den Vergleich mit experimentellen Daten. Die Auflösungsan-

forderungen in der Nähe der Grenzfläche werden mithilfe einer 2D Studie untersucht, um den Rechenaufwand

weiter zu reduzieren. Daraufhin, werden 3D-Simulation von Einzelblasen unter dem Einfluss von Triton-X100

durchgeführt und verschiedene Blasendurchmesser und Tensidkonzentrationen in der Flüssigphase untersucht.

Die Simulationen geben neue Einblicke in die Blasendynamik. Besonders interessant ist dabei der Übergang von

einem helikalen Aufstiegspfad zu einem Zig-Zag Pfad, der nur in Gegenwart von Tensiden beobachtet werden

kann. Zusätzlich, wird die wechselseitige Beeinfussung der lokalen Tensidverteilung auf der Grenzfläche und den

Wirbelstrukturen von pfadinstabilen Blasen analysiert. Zuletzt wird die lokale Tensidverteilung auf der Gren-

zfläche mithilfe eines daten-basierten Ansatzes modelliert. Das hergeleitete Modell basiert auf den DNS Daten der

durchgeführten 3D Simulationen und ist in guter Übereinstimmung mit den Validierungsdaten. Das hergeleitete

Modell kann im nächsten Schritt dazu verwendet werden, um bestehende Modelle für den Einfluss von Tensiden

auf Blasenströmungen zu verbessern.

i





Table of Contents

Abstract i

Table of Contents iii

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

2 Governing equations and algorithms 3
2.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Surfactant transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Surfactant influence on the surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Forces acting on the interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.5 Dimensionless quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Temporal discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 OpenFOAM-specific boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Pressure-velocity coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Machine learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Machine learning domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Machine learning workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Study on the mesh requirements 15
3.1 Mesh study for a clean 2D bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Radial grid resolution: liquid phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Radial grid resolution: gaseous phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Tangential grid resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 3D meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Mesh requirements: conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Parallelisation study 23
4.1 Decomposition techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Comparison of the decomposition techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Domain dependency study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Manual decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 Scotch decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Parallelisation study: conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Simulation results and discussion 29
5.1 Experimental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Mesh sensitivity study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Mesh sensitivity for dB = 0.8 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Mesh sensitivity for dB = 1.3 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.3 Mesh sensitivity for dB = 2.0 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Bubble path and terminal velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Bubble path and terminal velocity for dB = 0.8 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Bubble path and terminal velocity for dB = 1.3 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3 Bubble path and terminal velocity for dB = 2.0 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



5.4 Forces acting on the interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.1 Forces acting on the interface for dB = 0.8 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.2 Forces acting on the interface for dB = 1.3 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.3 Forces acting on the interface for dB = 2.0 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Local bulk velocity and surface fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.1 Local bulk velocity and surface fields for dB = 0.8 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.2 Local bulk velocity and surface fields for dB = 1.3 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.3 Local bulk velocity and surface fields for dB = 2.0 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Surfactant distribution on the interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6.1 Surfactant distribution on the interface for a rectilinear rise . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6.2 Surfactant distribution on the interface for a zig-zag rise . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6.3 Surfactant distribution on the interface for a helical rise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Modeling of the local surfactant distribution on the interface 53
6.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2 Data averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.1 Linear feature correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.2 Feature importance: random forest regressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.3 Sequential backward selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.4 Feature selection: conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.6 Influence of training data distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.7 Model of the local surfactant distribution: conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Summary and Outlook 67

Bibliography 69

Acknowledgements xii

Thesis Statement xiv

iv



List of Figures

1.1 Applications and effects of surfactants in bubbly flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Bubble path under the influence of surfactant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.1 Sketch of the computational domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Overview of the numerical solution procedure of the solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Pressure residual compared with terminal velocity vy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Fluctuation in the drag force, nmin = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Structure of a multilayer perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Influence of different mesh parameters on the grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Total pressure force acting on the interface for different outer radial resolutions, δh/∆Rout,1. . . . . . . . . . . 17
3.3 Total pressure force at the interface for different ratios ∆Rin,1/∆Rout,1. . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Force balance normal to the interface with different radial resolutions, δh/∆Rout,1. . . . . . . . . . . . . . . . . 19
3.5 Bubble deformation for different radial resolutions, δh/∆Rout,1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Force balance normal to the interface with different tangential resolutions, dB/∆Tan. . . . . . . . . . . . . . . 20
3.7 Computational mesh for the 3D simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Interface mesh of a 2.0 mm bubble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Manual decomposition on ten processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Single processor domain of the scotch decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Scotch decomposition on ten processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Runtime comparison between the manual and scotch decomposition. . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Runtime comparison for different cell ratios χProc for the manual decomposition. . . . . . . . . . . . . . . . . . 26
4.6 Runtime comparison for different cell ratios χProc with scotch decomposition and varying processor weights. 27
4.7 Runtime comparison for different cell ratios χProc with scotch decomposition and varying interface domain. 28
5.1 Trajectories of rising bubbles under the influence of Triton X-100. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Mesh comparison of the bubble terminal velocity, dB = 0.8 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Mesh comparison of the bubble terminal velocity, dB = 1.3 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Mesh comparison of the bubble path, dB = 1.3 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Mesh comparison of the bubble terminal velocity, dB = 2.0 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Mesh comparison of the bubble path, dB = 2.0 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 Region of the mesh showing fluctuations at the interface before the crash. . . . . . . . . . . . . . . . . . . . . . 33
5.8 Terminal velocity under the influence of Triton X-100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.9 Rise path under the influence of Triton X-100, dB = 1.3 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.10 Rise path under the influence of Triton X-100, dB = 2.0 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.11 Sketch of the direction of the drag and lift force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.12 Drag forces acting on the bubble, dB = 0.8 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.13 Drag forces acting on the bubble, dB = 1.3 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.14 Lift forces acting on the bubble, dB = 1.3 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.15 Drag forces acting on the bubble, dB = 2.0 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.16 Lift forces acting on the bubble, dB = 2.0 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.17 Lift force direction along the bubble path for dB = 2.0 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.18 Lift force contributions in the top view of the helical path , dB = 2.0 mm. . . . . . . . . . . . . . . . . . . . . . . 43
5.19 Local pressure field and surfactant distribution on the interface, dB = 0.8 mm. . . . . . . . . . . . . . . . . . . 44
5.20 Local velocity field around the bubble, dB = 1.3 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.21 Local velocity field around the bubble, dB = 2.0 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.22 Local surfactant distribution, zig-zag rise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.23 Local surfactant distribution, helical rise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.24 Interface velocity influenced by the bulk velocity field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.25 New coordinate system to evaluate the surfactant distribution on the interface. . . . . . . . . . . . . . . . . . . 49
5.26 Surfactant distribution for a straight rise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.27 Surfactant distribution for a zig-zag rise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.28 Surfactant distribution for a helical rise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1 Local distributions of pressure, velocity and surfactant on the interface, t = 0.01 s and dB = 0.8 mm. . . . . 54
6.2 Filtered local surfactant concentration on the interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Local surfactant concentration on the interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Scatterplot cΣ, c̄Σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5 Correlation matrix with cΣ, dB = 0.8 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.6 Scatterplot c̃Σ, ϕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7 Correlation matrix with c̃Σ, dB = 0.8 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

v



6.8 Feature importance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.9 Sequential backward selection: r2-score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.10 Terminal velocity, dB = 0.8 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.11 Local surfactant concentration on the interface for low bulk concentrations, test data. . . . . . . . . . . . . . . 60
6.12 Local surfactant concentration on the interface for high bulk concentrations, test data. . . . . . . . . . . . . . 61
6.13 Local surfactant concentration on the interface for low bulk concentrations, validation data. . . . . . . . . . . 63
6.14 Local surfactant concentration on the interface for high bulk concentrations, validation data. . . . . . . . . . 64
6.15 Validation scores for different combinations of input data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.16 Influence of the initial surfactant concentration on cΣ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



List of Tables

2.1 Numerical schemes used for the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Boundary conditions of the numerical domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Fluid properties of the gaseous and liquid phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Default setup for the 2D mesh study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Parameters for the outer radial grid resolution study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Parameters for the inner radial grid resolution study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Parameters for the tangential grid resolution study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Grid resolution and mesh size for dB = 0.8 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Grid resolution and mesh size for dB = 1.3 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Grid resolution and mesh size for dB = 2.0 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Number of cells on the decomposed processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Parameters for the scotch decomposition domain study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1 Surfactant properties (Triton-X100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 Setup parameters for the MLP in tensorflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii





Glossary

Greek symbols

Symbol Unit Description

β m s−1 Mass transfer coefficient
δh m Hydrodynamic boundary layer thickness
∆ m Cell thickness
ε - Threshold
κ m−1 Curvature
λ - Learning rate
µ kg m−1 s−1 Dynamic viscosity
ν m2 s−1 Kinematic viscosity
ρ kgm−3 Density
σ kgm s−2 Surface tension coefficient
σ - Standard deviation
Σ(t) - Deformable interface
ϕ - Polar angle
χProc - Ratio between the number of cells on the processor holding the interface and the

mean number of cells on an outer processor
ψ - Azimuthal angle
Ω - Liquid domain
∇ - Divergence

Latin symbols

Symbol Unit Description

a mol m−2 Langmuir constant
A m2 Face area
c mol m−3 Surfactant concentration in the bulk
cΣ mol m−2 Surfactant concentration on the interface
cΣeq mol m−2 Equilibrium concentration
cΣ∞ mol m−2 Saturated surfactant concentration
d m Diameter
D m2 s−1 Molecular diffusivity
E - Loss function
f kg s−2 m−1 Area specific force vector
F kgm s−2 Integral force vector acting on the bubble
g ms−2 Gravitation constant
I - Identity matrix
j molm−3 s−1 Diffusive flux
lPN m Distance between two face centers
L m Characteristic length
n - Number of processors
n - Normal vector
N - Number of cells
p kgm−1 s−2 Pressure
pdyn kgm−1 s−2 Dynamic pressure
ptot kgm−1 s−2 Total pressure
r m Radius
R kgm2s−2mol−1K−1 Universal gas constant
Re - Reynolds number
R - Correlation coefficient
s molm−2 s−1 Sorption source term
Svisc kgm−1 s−2 Viscous stress tensor

ix



Symbol Unit Description

Sh - Sherwood number
t s Time
T K Temperature
U ms−1 Characteristic velocity
v ms−1 Barycentric velocity
V m3 Volume
w - Weights of the MLP

Indicees

Index Description

B Bubble
Bot Bottom/Wake region
ca Capillary pressure
Drag Drag contribution
Eq Equator region
G Gaseous phase
loc Local value
L Liquid phase
Lift Lift contribution
ma Marangoni
max Maximum value
min Minimum value
model Model estimate
num DNS value
Proc Processor
Rin Component close to the interface, in the gaseous phase
Rout Component close to the interface, in the liquid phase
Σ Interfacial value
Tan Tangential cells on the interface
Top Top region
Total Total
visc Viscous
∥ Acting tangential to the interface
⊥ Acting normal to the interface
|Σ Defined in the bulk phase at the interface
·̃ Non-dimensional quantity
·̄ Mean quantity

x



Abbreviations

Abbreviation Description

ALE Arbitrary Lagrangian-Eulerian

CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy

DNS Direct Numerical Simulation

OpenFOAM Open Field Operation And Manipulation

FV Finite Volume
FA Finite Area

MLP Multilayer Perceptron

PBiCG Preconditioned biconjugate Gradient
PCG Preconditioned Conjugate Gradient
PISO Pressure Implicit with Splitting of Operators

SGS Subgrid-scale

VOF Volume-Of-Fluid

xi





1 Introduction

Bubbly flow plays an important role in a variety of technical applications such as bubble column reactors, flotation
processes or waste-water treatment. Within this applications, surface active agents, so-called surfactants, are present.
The surfactants are either a side effect of contamination or added on purpose to influence the interaction between
the phases. A well-known example of bubbly flow under the influence of surfactant is froth flotation, which was first
developed in mineral processing to separate hydrophobic and hydrophilic materials. The raw ores are crushed and
dissolved in water to form a slurry. Then, a surfactant is used to render the desired minerals hydrophobic. The slurry
is transferred into a bubble column, the so-called flotation cell, that is aerated. The hydrophobic particles attach to
the bubbles that rise to the surface of the flotation cell where they form a froth that can be extracted. Nowadays froth
flotation is also used in paper recycling and waste-water treatment. The Direct Numerical Simulation (DNS) of a flotation
cell requires to resolve a wide range of length scales. These scales range from the column size down to scales smaller
than a single bubble. The high computational costs of such simulations make them impracticable for real applications.
Therefore, scale-reduced approaches have been developed that model the phenomena occurring at small scales like the
influence of surfactant on a single rising bubble. Figure 1.1 shows the schematic of a flotation cell and the influence of
surfactants on a bubble swarm.

(a) Flotation cell reproduced from [17].
(b) Bubble swarm under the influence of methyl isobutyl

carbinol (MIBC) and sodium chlorid (NaCl) [9].

Figure 1.1: Applications and effects of surfactants in bubbly flows.

One of the most fascinating effects involving surfactant is that even small traces of it can lead to microscopical forces
that cause a tremendous change in the macroscopic flow pattern. Figure 1.1b shows an experiment performed by Finch
et al. [9] displaying the influence of surfactant on a bubble swarm. At the left-hand side, a bubble swarm under the
influence of methyl isobutyl carbinol (MIBC) is shown. An concentration of 10 ppm MIBC already has a significant effect
on the flow pattern, the void fraction, and the bubble size distribution. This effect, however, complicates the modelling of
contaminated bubbles. While for a uncontaminated bubble rising in water a trailing vortex in the wake occurs at Reynolds
numbers above 600, for contaminated bubbles this effect is already observed at Reynolds numbers as low as 20 [19, 38].
The vortex influences the bubble rise velocity and path, leading to terminal velocities for contaminated bubbles that are
up to two times smaller than for uncontaminated ones [7]. For instance, figure 1.2 shows the influence of surfactant
on the bubble path from experiments performed by Tagawa et al. [31]. While the uncontaminated bubble (left) shows
a helical rise with a helix-width of approximately one bubble diameter, small traces of surfactant may increase (b) or
decrease (c) the lateral motion, or even change the motion from helical to zig-zag (d).
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Figure 1.2: Bubble path under the influence of surfactant [31]. (a) 0 ppm; (b) 25 ppm; (c) 50 ppm; (d) 75 ppm.
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Bubbles rising in impure liquids show terminal velocities that vary between the terminal velocity of particles with a
fully mobile and an immobile (rigid) interface. In the absence of impurities, a rising bubble is characterised by a mobile
interface, i.e., the fluid elements at the interface are able to move and can be exchanged or displaced. This leads to
smaller velocity gradients in the surrounding liquid compared to liquid motion around a solid particle. Consequently, less
energy is dissipated, which leads to higher rise velocities of uncontaminated bubbles. In the presence of contamination,
however, surfactant adsorbs onto the interface and is accumulated in the rear part of the bubble, reducing the mobility
of the interface [23, 18]. Within this area, the interface acts almost like a solid surface. This phenomenon paired with
experimental observations led to the idea of the so-called stagnant cap model, presented by Davis and Acrivos [8], which
is described in the following. The interface is divided into two segments symmetric around the rise velocity vector: one
fully covered with surfactant, acting like a solid particle, and one entirely clean, with a mobile interface. While the rear
part of the bubble, the stagnant cap, shows a zero velocity in a coordinate system moving with the bubble centre, the
bubble front is characterised by zero shear stresses. The stagnant cap angle denotes the polar angle where the interface
changes from fluid-like to solid-like behaviour. This strict separation between a stagnant cap and the bubble front is a
strong idealisation and is only valid for cases where the transition zone from high to low surface contamination is small
compared to the bubble size. Furthermore, in most applications, the condition of symmetry around the rise velocity
vector is rather an exception than the rule [25].

An uneven surfactant distribution on the interface leads to surface tension gradients that cause so-called Marangoni
forces acting from areas with low to areas with high surface tension. The Marangoni forces acting on the interface are
balanced by shear forces in the liquid phase. Due to the high contamination at the rear part and the low one in the front
of the bubble, the main contribution of these forces acts opposed to the bubble rise direction and increases the overall
drag force. In the case of path instability, however, the surfactant distribution on the interface is non-symmetric along
the direction azimuthal to the bubble movement direction. This asymmetry leads to additional lift forces acting on the
bubble. This effect has been recently encountered by Pesci et al. [25] and is not yet completely understood.

Advances in computational fluid dynamics enabled the simulation of two-phase flows with deforming interfaces. The
current simulation techniques are still under development and lead to high computational costs [11]. The simulation of
complex processes, e.g. flotation cells, requires simplified simulation methods. To capture the effect of contamination,
the surfactant distribution on the interface needs to be modelled. A recent study by Fleckenstein and Bothe [11] models
the Marangoni stresses at the interface based on the assumptions of stationary bubble shapes and surfactant distribu-
tions. A Navier-type jump condition at the interface is derived that accounts for the Marangoni stresses based on the
tangential interface velocity in a coordinate system co-moving with the bubble’s barycenter and a friction parameter.
The friction parameter is based on the diffusion constant of the interfacial surfactant transport and the Gibbs elasticity,
which is related to the surfactant distribution on the interface. In the model, the Gibbs elasticity is considered constant
for an individual bubble which implies a linear dependency of the change of surface tension and the surfactant concen-
tration on the interface. This assumption is only valid for very small concentration differences. To extend the model’s
range of validity for unsteady surfactant distributions on the interface and higher surfactant concentrations, the angular
dependency of the surfactant concentration at the interface can be accounted for in the Gibbs elasticity. This, however,
requires knowledge about the local and temporal surfactant distribution on the interface. Within this work, the local,
time-dependent concentration profiles are reconstructed based on a statistical learning algorithm that leverages DNS
data of single rising bubbles under the influence of surfactant.

In the first part of this work, the influence of surfactants on single rising bubbles in the spherical and ellipsoidal
regime is examined, extending the investigations done by Pesci et al. [24, 25]. An Arbitrary Lagrangian-Eulerian (ALE)
interface tracking approach [22, 14, 33, 34] is used combined with a recently introduced subgrid-scale (SGS) model
for the surfactant adsorption onto the interface [37]. This model reduces the resolution requirements close to the
interface significantly, and thereby enables the simulation of realistic systems and the comparison of the numerical
results with experimental data. Despite the application of the SGS model, the simulations have high computational
costs due to resolution requirements at the interface and the simulation of long physical times. Therefore, a 2D setup
is used to examine the tangential and radial mesh resolution requirements of the 3D simulations. Additionally, different
parallelisation techniques are investigated, comparing a manual decomposition technique [36] with a decomposition
based on the scotch algorithm [6]. The obtained simulation results are compared with an experimental study performed
by Tagawa et al. [31], and the bubble terminal velocities, bubble paths and the local surfactant distribution on the
interface are evaluated. In the second part of this work, the simulation results are assessed to model the surfactant
distribution on the interface using a data-driven approach.
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2 Governing equations and algorithms

2.1 Mathematical model

In this work, the two-phase flow problem is modelled as follows: the fluid domain is separated into a liquid and a gaseous
phase by the moving interface Σ(t) with unknown time-dependent shape and location. The interface is a surface of zero
thickness and, therefore, the model is usually referred to as sharp interface representation. Furthermore, the assumptions
of incompressible Newtonian fluids, isothermal conditions and the absence of phase change and chemical reactions
are made. The governing equations are based on the conservation of mass, momentum, and surfactant concentration.
Additionally, only the surfactant transport in the liquid phase and on the interface is taken into account.

2.1.1 Hydrodynamics

The two-phase flow problem is described by the two-phase Navier-Stokes equation for incompressible Newtonian fluids.
The continuity and momentum equation for the gaseous and liquid phase are given by equations (2.1) and (2.2):

∇ · v= 0 , (2.1)

∂t (ρv) +∇ · (ρv⊗ v) = −∇p+∇ · Svisc +ρg , (2.2)

where v is the barycentric velocity, p the pressure, ρ the density of the gas or the liquid and g the gravitational constant.
The viscous stress tensor is given by Svisc = µ

�

∇v+ (∇v)T
�

, with µ being the dynamic viscosity of the respective fluid.
Additionally, the two phases are coupled via jump conditions at the interface:

JvK= 0 , (2.3)

v · nΣ = vΣ · nΣ , (2.4)

JpI− SviscK · nΣ = σκnΣ +∇Σσ , (2.5)

where vΣ is the interface velocity and κ = −∇Σ · nΣ the surface curvature, with ∇Σ being the surface gradient. For
contaminated systems, the surface tension coefficient σ is a function of the surfactant concentration σ = σ

�

cΣ
�

. A jump
of a physical quantity across the interface is denoted by J·K and is defined as:

JφK(t,x) = lim
h→0+

(φ (t,x+ hnΣ)−φ (t,x− hnΣ)) , x ∈ Σ(t) . (2.6)

The boundary condition at the outer domain is given by a zero velocity Dirichlet boundary condition and reads:

v= 0 on ∂Ω . (2.7)

2.1.2 Surfactant transport

The model of the surfactant transport on the interface is essential to simulate the influence of contamination on the
bubble motion. In this work, only the surfactant transport in the liquid domain Ω and on the interface Σ(t) is taken into
account. The concentration in the gaseous phase is assumed to be zero. The local surfactant transport equations, derived
for example in [2, 30], are:

∂t c +∇ · (cv+ j) = 0 in Ω \ Σ(t) , (2.8)

∂ Σt cΣ +∇Σ · cΣvΣ + jΣ = sΣ on Σ(t) , (2.9)

with c being the molar concentration of surfactant in the bulk phase, cΣ being the molar surface concentration of surfac-
tant on the interface, and j and jΣ denoting the diffusive fluxes in the liquid domain and on the interface, respectively.
The sorption term sΣ reads:

sΣ + Jj · nΣK= 0 on Σ(t) . (2.10)

Equation (2.9) is a dynamic boundary condition for equation (2.8). The initial conditions are:

c (0,x) = c0 (x) , x ∈ Ω(0) , (2.11)

cΣ (0,x) = cΣ0 (x) , x ∈ Σ(0) . (2.12)

3



The system of equations (2.8) to (2.10) is not closed. Additional relations are required that define the diffusive fluxes
and source terms as functions of the primitive variables.

The surfactant can be considered diluted thus the diffusive fluxes j, jΣ can be modelled by Fick’s law:

j= −D∇c in Ω(t) , (2.13)

jΣ = −DΣ∇ΣcΣ in Σ(t) , (2.14)

where D and DΣ represent the diffusion constant in the respective fluid and on the interface, respectively. At the outer
boundary of the liquid phase, a zero flux boundary condition is imposed:

j · n= 0 on ∂Ω(t) . (2.15)

Additionally, the sorption term sΣ in equation (2.9) needs to be modelled. Two limiting sorption processes can be
distinguished: diffusion-controlled and kinetically-controlled sorption [20]. In this work, a diffusion-controlled sorption
model has been adopted [16]. In this case, the ad- and desorption rates are locally in equilibrium:

sads
�

c|Σ, cΣ
�

= sdes
�

cΣ
�

. (2.16)

This local relationship between the surfactant concentration on the interface cΣ and the surfactant bulk concentration
close to the interface c|Σ is called adsorption isotherm and needs to be accounted for in the numerical solution1. For the
Langmuir adsorption model, the adsorption isotherm reads:

cΣ = cΣ∞
c/a

1+ c/a
, (2.17)

where c is the surfactant bulk concentration close to the interface, a the Langmuir equilibrium constant in mol/m3 and
cΣ∞ is the saturated surfactant concentration, which is the maximum number of molecules per area on the interface and
a surfactant specific constant.

Additionally, the equilibrium concentration cΣeq can be calculated using the maximum bulk concentration in equa-
tion (2.17), which is the initial surfactant bulk concentration c0:

cΣeq = cΣ∞
c0/a

1+ c0/a
. (2.18)

2.1.3 Surfactant influence on the surface tension

The presence of surfactant on the interface changes the interfacial surface tension and thereby influences the forces acting
on the interface. For fast and slow sorption mechanisms, the effect of surfactant on the surface tension is given by the
equation of state, and reads:

σ−σ0 = Π
�

cΣ
�

. (2.19)

The function Π
�

cΣ
�

is defined with respect to the sorption model employed [24]. In the current work, the Langmuir
model is used and, therefore, the surface tension equation of state is given by:

σ = σ0 + RT cΣ∞ ln

�

1−
cΣ

cΣ∞

�

, (2.20)

where R is the universal gas constant and T is the absolute system temperature in Kelvin.

1 The notation ·|Σ denotes the trace of a quantity defined in Ω at the interface.
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2.1.4 Forces acting on the interface

Equation (2.5) can be used to derive the forces acting on the interface. The normal force balance at the interface is given
by equation (2.21), while the tangential force balance leads to equation (2.22):

JptotKnΣ + 2JµK (∇Σ · v)nΣ = σκnΣ , (2.21)

−Jµn · ∇vK− Jµ (∇Σv) · nK− JµKnΣ (∇Σ · v) =∇Σσ , (2.22)

where L denotes the liquid and G the gaseous phase. The area-specific forces f j
i can be divided into:

• the Marangoni force, which is the result of a non-uniform surfactant distribution on the interface

fma =∇Σσi . (2.23)

• the capillary pressure force, which increases either with the surface tension σ or with the curvature κ of the
interface. The capillary pressure force is large for small, uncontaminated bubbles and for deformed bubbles with
interfacial regions of high curvature

fca = σikinΣ,i . (2.24)

• the dynamic pressure, which is the kinetic energy per volume of fluid and thereby increases with the velocity of
fluid elements

fpdyn =
�

pdyn,Gi
− pdyn,Li

�

nΣ . (2.25)

• the total pressure force, which is the sum of the dynamic, ambient and hydrostatic pressure force. For a freely
rising bubble, the ambient pressure difference is zero.

fptot =
�

ptot,Gi
− ptot,Li

�

nΣ . (2.26)

• the viscous force, which acts between the two phases (liquid and gaseous). It is determined by the velocity
gradient at the interface and can be separated into parts normal and tangential to the interface:

– The normal viscous force is defined as:

fvisc
⊥ = 2µG

�

∇Σ · v
�

inΣ,i − 2µL

�

∇Σ · v
�

i nΣ,i . (2.27)

– While the tangential viscous force reads:

fvisc
∥,Li
= µL

�

(n · ∇v)Li
+ (∇Σv)Li

· n+ nΣ (∇Σ · v)
�

, (2.28)

fvisc
∥,Gi
= µG

�

(n · ∇v)Gi
+ (∇Σv)Gi

· n− nΣ (∇Σ · v)
�

, (2.29)

fvisc
∥,i = fvisc

∥,Li
+ fvisc
∥,Gi

. (2.30)

By integrating the area specific forces f j
i over the bubble surface, the global forces acting on the interface are obtained.

Due to the discrete representation the integration transforms into a sum over all faces N f :

F j =
N f
∑

i=1

f j
i Ai . (2.31)

The jump condition for the global forces acting on the interface reads:

Fptot + Fvisc = Fca + Fma . (2.32)

Note that the jump condition (2.32) is only fulfilled approximately in the numerical procedure. Thus, the equality of
terms on the left and right side of equation (2.32) may be used as a quality measure for the coupling of the two phases.
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2.1.5 Dimensionless quantities

To describe the physical properties and behaviour of the simulated bubbles in a case-independent manner, it is useful to
introduce dimensionless quantities. The dimensionless quantities are described in the following:

• Reynolds number: The Reynolds number describes the ratio between inertia and viscous forces and is an indicator
for the appearance of distinct flow patterns. It is defined as:

Re =
U · L
ν
=

v · dB

ν
, (2.33)

with U being the characteristic velocity, L the characteristic length of the flow problem and ν the kinematic
viscosity of the fluid. Within this work, the characteristic velocity is given by the barycentric velocity v and the
characteristic length by the bubble diameter dB. Additionally to the global Reynolds number describing the motion
of the bubble center, a local Reynolds number is defined, capturing the motion on the interface. The local Reynolds
number is defined as:

ReΣ =
vΣ · dB

ν
, (2.34)

with vΣ being the relative interface velocity of the bubble in a coordinate system moving with the bubble centre.

• Sherwood number: The Sherwood number is a measure for the species transfer rate and represents the ratio of
convective and diffusive mass transfer. It is defined as:

Sh=
β L
D

, (2.35)

with β being the mass transfer coefficient, L the characteristic length of the transfer problem and D the diffusion
coefficient. Within this work, the Sherwood number is used to characterise the surfactant transfer at the interface.
In order to extract the Sherwood number from the simulation results, the local Sherwood number is defined as:

Shloc =
(n · ∇c)|Σ · dB

c0
. (2.36)

with (n · ∇c)|Σ being the gradient in normal direction to the interface, c the bulk concentration close to the
interface and c0 the concentration far away from the interface. The global Sherwood number is determined using
the area-weighted integral of the local Sherwood number [10]:

Sh=
1
∂ V

∫

∂ V

ShlocdA =

∑N
i=0 Shloc,i · Ai
∑N

i=0 Ai

, (2.37)

where Shloc,i is the cell specific local Sherwood number, Ai the cell area and N the number of cells at the interface.

• Dimensionless time: In order to define a dimensionless time, the gravitational time tgr =
p

dB/g is used [4]. The
dimensionless time is therefore given by:

t̃ =
t

tgr
=

t
p

dB/g
, (2.38)

with dB being the bubble diameter and g the gravitational constant.

• Dimensionless acceleration: For freely rising bubbles in water, the driving force acting on the bubble results
from the buoyancy. Thus, the acceleration is normalized using the gravitational constant g. The dimensionless
acceleration is defined as:

ã =
a
g

. (2.39)

• Dimensionless area: Due to forces acting on the interface the bubble is deformed, resulting in a change of the
bubble area. In order to compare the area deviation of the different cases, the bubble area is normalised using the
area of a sphere with equivalent volume Asphere:

Ã=
A

Asphere
=

A
1/6πd3

B

. (2.40)
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2.2 Numerical setup

The equations presented in section 2.1 are solved numerically using the open-source platform OpenFOAM1 (Open Field
Operation And Manipulation). OpenFOAM is a free to use toolbox for the development of numerical solvers for the
solution of continuum mechanical problems. The main focus lies on computational fluid dynamics (CFD).

To solve the surfactant transport equations in the bulk and on the interface, the arbitrary Lagrangian-Eulerian (ALE)
Interface Tracking method is used, which was originally presented by Hirt et al. [12] and further developed by Muzaferija
and Perić [22] and Tuković and Jasak [34]. The interface is represented by a surface mesh that divides the computa-
tional domain into two subdomains: the liquid and the gaseous phase. The two subdomains are coupled via boundary
conditions for pressure and velocity derived from the jump conditions at the moving interface Σ(t), as described in the
previous chapter. A detailed description of the solver can be found in [24, 25]. In the following, the basic ideas are
outlined.

To reduce the required number of cells, a moving reference frame fixed to the bubble centre is used, i.e., the bubble
remains in the centre, while the fluid flows around it. Figure 2.1 shows a sketch of the computational domain.

inflowing liquid

rB

gas

liquid

space

interface

Figure 2.1: Sketch of the computational domain. In the simulation the interface is duplicated, consisting of two surface
meshes: interface and interfaceShadow being the boundaries of the liquid and gas phase, respectively.

2.2.1 Spatial discretisation

The equations in the bulk phases and on the interface are solved by applying a Finite Volume (FV) and Finite Area (FA)
method, respectively. Table 2.1 reports the schemes used to discretise each term of the transport equations.

Table 2.1: Numerical schemes used for the simulation.

(a) FV schemes.

Scheme Setting

gradScheme Gauss linear
divScheme default Gauss linear
divScheme div(phi,U) Gauss GammaVDC 0.5
divScheme div(phi,C) Gauss limitedLinear 1.0
lapacianScheme Gauss linear corrected
interpolationScheme default linear
interpolationScheme C limitedLinear phi 1.0
snGradScheme corrected

(b) FA schemes.

Scheme Setting

gradScheme Gauss leastSquares2

divScheme div(Us) Gauss leastSquares2

div(phi,Cs) Gauss upwind
lapacianScheme Gauss linear corrected
interpolationScheme default leastSquares2

1 Link: https://www.openfoam.com/
2 The leastSquares edge interpolation scheme is part of an in-house development and not yet published.
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2.2.2 Temporal discretisation

For the temporal discretisation, the second order backward-differencing time scheme, known in OpenFOAM as backward,
with a fixed time step ∆t is used. The simulation time step ∆t is chosen with regard to the numerical stability of the
interface [34], which is a more restrictive condition for surface tension driven flows than the CFL (Courant-Friedrichs-
Lewy) condition. As a stability criterion the time step should satisfy:

∆t <



√ρmin (lPN)
3

2πσ
, (2.41)

with min (lPN) being the minimum distance between two face centers on the interface.

2.2.3 OpenFOAM -specific boundary conditions

In addition to the numerical schemes, boundary conditions for the numerical domain need to be defined. The computa-
tional domain contains three boundaries: the outer boundary of the liquid domain, here called space, the interface and
the interfaceSchadow, see figure 2.1. Table 2.2 lists the OpenFOAM-specific boundary conditions used in the simulations.

Table 2.2: Boundary conditions of the numerical domain.

Boundary U motion U p c

interfaceSchadow fixedValue fixedValue fixedGradient zeroGradient
interface fixedGradient fixedValue fixedValue fixedValue
space inletOutlet fixedValue zeroGradient inletOutlet

The initial surfactant concentration on the interface is zero, while in the bulk phase, the surfactant is uniformly dis-
tributed over the liquid domain with a given concentration c0.

2.2.4 Pressure-velocity coupling

For the pressure-velocity coupling a modified version of the iterative pressure implicit with splitting of operators (PISO)
algorithm is used [13]. The linear solver tolerance for the pressure (PCG) and velocity (PBiCG) solvers is set to 10−6,
while for the concentration (PBiCG) a much lower bound of 10−12 is deployed. Figure 2.2 shows a schematic overview
of the numerical solution procedure of the subgrid-scale (SGS) solver used in this work and first presented in [25].

In the SGS solver implemented by Pesci et al. [25], the pressure-velocity coupling with a modified PISO algorithm is
embedded in an outer loop. Besides the PISO algorithm, the interface displacement, mesh and fluxes, as well as the
interface tangential and normal jump conditions, and surfactant transport at the interface are updated, see figure 2.2.
Thereby, the number of these outer iterations is considered constant. Thus a compromise between a steady simulation
and runtime has to be made. Figure 2.3 shows the terminal velocity vy and the initial pressure residual for the 2D
simulation of an uncontaminated bubble over time. In the acceleration phase of the bubble the residual rises. Once the
bubble decelerates, the residual drops and approaches zero. The residual trend is an indication for the numerical effort
needed to solve the problem. While in the first acceleration phase, the simulation is demanding, requiring a large num-
ber of outer iterations, for later times fewer outer iterations are sufficient to ensure a satisfying pressure-velocity coupling.

To stabilise the simulation in the acceleration phase and to reduce the computational effort in the quasi-steady state, a
residual control is implemented varying the number of outer iterations. Therefore, the initial residuals for pressure and
velocity are stored and compared to user-defined tolerances. Once the initial residuals fall below the tolerance, the outer
loop is terminated and the simulation continues with the next time step. The break condition reads:

�

Resp ≤ Tolp ∧Resv ≤ Tolv
�

∨ (n≥ nmax) , (2.42)

with Res denoting the residual, Tol the given tolerance, n being the number of iterations and nmax the maximum number
of outer iterations to avoid an infinite loop. In a first attempt, a pressure and velocity tolerance of 10−6 with nmax = 30 is
used. The residual control was tested for a 3D bubble with a bubble diameter of dB = 1.3 mm.
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Figure 2.2: Overview of the numerical solution procedure of the solver [25].

With this setup fluctuations in pressure and velocity occur once the number of outer iterations falls below three, see
figure 2.4a. The reason for the fluctuation is unclear and needs further investigation. A possible explanation might be
the influence of additional steps performed inside the outer loop, which are not captured by the pressure and velocity
residuals, e.g. the mesh motion. To avoid the fluctuation, within this work, a minimal number of outer iterations nmin is
specified, changing the break condition of the loop to:

��

Resp ≤ Tolp ∧Resv ≤ Tolv
�

∧ n≥ nmin

�

∨ (n≥ nmax) . (2.43)

Figure 2.4b shows the fluctuation in the total drag force of a 1.3 mm bubble under the influence of surfactant for the
residual control with nmin > 0 and nmin = 0. With more than three minimal outer iterations, the fluctuations are gone.
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Figure 2.3: Pressure residual development over time compared with the terminal velocity vy of a 2D bubble with
dB = 1.3 mm.
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2.3 Machine learning algorithms

Within this work, machine learning techniques are used to derive a model for the local surfactant distribution on the
interface of a single rising bubble. In the following, the basic machine learning algorithms and workflows are introduced.

2.3.1 Machine learning domains

Machine learning can be separated into three main fields:

• Supervised learning: In supervised learning the data has defined input and output parameters, the so-called
features and labels. The goal of supervised learning is to train a model based on feature-label-pairs to predict
the labels for unseen features. Supervised learning can be further subdivided into classification, where the output
label is defined by a discrete value, e.g. true or false, and regression, where the output is continuous.

• Unsupervised learning: In unsupervised learning the given data structure is unknown. The main objective is to
find a structure within the data. A popular example is clustering.

• Reinforcement learning: The goal of reinforcement learning is to develop a system that improves its performance
based on interactions with the environment. It is commonly used, for example, in self-driving cars or humanoid
robots.

The modelling of the surfactant concentration on the interface is a supervised learning problem, more accurately a
regression problem. Therefore, the following chapters will refer to regression problems. Additional information regarding
the other machine learning fields can be found, for instance, in [26].

2.3.2 Machine learning workflow

In the following, the main steps when building and training a machine learning model are discussed. For further infor-
mation, the reader is referred to [26].

The first step to generate a machine learning algorithm is the gathering of data. Within this work, the raw data is a
collection of results from several DNS of rising bubbles under the influence of surfactant. From the simulations the raw
data is extracted and pre-processed in several steps:

• Data filtering: Data filtering is a suitable approach to reduce outliers in the data. Usually, DNS are not susceptible
to outliers. The performed simulations, however, show outliers in the first time steps due to the discretisation
of the surfactant transport on the interface. Therefore, a data filtering of the first time steps is performed, as
described in section 6.1.1.

• Feature selection: To model the surfactant concentration on the interface cΣ, several input features can be ex-
tracted from the simulation, e.g. the rise velocity v or the mean surfactant concentration on the interface c̄Σ. In
feature selection, the most relevant input parameters are selected to reduce the model’s complexity.

• Feature scaling: The input parameters of the model can have scales ranging over orders of magnitude. While
the Sherwood number Sh reaches values up to 800, the mean surfactant concentration c̄Σ is of order O (10−6).
Therefore, the parameters are scaled to a range between 0 and 1 to avoid very small or very big input parameters.
This scaling leads to a better-conditioned optimisation problem for the model training and thereby speeds up the
training process and increases the model’s accuracy. Furthermore, feature scaling reduces rounding errors that are
caused by the limited accuracy of the numerical data.

• In the last step, the processed data is split into a training and a validation data set. The training data set is used
to train the model, while the validation data set is unknown to the model and only used to evaluate the model
performance after training. Within this work, entire simulations of different initial surfactant bulk concentrations
c0 are used for validation.

After data extraction and pre-processing, the machine learning model is trained. The training of the model is an
iterative procedure, in which a defined criterion, the so-called loss, is minimised by adjusting the model’s weights.
Finally, the model performance is assessed using the validation data. Once satisfactory results are obtained the required
model can be used to make predictions on unknown input data.
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2.3.3 Feature selection

Too many input features make the model prone to overfitting, due to the curse of dimensionality [26], while too few
input features instead may reduce the potential model performance. In the following, the basic concepts of the algorithms
that are used to select significant input parameters are introduced. Further details about the presented techniques can
be found in [26].

• Decision trees and random forest regression
A random forest regressor is a machine learning algorithm that is based on multiple decision trees. A decision tree
defines a series of conditions to make a prediction. Therefore, it uses the input features and creates data-based
decisions to explain the output labels of the data. The feature importance of a random forest regressor is a measure
for feature relevance based on the average impurity reduction computed from all decision trees within the forest.
The impurity of a node is the criterion based on which the (locally) optimal condition for a split of the tree is
chosen. Further information can be found in the ski-kit learn documentation1.

In feature selection, decision trees are a fast approach to get a first impression of the data. The algorithm is
simple to implement and has the feature importance as an internal property. The feature importance, however,
is dependent on the data structure. For multiple linear correlated features, the algorithm produces poor results.
Therefore, the sequential backward selection (SBS) algorithm is used for these cases.

• Sequential backward selection
The SBS algorithm reduces the dimensionality of an initial feature subspace by evaluation the model performance
iteratively for different feature combinations. The algorithm can be divided into four steps:

1. The algorithm is initialised with the full available feature space.

2. The algorithm determines the feature that leads to the lowest performance loss of the model if removed from
the feature space.

3. The feature with the lowest performance loss is removed.

4. The algorithm restarts from 2. until only one feature or a predefined minimum number of features is left.

In SBS, a machine learning model is required to evaluate the performance of the predictions with the given feature
subset. In general, any machine learning model may be used. Here, the K-nearest neighbour algorithm (KNN) is
employed.

The KNN algorithm is based on saving the entire training data set and using it to make predictions based on
interpolation. The basic steps of the algorithm are:

1. Define a number of neighbouring points k and a distance metric for the interpolation.

2. Find the k nearest neighbours for the given feature vector.

3. Interpolate between the k neighbouring points to compute the label.

A nice visualisation of the KNN algorithm can be found, for instance, on YouTube2. When performing SBS with
the KNN algorithm, it is essential to either split the data into a training and a validation data set and use the
validation data to assess the performance of the model or to use a simple average for the interpolation. Otherwise,
the prediction performance can be misleading, because perfect scores are reached independently of the selected
features. The KNN algorithm can be understood as a database of values that are assessed to make predictions.
Thereby, the data is stored and used for estimation, instead of learning a function. When one of the input features
has a value corresponding to exactly one output label, the assignment of this feature to the label is unique. This
means that for every feature value only one output is defined. If the KNN algorithm is used combined with a
distance metric scaling with the inverse distance as weight, the algorithm returns a perfect score, because the
algorithm is not predicting, but just returning the stored values from the database. The perfect score, however,
does not depict an actual functional correlation between the feature and the label but is a result of overfitting. A
simple fix is the use of a validation data set to calculate the feature performance.

1 http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html, visited 10/2018
2 https://www.youtube.com/watch?v=3lp5CmSwrHI, visited 10/2018
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Finally, scoring and error metrics are required to validate the quality of the model. Popular metrics for regression
are the mean squared or the mean absolute error and the r2-score1. For the SBS the r2-score is used, which is
based on the mean squared error:

r2-score(y, ŷ) = 1−

∑nsamples−1
i=0 (yi − ŷi)2

∑nsamples−1
i=0 (yi − ȳ)2

, (2.44)

with yi being the true label of the i-th sample, ŷi being the predicted value of the i-th sample and ȳ being the
mean of all labels. The best possible r2-score is 1.0, while a value of 0.0 corresponds to a model that always
returns the mean.

2.3.4 Multilayer perceptron

A Multilayer perceptron (MLP) is a popular algorithm to learn non-linear relationships between input and output
data [28]. A MLP is characterised by an input and an output layer combined with multiple hidden layers. The hid-
den layers are densely connected and typically employ a sigmoid activation function2 [1]. The importance of the
connection between two neurons is presented by weights, which are adjusted during the training process. Figure 2.5
shows the basic structure of a MLP.

Figure 2.5: Structure of a multilayer perceptron [21].

Formally, a MLP is defined as a function with a weight matrix Wk and a bias bk for each layer k. The forward pass
through a MLP with one hidden layer and an input vector x ∈ Rn and the output y ∈ R is computed as:

y(x) =W2 · f (W1 · x+ b1) + b2 , (2.45)

where W1 ∈ Rm and W2,b1,b2 ∈ R are the model parameters. The weights of the input and hidden layer are represented
by W1 and W2, respectively. The biases b1 and b2 are added onto the hidden layer and the output layer, respectively. The
function f (·) : R→ R is the, so-called, activation function of the neuron.

The backpropagation algorithm is used to adjust the network’s weights and biases for optimal representation of the
training data. Optimal network parameters are those which lead to a minimum loss, defined, for example, as the mean
squared error:

E =
1
N

N
∑

i=1

(yi − ŷi)
2 , (2.46)

where yi is the actual label, ŷi is the network estimate and N the number of data points fed to the network.

1 http://scikit-learn.org/stable/modules/model_evaluation.html, visited 10/2018
2 A sigmoid function is a bounded, differentiable, real function that is defined for all real input values and has a non-negative derivative at

each point.
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The incremental update of model parameters via backpropagation includes the following three steps:

1. The network is fed with data, and the output of every neuron in each layer is computed.

2. The network output is compared with the desired labels and the difference is considered as the network’s error.

3. The error is ’backpropagated’ to the input layer, starting with the output layer. Thereby, the weights of the network
are adjusted according to their impact on the error. The update of a weight is calculated by:

w(n)ri j = w(n−1)
ri j −λ ·

∂ E

∂ w(n−1)
ri j

, (2.47)

where wri j is the weight from the input neuron j to the hidden neuron i and r indicating the layer, E being the
loss of the prediction, n the number of iterations and λ the step width or learning rate.

In chapter 6 a MLP is implemented to model the local surfactant distribution on the interface. For the implementation
and training, the open-source software library tensorflow1 is used, which was originally developed by Google and enables
high-performance numerical computations of neural networks and other machine learning algorithms.

1 https://www.tensorflow.org/, visited 10/2018
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3 Study on the mesh requirements

The simulation of rising bubbles under the influence of surfactants has high demands regarding the mesh resolution at
and close to the interface. In a Finite Volume/Finite Area framework methodology, the computational domain is divided
into control volumes in the bulk and control areas on the interface. In order to determine the resolution requirements
close to the interface in the radial and tangential direction, a 2D mesh study is carried out.

The fluid properties for these simulations are chosen according to the experimental conditions reported in the study by
Tagawa et al. [31]. The liquid phase consists of water, while the gaseous phase is nitrogen at T = 295.65 K.

Table 3.1: Fluid properties of the gaseous and liquid phase [35].

ρL kg/m3 ρG kg/m3 µL kg/(ms) µG kg/(ms) σ0 N/m

997.7 1.140 0.943 · 10−3 1.77 · 10−5 0.07235

3.1 Mesh study for a clean 2D bubble

A 2D study of a clean nitrogen bubble rising in water with diameters of 0.8, 1.3 and 2.0 mm is carried out to determine
the mesh resolution requirements. First, the grid convergence in the radial direction of the outer and inner mesh is
investigated using the total pressure force acting on the interface as a metric. The total pressure can be divided into the
dynamic, ambient and hydrostatic pressure, see section 2.1.4. For a freely rising bubble, the ambient pressure difference
is zero, and the hydrostatic pressure force is approximately constant over time. Therefore, the change in total pressure
force is dominated by the dynamic pressure, which is the kinetic energy per volume of fluid and thereby directly related
to the rise velocity of the bubble. Compared to the terminal velocity, however, it shows pronounced deviations.

Secondly, the tangential mesh quality is evaluated using the jump conditions at the interface decomposed in a normal
and a tangential contribution. For an uncontaminated bubble the surface tension σ at the interface is constant and the
jump condition in equation (2.5) simplifies to:

JptotI− SviscK · nΣ = σκnΣ , (3.1)

For a closed surface, the right hand-side of equation (3.1) cancels out:

Fca =

∫

A

σκnΣdA= 0 , (3.2)

leading to the normal jump condition at the interface:

JFptot − Fvisc
⊥ K= 0 . (3.3)

An insufficient tangential resolution results in numerical errors in the computation of the surface integrals of equa-
tion (3.1).

Table 3.2 shows the default settings for the meshes. If not stated otherwise, these are used in all simulations. Figure 3.1
displays the effect of the parameters on the mesh. The meshes are created using the open-source software salome-meca1.

Table 3.2: Default setup for the 2D mesh study.

NTan NRin NRout

180 36 28

1 https://www.code-aster.org/spip.php?article303, visited 10/2018
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NRin

NRout

NTan

Figure 3.1: Exemplary computational grid of a 2D bubble showing the different mesh parameters. NTan defines the tan-
gential grid resolution, while NRin and NRout define the radial resolution in the gaseous and in the liquid do-
main, respectively.

3.1.1 Radial grid resolution: liquid phase

To resolve the hydrodynamic boundary layer, the size of the first cells close to the interface is significant. Therefore,
different cell sizes at the interface have been compared, varying only the number of cells in radial direction NRout,
stretching the cell size at the interface by a factor of 1.5. The case setups are shown in table 3.3.

The radial cell width at the interface ∆Rout,1 is normalised using the hydrodynamic boundary layer thickness δh. The
correlation presented by Tomiyama et al. [32] provides an estimate of the Reynolds number for a clean bubble. The
boundary layer thickness is then given by:

δh ≈
dBp
2Re

. (3.4)

Figure 3.2 shows the total pressure force acting on the interface normalised with the buoyancy force VB∆ρg. Other
parameters, e.g. the terminal velocity vy , show a comparable behavior. For dB = 2.0 mm the 2D simulation gets
unstable after t ≈ 0.1 s. Therefore, the simulation results for t < 0.1 s are used to evaluate the radial grid resolution.
With increasing mesh resolution the drag force acting on the bubble is computed more accurately, leading to an higher
terminal velocity of the bubble. Mesh independent results are obtained for δh/∆Rout,1 > 5.5 and δh/∆Rout,1 > 3 for the
small bubble with dB = 0.8 mm and for the bigger bubbles with dB = 1.3 mm and dB = 2.0 mm, respectively. The
corresponding number of radial cells NRout and the cell width at the interface ∆Rout,1 are displayed in table 3.3. These
values provide a reference for the minimum radial grid resolution in 3D.

Table 3.3: Parameters for the outer radial grid resolution study.

(a) dB = 0.8 mm; δh = 45 µm.

NRout ∆Rout,1 µm δh/∆Rout,1

8 19.7 2.3
12 13.5 3.3
20 8.2 5.5
28 5.9 7.6

(b) dB = 1.3 mm; δh = 42 µm.

NRout ∆Rout,1 µm δh/∆Rout,1

8 31.1 1.4
12 21.8 1.9
20 13.4 3.1
28 9.6 4.4

(c) dB = 2.0 mm; δh = 57 µm.

NRout ∆Rout,1 µm δh/∆Rout,1

8 49.4 1.2
12 33.6 1.7
20 20 2.9
28 14.7 3.9
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Figure 3.2: Total pressure force acting on the interface for different outer radial resolutions, δh/∆Rout,1.
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3.1.2 Radial grid resolution: gaseous phase

By varying the number of radial cells in the inner domain NRin, the resolution of the inner mesh (gas phase) is investigated.
A bubble with a diameter of dB = 1.3 mm is considered. The simulations for the other bubble diameter show similar
results. Table 3.4 lists the parameters used in this study.

Table 3.4: Parameters for the inner radial grid resolution study, dB = 1.3 mm.

NRin ∆Rin,1 µm ∆Rout,1 µm ∆Rin,1/∆Rout,1

12 37.4 9.6 3.9
20 23.1 9.6 2.4
28 16.6 9.6 1.7
36 13.0 9.6 1.4
48 9.8 9.6 1.02

The influence of the inner mesh resolution is small compared to the outer one. The deviation in the total pressure
force amplitude between the default setting with ∆Rin,1/∆Rout,1 = 1.7 and the finest mesh ∆Rin,1/∆Rout,1 = 1 is smaller
than 0.2%. Nevertheless, a too coarse inner mesh in relation to the outer one leads to deviations of about 1%, see
∆Rin,1/∆Rout,1 = 3.9 in figure 3.3. For the 3D simulation a ratio ∆Rin,1/∆Rout,1 < 2 is recommended.
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Figure 3.3: Total pressure force at the interface, dB = 1.3 mm, for different ratios∆Rin,1/∆Rout,1.
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3.1.3 Tangential grid resolution

In the following, the fulfilment of the normal force balance at the interface is examined. Therefore, the normal contribu-
tion of the global forces acting on the interface in equation (2.32), derived from the normal jump condition, is analysed,
in other words, the difference between the total pressure and the normal viscous force normalised with the total pres-
sure force. For dB = 0.8 mm, this difference is approximately 10−10 and thereby smaller than the solver tolerance. For
dB = 1.3 mm the difference between the total pressure and normal viscous force increases with the mesh resolution. It
reaches a maximum of about 1% at t = 0.15 s. For dB = 2.0 mm the force difference at t = 0.1 s is greater than 10% of
the total pressure force, see figure 3.4. In the following, only the results for dB = 2.0 mm are further examined.
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Figure 3.4: Force balance normal to the interface, dB = 2.0 mm, with different radial resolutions, δh/∆Rout,1.

The increasing deviation with mesh resolution can be explained by the greater bubble deformation with higher terminal
velocities and bubble sizes. Due to the bubble deformation, the interfacial mesh is deformed. As a result, the tangential
resolution is not sufficient in the region of highest curvature, leading to different bubble shapes with respect to the
various δh/∆Rout,1, see figure 3.5.

δh/∆Rout,1 = 1.2 δh/∆Rout,1 = 1.7 δh/∆Rout,1 = 2.9 δh/∆Rout,1 = 3.9

δh/∆Rout,1 ↑

Figure 3.5: Bubble deformation for different radial resolutions δh/∆Rout,1 at t = 0.1 s, dB = 2.0 mm.

The increased deformation results in an increased error in the normal jump condition. It is likely that with increasing
deformation the regions of higher curvature are not resolved. Therefore, the principle that the total surface tension force
on a closed surface cancels out is not fulfiled, and neither is the normal jump condition, see equation (3.2). To determine
the required tangential resolution the number of cells in the tangential direction NTan is varied. Table 3.5 and figure 3.6
show the comparison of different tangential resolutions. As suspected, an increase of the tangential resolution decreases
the error for the normal jump condition at the interface. For dB/∆Tan = 131 the deviation is less than 1% of the total
pressure force after t = 0.06 s.

For a 3D mesh, this resolution leads to a large number of faces at the interface. Therefore, a tangential grading is
suggested, increasing the number of cells close to the region of maximum curvature for bubbles with a high deformation.
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Table 3.5: Parameters for the tangential grid resolution study, dB = 2.0 mm.

NTan ∆Tan µm dB/∆Tan

140 45.5 44
180 35.4 56
220 29.0 69
280 21.3 94
380 16.8 119
420 15.3 131
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Figure 3.6: Force balance normal to the interface, dB = 2.0 mm and δh/∆Rout,1 = 3.9, with different tangential resolutions,
dB/∆Tan.
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3.2 3D meshes

The initial shape of the bubble is a sphere positioned in the centre of a spherical domain. The outer domain radius is
twenty times larger than the radius of the bubble. The computational grid is divided into two meshes, one for the gaseous
phase consisting of polyhedral cells and one for the liquid phase consisting of prismatic cells with a polygonal base, see
figure 3.7. In the liquid domain, the outer boundary mesh (space) is created by projecting the interface grid onto the
outer surface.

(a) Full domain. (b) Enlarged view of the bubble region.

Figure 3.7: Computational mesh for the 3D simulation. The inner and outer domain are displayed, and a part of the
interface mesh is shown in a darker color.

The radial cell thickness of the first cell at the interface ∆Rout,1 is chosen according to the outcome of the parameter
study for the radial grid resolution, see section 3.1. The criteria for the radial mesh resolution in the liquid domain are
∆Rout,1 < 9 µm, ∆Rout,1 < 14 µm and ∆Rout,1 < 20 µm for the 0.8, 1.3 and 2.0 mm bubble, respectively. The radial cell
thickness in the gaseous phase is chosen with respect to the one in the outer domain and satisfies ∆Rin,1/∆Rout,1 < 2.

Regarding the tangential resolution, a uniform mesh fulfiling the requirements set by the tangential grid resolution
study results in a large number of faces on the interface. Such a grid would imply high computational costs. Thus, the
solution adopted here consists of a division of the interface in three regions: top, equator and bottom, see figure 3.8.
For these regions, different tangential resolutions are employed: (i) In the inflow region (top domain) the resolution
requirements are lower than for the other two regions. Therefore, a coarser grid is used to lower the computational
costs. (ii) In the equator region, high local curvatures can occur for bubbles with high deformation, resulting in increased
resolution requirements, see chapter 3.1.3. Thus, the resolution is adapted according to the expected bubble deformation.
(iii) The bubble wake is located in the bottom region of the bubble. The tangential grading at the interface is reflected in
the liquid domain, thus, a finer grid in this region enables a higher resolution of the wake compared to the inflow region.

equator

bottom

top

Figure 3.8: Interface mesh of a 2.0 mm bubble undeformed (left) and deformed at t = 0.08 s (right).
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The average edge length of the faces in the top, equator and bottom regions are chosen such that: (i) the total number
of faces is limited to a prescribed number NΣ, (ii) there is a smooth transition between the face sizes in the different areas
and (iii) the tangential grid resolution requirement is satisfied as well as possible. Figure 3.8 shows the mesh of a bubble
with dB = 2.0 mm and tangential grading in its undeformed and deformed state after t = 0.08 s, before the bubble starts
oscillating.

For dB = 0.8 mm, only little deformation is expected. Therefore, a uniform mesh is used. The simulations are carried
out using a coarse and a fine mesh. Table 3.6 lists the approximate resulting face and cell sizes of the meshes.

Table 3.6: Grid resolution and mesh size for dB = 0.8 mm.

Mesh ∆Tan µm ∆Rout µm NΣ NTotal

coarse 30 8.9 2.526 193.878
fine 25 6.7 3.604 350.328

For the 1.3 mm and 2.0 mm bubble, a grading between the top, equator and bottom region is used. As for the smaller
bubble, the simulations are executed on a coarse and a fine mesh. Additionally, for dB = 1.3 mm two contaminated
cases are considered. For these cases, the flow field is strongly affected by the presence of surfactants with vortices
developing in the bubble wake. Thus, a mesh with a refined bottom region and initial surfactant bulk concentrations
of c0 = 4.4 · 10−4 mol/m3 and c0 = 0.002 mol/m3 is examined in order to asses mesh independence, see section 5.2.
Tables 3.7 and 3.8 list the resulting mesh statistics for dB = 1.3 and 2.0 mm.

Table 3.7: Grid resolution and mesh size for dB = 1.3 mm.

Mesh ∆Tan,Eq µm ∆Tan,Bot µm ∆Tan,Top µm ∆Rout µm NΣ NTotal

coarse 30 45 60 13.9 2.563 197.678
medium 30 40 50 9.5 3.631 352.394

fine 30 25 50 7.6 4.839 517.607

Table 3.8: Grid resolution and mesh size for dB = 2.0 mm.

Mesh ∆Tan,Eq µm ∆Tan,Bot µm ∆Tan,Top µm ∆Rout µm NΣ NTotal

coarse 35 60 90 13 3.620 352.584
fine 30 40 80 13 6.092 591.870

3.3 Mesh requirements: conclusion

In this chapter, the mesh resolution requirements at the interface in radial and tangential direction have been assessed.
These results serve as reference values for the creation of the 3D meshes used for the following simulations.
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4 Parallelisation study

The preformed 3D simulations require high computational efforts due to the resolution requirements at the interface, see
chapter 3. Additionally, in most of the contaminated cases relatively long physical times of approximately 1 s have to
be simulated to reach a quasi-steady state. Due to the time step criterion, see equation (2.41), a total number of about
5 · 105 time steps is necessary to reach such a physical time of 1 s. Similar simulations that have been carried out in
earlier studies required runtimes of 30 to 60 days while distributed on six processors [25]. To reduce the runtime, two
different decomposition methods are examined. Additionally, various numbers of processors are considered to choose
the most efficient way to distribute the computational effort.

For the parallelisation study, an uncontaminated 3D bubble with a diameter of dB = 1.4 mm and a uniform mesh
with NΣ ≈ 4500 faces on the interface and NTotal ≈ 350000 cells is considered. The simulation is executed for 1000
time steps with a fixed number of five outer iterations. Due to the different performances of the assigned processors
on the Lichtenberg cluster, the simulation time can differ. Nevertheless, the study should be able to provide trends for
the runtime. Within the interface tracking methodology, the interface (and its counterpart bounding the gas phase)
cannot be distributed over multiple processors. Thus, the decomposition method has to account for this restriction. The
decomposition methods examined are

• a manual decomposition, with processor regions defined by the user [36].

• a scotch decomposition, where the processor regions are chosen automatically by the scotch library [6].

For the scotch decomposition, a speed up in runtime is desired since no restriction on the number of subdomains is
prescribed. Additionally, the scotch decomposition requires less user intervention and is better suited for non-uniform
meshes, see section 4.2.

4.1 Decomposition techniques

The manual decomposition divides the computational domain in an inner part containing the interface and some cells
around it, the so-called outer domain. The inner part can be further decomposed into a region containing the interface
(like a hollow sphere) and the remaining part. The outer domain can be split into two, four or eight subdomains, each
one cutting the volume in direction of the xy-, xz- and yz-planes. Figure 4.1 shows a cut through the domain with the
regions coloured by the processor number after a manual decomposition on ten processors.

Figure 4.1: Cut through the yz-plane of a manual decomposition on ten processors. The processor domain containing the
interface is marked in red.
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In the case of the scotch decomposition, a restriction needs to be specified to ensure that the interface is not shared by
multiple processors. Therefore, a small hollow sphere containing the interface is defined to stay on a single processor,
see figure 4.2. The hollow sphere defines the smallest domain that needs to be included in the single processor region
containing the interface. Nevertheless the scotch decomposition algorithm can include additional cells to that region. The
rest of the domain is decomposed automatically to optimise the number of cells per processor and the number of faces
per processor boundary according to the scotch algorithm [6]. Figure 4.3 shows a cut through the yz-plane for the scotch
decomposition on 10 processors. The processor containing the interface is coloured in red.

interface

rRin

rRout

Figure 4.2: Schematic drawing of the restriction applied to the scotch decomposition for the processor domain holding
the interface.

Figure 4.3: Cut through the yz-plane of the scotch decomposition on ten processors. The processor holding the interface
domain is marked in red.
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4.2 Comparison of the decomposition techniques

To compare the decomposition techniques, the scotch decomposition is used with a hollow sphere containing the interface
with radii of rRout = 0.72 mm and rRin = 0.69 mm and no further restrictions. For the manual decomposition the number
of cells in the processor domains are evenly distributed. Table 4.1 shows the cell distribution for varying numbers of
processors nProc.

Table 4.1: Number of cells on the processor containing the interface NProc,Σ compared with the mean number of cells on
the other processor regions NProc,/∈Σ for a varying number of processors, nProc.

(a) Manual decomposition

Method nProc NProc,Σ NProc,/∈Σ χProc

manual 2 164000 177000 1.08
manual 5 66000 70000 1.06
manual 6 62000 65000 1.05
manual 10 31000 37000 1.2

(b) Scotch decomposition

Method nProc NProc,Σ NProc,/∈Σ χProc

scotch 2 170000 171000 1.01
scotch 5 86000 59000 0.7
scotch 6 66000 57000 0.86
scotch 10 43000 34000 0.79
scotch 12 19000 28500 1.5
scotch 14 18000 24000 1.3

Figure 4.4 compares the runtime of the two decomposition methods on a different number of processors scaled by the
runtime on a single core. As a reference, a half linear scaling of y = 1/2 · x is shown in orange. Both decomposition
techniques perform slightly worse than the given reference and do not differ significantly for more than five processors.
For more than 10 processors, the gain in runtime reduces even further and the runtime stays approximately constant.
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Figure 4.4: Runtime comparison between the manual and scotch decomposition.

For uniform meshes the manual decomposition gives overall better results compared to the scotch decomposition.
Nevertheless, the processor domains need to be specified by the user and are restricted to a decomposition in xy-, xz-,
and yz-direction, see section 4.1. In case of a non-uniform mesh with top, equator and bottom grading, as used for
the 1.3 mm and 2.0 mm bubble, this decomposition leads to an uneven cell distribution on the processor domains not
containing the interface. The number of cells in these domains differs up to a factor of 8. Therefore, the performance of
the manual decomposition decreases drastically. The scotch decomposition, on the other hand, shows comparable runtime
results due to an even cell distribution. Furthermore, the decomposition can be done on any number of processors giving
more flexibility to the user.
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4.3 Domain dependency study

The area near the interface region has the highest requirements regarding the computational effort. Therefore, the
computational time on the processor containing the interface is expected to be greater than on the other ones with the
same amount of cells. A further study is performed to gain an insight into the influence of the cell ratio on the runtime:

χProc =
NProc,/∈Σ

NProc,Σ
, (4.1)

with NProc,/∈Σ being the mean number of cells in the processor domains not containing the interface and NProc,Σ being the
number of cells on the processor containing the interface. Cell ratios χProc of 1, 1.5 and 2 are examined for the manual
and scotch decomposition on 2, 5, 6 and 10 processors. For the scotch decomposition, two different approaches to control
the number of cells on the interface are presented.

4.3.1 Manual decomposition

For the manual decomposition, the outer radius of the processor domain containing the interface is chosen in order to
fulfil the prescribed χProc. Figure 4.5 displays the obtained results. For less than five processors, the decomposition with
χProc = 2 shows the best results. The cases of nProc = 5 and 6, χProc = 1 and 1.5 do not differ significantly from one
another. In case of nProc = 10, the performance does not decrease continuously with χProc. In fact, χProc = 1.5 shows the
worst performance, indicating counteracting effects on the runtime:

• A higher χProc increases the decomposition efficiency. This effect can be explained due to the increased complexity
of the physical processes on and close to the interface and thereby increased computational effort to solve the
numerical problem. An indication for this hypothesis is the overall better performance for χProc = 2 on nProc > 5.

• Cutting the processor domain too close to the interface leads to badly conditioned matrices, slowing down the
iterative solver and thereby increasing the time to solve the numerical problem on the processor containing the
interface. This hypothesis is based on the performance increase for χProc = 1 compared to χProc > 1 for a decom-
position on 10 processors. The higher ratios lead to a processor domain close to the interface consisting of only
five or three radial cell layers outside the interface in the processor domain for χProc = 1.5 and 2, respectively.

In order to verify these hypotheses and to obtain more meaningful results, further decomposition studies are needed,
which would exceed the scope of this work.
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Figure 4.5: Runtime comparison for different cell ratios χProc for the manual decomposition.
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4.3.2 Scotch decomposition

To control the processor region containing the interface in the scotch decomposition, processor weights wProc can be
defined that control the cell ratio χProc. Inside the scotch algorithm higher processor weights lead to an increasing
number of cells on these processors. For the scotch decomposition, two different approaches are compared.

1. The radii of the hollow sphere containing the interface is kept constant while the processors outside the interface
are weighted according to χProc.

2. The processor containing the interface is forced to contain only the hollow sphere by applying high processor
weights for the domains not containing the interface, while the outer and inner radius of the hollow sphere rRin
and rRout are varied.

Table 4.2 shows the different parameters for the scotch decomposition while figures 4.6 and 4.7 show the results in
terms of runtime for the different domain decomposition strategies. The first decomposition technique does not show a
recognisable trend according to χProc and the performance is comparable to the unweighted decomposition. The second
strategy shows slightly better results with a maximum performance for χProc = 1 and 2. On 10 processors a maximum
speed up factor of 4.4 is reached.

Table 4.2: Parameters used for the scotch decomposition domain study. A value of 0 for the ratio between the processor
weights corresponds to a processor containing the interface consisting only of the volume inside the hollow
sphere.

(a) Varying the processor weight.

nProc χProc
wProc,Σ

wProc,/∈Σ
rRin mm rRout mm

2 1 6/7 0.72 0.69
5 1 3/5 0.72 0.69
6 1 4/7 0.72 0.69

10 1 1/3 0.72 0.69

2 1.5 6/9 0.72 0.69
5 1.5 4/11 0.72 0.69
6 1.5 2/4 0.72 0.69

10 1.5 1/15 0.72 0.69

2 2 2/5 0.72 0.69
5 2 1/5 0.72 0.69
6 2 1/7 0.72 0.69

10 2 0 0.72 0.69

(b) Varying the hollow sphere containing the interface.

nProc χProc
wProc,Σ

wProc,/∈Σ
rRin mm rRout mm

2 1 0 2.0 0
5 1 0 0.85 0
6 1 0 0.88 0.69
10 1 0 0.77 0.69

2 1.5 0 1.4 0
5 1.5 0 0.75 0
6 1.5 0 0.8 0.69
10 1.5 0 0.73 0.69

2 2 0 1.2 0
5 2 0 0.714 0
6 2 0 0.75 0.69
10 2 0 0.714 0.69
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Figure 4.6: Runtime comparison for different cell ratios χProc with scotch decomposition and varying processor weights.
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Figure 4.7: Runtime comparison for different cell ratios χProc with scotch decomposition and varying interface domain.

4.4 Parallelisation study: conclusion

The parallelisation technique using the OpenFOAM scotch algorithm is not able to improve the runtime for uniform
meshes. On the contrary, the manual decomposition shows slightly better performance. Even though the desired per-
formance boost on uniform meshes was not reached, the less restrictive scotch decomposition enables a satisfactory
decomposition of non-uniform meshes, which was not possible using the manual decomposition. Furthermore, the scotch
decomposition provides higher flexibility and requires less user intervention.

In the current work, a combination of both techniques is used. While for uniform meshes the manual decomposition
on 10 processors with a ratio of χProc ≈ 2 is used, for non-uniform meshes the scotch decomposition on 10 processors
with a sharp processor domain holding the interface (2nd decomposition method presented in section 4.3.2) and a ratio
of χProc ≈ 2 is favoured.

Due to the restriction that the interface needs to stay on one processor, a noticeable performance increase for fur-
ther decomposition strategies is unlikely. This restriction limits the capability of the decomposition techniques included
in OpenFOAM and also the maximum number of processors that can be used. The possibility to cut the interface in
multiple parts allows new decomposition approaches and promises performance improvements. Nevertheless, such an
implementation exceeds the scope of this work.
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5 Simulation results and discussion

The objective of this work is to simulate single rising nitrogen bubbles in clean and contaminated water. The surfactant
employed is Triton-X100, which is known to follow a fast sorption mechanism [5]. The surfactant is dissolved in the liquid
phase and can ad- and desorb onto the interface via the sorption mechanisms. To reduce the resolution requirements
close to the interface, a SGS model for the surfactant transport in the bulk phase is used [37, 25]. The sorption process is
modelled using the Langmuir model with the respective adsorption isotherm and surface tension equation of state. Four
different initial surfactant bulk concentrations are considered: a relatively small one c0 = 4.4·10−4 mol/m3 corresponding
to an experimental study by Tagawa et al. [31], two intermediate ones, c0 = 0.002 and 0.008 mol/m3, and a high one
c0 = 0.05 mol/m3. Table 5.1 lists the surfactant specific properties.

Table 5.1: Surfactant properties (Triton-X100).

cΣ∞ mol/m2 a mol/m3 D m2/s DΣ mol/m2 T K

2.9 · 10−6 6.6 · 10−4 2.6 · 10−10 2.6 · 10−7 315.65

The simulation setup is described in section 3.2, while the simulation results are discussed in the following. To assess
their quality, experiments examining the path instability of rising bubbles under the influence of Triton-X100 performed
by Tagawa et al. [31] are considered as a reference.

5.1 Experimental studies

The experimental study performed by Tagawa et al. [31] examines the path of single nitrogen bubbles rising in water
under the influence of Triton-X100. Thereby, bubble diameters of 1.3, 2.0 and 3.1 mm are studied with a surfactant
bulk concentration of 27 ppm, which corresponds to a molar concentration of 4.4 · 10−4 mol/m3. Figure 5.1 shows the
experimentally obtained trajectories.
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Figure 5.1: Trajectories of rising bubbles under the influence of Triton X-100 [31]: (a) dB = 1.3 mm, (b) dB = 2.0 mm,
(c) dB = 3.1 mm.

The bubble with dB = 1.3 mm shows a straight–helical–zig-zag transition. The onset of helical motion is after approx-
imately 200 mm rise height. The bubble follows a helical trajectory with a constant diameter before it transitions into a
zig-zag motion. For dB = 2.0 mm, first a helical rise is observed with a decreasing helix diameter that becomes a zig-zag
motion with a constant amplitude. The biggest bubble shows a zig-zag–helical–zig-zag transition. The first zig-zag state
shows an increasing motion amplitude, followed by a helical motion with decreasing helix diameter. The zig-zag motion
after approximately 400 mm rise height shows a constant amplitude.

Due to the graphical representation, it is difficult to obtain exact values for the motion amplitudes. Nevertheless, the
experimental data can be used for a qualitative comparison and discussion of the numerical results. In this work, the
bubble diameter dB = 3.1 mm is not considered, because of the high computational effort.
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5.2 Mesh sensitivity study

In order to assess the mesh sensitivity, the bubble terminal velocity vy and the bubble path are examined on a coarse and
a fine mesh. Tables 3.6 to 3.8 list the corresponding mesh setups.

5.2.1 Mesh sensitivity for dB = 0.8 mm

Figure 5.2 shows the terminal velocity under the influence of different initial surfactant bulk concentrations for the
smallest bubble investigated. The obtained results on both meshes do not differ significantly. The maximum difference
between the coarse and fine mesh is encountered for the most contaminated bubble and is smaller than 0.1% of the
terminal velocity. Due to the insignificant difference between the results on the coarse and the fine mesh, greater
physical times are computed on the coarse mesh to reduce the computational effort.
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Figure 5.2: Comparison of the bubble terminal velocity for the coarse and fine mesh with dB = 0.8 mm. The coarse mesh
is shown in black while the fine mesh is colored in orange.

5.2.2 Mesh sensitivity for dB = 1.3 mm

For the medium size bubble, three different mesh resolutions are examined: a coarse, a medium and a fine mesh. The
fine mesh has a refined wake region compared to the medium one, see table 3.7. The fine mesh is only examined for low
initial surfactant bulk concentrations c0 ≤ 0.002 mol/m3, because of deviations between the coarse and medium mesh
for these concentrations. In figure 5.3 and 5.4 results obtained on the medium mesh are coloured in orange while the
fine mesh data is shown in blue.

For initial surfactant bulk concentrations c0 ≥ 0.008 mol/m3, the deviation of the terminal velocity and bubble path
on the coarse and the medium size mesh is neglectable, see figures 5.3 and 5.4b. For the bubble path, only the onset of
instability and the direction of motion in the x-z plane differs. The qualitative bubble path, however, is similar, showing
a zig-zag motion with a decreasing amplitude and a transition to a straight path after a rise height of about 80 mm.
The vector x̃ in figure 5.4 is parallel to the main movement direction of the zig-zag motion. The least contaminated
bubble (c0 = 4.4 · 10−4 mol/m3) shows a significant lateral drift on the coarse mesh that does not occur on the medium
and fine one. This drift leads to an intermediate terminal velocity of the bubble. The results on the medium and fine
mesh, however, show comparable results. Therefore, the medium size mesh seems sufficient for the computation of long
physical times. For an initial surfactant bulk concentration of c0 = 0.002 mol/m3 computed on the coarse mesh, a helical
motion is observed that does not occur on the other meshes, which show only zig-zag motion. The onset of instability is
highly dependent on numerical errors that trigger these instabilities and, therefore, is not a clear indication for sufficient
mesh resolution [25]. Even though the onset of instability differs between the results on the medium and the fine mesh,
mesh independency is likely.
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Figure 5.3: Comparison of the bubble terminal velocity for the coarse and fine mesh, dB = 1.3 mm. The coarse mesh is
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(a) Surfactant bulk concentration: c0 = 0.002 mol/m3.
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(b) Surfactant bulk concentration: c0 = 0.008 mol/m3.

Figure 5.4: Comparison of the bubble path for the coarse, medium, and fine mesh, dB = 1.3 mm. The lateral view (left) is
plotted in x̃ − y direction with x̃ pointing in the main movement direction of the zig-zag motion. The coarse
mesh is shown in black while the medium mesh is colored in orange and the fine one in blue.
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5.2.3 Mesh sensitivity for dB = 2.0 mm

Figure 5.5 shows the comparison of the terminal velocity on the coarse and the fine mesh for dB = 2.0 mm. The
simulations on the fine mesh crashed after a seemingly arbitrary physical time. Possible causes of the crash are discussed
at the end of this section.
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Figure 5.5: Comparison of the bubble terminal velocity for the coarse and fine mesh with dB = 2.0 mm. The coarse mesh
is shown in black while the fine mesh is colored in orange.

The uncontaminated bubble simulated on the fine mesh shows additional fluctuations in the terminal velocity, which
indicates path instability. Unexpectedly, these instabilities are not caused by a helical or zig-zag motion, see figure 5.6a.

The least contaminated bubble (c0 = 4.4 · 10−4 mol/m3) shows the onset of a helical motion with a helix diameter
approximately four times higher than the bubbles in the experiment performed by Tagawa et al. [31]. This deviation
makes the physical interpretation of the results obtained on the coarse mesh unreliable. On the fine mesh, the simulation
crashed before any path instability occurred. It is likely that the bubbles’ wake is not resolved sufficiently. It is necessary
to increase the mesh resolution to obtain better results for low surfactant bulk concentrations. Therefore, the simulations
on the fine mesh need to be stabilised. The obtained results for c0 ≤ 4.4 · 10−4 mol/m3 on the coarse mesh cannot be
considered mesh independent, and their physical interpretation is unreliable. Therefore, they are not considered in the
following discussion.

Increasing surface contamination results in smaller terminal velocities, lower Reynolds numbers and less restrictive
resolution requirements for the wake and the hydrodynamic boundary layer. Even though the clean and least contam-
inated bubble do not show satisfactory results, the other cases might. Figure 5.6b shows the bubble path of the highly
contaminated bubbles (c0 ≥ 0.002 mol/m3). For the first times, the coarse and fine mesh show a similar path. Nev-
ertheless, the simulations on the fine mesh crashed before they could build up any path instability. Therefore, it is not
possible to assess mesh independency sufficiently. The results obtained on the coarse mesh, however, are in good qualita-
tive agreement with the experimental results performed by Tagawa et al. [31] and, hence, are considered in the following.

Simulations on a finer mesh need to be carried out to obtain further insight into mesh sensitivity. Therefore, it is
necessary to find the cause of the crash. All simulations show a similar pattern before the crash, which occurs suddenly
and terminates the simulation within less than ten time steps. The main observations before the crash are:

1. The minimum curvature of the interface becomes negative.

2. The local mesh velocity magnitude rises.

3. The surfactant concentration exceeds the physical limits (cΣ < 0 or cΣ →∞) which leads to an error that finally
terminates the simulation.

The residuals for pressure, velocity and other variables do not show a recognisable trend. The first error occurs in
the surface curvature. Therefore it is likely that the crash is caused by the interface mesh motion and the curvature
computation. Figure 5.7 shows a region of the mesh with fluctuations on the interface for the last time steps before
the crash. The fluctuations lead to a locally poor curvature estimate, which results in negative cell volumes in the end.
Further investigations are necessary to find and fix the cause of this problem, which exceed the scope of this work.

32



0 10 20 30 40 50
x′ in mm

0

20

40

60

80

100

120
y 

in
 m

m
c0, 0 = 0 mol/m3 c0, 1 = 4.4 10 4 mol/m3

40 20 0 20 40
x in mm

0

5

10

15

20

25

30

35

z i
n 

m
m

(a) Small surfactant bulk concentrations. The lateral view (left) is plotted in x ′-y direction with x ′ =
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(b) Higher surfactant bulk concentrations. The lateral view (left) is plotted in x ′-y direction with x ′ =
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Figure 5.6: Comparison of the bubble path for the coarse and fine mesh, dB = 2.0 mm. The coarse mesh is shown in black
while the fine mesh is colored in orange.

(a) t = 0.4932 s. (b) t = 0.49324 s.

(c) t = 0.49328 s. (d) t = 0.49332 s

Figure 5.7: Region of the mesh showing fluctuations at the interface before the crash.
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5.3 Bubble path and terminal velocity

In the following the bubbles’ terminal velocities and paths are examined. The bubbles with diameters of dB = 1.3 and
2.0 mm are compared to the experimental results presented in section 5.1 to assess their quality. For the rise of a bubble
with dB = 0.8 mm under the influence of Triton-X100, no experimental studies could be found in literature. Figure 5.8
shows the terminal velocity of the bubbles with different initial surfactant bulk concentrations. The least contaminated
case of the intermediate bubble (c0 = 4.4 · 10−4 mol/m3 and dB = 1.3 mm) is simulated up to t = 1.3 s to capture the
arising path instability at t ≈ 1 s. For c0 = 0.002 mol/m3 and dB = 2.0 mm, the simulation is continued until t = 1.3 s
due to the transition from helical to zig-zag motion at t ≈ 1 s.
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Figure 5.8: Terminal velocity under the influence of Triton X-100. The grey dotted line shows the correlation for a fully
contaminated system proposed by Tomiyama et al. [32] (equation (33) in the reference).
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5.3.1 Bubble path and terminal velocity for dB = 0.8 mm

The smallest bubble shows a straight rise with a lateral drift smaller than 1% of the vertical motion for all initial surfactant
bulk concentrations. The contaminated bubbles, however, possess a peak velocity that is higher for lower surfactant
bulk concentrations but smaller than the terminal velocity of the uncontaminated bubble. After the peak velocity, the
contaminated bubbles approach a terminal velocity of about 0.0915 m/s, which is fairly half the terminal velocity of the
uncontaminated bubble. With increasing initial surfactant bulk concentration, this steady state is approached faster. This
effect can be explained by faster surfactant adsorption onto the interface. Due to the lack of experimental results, the
basic correlations presented by Tomiyama et al. [32] are used as a reference. For uncontaminated nitrogen bubbles rising
in water, a terminal velocity of 0.184 m/s can be estimated, while for highly contaminated systems the estimation yields
0.0923 m/s. These results are in fair agreement with the simulation results, showing deviations smaller than 1%.

5.3.2 Bubble path and terminal velocity for dB = 1.3 mm

The small and medium sizes bubbles show a similar behaviour. After an initial velocity peak, the terminal velocity
approaches a quasi-steady state of approximately 0.146 m/s. The correlation by Tomiyama et al. [32] yields 0.145 m/s,
which is again in good agreement with the obtained results. Figure 5.9 depicts the top and lateral view of the bubble
paths showing instability.

The least contaminated case (c0 = 4.4 · 10−4 mol/m3) with the same surfactant bulk concentration as employed in the
experiment, shows a continuous decreasing terminal velocity. After t ≈ 1 s, corresponding to a rise height of y ≈ 250 mm,
path instability occurs, showing a zig-zag motion with a decreasing amplitude. In the experiment, first, a helical motion
is observed, which then becomes a zig-zag motion after a rise height of y ≈ 300 mm. The helical motion is not present in
the simulations. This deviation can be a result of different disturbances in the experiment and the simulation that trigger
path instability. While in the experiment path instabilities are created, for instance, from initial shape deformations, in the
simulations numerical errors can be the cause [25]. This results in a different onset of path instabilities in the simulation
and in the experiment. Additionally, the initial surfactant concentration on the interface differs in the simulations and the
experiments. In the simulations, the bubble surface is uncontaminated when the bubble starts to rise. In the experiment,
however, the bubble detachment needs time. Thereby, the surfactant already adsorbs onto the interface, which influences
the bubble rise [25]. Furthermore, a too coarse wake resolution could result in a zig-zag motion instead of a helical path.
The zig-zag path, however, has a similar pattern as the one obtained in the experiment showing a zig-zag motion with a
slowly decreasing amplitude of about 2 mm.

For the intermediate surfactant bulk concentrations (c0 = 0.008 and 0.002 mol/m3), a zig-zag motion occurs once the
bubble reaches a velocity close to the steady state. For c0 = 0.008 mol/m3, the initial amplitude of the zig-zag motion
decays, followed by a transition to a straight path with a drift in the negative x-direction. Experiments for different
surfactant species performed by Sam et. al. [29] also showed oscillatory paths that became rectilinear for an increasing
rise height of the bubble. For c0 = 0.002 mol/m3 the zig-zag motion shows a decreasing amplitude with a starting width
of about one bubble diameter.

The most contaminated bubble (c0 = 0.05 mol/m3) shows no path instability, except a small lateral drift of less than
2% of the vertical motion. Compared to the experimental results, the obtained simulation outcomes seem realistic.
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Figure 5.9: Rise path under the influence of Triton X-100, dB = 1.3 mm. Lateral view (left) with x̃ pointing in the main
movement direction of the zig-zag motion. The grid lines are plotted at x̃ = −0.42,−0.37,0.57 and 0.95 mm.
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5.3.3 Bubble path and terminal velocity for dB = 2.0 mm

For the biggest bubble with dB = 2.0 mm only initial surfactant bulk concentrations greater than c0 ≥ 0.002 mol/m3 are
considered, refer to section 5.2 for an explanation. The least contaminated bubble (c0 = 0.002 mol/m3) first shows a lat-
eral drift changing into a helical motion with a decaying diameter, and then transitions into a zig-zag state. The diameter
of the helix is approximately 5 mm, decreasing to a value of 3 mm before the zig-zag motion starts. This transition from
helical to zig-zag motion occurs only in the presence of surfactants and was first observed in the experiments performed
by Tagawa et al. [31] that are presented in section 5.1. In numerical works, this effect has been recently reproduced
by Pesci et al. [25]. The bubble paths, as well as the transition from helical to zig-zag motion, is in qualitatively good
agreement with the experimental results. After the initial rise, the highly contaminated cases (c0 ≥ 0.008 mol/m3) show
a zig-zag motion with a constant amplitude of about 1.5 bubble diameters, which is again in qualitative agreement with
the experiment.
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Figure 5.10: Rise path under the influence of Triton X-100, dB = 2.0 mm. Lateral view (left) with gridlines at x̃ = ±1.5 mm
and top view (right) with gridlines at x = −31 and −25 mm. x̃ points in the main movement direction.
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5.4 Forces acting on the interface

The forces acting on the bubble surface are considered to obtain a better understanding of the bubble dynamics. These
forces can be directly computed using the jump condition from the momentum equation (2.32). The projection of the
forces in a normal and tangential direction to the interface yields:

−fptot + fvisc
⊥ = fca normal to Σ(t) , (5.1)

fvisc
∥ = fma tangential to Σ(t) . (5.2)

It is sufficient to examine only one side of the equations to understand how the forces influence the bubble motion.
In the following, only the forces on the left-hand side are considered. The hydrostatic pressure force is approximately
constant over time. Therefore, only the contribution of the dynamic pressure force to the total pressure force is analysed.
The examined forces are: (i) the dynamic pressure force fpdyn , (ii) the normal viscous force fvisc

⊥ and (iii) the tangential
viscous force fvisc

∥ . The forces are divided into a component parallel and one perpendicular to the bubble velocity vector
to analyse their influence on path instability. The parallel component is referred to as drag and the perpendicular one as
lift force. The total force acting on the interface reads:

fi = fi
Lift + fi

Drag , (5.3)

with i being a placeholder for a specific force, e.g. the total pressure force fpdyn . Figure 5.11 sketches the force direction.
While the drag force determines the bubble’s speed, the lift force is responsible for the bubble’s change in direction.

Σ(t)
v

FDrag

FLift

y

x
z

Figure 5.11: Sketch of the direction of the drag and lift force reproduced from [25].

5.4.1 Forces acting on the interface for dB = 0.8 mm

Figure 5.12 shows the contributions to the drag force for dB = 0.8 mm. The lift force is neglectable here due to the
rectilinear bubble rise without path instability. The upper graph in figure 5.12 displays the contribution of the tangential
viscous force to the overall drag force. In the absence of contamination, the Marangoni forces are small, which is reflected
in a low tangential viscous force with magnitudes of less than 3% of the buoyancy force for c0 = 0 mol/m3. The presence
of a surfactant, however, leads to non-uniform surface tension on the interface that result in an increasing Marangoni
force. This is reflected in the tangential viscous force Fvisc

∥ for the contaminated bubbles. For c0 = 0.05 mol/m3, the
tangential viscous force reaches a steady state value of 54% of the buoyancy force after t ≈ 0.05 s. A similar state is
expected for the other contaminations at later times. Additionally, one has to point out that the tangential viscous force
increases (up to a certain time), even though the bubble terminal velocity has already been reached. For instance, for
c0 = 0.008 mol/m3 the steady state terminal velocity is reached after t ≈ 0.15 s, while for t < 0.25 s the tangential
viscous force still increases. Similar observations have been made by Pesci et al. [25] showing steady state velocities with
surfactant concentrations on the interface much lower than the equilibrium value cΣeq.

The middle graph in figure 5.12 shows the contribution of the normal viscous force to the drag force. In the absence
of contamination, the normal viscous force increases until it reaches a magnitude of approximately 60% of the buoyancy
force. Surfactant accumulation on the interface, however, leads to a decreasing normal viscous force, as can be seen
mainly for the highest bulk concentration. The faster the surfactant accumulates on the interface, the faster the decay in
the normal viscous force.
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Concluding, the dynamic pressure force contribution to the drag force is analysed, see the bottom graph in figure 5.12.
After the bubble release, during the initial stage of the acceleration phase, the dynamic pressure force has the highest
drag contribution with force magnitudes greater than 90% of the buoyancy force. Then, the dynamic pressure force
contribution decreases with time, reaching values between 40-50% of the buoyancy force. The steady state magnitude
of the dynamic pressure force of the uncontaminated bubble is thereby smaller than for the contaminated bubbles.
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Figure 5.12: Drag forces acting on the bubble, dB = 0.8 mm.

5.4.2 Forces acting on the interface for dB = 1.3 mm

Figure 5.13 shows the distribution of the contributions to the drag forces for dB = 1.3 mm. The tangential viscous force
in the upper graph shows a similar pattern compared to the smaller bubble but on a larger timescale. While for the
uncontaminated case the tangential viscous force is neglectable, it increases with bubble contamination. For the highest
initial surfactant bulk concentration, the tangential viscous force approaches a force amplitude of about 45% of the
buoyancy force.

For the uncontaminated bubble the normal viscous force, shown in the middle graph in figure 5.13, has a steady state
value of about 50% of the buoyancy force. For the contaminated cases, the normal viscous force decreases with time
and becomes more and more negligible. As for the smaller bubble, the decrease is faster for higher initial surfactant bulk
concentrations.
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The general course of the dynamic pressure force in the bottom graph is also comparable to the smaller bubble. It
shows a high amplitude of more than 90% of the buoyancy force after the bubble release, decreasing to 50-60% of the
buoyancy force. This higher dynamic pressure force compared to the smaller bubble is a result of the increasing terminal
velocity with bubble size.

In addition to the overall trends, the path instabilities of the small and intermediate initial surfactant bulk concen-
trations (c0 ≤ 0.008 mol/m3) are reflected in the drag forces, leading to small fluctuations in the viscous and dynamic
pressure forces. For these cases, the lift forces are discussed in the following.
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Figure 5.13: Drag forces acting on the bubble, dB = 1.3 mm.

Figure 5.14 displays the various force contributions to the lift force acting on the 1.3 mm bubble. During zig-zag
motion, every change in direction results in a half-sinusoidal pattern in the lift force. Thus, the tangential viscous,
normal viscous and dynamic pressure force show similar oscillations. The magnitude of the various force contributions,
however, differs. The normal and tangential viscous forces have a minor contribution to the overall lift force, showing
maximum amplitudes up to 4% and 6% of the buoyancy force, respectively. The dynamic pressure force contributes the
major part with values up to 40%. Considering the bubble paths in figure 5.9, a higher lift force leads to higher motion
amplitudes, as can be seen for the decreasing lift forces for the bubble with c0 = 0.008 mol/m3 transitioning to a straight
rise after t ≈ 0.5 s.
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Figure 5.14: Lift forces acting on the bubble, dB = 1.3 mm.

5.4.3 Forces acting on the interface for dB = 2.0 mm

For dB = 2.0 mm, the bubble with an initial surfactant bulk concentration of c0 = 0.002 mol/m3 is of special interest
due to the helical motion with a transition to a zig-zag state. It has three different rise stages that are discussed in the
following: (i) for t < 0.25 s, the bubble rises along a straight path with lateral drift and, then transitions into a helical
motion; (ii) between 0.25 s and 0.95 s, the bubble follows a helical path with decreasing diameter and a transition to
zig-zag motion; and (iii) for t > 0.95 s, only a zig-zag motion is observed.

Figure 5.15 shows the contributions to the drag force for the bubble with dB = 2.0 mm. The different drag contributions
show similar trends as the smaller bubbles, but with pronounced fluctuations during the zig-zag motion. These enhanced
fluctuations result in higher motion amplitudes of the bubbles, see figures 5.9 and 5.10. The tangential viscous drag force
shows a smaller maximum magnitude of about 30% of the buoyancy force. The dynamic pressure force contribution, on
the other hand, fluctuates around a higher magnitude of 60-70% of the buoyancy force. These magnitudes, as discussed
previously, result from an increased terminal velocity of the bubble.
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Figure 5.15: Drag forces acting on the bubble, dB = 2.0 mm.

The contributions to the lift force are shown in figure 5.16. For the highly contaminated bubbles (c0 ≥ 0.008 mol/m3)
the tangential and normal viscous forces, as well as the dynamic pressure force, show a comparable half-sinusoidal pat-
tern with one maximum amplitude per bubble change in direction during the zig-zag motion. While the normal and
tangential viscous forces have a minor contribution to the lift force, showing values up to 3% and 1% of the buoyancy
force, respectively, the dynamic pressure force has the major contribution with values up to 60% of the buoyancy force.

The bubble following a helical path (c0 = 0.002 mol/m3) is shown as a black dashed line in figure 5.16. The tangential
viscous force in the upper graph shows a relatively constant course during the first part of the helical motion between
t = 0.25 s and 0.8 s. With increasing time and, thereby, surfactant concentration on the interface, the force amplitude
increases from 1% to 2% of the buoyancy force. Once the helix diameter decreases, the amplitude of the fluctuations
increases, leading to a similar pattern as for the highly contaminated bubbles once a zig-zag motion manifests.

During the helical rise, the normal viscous force has an approximately constant value smaller than 0.5% of the buoyancy
force. Once the bubble transits into zig-zag motion at t > 0.9 s, the course of the normal viscous force shows a similar
pattern to the other zig-zagging bubbles.
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The dynamic pressure force in the bottom graph of figure 5.16 has the major contribution to the lift with values up to
70% of the buoyancy force. During the helical motion from t = 0.25 to 0.8 s, the lift force decreases with superimposed
fluctuations. During the transition to the zig-zag state, the fluctuations magnify. The minimum value of the dynamic
pressure force approaches zero, while the peak value remains constant. Simultaneously, the previous sinusoidal pattern
transfers more to a half sinusoidal pattern as can be seen in zig-zagging. Once the fluctuation minimum reaches zero at
the bubble turning point at t ≈ 1.0 s, zig-zag motion manifests.
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Figure 5.16: Lift forces acting on the bubble, dB = 2.0 mm.

Figure 5.17 shows the direction of the lift forces over the bubble path. Thereby, the influence of the integral lift forces
on the bubble trajectory is visible. The coordinate x̃ points in the main movement direction of the bubble. A zig-zagging
bubble is compared to a helical moving one.

For the zig-zagging bubble, the tangential viscous and the dynamic pressure forces act in similar directions, increasing
the motion amplitude of the bubble. The effective direction of the lift force is always perpendicular to the bubble path.
The force amplitude approaches zero at the turning points and reaches its maximum in the between the turning points.
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For the bubble moving along a helix (c0 = 0.002 mol/m3), there are two main attributes of the bubble path governed
by the lift forces: (i) the helix diameter, and (ii) the helix slope, which is represented by the rise angle in the y-direction.
Figure 5.17a depicts the effect of the tangential viscous force and the dynamic pressure force on the helix slope. Both
forces act partially in negative y-direction, decreasing the helix slope. The projection along the lateral displacement direc-
tion x̃ is not sufficient to visualise the effect of the forces on the helix diameter comprehensively. Therefore, figure 5.18
shows the lift contributions from the top view of the bubble. Both forces act partially opposed to the helix centre, in-
creasing the helix diameter. With increasing surface contamination, the tangential viscous force slightly increases, while
the dynamic pressure force decreases. The dynamic pressure force, however, has the main contribution to the overall lift
force, see figure 5.16. Hence, the decrease in the dynamic pressure force governs the bubble path, leading to a reduced
helix diameter of the bubble. The lift contribution of the tangential viscous force is further examined in chapter 5.5.3.
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dynamic pressure force. The gridlines in the left plot are at
y = 112.5 and 125 mm.

Figure 5.17: Lift force direction along the bubble path for dB = 2.0 mm. Tangential viscous force (left) and dynamic
pressure force (right) contributions to the lift for two different initial surfactant bulk concentrations.
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Figure 5.18: Lift force force contributions in the top view of the helical path, dB = 2.0 mm. The tangential viscous force
shown on the left is scaled by a factor of 6 compared to the dynamic pressure force (right).
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5.5 Local bulk velocity and surface fields

The jump in the tangential viscous force, caused by the Marangoni effect, has a minor direct force contribution on
the bubble trajectory. The local flow field, however, is also governed by the Marangoni stresses, which influence the
dynamic pressure force. In the following, the local bulk velocity fields, the surfactant distribution on the interface, and
the Marangoni forces are analysed.

5.5.1 Local bulk velocity and surface fields for dB = 0.8 mm

For the small bubble with dB = 0.8 mm, the integral rise velocity shows satisfactory results. The local pressure and velocity
fields, however, show instabilities. After a certain amount of time, checkerboarding occurs for surfactant concentrations
of c0 = 0.002, 0.008 and 0.05 mol/m3. The first sign of the instability is the number of outer iterations in the pressure-
velocity coupling that reaches its maximum value of 30 iterations after t ≈ 0.1 s for c0 = 0.002 and 0.008 mol/m3

and after t ≈ 0.15 s for c0 = 0.05 mol/m3. For later times checkerboarding occurs in the rear part of the bubble.
Figure 5.19 shows the local pressure field and surfactant concentration (bottom and lateral view) on the interface at
t = 0.2 and 0.25 s for a initial surfactant bulk concentration of c0 = 0.008 mol/m3. The local velocity field shows similar
checkerboarding. Even though the rear part of the bubble is affected by the checkerboarding, the surfactant distribution
on the interface is affected to a much smaller extent. Especially in the polar direction, the obtained concentration fields
still show reasonable results.

(a) t = 0.2 s.

(b) t = 0.25 s.

Figure 5.19: Local pressure field and surfactant distribution on the interface, dB = 0.8 mm, c0 = 0.008 mol/m3. The plots
on the left side and in the centre show the bottom view of the bubble while the right one shows the lateral
view.

Further investigations need to be carried out to understand and fix this problem. This would exceed the scope of
this work. Nevertheless, the integral forces and surfactant distribution on the interface show qualitatively good results.
Therefore, the simulation results are still used in the following keeping the observed errors in mind.
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5.5.2 Local bulk velocity and surface fields for dB = 1.3 mm

For the bubbles with dB = 1.3 mm the local velocity field under the influence of surface contamination is analysed.
Figure 5.20 shows the local bulk velocity field, the surfactant concentration on the interface and the Marangoni forces
(vector field on the interface) for the clean and contaminated bubbles with dB = 1.3 mm. The uncontaminated case on
the left side is displayed as a reference.

(a) t = 0.02 s.

(b) t = 0.3 s.

(c) t = 0.9 s.

Figure 5.20: Local velocity field around the bubble, dB = 1.3 mm. The velocity vectors are colored with the velocity
magnitude |v|, while the bubble surface is colored by the surfactant concentration on the interface cΣ. The
vectors on the bubble surface represent the Marangoni forces.

The initial surfactant bulk concentration is affecting the amount of surfactant on the interface. A higher bulk concen-
tration leads to faster accumulation of surfactant on the interface. Therefore, the bubbles show similar flow patterns for
the initial surfactant bulk concentrations, but on a different timescale. This effect is also reflected in the bubble terminal
velocity that decreases slower for lower initial surfactant bulk concentrations. Considering the adsorption, advection and
diffusion processes on the interface one can distinguish between three different stages during the bubble rise [29, 25]:

1. After the release, the bubble is strongly accelerated due to the buoyancy force. The interface is still mobile because
of a low, uniform surfactant surface coverage. The bubble behaves like an uncontaminated bubble. The low,
uniform surfactant concentration on the interface does not affect the flow pattern around the bubble significantly,
leading to a similar shape and wake region compared to an uncontaminated bubble, see e.g. figure 5.20a for
c0 ≤ 0.008 mol/m3 or figure 5.20b for c0 = 4.4 · 10−4 mol/m3.
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2. During the second stage, the surfactant is advected to the rear part of the bubble resulting in a non-uniform
surfactant distribution, see e.g. figure 5.20a for c0 = 0.05 mol/m3 or figure 5.20b for c0 = 0.002 mol/m3. The
non-uniform surfactant distribution on the interface leads to high Marangoni forces in the transition region from
high to low surfactant concentrations. Along this stripe, a flow detachment occurs. Vortices are shed, enlarging the
wake region of the bubble and leading to a decreased terminal velocity. As a result of the reduced rise velocity, the
bubble shape returns from an oblate to a more spherical shape. Similar observations have been made in previous
studies [29, 25].

3. The convective surfactant transport from the top to the rear part decreases due to the deceleration of the bubble
and the decreasing interface mobility. Therefore, the narrow transition zone widens and the surfactant gradient at
the interface is approximately constant over the front region, see e.g. figure 5.20b for c0 = 0.05 mol/m3 and 5.20c
for c0 ≤ 0.008 mol/m3. In this region, the Marangoni forces are uniformly distributed in the upper hemisphere
of the bubble. During this stage, the local velocity field around the bubble is not changing significantly, leading
to a steady state velocity, even though the amount of surfactant on the interface is still increasing. While the
bubble behaviour during the first two stages is dependant on the surfactant concentration, the third stage is only
dependant on the surfactant type [29]. When bubbles reach the third stage, they show a similar flow field, terminal
velocity, and bubble path.

5.5.3 Local bulk velocity and surface fields for dB = 2.0 mm

Figure 5.21 shows the flow field for the bubble with dB = 2.0 mm. The different stages of the bubble rise described
for the bubble with dB = 1.3 mm can also be observed. The motion amplitudes of the zig-zag moving bubbles and the
bubble deformation increases with bubble size [29]. Higher surface contamination leads to a more and more spherical
bubble shape. Additionally, these patterns are superimposed with the bubble zig-zag or helical motion. The surfactant
concentration on the interface cΣ is approximately symmetric around the bubble terminal velocity vector. Thereby, the
Marangoni forces, as well as the wake region of the bubble, are also tilted with the rise velocity vector.

(a) t = 0.02 s.

(b) t = 0.3 s.

(c) t = 0.9 s.

Figure 5.21: Local velocity field around the bubble, dB = 2.0 mm. The velocity vectors are colored with the velocity
magnitude |v|, the bubble surface with the surfactant concentration on the interface cΣ. The vectors on the
bubble surface display the Marangoni forces.
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The local surfactant distribution on the interface for the zig-zag and helical moving bubble is analysed to understand
the influence of the tangential viscous force and its contribution to the movement direction, discussed in section 5.4.3.
Figure 5.22 shows the local surfactant distribution on the interface and the flow field on the bubble surface for a zig-
zag moving bubble. The flow field on the interface causes an asymmetric surfactant distribution azimuthal to the rise
direction. Therefore, Marangoni forces occur, which are reflected in the tangential viscous force Fvisc

∥ , that contribute to
the lift for up to 5% of the buoyancy force, see figure 5.16. This force is directed from the area with higher to the one
with lower surfactant concentration. When the bubble is moving to the left in figure 5.22a, the right part of the bubble
holds less surfactant than the left one leading to a lift force that increases the oscillation amplitude. Once the bubble
moves to the right, the surfactant distribution is opposed, see figure 5.22b.

(a) y = 112.5 mm. (b) y = 125 mm.

Figure 5.22: Local surfactant distribution on the interface for a zig-zagging bubble. The shown vectors are the local
surface velocity of the bubble.

The bubble rising on a helical path shows a non-symmetric surfactant distribution azimuthal to the rise velocity vector
caused by the interfacial velocity field. In figure 5.23, the surfactant distribution on the interface and the local flow field
in the rear part of the bubble are visualised. A central axis is introduced that is directed at the helix centre and parallel to
the bubble rise velocity v. In figure 5.23a the central axis is located at the left side of the bubble. Hence, the tangential
viscous force caused by the non-symmetric surfactant distribution on the interface has a contribution that increases the
helix diameter, see figure 5.18.

(a) y = 110 mm. (b) y = 118 mm.

Figure 5.23: Local surfactant distribution on the interface for a bubble rising on a helical path. The shown vectors are the
local surface velocity of the bubble.

The velocity on the bubble surface is influenced by the velocity field in the liquid. Figure 5.24 shows the streamlines
of the bulk velocity determining the local flow on the interface. The vortices shed from the zig-zagging bubble show
two counter rotating vortices, see figures 5.24a and 5.24b. The helical bubble, on the other hand, shows one of the
spiral vortices that wrap around one another, see figure 5.24c. These flow patterns are typical for both instabilities [4].
The local flow field on the surface leads to convective surfactant transport and, thereby, to a non-symmetric surfactant
distribution on the interface in azimuthal direction. This non-symmetric surfactant distribution, on the other hand, causes
Marangoni forces that influence the flow around the bubble.
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(a) Zig-zag rise, x-y plane. (b) Zig-zag rise, turned. (c) Helical rise.

Figure 5.24: Interface velocity influenced by the bulk velocity field. The arrows on the interface display the local interface
velocity.
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5.6 Surfactant distribution on the interface

The local surfactant distribution on the interface influences the flow field around the bubble and causes varying bubble
rise velocities and paths. The surfactant transport on the interface is dominated by convection. Thus, the surfactant on
the interface is transported mainly along the direction of the rise velocity. This leads to a surfactant accumulation in the
lower hemisphere, while the bubble front holds fewer surfactant [23, 18]. For path unstable bubbles, the rise direction
is not parallel to the direction of gravity. Therefore, a new coordinate system is introduced with the main axis pointing
in the direction of the bubble rise velocity and the polar direction ϕ, see figure 5.25.

Σ

v

ϕ

Figure 5.25: New coordinate system to evaluate the surfactant distribution on the interface. The main axis is the bubble
rise velocity v. The symbol ϕ denotes the polar angle.

In the following, the surfactant concentration on the interface in polar direction is evaluated exemplary for a straight
path (c0 = 0.05 mol/m3; dB = 1.3 mm), a zig-zag rise (c0 = 0.05 mol/m3; dB = 2.0 mm) and a helical rise (c0 =
0.002 mol/m3; dB = 2.0 mm).

5.6.1 Surfactant distribution on the interface for a rectilinear rise

Figure 5.26 shows the surfactant distribution and the surfactant gradient with respect to ϕ for a straight rising bubble. At
the velocity peak (t = 0.02 s) the surfactant concentration is highly non-linearly distributed in the polar direction, similar
to a step function from zero to 4.0 · 10−7 mol/m2. After the peak, the surfactant profile flattens, see t = 0.1 s. With
increasing surface contamination, the shape of the surfactant profile changes only a little while the overall surfactant
concentration on the interface is still increasing, showing also higher concentrations at the bubble front. Moreover, the
surfactant distribution is axisymmetric with the terminal velocity vector being the axis of symmetry.
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(a) Terminal velocity. The dashed lines correspond to the time steps show in (b).

(b) Surfactant distribution and gradient with respect to ϕ at different time instances.

Figure 5.26: Surfactant distribution for a straight rise.
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5.6.2 Surfactant distribution on the interface for a zig-zag rise

At the velocity peak (t = 0.02 s), the surfactant distribution on the interface of the zig-zagging bubble shows a similar
pattern compared to the straight rising one. After this initial stage, the surfactant distribution differs, see figure 5.27. The
zig-zag motion results in a non-uniform surfactant distribution in the azimuthal direction. Once the bubble approaches
the turning point of the zig-zag motion, an asymmetric surfactant distribution in the lower hemisphere occurs. After
the turn, the bubble maintains the direction and the surfactant distribution on the interface regains its symmetry. This
fluctuation between a symmetric and an asymmetric surfactant distribution is the results of the convective surfactant
transport on the interface, see figure 5.22.
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(a) Terminal velocity. The dashed lines correspond to the time steps shown in (b) and (c).

(b) Surfactant distribution and gradient with respect to ϕ over time.

(c) Surfactant distribution and gradient with respect to ϕ during one zig-zagging period.

Figure 5.27: Surfactant distribution for a zig-zag rise.

5.6.3 Surfactant distribution on the interface for a helical rise

The surfactant distribution on the interface for the bubble rising on a helical path is discussed in the following. Due to the
lower initial surfactant bulk concentration, the second stage of the bubble rise lasts longer. This phase is characterised
by a highly non-uniform surfactant distribution in the polar direction, see section 5.5. As a result, the mean surfactant
concentration in polar direction shows a pattern similar to a step function, with high surfactant concentration in the
bubble’s lower hemisphere and low concentrations in the bubble front, see figure 5.28. During the helical rise, an
asymmetric surfactant distribution with respect to the terminal velocity vector is present. This leads to a non-uniform
surfactant concentration in the rear part of the bubble, see also figure 5.23. The interfacial distribution remains non-
uniform, while the bubble moves along a helical path. Once the bubble devolves a zig-zag motion, at t ≈ 1.0 s, the
surfactant distribution on the interface fluctuates between a symmetric and asymmetric state, comparable within the
previous analysed zig-zagging bubbles, see figure 5.28c.
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(a) Terminal velocity. The dashed lines correspond to the time steps shown in (b) and (c).

(b) Surfactant distribution and gradient with respect to ϕ during helical rise.

(c) Surfactant distribution and gradient with respect to ϕ during the transition from helical to zig-zag rise.

Figure 5.28: Surfactant distribution for a helical rise.
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6 Modeling of the local surfactant distribution on the interface

Simulation techniques with an explicit interface representation, e.g. front tracking or interface tracking, allow to solve for
the transport of surfactant in the bulk and on the interface, but the computational costs for solving the coupled problem
are high [11, 3]. In other simulation approaches, without an explicit interface representation, e.g. VOF simulations,
the surfactant transport on the interface has to be modelled. Available models, like the one proposed in [11], are very
restrictive in their assumptions, and consequently, their applicability is limited. In this chapter, a data-driven approach
to model the local surfactant distribution on the interface is examined. Only, a bubble rising along a rectilinear path
with dB = 0.8 mm is considered. The extension of the model to a broader range of bubble diameters and path unstable
bubbles is planned for future work.

The derived model could be used, for example, in a VOF-based simulation of a single rising bubble under the influence
of surface contamination. The procedure of such a VOF simulation may be implemented in three steps:

1. The VOF simulation time step is performed by solving the relevant transport equations for mass, momentum and
surfactant bulk transport. Thereby, local and integral parameters, e.g. the bubble velocity v, the mean surfactant
concentration on the interface c̄Σ or the local interface velocity vΣ are computed within the simulation, which
characterise the state of the bubble.

2. These characteristic features are extracted, scaled and fed into the derived model, which reconstructs the surfactant
distribution on the interface.

3. The local surfactant concentration on the interface is used in two ways: (i) to calculate Marangoni forces at the
interface; (ii) to derive boundary conditions for the surfactant bulk transport close to the interface that account the
local surfactant distribution. The derived effects serve as input for the next time step of the VOF-based simulation,
e.g. as boundary condition or additional forces acting on the bubble.

In the following, the main steps to create the data-driven model of the surfactant distribution on the interface are
described. First, the data from the DNS with Interface-Tracking is pre-processed and the relevant input parameters are
selected. Then, the model is trained and finally validated on a data set that is unknown to the model.

6.1 Data pre-processing

The data used to train the model is extracted from the DNS of single rising bubbles under the influence of surfactants
presented in chapter 5. To increase the amount of usable data for model training and validation, additional initial
surfactant bulk concentrations have been simulated. The whole data set covers the initial surfactant concentrations of
c0 = 4.4 · 10−4, 0.002,0.005, 0.008, 0.015,0.03 and 0.05 mol/m3 and times t < 0.25 s. This input data is split into a
training and a validation data set. As validation data two intermediate initial surfactant bulk concentrations are chosen:
c0 = 0.005 and 0.03 mol/m3. The remaining data is used to train the model.

The extracted raw data, however, cannot be used directly to train the machine learning model, but it needs to be
pre-processed. First, the parameters are non-dimensionalised, and outliers are identified, removed and filtered. Then,
the filtered data is averaged over the azimuthal angle ψ to simplify the learning process.

6.1.1 Data filtering

The simulations performed in this work show outliers in the local pressure and velocity field, as well as in the surfactant
concentration on the interface for the first time steps, see figure 6.1. These outliers may be caused by the discretisation of
the surfactant transport on the interface, and by unknown problems in the pressure-velocity coupling algorithm. Despite
the outliers, the surfactant concentration on the interface shows noticeable trends. Therefore, the outliers are removed
using a simple iterative procedure for each affected time step and initial surfactant bulk concentration to enable the use
of all the time steps for the model training. The outliers are removed following the steps reported below:

1. Calculate the mean concentration profile on the interface: c̄Σ(ϕ) =
∑N

i=0 cΣi , see section 6.1.2.

2. Calculate the relative deviation from the mean:
cΣi (ϕ)−c̄Σ(ϕ)

c̄Σ(ϕ) .

3. Drop the data showing relative deviations greater than the threshold ε: cΣ(ϕ)−c̄Σ(ϕ)
c̄Σ(ϕ) > ε.

4. Return to 1. until no further data is removed.

Figure 6.2 shows a concentration profile before and after filtering at a very early time step. Most of the outliers in the
local surfactant distribution on the interface are filtered out leading to a smoothed surfactant distribution.
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Figure 6.1: Local distributions of pressure, velocity and surfactant on the interface, t = 0.001 s and dB = 0.8 mm.
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Figure 6.2: Filtered local surfactant concentration on the interface, t = 0.001 s, c0 = 0.05 mol/m3 and dB = 0.8 mm.

6.1.2 Data averaging

In the last pre-processing step, the filtered data is averaged in azimuthal direction ψ. The data averaging has two
beneficial effects. Firstly, the amount of data is reduced without losing information. Secondly, the averaged data is
equally distributed over the polar angle ϕ. The large number of data points in the equator region of the bubble is
reduced, and each angle ϕ has the same importance for the computation of the loss function. The mean is calculated in
two steps:

1. The data is divided in a user defined number of sub-intervals that are evenly distributed over ϕ.

2. A parameter x is averaged within this interval using the area weighted mean for each time step t:

x̄(t) =

∑N
i=0 x i(t) · Ai(t)
∑N

i=0 Ai(t)
, (6.1)

with x i(t) being the cell centered value, Ai(t) the cell volume and N the number of cells inside the considered
interval.

As an example of the outcome of the data averaging procedure, figure 6.3 shows the surfactant concentration on the
interface and the calculated average with a total number of 36 sub-intervals for c0 = 0.05 mol/m3 and t = 0.1 s.
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Figure 6.3: Local surfactant concentration on the interface, t = 0.1 s, c0 = 0.05 mol/m3 and dB = 0.8 mm.
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6.2 Feature selection

The extracted simulation data contains multiple input parameters for the model. The parameters that are examined are
the ones that would be also available in simplified simulation approaches, e.g. VOF-based simulations. The considered
parameters are: the dimensionless time t̃, the polar angle ϕ, the global and local Reynolds number Re and ReΣ, the
acceleration in lift and drag direction ãDrag and ãLift, the global Sherwood number Sh, the mean surfactant concentration
on the interface c̄Σ, the initial surfactant bulk concentration c0 and the normalized bubble area Ã.

A high number of input parameters, however, has two drawbacks: (i) a higher model complexity in terms of model
parameters, and (ii) the model is prone to overfitting. Therefore, it is desirable to decrease the number of input features
to a minimum, without losing a significant amount of accuracy.

6.2.1 Linear feature correlation

Correlation matrices are a simple and powerful method to gain first insights regarding the linear correlation between
the input parameters (features) and the model output (labels). A correlation matrix is a square matrix that contains
the Pearson product-moment correlation coefficient, which measures the pairwise linear dependency of parameters [26].
The matrix coefficients are bounded between values of -1 and 1, with R = 1 indicating a perfect positive correlation,
R = 0 indicating no correlation and R = −1 indicating a perfect negative correlation of the values. The Pearson’s
correlation coefficient is defined as the co-variance between two parameters x and y divided by the product of their
standard deviations:

R =

∑n
i=1

��

x i −µx

� �

y i −µy

��

q

∑n
i=1 (x i −µx)

2
Ç

∑n
i=1

�

y i −µy

�2
=
σx y

σxσy
, (6.2)

where µ denotes the mean, σx y the co-variance between x and y , and σx and σy the standard deviations of x and
y , respectively. Figure 6.5 shows the correlation matrix of all potential features and the label cΣ. The local surfactant
concentration at the interface cΣ(t,ϕ) is governed by two essential mechanism: (i) the adsorption of surfactant onto the
interface and (ii) the convective surfactant transport from the bubble front to the lower hemisphere. The mean surfac-
tant concentration on the interface cΣ(t) shows the highest correlation coefficient R = 0.95 with the local surfactant
concentration cΣ(t,ϕ). A parameter that does not change for different positions on the interface is considered a global
variable. That includes all input variables except the polar angle ϕ and the local Reynolds number ReΣ. The global vari-
ables also have a high correlation with cΣ(t,ϕ). The high correlation coefficient between c̄Σ and cΣ(t,ϕ) means that the
local surfactant distribution on the interface depends mainly on the surfactant adsorption onto the interface. The local
Marangoni forces at the interface, however, are caused by the convective surfactant transport on the interface. These
local effects are reflected in the local variables, especially the polar angle ϕ, which does not show a high correlation with
the local surfactant concentration cΣ.

Figure 6.4: Scatterplot showing the interface concentration cΣ and its mean c̄Σ. The profiles are coloured by the initial
surfactant bulk concentration c0.

Even though there is a strong correlation between cΣ and c̄Σ, the local surfactant profile on the interface cannot be
explained by c̄Σ alone, because it would not allow to model Marangoni forces resulting from the change of cΣ with respect
to ϕ, see figure 6.4. In order to reduce the influence of the mean surfactant concentration on the interface in the label
and thereby be able to account for the local effects at the interface, a new label c̃Σ is introduced that depends on the
equilibrium concentration cΣeq and the mean surfactant interface concentration c̄Σ:

c̃Σ =
cΣ − cΣeq

c̄Σ − cΣeq

. (6.3)

55
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-0.51 -0.17 -0.00014 1 0.72 -0.53 -0.098 -0.16 0.84 0.9
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-0.41 -0.3 -0.00011 0.9 0.67 -0.43 -0.087 -0.11 0.77 1

Figure 6.5: Correlation matrix of the input features with cΣ, dB = 0.8 mm.

The new feature c̃Σ takes the increasing mean surfactant concentration automatically into account and, therefore,
reduces the variance in the label. In the correlation matrix of the features and the newly defined label c̃Σ in figure 6.7,
local variables, especially the polar angle ϕ, show a much stronger connection to the label c̃Σ. Figure 6.6 displays the
correlation between ϕ and c̃Σ. Even though there is a clear dependency between ϕ and c̃Σ, the polar angle is not
sufficient to capture the surfactant concentration on the interface precisely. This information can be extracted from the
global features. The combined influence of the local and global features is assessed using two different approaches: the
feature importance and the sequential backward selection algorithm combined with K-nearest neighbour regression, see
section 2.3.3. The results are discussed in the following.

Figure 6.6: Scatterplot showing the label c̃Σ and the polar angle ϕ. The profiles are coloured by the initial surfactant bulk
concentration c0.
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Figure 6.7: Correlation matrix of the input features and c̃Σ, dB = 0.8 mm.

6.2.2 Feature importance: random forest regressor

The feature importance is a property of a random forest regressor that rates the contribution of an input parameter to the
prediction of the label, see section 2.3.3 for further details. The sum over the feature importance of all input parameters
is scaled to a value of one. In contrast to the previously discussed correlation matrix, the feature importance also accounts
for non-linear dependencies. Figure 6.8 shows the feature importance of all potential input parameters for predicting the
label c̃Σ. While the local variables ϕ and ReΣ have the highest contribution, the three most important global variables
are the Sherwood number Sh, the initial surfactant bulk concentration c0 and the mean surfactant concentration c̄Σ.
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Figure 6.8: Feature importance extracted with a random forest regressor.
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6.2.3 Sequential backward selection

In addition to the feature importance, the combined performance of the local and global features is assessed using the
SBS algorithm with a KNN regressor, see section 2.3.3 for additional information. Figure 6.9 shows the obtained r2-score
of the model plotted over the selected features. A perfect model reaches an r2-score of 1. After the selection of two
features, the model performance does not increase significantly. Therefore, the third and following features might be
chosen randomly. Nevertheless, the three most important features regarding the feature importance are also selected
during the first five iterations of the SBS algorithm, supporting the obtained results.
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Figure 6.9: Sequential backward selection: r2-score.

6.2.4 Feature selection: conclusion

For the training of the MLP the input features ϕ, Sh, c0 and c̄Σ are chosen. While ϕ captures the local surfactant distribu-
tion on the interface for a specific surfactant bulk concentration and time step, the other features account for the change
over time and varying bulk concentrations. In addition to the Sherwood number Sh, the change over time is reflected in
the mean surfactant concentration on the interface c̄Σ. The surfactant bulk concentration c0 is used directly as a feature.
For a bubble rising along a rectilinear path, the local surfactant concentration on the interface shows rotational symme-
try. Therefore, the local Reynolds number ReΣ does not improve the model performance significantly. However, it might
hold crucial information regarding the non-symmetric surfactant distribution for path unstable bubbles, see chapter 5.5.3.

6.3 Model architecture

Once the input features of the model are selected, the development of a predictive machine learning model requires
two principal steps: (i) the definition of the model architecture and (ii) the training of the model. A standard machine
learning architecture for function approximation is the MLP, see section 2.3.4 for further details. In this work, a MLP
with one input layer, three densely connected hidden layers, and one output layer is implemented using the open source
software library tensorflow1. While the input layer possesses 4 neurons, one for each feature, the hidden layers consist of
16 neurons with a sigmoid activation function:

f (z) =
1

1+ e−z
. (6.4)

The output layer of the MLP is a single neuron, representing the label c̃Σ.

1 https://www.tensorflow.org/, visited 10/2018
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The MLP is trained using the backpropagation algorithm that is described in more detail in section 2.3.4. Thereby, a
loss function is optimised, rating the model performance. For the model training, the mean squared error is used as a
loss function:

E =
1
N

N
∑

i=1

(c̃Σnum,i − c̃Σmodel,i)
2 , (6.5)

where c̃Σnum is the label extracted from the simulations, c̃Σmodel is the network estimate and N the number of data points
fed to the network. In tensorflow different optimisers for the backpropagation algorithm are implemented, which are
specifically designed for different types of input data to speed up the training process. Here, the ADAM optimiser is
employed, which is designed to handle a large number of input data [15, 27]. For further information regarding the
optimisers, the reader is referred to the tensorflow or keras1 documentation. Table 6.1 summarises the setup parameters
for the neural network.

Table 6.1: Setup parameters for the MLP in tensorflow. nHidden: number of hidden layers; ntotal: total number of free
model parameters.

Scaling nNeurons nHidden ntotal Activation function Loss function Optimiser

MinMaxScaler 16 3 641 f (z) = 1
1+e−z E = 1

N

∑N
i=1(c̃

Σ
num,i − c̃Σmodel,i)

2 ADAM

6.4 Model training

After the model structure is defined, the model is trained on the training data set, which consists of 54000 data points.
Due to the huge amount of input data, the training is performed as mini-batch training. The training data is split into
smaller subsets of 1000 data points, the so-called batches. After all data points inside the batch have been considered,
the weights are updated. This is done for every subset until all training data has been considered. This procedure is
repeated multiple times until the loss function of the model approaches a steady state. One iteration over all batches
is typically called an epoch. The considered model reached its steady state after approximately 10000 epochs with an
r2-score higher than 0.9996 on the training data. The r2-score on the validation data set, which contains 21600 data
points, is lower but still satisfactory with a value of about 0.9973.

In figure 6.11 and 6.12 the model estimate are plotted against the numerical results for different time steps and sur-
factant bulk concentrations. Figure 6.10 displays these time steps as vertical dashed lines crossing the bubble’s terminal
velocity profiles.
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Figure 6.10: Terminal velocity, dB = 0.8 mm. The dashed lines correspond to the time steps shown in figure 6.11 and 6.12.
The validation data is colored in orange.

1 https://keras.io/optimizers/, visited 10/2018
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Figure 6.11: Local surfactant concentration on the interface for low surfactant bulk concentrations. The left and right
column show results for the actual surfactant distribution cΣ and the label c̃Σ, respectively.

60



0.0 0.5 1.0 1.5 2.0 2.5 3.0
 in rad

0.2

0.4

0.6

0.8

1.0

c
 in

 m
ol

/m
2

1e 7

Data: c0 = 0.015 mol/m3

Model: c0 = 0.015 mol/m3
Data: c0 = 0.05 mol/m3

Model: c0 = 0.05 mol/m3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
 in rad

0.985

0.990

0.995

1.000

1.005

c

(a) t = 0.004 s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
 in rad

0.0

0.5

1.0

1.5

2.0

c
 in

 m
ol

/m
2

1e 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
 in rad

0.96

0.98

1.00

1.02

c

(b) t = 0.01 s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
 in rad

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

c
 in

 m
ol

/m
2

1e 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
 in rad

0.98

1.00

1.02

1.04

1.06

1.08

c

(c) t = 0.05 s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
 in rad

0

1

2

3

4

5

6

c
 in

 m
ol

/m
2

1e 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
 in rad

0.98

1.00

1.02

1.04

1.06

1.08

c

(d) t = 0.2 s.

Figure 6.12: Local surfactant concentration on the interface for high surfactant bulk concentrations. The left and right
column show results for the actual surfactant distribution cΣ and the label c̃Σ, respectively.
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In the first time steps the model shows fluctuations, especially for low surfactant concentrations, see figure 6.11a
and 6.12a. However, for t > 0.01 s, the model estimates are in very good agreement with the training data set. The
deviation for smaller times can have multiple causes:

• The label’s range for small times and surfactant concentrations is two orders of magnitude lower than for later
times. Thereby, the relative error emerging in the first times affects the loss function E = 1

N

∑N
i=1(c̃

Σ
num,i − c̃Σmodel,i)

2

to a much smaller extent. Thus, the optimisation of the first time steps is much harder.

• The first times are prone to numerical errors. Even though the outliers have been filtered, this could affect the
estimate of the MLP.

• The last possible cause is the vanishing variance in the global input parameters for t < 0.01 s. As can be seen in
figure 6.10, the bubble terminal velocity does not differ for the different c0 and times smaller than 0.01 s. The
Sherwood number Sh shows comparable trends and, hence, a model for the first time steps might need different
input parameters.

6.5 Validation

Figure 6.13 and 6.14 show the model prediction on the validation data with the two unseen surfactant concentrations
c0 = 0.005 and 0.03 mol/m3 . The estimated profiles are shown as black straight lines. The orange dots correspond
to the reference (DNS) data. In grey the neighbouring surfactant concentrations from the training data are shown as a
reference. Except for the first times, where the prediction reflects the errors from the training data, the model shows very
good results, indicating a good generalisation ability of the model.
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Figure 6.13: Local surfactant concentration on the interface for low surfactant bulk concentrations. The left and right
column show results for the actual surfactant distribution cΣ and the label c̃Σ, respectively. The validation
data is displayed in black and orange. The other bulk concentrations serve as lower and upper bound.
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Figure 6.14: Local surfactant concentration on the interface for high surfactant bulk concentrations. The left and right
column show results for the actual surfactant distribution cΣ and the label c̃Σ, respectively. The validation
data is displayed in black and orange. The other bulk concentrations serve as lower and upper bound.
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6.6 Influence of training data distribution

In a first approach, the MLP has been trained using five different initial surfactant bulk concentrations. The simulation
of one initial surfactant bulk concentration takes two to four weeks. Thus, it is helpful to minimise the amount of data
necessary for model generation. Therefore, the model quality is assessed using all possible combinations with two to
six initial surfactant bulk concentrations as a training data set. The smallest and biggest surfactant bulk concentrations
(c0 = 4.4 · 10−4 and c0 = 0.05 mol/m3) are always included. The different combinations of training sets are assessed
using the mean squared error and the r2-score on the corresponding validation set. Thereby, the generalisation ability
of the model based on the amount and distribution of training data over various initial surfactant bulk concentrations
is tested. Figure 6.15 shows the mean squared errors and r2-scores of the different permutations. In the plot the
different concentrations are labeled as follows: c1 = 4.4 · 10−4 mol/m3, c2 = 0.002 mol/m3, c3 = 0.005 mol/m3,
c4 = 0.008 mol/m3, c5 = 0.015 mol/m3, c6 = 0.03 mol/m3, c7 = 0.05 mol/m3.
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Figure 6.15: Validation scores for different combinations of input data.

Figure 6.16 shows the local surfactant concentration at ϕ ≈ π/2 plotted over the initial surfactant bulk concentration
c0 at t = 0.05 s. In case of a perfectly linear dependency, two interface concentrations would be sufficient to capture
the surfactant influence over the whole range of c0. The correlation between the two variables, however, has rather
a sigmoidal shape. For a training data set consisting of four initial surfactant bulk concentrations, the combination of
c1, c2, c5 and c7 gives the best results. This combination of points also yields the best piecewise linear approximation of
the profile in figure 6.16 using four of the seven data points. On the other hand, the combination of c1, c2, c6 and c7
reaches worse results than most of the other combinations using only three surfactant concentration values for training.
The piecewise linear approximation of the profile with these data points shows the same trend in figure 6.16. In order to
improve the model accuracy for different surfactant bulk concentrations, the number of data points has to be increased
where the derivative of ∂ cΣ/∂ c0 is large, improving the estimate of cΣ(c0).
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Figure 6.16: Influence of the initial surfactant concentration c0 on cΣ, t = 0.05 s, ϕ ≈ π/2.

6.7 Model of the local surfactant distribution: conclusion

In this chapter, a data-based model for the surfactant distribution on the interface has been developed. Thereby, the basic
steps to create a machine learning algorithm have been described: (i) pre-processing, (ii) feature selection, (iii) model
architecture, (iv) model training, (v) model validation. The model shows satisfactory results for t > 0.01 s for the bubble
rising along a rectilinear path with dB = 0.8 mm. To improve the model performance for times t < 0.01 s, different
approaches may be considered:

• During the first time steps, the local surfactant concentration on the interface is small. The loss function is scaled
according to the mean surfactant concentration on the interface c̄Σ to increase the impact of the model error in the
first time steps. Therefore, the scaling factor α is introduced, which increases the squared error for small surfactant
concentrations. The new loss function reads:

Escaled =
N
∑

i=1

�

1
α+ c̄Σscaled,i

·
�

c̃Σnum,i − c̃Σmodel,i

�2
�

. (6.6)

A preliminary test showed that this newly defined loss function, however, does not improve the final results
significantly.

• A promising approach to reduce the fluctuations in the model prediction and the required time to train the model
is a loss function Egradient that accounts for the gradient of the profiles ∂ c̃Σ

∂ ϕ :

Egradient =
N
∑

i=1

 

�

c̃Σnum,i − c̃Σmodel,i

�2
+

�

∂ c̃Σnum,i

∂ ϕ
−
∂ c̃Σmodel,i

∂ ϕ

�2!

, (6.7)

where c̃Σnum is the label, c̃Σmodel the estimate,
∂ c̃Σnum
∂ ϕ the derivative of the label with respect to ϕ and

∂ c̃Σmodel
∂ ϕ the partial

derivative of the model. The gradient of the label c̃Σmodel can be calculated from the local surfactant gradient on the
interface:

∂ c̃Σ

∂ ϕ
=
∂ c̃Σ

∂ cΣ
∂ cΣ

∂ ϕ
=

1
c̄Σ − cΣeq

·
∂ cΣ

∂ ϕ
, (6.8)

with c̄Σ being the mean surfactant concentration, cΣeq the equilibrium concentration and ∂ cΣ

∂ ϕ the derivative of the
local surfactant concentration with respect to ϕ. The test and implementation of a loss function accounting for the
gradient is planned for the future.

• Due to the different influences of the input parameters for t < 0.01 s, it might be necessary to train two different
models: one for t < 0.01 s and one for t > 0.01 s. For t > 0.01 s, the existing model yields satisfactory results
and, hence, it is necessary to develop a model for the small time scales. However, the first step is the generation
of reliable input data for these times, unaffected by numerical errors.

Additionally, the extension of the parameter range of the model, e.g. for larger bubble diameters as well as the integration
and test of the model within a VOF-based simulation approach, is planned for future work.
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7 Summary and Outlook

In the first part of this work, a 2D study on the mesh requirements close to the interface in radial and tangential direction
was carried out for a nitrogen bubble rising in purified water to define the mesh specification and minimise the compu-
tational effort for the 3D simulations. While the previous meshing strategies were sufficient regarding the radial mesh
resolution, a uniform cell distribution in tangential direction led to high computational costs. Therefore, a new meshing
strategy was developed that allows different tangential resolutions for the top, equator and bottom region of the bubble.
Thereby, the tangential mesh resolution in the critical mesh regions, like the areas of high curvature or the bubble wake,
can be adjusted separately.

To further reduce the runtime of the simulations, two different parallelisation techniques have been compared: a man-
ual decomposition and a decomposition based on the scotch algorithm. The manual decomposition is faster on meshes
with a uniform spatial discretisation in tangential direction. For non-uniform meshes, however, the scotch decomposition
is performing better. Furthermore, the scotch decomposition is more versatile and requires less user interaction.

In the 3D simulations, the influence of Triton-X100 dissolved in the liquid phase was studied for single nitrogen
bubbles in water. Three bubble diameters dB = 0.8, 1.3 and 2.0 mm and different initial surfactant bulk concentrations
were considered. The obtained results are in qualitative agreement with experimental studies [31]. The smallest bubble
showed a rectilinear path for all initial surfactant bulk concentrations. For the medium-sized bubble and intermediate
initial surfactant bulk concentrations, zig-zag motion with a decaying amplitude occurred, transitioning to a straight
bubble rise. The bubble with dB = 2.0 mm showed a zig-zag motion with a constant amplitude for high initial surfactant
bulk concentrations, while for an intermediate initial surfactant bulk concentration a transition from a helical to a zig-zag
motion was observed.

Additionally, the forces acting on the bubble surface have been studied regarding their contribution to the drag and
lift force. With increasing interface contamination the drag contribution of the tangential viscous force grows as a result
of increasing surface tension gradients at the interface. Simultaneously, the interface mobility and thereby the dynamic
pressure force on the interface is decreasing. These two counter-acting effects lead to a steady state terminal velocity of
the bubble, even though the ad- and desorption at the interface are not yet in equilibrium.

The lift force, on the other hand, is dominated by the dynamic pressure force. Nevertheless, the contribution of
the tangential viscous force to the lift has been further examined. A non-uniform surfactant distribution on the interface
results in a lift contribution of the tangential viscous force. The non-uniformity of the distribution is created by convective
surfactant transport on the interface caused by the vortices shed in the rear part of the bubble.

To further examine the local surfactant distribution on the interface, a spherical coordinate system with a central
axis parallel to the rise velocity vector was introduced. The bubble rising along a rectilinear path showed a symmetric
surfactant distribution with respect to the rise velocity vector. The zig-zagging bubbles showed a fluctuation between a
symmetric and asymmetry surfactant distribution in azimuthal direction in the rear part of the bubble. The asymmetric
profile is a result of the two counter-rotating vortices typical for the zig-zag motion. For bubbles moving along a helical
trajectory, the surfactant distribution on the interface is asymmetric in the rear part of the bubble, but without any
fluctuation, which is a consequence of the two counter-rotating vortices wrapping around each other in the bubble wake.

In the last part of this work, the surfactant distribution on the interface of a bubble rising straight was modelled using
a data-driven approach, more accurately a multilayer perceptron. Only input parameters also available in VOF-based
simulation approaches were considered such that the model can be used in other simulation frameworks. The necessary
steps to create a data-driven model were presented and discussed in detail. These include (i) data pre-processing, (ii)
selection of input parameters, (iii) the definition of the model structure, (iv) model training and (v) model validation.
The data-driven model is in excellent agreement with the simulation data and possesses good generalisation capabilities.
The obtained data-driven model represents a promising approach to model the local surfactant distribution in simulation
frameworks without a discrete interface representation.
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In the current study, tangentially non-uniform meshes were created to enhance the mesh resolution at specific points of
interest. In case of path unstable bubbles, however, the refined mesh regions do not rotate with the bubble rise direction.
For high motion amplitudes, the bubble is refined in the wrong regions. To fix this problem a reference frame rotating
with the bubble velocity vector could be implemented.

Furthermore, even though the newly introduced scotch decomposition is more versatile, suitable for non-uniform
meshes and requires less user interaction, it did not result in the desired performance increase. This is caused by
the limitation that the interface mesh cannot be decomposed. To increase the performance of future decomposition
techniques significantly, it is necessary to develop methods that allow the decomposition of the interface mesh on multiple
processors.

The derived data-driven model of the local surfactant distribution on the interface yields promising results. Neverthe-
less, the model accuracy for the first time steps is not pleasing. The inaccurate prediction might be caused by outliers
in the simulations. To increase the model accuracy, it is required to generate reliable input data in the early state of the
bubble rise. In addition to the surfactant concentration at the interface cΣ, the gradient of the concentration ∂ cΣ/∂ ϕ can
be accounted for in the loss function. This loss function could yield improvements regarding the required time to train
the model and could reduce fluctuations in the model prediction. Furthermore, it is necessary to extend the considered
parameter range to create a more comprehensive model of the local surfactant distribution on the interface. In a first at-
tempt, different bubble diameters can be included using the performed DNS for dB = 1.3 and 2.0 mm. The existing model
is based on the assumption of an axisymmetric surfactant distribution with respect to the rise velocity. For a bubble rising
along a rectilinear path, this assumption is reasonable. In the case of path unstable bubbles, however, the local velocity
profiles at the interface lead to non-symmetric surfactant distributions. In order to extend the model for these cases, a
two-stage approach could be applied that: (i) estimates the mean surfactant concentration with respect to the polar angle
ϕ, and (ii) learns the deviation from this mean with respect to the local flow at the interface, cΣ(ϕ,ψ) = cΣ(ϕ)+ c′Σ(ψ).
Finally, the derived model needs to be implemented and tested in a VOF-based simulation approach.
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