

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

2015 – Authorized gasification plants

FACTS & F

Xylogas & EAF

-IGU	RES	Lenergy & Bioc	PLS LAP	3
	-			

Technology	Place
Agnion Technologies GmbH	Ora
Burkhardt GmbH	Ora
Burkhardt GmbH	Sinigo
Burkhardt GmbH	Campo di Trens
Burkhardt GmbH	Campo di Trens
Burkhardt GmbH	S. Genesio
ntrade	Terlano
uture Green Srl	Lagundo
lans Gräbner	Campo Tures
Iolzenergie Wegscheid GmbH	Rio di Pusteria
Cuntschar Energieerzeugung GmbH	Braies
Cuntschar Energieerzeugung GmbH	Senale San Felice
Cuntschar Energieerzeugung GmbH	Rio Pusteria
Pyrox GmbH	Lasa
Repotec GmbH	Malles
panner Re² GmbH	Badia (S. Cassiano)
ipanner Re² GmbH	Castelrotto (Siusi)
panner Re ² GmbH	Riffiano
ipanner Re² GmbH	S. Candido
panner Re ² GmbH	S. Candido
panner Re² GmbH	S. Candido
panner Re ² GmbH	S. Leonardo i.P.
panner Re² GmbH	Campo di Trens
ipanner Re² GmbH	Chiusa (Latzfons)
panner Re² GmbH	Glorenza
panner Re² GmbH	Naz Sciaves
ipanner Re ² GmbH	Naz Sciaves
panner Re² GmbH	Racines
ipanner Re² GmbH	Rio Pusteria (Spinga)
ipanner Re ² GmbH	S. Martino i.B.
ipanner Re² GmbH	Sarentino
ipanner Re ² GmbH	Valdaora
panner Re² GmbH	Verano
ipanner Re ² GmbH	Dobbiaco
panner Re² GmbH	Malles
ipanner Re ² GmbH	Racines
panner Re² GmbH	Vandoies
ipanner Re² GmbH	Lagundo (Aschbach)
panner Re² GmbH	Laimburg
panner Re² GmbH	n.p.
itadtwärke Rosenheim	Bressanone
yncraft Engineering GmbH	Versciaco
Jrbas Maschinenfabrik GmbH	Valles
Jrbas Maschinenfabrik GmbH	Castelbello
Jrbas Maschinenfabrik GmbH	Malles
(ylogas & EAF	Val di Vizze

Urbas Maschinenfabrik GmbH Syncraft Engineering GmbH Stadtwärke Rosenheim Spanner Re² GmbH Repotec GmbH Pyrox GmbH Kuntschar Energieerzeugung GmbH Holzenergie Wegscheid GmbH Hans Gräbner GTS Syngas Srl Future Green Srl Entrade Burkhardt GmbH IROL Agnion Technologies GmbH O ADIGE 0 1200 200 400 600 800 1000 1400 1600 1800 2000 ELECTRICAL POWER (kW) ■ THERMAL POWER

Introduction

unibz

Projects

GAST - "Experiences in biomass **Ga**sification in **S**outh **T**yrol: energy and environmental assessment"

NEXT GENERATION – **N**ovel **EXT**ension of biomass poly-**GENERATION** to small scale gasification systems in South-Tyrol

Funded by: Autonomous Province of Bolzano AUTONOME PROVINZ BOZEN - SÜDTIROL

Abteilung 40. Bildungsförderung, Universität und Forschung

PROVINCIA AUTONOMA DI BOLZANO - ALTO ADIGE

Ripartizione 40. Diritto allo Studio, Università e Ricerca scientifica unibz

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Investigated plant typologies

Technology	Α	В	С	(D)
Fuel	wood chips	pellet	wood chips	wood chips
Feeding	from the top	from the bottom	from the top	from the top
Nominal power	45 kW _{el} / 120 kW _{th}	180-190 kW _{el} / 220-240 kW _{th}	100-150 kW _{el} / 200-250 kW _{th}	300 kW _{el} / 600 kW _{th}
Reactor	downdraft	rising co-current	downdraft	downdraft
Gas cleaning	dry, on the cold gas	dry, on the hot gas	dry, on the hot gas	dry, on the hot gas
Engine	turbo-compressed Otto cycle	dual-fuel Diesel cycle	modified Diesel cycle	modified Diesel cycle
Peculiarity	The (already quite dry) biomass is first dried in a separated vessel and then transported to the main reactor	 The biomass feeding from the bottom creates a vortex above the combustion zone The engine is co-fed with colza oil for the auto-ignition 	The wet wood chips are dried in a external drier suiting the excess of heat	The wet wood chips are dried in a external drier suiting the excess of heat

Introduction

Characterisation of the input feedstock

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Producer gas composition

Values on dry basis

AB-areaois

Mass and energy balance

unibz

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Energy balance

% respect to the biomass input

Energy balance

		Technology	
	Α	B *	С
Losses			
Char	2.4 %	1.5 %	1.9 %
Thermal gasifier	22.1 %	23.9 %	22.3 %
Thermal CHP	7.2 %	4.8 %	6.4 %
Useful			
Thermal gasifier	3.9 %	11.7 %	7.9 %
Net electric CHP	18.3 %	25.3 %	16.8 %
Thermal CHP	46.0 %	32.8 %	44.6 %
Electric self-consumption			
Auxiliary	15.9 %	17.0 %	17.6 %
*considers 3 l/h of colza oil as	secondary fuel		

Introduction

unibz

Efficiencies

ONLINE_RESULTS

Introduction

unibz

AB - a Haois

Tar in the producer gas

Suggested limit value for ICE: ~ 100 mg/Nm³

Technology	Α	В	С	(D)
Gravimetric tar (mg/Nm ³)	650-750	200-300	150-250	150-250

Introduction

Tar in the producer gas

B C D

unibz

unibz

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Conclusions

- Quite **reliable operation** of commercial small scale CHPs (< 200 kW_{el})
 - the plants ensure 7000 h/year of operation
 - similar overall efficiencies for the compared technologies (\approx 70%)
 - high electrical efficiency (20-30 %)
- but...
 - high quality feedstock (water content < 10 %)
 - **tar** content higher than the limit suggested in the scientific literature (frequent engine **maintenance** required)
 - phytotoxicity tests on char samples do not suggest that they could be used as soil improver

Future outlooks & open questions

By-products management

- About 2600 tons/year of char disposed of as a waste with a high cost for disposal (total of approximately 373 k€ per year)
- Need for char valorization routes (filtering medium, catalytic support, co-firing, ...)

Freie Universität Bozen UnibZ Università Liedia de Bulsan

December 2nd

8.30-9.00 - Registration

9.00-9.45

Welcome speech *Fabrizio Mazzetto – Free University of Bozen-Bolzano Vice-Dean for Research, Faculty of Science and Technology*

Opening Address and Introduction Marco Baratieri – Free University of Bozen-Bolzano

Morning keynote

9.45-10.30

"Small scale CHP for decentralised energy generation and grid balances: which challenges and opportunities for gasification?" *David Chiaramonti – University of Florence*

Morning session

Chairs: Elisabetta Arato – University of Genova Francesco Patuzzi – Free University of Bozen-Bolzano

10.30-11.00

"Fuel flexibility in gasification: experiences and challenges" *Tim Schulzke – Fraunhofer Institute*

11.00-11.30 - Coffee Break

11.30-12.00

"Tar analysis methods for small scale gasification systems" Klas Engvall – KTH, Stockholm

12.00-12.30

"20 years of research and demonstration experience with the dual fluidized bed steam gasification concept" *Walter Haslinger – BE2020+, Wieselburg*

12.30-14.00 - Buffet lunch

UnibZ Università Liedia de Bulsan

December 2nd

Afternoon keynote

14.00-14.45

"Gasification byproducts" *S. Dasappa – Indian Institute of Science, Bangalore*

Afternoon session

Chairs: Luca Fiori – University of Trento Simone Pedrazzi – University of Modena and Reggio Emilia

14.45-15.15

"Char properties and characterization methods" York Neubauer – TU-Berlin

15.15-15.45

"Potential use of char as activated carbon" Marcel Huber – MCI Innsbruck

15.45-16.15 - Coffee Break

16.15-16.45

"Uses of biomass chars – nutrient and contaminant perspective" Ondřej Mašek – UK Biochar Research Centre

16.45-17.15

"Measuring toxicity of char and its implications" Werner Tirler – EcoResearch

17.15-18.00

Round table: "The future of small-scale gasification"

18.00-18.30 Guided tour to UNIBZ LABS

With the financial support of

AUTONOME PROVINZ BOZEN - SÜDTIROL Abteilung 40. Bildungsförderung,

Universität und Forschung

Ripartizione 40. Diritto allo Studio. Università e Ricerca scientifica

(L.P., 13.12.2006, N. 14) Project "Novel EXTension of biomass poly-GENERATION to small scale gasification systems in South-Tyrol (NEXT GENERATION)" [CUP B56J16000780003]

December 3rd

8.30 Coffee-to-go (UNI-BAR)

9.00-12.00 Visit to a commercial plant (on-site lab)

Distrct heating of Pairdorf (Brixen/Bressanone) [dual stage; 50 kWel, 110 kWth]

12.30 Return to Bolzano and leaving

UNIDZ Università Liedia de Bulsan

Analyzed parameters

- Feedstock and gasification products (gas, char e tar) characteristics
- Mass fluxes
- Energy fluxes

Freie Universität Bozen Unibz Università Liedia de Bulsan

Applied methodologies

Mass fluxes

- Woody biomass flow rate
- Gasifying agent (air) flow rate
- Producer gas flow rate
- Char flow rate

Input biomass weighted and **manually fed** to the reactor...

... or **inverse strategies** applied (e.g. maximum level of the storage used as reference)

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Applied methodologies

Mass fluxes

- Woody biomass flow rate
- Gasifying agent (air) flow rate
- Producer gas flow rate
- Char flow rate

Determined by means of the **velocity in a known dimensions tube** connected to the air inlet. Velocity measured by means of a **Pitot tube**.

UNIDZ UNIDZ UNIVERSITÀ DI BOLZANO

Applied methodologies

Mass fluxes

- Woody biomass flow rate
- Gasifying agent (air) flow rate
- Producer gas flow rate
- Char flow rate

Determined once measured the **gas composition** and the input **air flow rate**, assuming negligible the nitrogen content in the fuel.

$$\dot{V}_{gas} = \frac{X_{N_2}}{0.21} \dot{V}_{air}$$

Freie Universität Bozen Unibz Università Liedia de Bulsan

Applied methodologies

Mass fluxes

- Woody biomass flow rate
- Gasifying agent (air) flow rate
- Producer gas flow rate
- Char flow rate

Determined collecting the char during the whole monitoring period.

All the parameters have been monitored for a continuous steady operation period of at least 5-6 hours.

UNIDZ UNIDZ UNIVERSITÀ DI BOLZANO

Applied methodologies

Energy fluxes

- Energy related to the input fuel
- Energy related to the producer gas
- Produced electrical and thermal energy

Determined on the basis of the **biomass flow rate** and of its **Lower Heating Value (LHV)**, measured by means of calorimetric bomb.

$$P_{comb} = \dot{m}_{comb} \cdot LHV_{comb}$$

Freie Universität Bozen Unibz Università Liedia de Bulsan

Applied methodologies

Energy fluxes

- Energy related to the input fuel
- Energy related to the producer gas
- Produced electrical and thermal energy

Producer gas LHV calculated on the basis of its **composition**, measured by means of a **portable gas chromatography system.**

$$P_{gas} = \dot{m}_{gas} \cdot LHV_{gas}$$

Freie Universität Bozen

Applied methodologies

Energy fluxes

- Energy related to the input fuel
- Energy related to the producer gas
- Produced electrical and thermal energy

Electrical power measured by means of power analyser and/or integrated meter of the plant.

Thermal power estimated from:

- Medium flow rate (ultrasonic meter)
- Supply and return temperature (thermocouples type k)

Unibz University

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Applied methodologies

By-products characterization

- Liquid: tar
- Solid: char

Tar in the producer gas sampled and analyzed according to UNI CEN TS 15439 (bubbling in isopropanol)

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan Freie Universität Bozen UnibZ Università Liedia de Bulsan

December 2nd

8.30-9.00 - Registration

9.00-9.45

Welcome speech *Fabrizio Mazzetto – Free University of Bozen-Bolzano Vice-Dean for Research, Faculty of Science and Technology*

Opening Address and Introduction Marco Baratieri – Free University of Bozen-Bolzano

Morning keynote

9.45-10.30

"Small scale CHP for decentralised energy generation and grid balances: which challenges and opportunities for gasification?" *David Chiaramonti – University of Florence*

Morning session

Chairs: Elisabetta Arato – University of Genova Francesco Patuzzi – Free University of Bozen-Bolzano

10.30-11.00

"Fuel flexibility in gasification: experiences and challenges" *Tim Schulzke – Fraunhofer Institute*

11.00-11.30 - Coffee Break

11.30-12.00

"Tar analysis methods for small scale gasification systems" Klas Engvall – KTH, Stockholm

12.00-12.30

"20 years of research and demonstration experience with the dual fluidized bed steam gasification concept" *Walter Haslinger – BE2020+, Wieselburg*

12.30-14.00 - Buffet lunch

UnibZ Università Liedia de Bulsan

December 2nd

Afternoon keynote

14.00-14.45

"Gasification byproducts" *S. Dasappa – Indian Institute of Science, Bangalore*

Afternoon session

Chairs: Luca Fiori – University of Trento Simone Pedrazzi – University of Modena and Reggio Emilia

14.45-15.15

"Char properties and characterization methods" York Neubauer – TU-Berlin

15.15-15.45

"Potential use of char as activated carbon" Marcel Huber – MCI Innsbruck

15.45-16.15 - Coffee Break

16.15-16.45

"Uses of biomass chars – nutrient and contaminant perspective" Ondřej Mašek – UK Biochar Research Centre

16.45-17.15

"Measuring toxicity of char and its implications" Werner Tirler – EcoResearch

17.15-18.00

Round table: "The future of small-scale gasification"

18.00-18.30 Guided tour to UNIBZ LABS