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3Department of Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands, and 4Department of Clinical

Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Abstract

Tuberculosis is still a major problem in some developed and developing countries. The poor
compliance to the treatment of tuberculosis patients due to the adverse events was supposed
to be an important factor contributing to the high prevalence. This review aims to clarify the
role and the pharmacological mechanism of the genes involved in the isoniazid-induced
hepatotoxicity. We selected English articles of studies in human from PubMed up to May 2014
with the keywords pharmacogenetic, isoniazid and hepatotoxicity, N-acetyl transferase 2 (NAT2),
CYP2E1 and glutathione S transferase (GST). Polymorphisms of NAT2, CYP2E1 and GST1 could
increase patients’ susceptibility to isoniazid-induced hepatotoxicity. The rapid acetylators of
NAT2 and rapid metabolizers of CYP2E1 showed increased concentrations of hepatotoxic
metabolites. However, the rapid metabolizers of GST1 could decrease the concentration of
hepatotoxic metabolites. Some studies of human leukocyte antigen (HLA), Uridine 50-dippho-
spho (UDP) glucuronosyltransferase (UGT), nitric oxide synthase (NOS), Broad complex,
Tramtrack, Bric-a-brac (BTB) and cap’n’collar type of basic region leucine zipper factor family
(CNC) homolog (BACH) and Maf basic leucine zipper protein (MAFK) polymorphisms showed their
roles in isoniazid-induced hepatotoxicity by modifying the expression of antioxidant enzymes.
A better insight into the role of polymorphisms of HLA, UGT, NOS, BACH and MAFK in addition
to NAT2, CYP2E1 and GST1 in the hepatotoxicity of isoniazid may support physicians in monitor-
ing patients hepatotoxicity symptoms and laboratory data and optimizing pharmacotherapy.
Future studies about the role of such polymorphisms in different ethnicities are suggested.
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Introduction

Tuberculosis is still a major problem in many countries over

the world, especially in developed and developing countries

(Cai et al., 2012). The ‘‘WHO’’ reported that there were 9

million TB sufferers annually (Anonymous, 2014). Currently,

the problem of tuberculosis has become complex with the

prevalence of multi-drug resistant tuberculosis, which reaches

600 000 cases in central Asian countries. One of the causes

of the high prevalence of multi-drug resistant tuberculosis is

presumed to be the poor compliance of patients, which

reflected the treatment failure (Singla et al., 2014; Sotgiu &

Migliori, 2014). The poor patients’ compliance to the

first-line treatment for tuberculosis, which are rifampicin,

isoniazid, pyrazinamide and ethambutol, could partly be

caused by the occurrence of liver injury as adverse event

(Babalik et al., 2012; Huang, 2007; Li et al., 2013;

Wada, 2001).

Among the oral antituberculosis drugs, isoniazid caused in

15–20% of the patients an increase in alanine and aspartate

transaminase, and in about 1% of the patients’ hepatotoxicity

was observed (Lee, 1995; Metushi et al., 2011).

The hepatotoxicity prevalence due to the isoniazid might be

predicted by age, acetylator status, alcohol use and rifampicin

use in an additional fashion (Steele et al., 1991). Rifampicin

was proposed to stimulate the activities of amidase and

CYP2E1, thus increasing the isoniazid-induced hepatotoxicity

(Huang, 2014; Hussain et al., 2003). Currently, by affecting

the isoniazid metabolism, genetic factors are also supposed to

play a role in the isoniazid-induced hepatotoxicity (Metushi

et al., 2011). Some patient characteristics like age, alcohol

use and nutrition status were also general risk factors of

antituberculosis-induced hepatotoxicity (Babalik et al, 2012;

Roy et al., 2008).

Many reviews show the proposed isoniazid metabolism

pathway (Huang, 2014; Metushi et al, 2011; Roy et al, 2008);

however, there is no review about the pharmacological

mechanisms of the genes involved in the hepatotoxicity of

isoniazid, which could be related to the isoniazid metabolism.

The genes mostly examined to understand the association

between gene polymorphism and isoniazid-induced hepato-

toxicity are N-acetyl transferase 2 (NAT2), CYP2E1 and

glutathione S transferase 1 (GST1) (Cai et al., 2012; Huang,

2007, 2014; Li et al., 2013; Metushi et al., 2011; Roy et al.,

2008; Singla et al., 2014; Steele et al., 1991; Teixeira et al.,

2007). Isoniazid is a derivative of hydrazine, which is
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hepatotoxic. There are two metabolites of isoniazid, hydra-

zine and acetylhydrazine, which are primarily involved in the

mechanism of isoniazid-induced hepatotoxicity (Figure 1).

The proposed metabolic pathways are the hydrolysis of

isoniazid into hydrazine and isonicotinic acid and the

acetylation of isoniazid into acetylisoniazid by NAT2. The

next role of NAT2 is acetylation of hydrazine into

acetylhydrazine (monoacetylhydrazine). Hydrazine and acet-

ylhydrazine are known as toxic agents, thus they should be

acetylated into non-toxic agents. Acetylhydrazine is metabo-

lized into reactive acylating intermediates, which can bind

covalently to tissue macromolecules and can cause Isoniazid-

induced hepatotoxicity (Timbrell et al., 1980). A role of GST

is to detoxify the toxic metabolites (Metushi et al., 2011; Roy

et al., 2008). To date, the role of human leukocyte antigen

(HLA) and superoxide dismutase (SOD) in the isoniazid

metabolism is still being explored (Boelsterli & Lee, 2014;

Du et al., 2013). Some genetic variants could interfere with

the activity of the enzymes.

Metushi et al. (2014) found anti-Isoniazid antibodies and

antibodies against CYP2E1, CYP3A4 and CYP2C9 in

patients with isoniazid-induced liver injury. Isoniazid was

found to form covalent adducts with CYP2E1, CYP3A4 and

CYP2C9. This suggests that the immune system is involved in

the Isoniazid-induced liver injury. Furthermore, it is sug-

gested that mild cases of Isoniazid-induced liver injury

resolve with immune tolerance and only when this immune

tolerance fails more severe liver injury results.

This review is intended to shed more light on the role and

the mechanism of the genes, which seem to be involved in the

isoniazid-induced hepatotoxicity. The novelty of our study is

that we add the pharmacological mechanism of some genes

involved in the expression of reactive oxygen species (ROS)

associated with the isoniazid-induced hepatotoxicity.

Methods

We selected English articles of studies in human from

PubMed with the keywords Pharmacogenetic AND Isoniazid

AND hepatotoxicity. We found eight articles with two articles

reviewing pharmacogenomic and genetic variations in anti-

tuberculosis-induced hepatotoxicity or liver injury (Huang,

2014; Roy et al., 2008). However, to obtain the articles on the

pharmacological mechanism of some genes related to the

isoniazid-induced hepatotoxicity, we searched in PubMed

with the keywords isoniazid AND pharmacogenetic AND

NAT2, isoniazid AND pharmacogenetic AND CYP2E1,

isoniazid AND GST, isoniazid AND HLA, isoniazid AND

HLA AND pharmacogenetic, isoniazid AND pharmacoge-

netic AND NAT2 AND CYP2E1 AND GST, isoniazid AND

NAT2 AND CYP2E1 AND GST, as well as isoniazid

AND polymorphism AND NAT2 AND CYP2E1 AND

GST. Figure 2 shows the search strategy for retrieving articles

related to the above-mentioned keywords. We limited the

search strategy up to May 2014.

Results and discussion

Regarding the search strategy for pharmacogenetics of

isoniazid-induced hepatotoxicity, we found eight articles,

but we limited the articles to the human species, thus we only

retrieved five articles. According to the search strategy of the

pharmacological mechanism of some genes related to the

isoniazid-induced hepatotoxicity, we found 30 articles related

to NAT2 and 25 articles related to human species, 6 articles

related to CYP2E1 with 5 articles among them were related to

the human species. There were 20 articles related to GST

with 7 articles among them related to the human species,

29 articles related to HLA and 3 articles related to the

polymorphisms of HLA with 27 and 2 articles among them

related to the human species, respectively. Furthermore, it was

only 1 review article related to the three genes, 5 articles with

1 review article and 4 articles related to the isoniazid and

polymorphisms of the three genes in the human species.

Pharmacological mechanisms of isoniazid-induced
hepatotoxicity

In the proposed isoniazid metabolism pathway, NAT2 has a

role in the acetylation of isoniazid to acetylisoniazid, which

will be hydrolyzed to acetylhydrazine. CYP2E1 oxidizes

Figure 1. Pathways of metabolism of isonia-
zid (adapted from Huang, 2007; Roy, 2008).
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acetylhydrazine into toxic agents. These toxic agents are

detoxified by GST by conjugation (Huang, 2007). Isoniazid

has a role in the imbalance between pro-oxidant and anti-

oxidant activity. It can both stimulate the pro-oxidant level or

decrease the level of anti-oxidant (Boelsterli & Lee, 2014).

The ROS was proposed to be associated with isoniazid-

induced hepatotoxicity by producing the oxidative stress

(Bhadauria et al., 2007; Chowdhury et al., 2006). Mechanisms

that were proposed were the damage of enzyme by superoxide

resulting from molecular oxygen reduction, the inflammatory

response of the immune system and the increase of mito-

chondrion dysfunction (Bhadauria et al., 2010; Boelsterli &

Lee, 2014). With respect to ROS, hydrazine can produce

oxygen radicals or superoxide, which can disrupt proteins and

cause degradation of polypeptide chains (Timperio et al.,

2005). Superoxide was found to be increased along with the

isoniazid treatment.

With respect to the mitochondrion activity, isoniazid can

translocate cytochrome c from the mitochondrion to the

cytosol. This translocation can alter the mitochondrion

permeability and start the hepatotoxic pathway in isoniazid

treatment (Bhadauria et al., 2010). ROS was also produced in

HepG2 cells in which NAT2 and CYP2E1 were expressed.

The low expression of HepG2 cells explained the slow

alteration of isoniazid into metabolites. This condition

resulted in a high concentration of isoniazid, which means

that the risk of occurrence of isoniazid-induced hepatotoxicity

is increased (Bhadauria et al., 2010; Brandon et al., 2003).

Some of the mitochondrial defects which was discussed could

be due to a limited number of carbon-centered reactive

intermediates that contribute to the aberrant redox chemistry

additional to ROS.

Isoniazid was hydrolyzed into hydrazine and isonicotinic

acid. Hydrazine and its derivatives were oxidized by the

enzyme systems of cytochrome P-450 (NADPH-dependent

hydrazine oxidase) and NADPH-independent hydrazine oxi-

dase (Coomes & Prough, 1983). Cytochrome P-450 and

monoamine oxidase oxidize the nitrogen of hydrazine and its

derivatives. In addition, cytochrome P-450 also removes

nitrogen of monoalkylhydrazines (Erikson & Prough, 1986).

In this way, monoalkylhydrazines are converted into

hydrocarbon forms with involvement of oxygen and a

NADPH-regenerating systems. Monoalkylhydrazines rapidly

form monoalkyldiazene intermediates leading to the forma-

tion of alkane and nitrogen using free radicals (Prough et al.,

1969).

With respect to the role of alkane production cytochrome

P450 metabolism, it should be mentioned that for iproniazid

is shown that reactive metabolites involved in the hepatotox-

icity are propane and propylene (Moloney et al., 1985). These

metabolites could be react as GST’s substrates, which would

increase the toxicity of iproniazid by decreasing the

GSH levels and also by the inhibiting GST’s function

(Spearman et al., 1984).

Furthermore, hydrazine and some derivatives also

decreased the function of cytochrome P-450, which

was demonstrated by the loss of enzyme activity in the

hepatocyte during the preincubation with hydrazine deriva-

tives (Wiebkin et al., 1982).

Related to the oxidative stress, isoniazid not only can

produce ROS but also can interfere with glucose-6-phosphate

dehydrogenase (G6PD). G6PD can protect the eukaryotic

cells from ROS activity. The mechanism of protection is

proposed by the regeneration of glutathione from glutathione

disulfide. Glutathione can protect the cells from oxidative

stress (Bhadauria et al., 2007, 2010). However, hydrazine can

decrease the glutathione formation directly and can also

reduce the expression of G6PD. This mechanism can alter the

antioxidant activity of glutathione (Bhadauria et al., 2007).

Besides the mechanism of G6PD as antioxidant, SOD,

also has antioxidant activity by catalyzing the conversion

of superoxide radical anions to hydrogen peroxide (H2O2)

(Du et al., 2013).

H2O2 is a strong oxidizing agent that can cause oxidative

damage and generate ROS. Isoniazid can diminish the

catalase activity of SOD, resulting in the accumulation of

H2O2 (Bhadauria et al., 2007).

Besides the role of ROS, the distraction of endogenous

metabolism by isoniazid metabolites was proposed to be

involved in the isoniazid hepatotoxicity. Hydrazine as a

reactive metabolite of isoniazid could react to some endogen-

ous factors. One of this mechanisms was known as the

Figure 2. Secrch strategy for retrieving the
articles.
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reaction to diminish the Mycobacterium tuberculosis by the

formation of Isoniazid-Nicotinamide Adenine Dinucleotide

(INH-NAD+). The INH-NAD+ is hydrolyzed into 4-isonico-

tinoylnicotinamid (4-INN), which can be found in the urine

after two months treatment with isoniazid. The formation of

4-INN was supposed to be related with the loss of nicotinic

acid, which can cause isoniazid hepatotoxicity (Boelsterli &

Lee, 2014; Mahapatra et al., 2012).

HLA is a gene that has a role in the human immune system

and is suspected as a gene, which has association with

isoniazid hepatotoxicity. However, the mechanism of associ-

ation is still unclear (Boelsterli & Lee, 2014; Huang, 2014). A

summary of the pharmacological mechanisms of isoniazid

induced hepatotoxicity is presented in Figure 3.

Genetic variations associated with isoniazid-induced
hepatotoxicity

The most published genetic variations involved in isoniazid-

induced hepatotoxicity were in NAT2, CYP2E1 and GST1

(Cai et al., 2012; Huang, 2014). Genetic variations involved in

isoniazid-induced hepatotoxicity are listed in Table 1.

NAT2 metabolized isoniazid into acetylisoniazid and it

was hydrolyzed into acetylhydrazine, which will be oxidized

by CYP2E1 into some hepatotoxic metabolites (Huang,

2014). The previous study in Japanese showed that patients

who were rapid acetylators had elevated serum transamino-

transferases. The rapid acetylators will quickly metabolize

isoniazid into hepatotoxic agents, which was shown by the

increase of serum transaminotransferases (Yamamoto et al.,

1986). In slow acetylators, it was demonstrated that acetyl-

ation of acetylisoniazid into diacetylisoniazid leads to non

toxic agents (Lauterburg et al., 1985). Thus, both the rapid

and slow acetylators had significant contributions to the

mechanism of isoniazid-induced hepatotoxicity (Lauterburg

et al., 1985; Peretti et al., 1987). Currently, the studies showed

that the slow acetylators had a higher risk of isoniazid-

induced hepatotoxicity than rapid acetylators (Huang, 2007;

Lee et al., 2010; Singla et al., 2014). The NAT*2 is wild-type

and is known as the highest activity variant (Cai et al., 2012;

Gupta et al., 2013). The other variants of NAT2, such as

NAT2*5, NAT2*6 and NAT2*7, are known as decreased

activity alleles. The availability of variant alleles, such as two

variants of decreased activity alleles, one variant of decreased

activity allele and two wild-type could be phenotyped into

slow acetylators, intermediate acetylators and rapid acetyla-

tors, respectively (Huang, 2007; Roy et al., 2008; Xiang et al.,

2014). A study in China showed that most of the patients

recruited in the study were intermediate acetylators (37%),

followed by slow acetylators (24%) and rapid acetylators

(15%) (Xiang et al., 2014). This study is also in accordance

with other reviews and studies, which showed that Chinese

and Japanese as a part of the Asian ethnicity have a high

frequency of intermediate acetylators. However, populations

from India showed in most of the patients the slow acetylator

genotype (Roy et al., 2008). The high frequency of slow

acetylators and intermediate acetylators in the Asian popula-

tion showed that these populations are more susceptible for

isoniazid-induced hepatotoxicity (An et al., 2012; Huang,

2014). There are 36 variants of the NAT2 gene identified

in human populations with seven most common SNPs

forming the variations (Teixeira et al., 2007; Zang et al.,

2007). Considering the high polymorphism of the NAT2 gene,

the occurrence of isoniazid-induced toxicity will be more.

CYP2E1 oxidizes the acetylhydrazine into hepatotoxic

agents. Isoniazid and hydrazine could inhibit CYP2E1

activity, and isoniazid could also inhibit the variant of

CYP2E1 with a lower activity than the wild type (Roy et al.,

2008). The polymorphisms of CYP2E1 were detected by PstI,

RsaI and DraI restriction enzymes (Huang et al., 2003). The

variant alleles RSAI� and PstI+ are translated into c1 and c2.

Furthermore, the wild-type of c1, the variants of c2 and the

DraI are known as CYP2E1*1A, CYP2E1*5 and CYP2E1*6.

These variants showed increased activity (Roy et al., 2008).

According to the previous studies, the presence of homozy-

gous *1A/*1A was high in India and less frequent in China.

However, variants could increase the individual susceptibility

to the isoniazid-induced hepatotoxicity (An et al., 2012;

Roy et al., 2008).

GST is encoded by GSTM1, GSTT1 and GSTP1 (Strange

et al., 2001). The presence of null homozygous of GSTM1

and GSTT1 may cause decreased enzyme activity thereby

decreasing the detoxification of hepatotoxic metabolites.

The frequencies of null homozygous of GSTM1 and

GSTT1 among the Asian population were heterogeneous.

The frequencies of null homozygous GSTM1 in Chinese,

Malaysian and Indians were 35–63%, 62–100% and 20–79%,

respectively. However, the frequencies of null homozygous

in GSTT1 were 58%, 38% and 3–39% in those particular races

(Huang, 2007, 2014; Roy et al., 2008).

The high concentration of ROS due to hydrazine’s activity

should be reduced by manganese SOD (MnSOD). It was

found that patients heterozygous and homozygous for the

mutant allele in the 47 position of the MnSOD gene

experienced higher risk of antituberculosis induced hepato-

toxicity (Huang, 2014; Huang et al., 2007).

Figure 3. Pharmacological mechanisms of isoniazid induced hepatotox-
icity (adapted from Boelsterli & Lee, 2014).
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Other possible genetic variations mechanisms involve

HLA, UDP glucuronosyltransferase (UGT), nitric oxide

synthase (NOS), BNB and CNC homolog (BACH) and Maf

basic leucine zipper protein (MAFK). The last three enzymes

are supposed to be involved in the antioxidant activity, and

HLA is involved in the immunological reaction (Huang, 2014;

Nanashima et al., 2012).

The principal product of heme catabolism, bilirubin, is

eliminated by a conjugation reaction with glucuronic acid.

The glucuronidation reaction is mediated by UGT. Currently,

there are 15 isoforms of UGT in human, and 8 of these are

encoded by UGT1A. An increase of bilirubin was supposed to

be related with the insertion of TA in the UGT1A, which

encodes UGT1A1. This insertion inhibits the bilirubin

glucuronidation (Zucker et al., 2001). In the Taiwan popula-

tion, it was shown that the variants of UGT1A were associated

with antituberculosis-induced hepatotoxicity (Chang et al.,

2012).

The high concentration of ROS should be eliminated by

enzymes like GST, NQO1 (NAD(P)H dehydrogenase quin-

one) and heme oxygenase. The activation of these enzymes

must be supported by the mechanisms of activation and

repression of antioxidant pathways. These mechanisms will

support the transcriptional regulation of antioxidant enzymes

(Nanashima et al., 2012). During high concentrations of ROS,

MAFK can associate with antioxidant-responsive elements

(ARE), which allows the antioxidant enzymes expression. On

the contrary, the association of BACH with ARE prevents the

association between MAFK and ARE and results in the

repression of antioxidant enzymes (Nanashima et al., 2012;

Oyake et al., 1996). NO is one of the reactive nitrogen

species, which is produced by NOS. If NOS is available in the

cells, the inducible isoform of NOS (iNOS) will be

upregulated. iNOS is encoded by NOS2A, therefore by this

mechanism the increased activity of the NOS2A variant could

result in the overproduction of NO (Jaeschke et al., 2003;

Nanashima et al., 2012).

In the Japanese population, it was shown that the CC

genotype of rs11080344 in NOS2A, the CC genotype at

rs11080344 in BACH1, and the heterozygous and homozy-

gous mutant genotype at rs4720833 in MAFK were associated

with the occurrence of antituberculosis drugs-induced hep-

atotoxicity (Nanashima et al., 2012).

HLA is possibly involved in the resistance or susceptibility

to tuberculosis. It is responsible for the presentation by T cells

which initiate the protective immune response. It was shown

that the high frequency of HLA class I could influence the TB

treatment outcome. Its mechanism could be related with

recognizing the common epitope in the peptide-binding

and regulating NK cells activity (Balamurugan et al., 2004).

One study showed that the presence of HLA-DQB1*0201 and

the absence of HLA-DQA1*0102 are risk factors for drug-

induced hepatotoxicity (Sharma et al., 2002).

Conclusion

Many studies showed that the polymorphisms of NAT2,

CYP2E1 and GST1 could influence the concentration of

hepatotoxic isoniazid metabolites in the blood. Some of the

gene polymorphisms of HLA, UGT, NOS, BACH and MAFK

are supposed to contribute to isoniazid-induced hepatotoxicity

by modifying the antioxidant enzyme expression. However,

the studies which explored this mechanism are still limited. A

better insight into the role of polymorphisms in the hepato-

toxicity of isoniazid may support physicians in monitoring

patients hepatotoxicity symptoms and laboratory data and

optimizing pharmacotherapy. Future studies about the role of

such polymorphisms in different ethnicities are suggested.
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