(Chapter 12)
 Electrolyte Solutions: Milliequivalents, Millimoles, and Milliosmoles

Lecture 2

Lecturer Anas Tarik Nafei

Millimoles and Micromoles

Electrolyte concentrations expressed in millimoles per liter (mmol/L) in representing the combining power of a chemical species.
A mole is the (molecular weight of a substance in grams). A millimole is one thousandth of a mole (molecular weight of a substance in milligrams) and a micromole is one millionth of a mole (molecular weight of a substance in micrograms).
Mole = wt. (g) / m.wt.
Millimole $=\mathrm{wt} .(\mathrm{mg}) / \mathrm{m} . \mathrm{wt}$.
Micromole $=w t .(\mu \mathrm{g}) / \mathrm{m} . \mathrm{wt}$.

Important notes:

1- Millimolar conversions do not take into account the valence of an electrolyte as do milliequivalent conversions.

For monovalent species, the numeric values of the milliequivalent and millimole are identical.

2- Similar to milliequivalents, the millimoles of the compound are equal to the millimoles of the cation, which are equal to the millimoles of the anion, but this does not hold true for the actual weights of the ions.

Example calculations of Millimoles and Micromoles

1) How many millimoles of monobasic sodium phosphate monohydrate (m.wt. 138) are present in 100 g of the substance?
```
m.wt. = 138
100 g = 100000 mg
mmol = wt.(mg) / m.wt.
mmol = 100000/ 138=724.64 mmol \approx725 mmol
or
According to the definition each 1 mole =138g
    1 mole 138 g
    X mole
    100 g
        X=0.725 moles = 725 mmol
```

2) What is the weight, in milligrams, of 5 mmol of potassium phosphate dibasic?
m.wt. of $\mathrm{K}_{2} \mathrm{HPO}_{4}=\left[2 \times 39\left(\mathrm{~K}^{+}\right)+96\left(\mathrm{HPO}_{4}^{2-}\right)=174\right.$
$\mathrm{mmol}=\mathrm{wt} .(\mathrm{mg}) / \mathrm{m} . \mathrm{wt}$.
$5=\mathrm{wt} .(\mathrm{mg}) / 174$
$\mathrm{wt} .(\mathrm{mg})=870 \mathrm{mg}$
3) Convert blood plasma levels range of 0.5 microgram $/ \mathrm{mL}$ and 2 microgram $/ m L$ for tobramycin ($m . w .=467.52$) to micromole $/ L$?

Micromole $=w t .(\mu \mathrm{g}) / \mathrm{m} . \mathrm{wt}$.
Micromole $=0.5 \mu \mathrm{~g} / 467.52=0.0010695$
0.0010695 mcmol

X

1 mL
$1000 \mathrm{~mL} \quad=1.07 \mathrm{mcmol} / \mathrm{L}$
Micromole $=2 \mu \mathrm{~g} / 467.52=0.0042778$
0.0042778 mcmol
x mamol

1 mL 1000 mL

Range $=1.07-4.28 \mathrm{mcmol} / \mathrm{L}$
(4) If lactated Ringer's injection contains 20 mg of calcium chloride dihydrate $\left(\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in each 100 mL , calculate the millimoles of calcium present in 1 L of lactated Ringer's injection.

$$
\begin{aligned}
& \text { m.wt. of } \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=40\left(\mathrm{Ca}^{2+}\right)+\left[2 \mathrm{x} 35.5\left(\mathrm{Cl}^{-}\right)\right]+[2 \mathrm{x} 18 \\
& \left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]=147
\end{aligned}
$$

$1 \mathrm{~L}=1000 \mathrm{~mL}$
Millimole $=w t .(m g) / m . w t$.

$$
\mathrm{mmol}=20 / 147=0.136
$$

0.136 mmol	100 mL	$=1.36 \mathrm{mmol} / \mathrm{L}$ of $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
X mmol	1000 mL	$=1.36 \mathrm{mmol} / \mathrm{L}^{2}$ of Ca^{2+}

(5) If lactated Ringer's injection contains 20 mg of calcium chloride dihydrate $\left(\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in each 100 mL . How many micromoles of calcium are present in each milliliter of lactated Ringer's injection?
m.wt. of $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=40\left(\mathrm{Ca}^{2+}\right)+\left[2 \mathrm{x} 35.5\left(\mathrm{Cl}^{-}\right)\right]+\left[2 \times 18\left(\mathrm{H}_{2} \mathrm{O}\right)\right]=147$

Microgram $=20 \mathrm{mg} \mathrm{X} 1000=20000 \mu \mathrm{~g} / 100 \mathrm{~mL}$

$$
\begin{aligned}
& \text { Micromole = wt. }(\mu \mathrm{g}) / \mathrm{m} . \mathrm{wt.} \\
& \text { mcmol }=20000 / 147=136 \\
& \\
& \begin{array}{ccl}
136 \mathrm{mcmol} & 100 \mathrm{~mL} \\
\mathrm{X} \mathrm{mcmol} & 1 \mathrm{~mL} & =1.36 \mathrm{mcmol} / \mathrm{mL} \text { of } \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& & =1.36 \mathrm{mcmol} / \mathrm{mL} \text { of } \mathrm{Ca}^{2+}
\end{array}
\end{aligned}
$$

(6) A patient is receiving a slow intravenous infusion containing 40 mEq of potassium chloride in 1000 mL of fluid. If, after 12 hours, 720 mL of infusion had been in used, how many millimoles of potassium chloride were administered?

$$
\text { M.wt. of } \mathrm{KCl}=39\left(\mathrm{~K}^{+}\right)+35.5\left(\mathrm{Cl}^{-}\right)=74.5 \quad \text { Valence }=1
$$

$\mathrm{mg}=\mathrm{mEq} \times$ Atomic, formula, or molecular weight /Valence $\mathrm{mg}=40 \times 74.5 / 1=2980 \mathrm{mg} / 1000 \mathrm{~mL}$ of KCl received by patient

2980 mg	1000 mL
X mg	720 mL

Millimole $=\mathrm{wt} .(\mathrm{mg}) / \mathrm{m} . \mathrm{wt}$.
$\mathrm{mmol}=2145.6 / 74.5=28.8 \mathrm{mmol}$ of KCl were administered
(7) A medication order calls for 1.8 g of potassium chloride in 60 mL of solution. How many millimoles of KCl are contained in each milliliter?
M.wt. of $\mathrm{KCl}=39\left(\mathrm{~K}^{+}\right)+35.5\left(\mathrm{Cl}^{-}\right)=74.5$
$\mathrm{Mg}=1.8 \mathrm{gm} \mathrm{x} 1000=1800 \mathrm{mg}$
$1800 \mathrm{mg} \quad 60 \mathrm{~mL}$
$\mathrm{X} \mathrm{mg} \quad 1 \mathrm{~mL} \quad=30 \mathrm{mg}$ of KCl

Millimole $=w t .(m g) / \mathrm{m} . \mathrm{wt}$.
$\mathrm{mmol}=30 / 74.5=0.403 \mathrm{mmol} / \mathrm{mL}$ of KCl
(8) Calculate the concentrations in mmol/L for each of the following infusion solutions: (a) $5 \% \mathrm{NaCl}$, (b) $3 \% \mathrm{NaCl}$, (c) $0.9 \% \mathrm{NaCl}$ (NSS), (d) $0.45 \% \mathrm{NaCl}$ (half-NSS), and (e) $0.2 \% \mathrm{NaCl}$.
M.wt. of $\mathrm{NaCl}=23\left(N a^{+}\right)+35.5\left(C l^{-}\right)=58.5$
A) $\mathrm{mg}=5 \mathrm{gm} \times 1000=5000 \mathrm{mg}$
$5000 \mathrm{mg} \quad 100 \mathrm{~mL}=50000 \mathrm{mg} / \mathrm{L}$
X mg $\quad 1000 \mathrm{~mL}$
Millimole $=w t .(\mathrm{mg}) / \mathrm{m} . \mathrm{wt}$.
$\mathrm{mmol}=50000 / 58.5=854.7 \mathrm{mmol} / \mathrm{L}$
B) same as branch A: $30000 \mathrm{mg} / \mathrm{L}$ $\mathrm{mmol}=30000 / 58.5=512.82 \mathrm{mmol} / \mathrm{L}$
C) same as branch A: $9000 \mathrm{mg} / \mathrm{L}$ $\mathrm{mmol}=9000 / 58.5=153.85 \mathrm{mmol} / \mathrm{L}$
D) same as branch A: $4500 \mathrm{mg} / \mathrm{L}$
E) same as branch A: $2000 \mathrm{mg} / \mathrm{L}$
$\mathrm{mmol}=4500 / 58.5=76.92 \mathrm{mmol} / \mathrm{L}$
$\mathrm{mmol}=2000 / 58.5=34.19 \mathrm{mmol} / \mathrm{L}$

Osmolarity

Osmotic pressure is important to biologic processes that involve the diffusion of solutes or the transfer of fluids through semipermeable membranes.

Ex: solutions that provide intravenous (I.V.) replenishment of fluid, nutrients, or electrolytes, and the osmotic diuretic mannitol are required to state the osmolar concentration.
whether the solution is hypoosmotic, isoosmotic, or hyperosmotic with regard to biologic fluids and membranes.

Osmotic pressure is proportional to the total number of particles (molecules or ions) in solution.

The unit used to measure osmotic concentration is the milliosmole (mOsmol).
For nonelectrolyte (dextrose), 1 mmol (1 formula weight in milligrams) represents 1 mOsmol .

While electrolytes (the total number of particles in solution depends on the degree of dissociation of the substance in question).

Ex: Assuming complete dissociation, 1 mmol of NaCl represents $2 \mathrm{mOsmol}\left(\mathrm{Na}^{+}\right.$ $\left.+\mathrm{Cl}^{-}\right)$of total particles, 1 mmol of CaCl_{2} represents $3 \mathrm{mOsmol}\left(\mathrm{Ca}^{++}+2 \mathrm{Cl}^{-}\right)$of total particles, and 1 mmol of sodium citrate $\left(\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$ represents 4 mOsmol $\left(3 \mathrm{Na}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}\right)$of total particles.

The milliosmolar value of separate ions of an electrolyte may be obtained by [dividing the concentration, in milligrams per liter, of the ion by its atomic weight].
The milliosmolar value of the whole electrolyte in solution is equal to the sum of the milliosmolar values of the separate ions.

Osmotic concentration $=\mathrm{mOsmol}$
$\mathrm{mOsmol}=$ mmole $($ mole $\times 1000) \times$ Number of species
mOsmol= $\{$ Weight (mg) / Molecular weight $\} \mathbf{x}$ Number of species

Osmolarity $=$ no. of mOsmol $/ \mathrm{L}$ of solution
$\mathrm{mOsmol} / \mathrm{L}=($ concentration of substance $[\mathrm{g} / \mathrm{L}] /$ Molecular weight $[\mathrm{g}]) \times$ Number of species $\times 1000$

A distinction also should be made between the terms osmolarity and osmolality: osmolarity is the milliosmoles of solute per liter of solution osmolality is the milliosmoles of solute per kilogram of solvent.
For dilute aqueous solutions, osmolarity and osmolality are nearly identical. For more concentrated solutions, however, the two values may be quite dissimilar.

Osmometers are commercially available for use in the laboratory to measure osmolality.
Note: Abnormal blood osmolality that deviates from the normal range can occur in association with shock, trauma, burns, water intoxication (overload), electrolyte imbalance, hyperglycemia, or renal failure.

Example calculations of Milliosmoles

1) A solution contains 10% of anhydrous dextrose in water for injection. How many milliosmoles per liter are represented by this concentration?

Molecular weight of anhydrous dextrose $=180$
Dextrose does not dissociate, therefore (no. of species) $=1$

10 g	100 mL
X	1000 mL

$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \mathrm{x}$ Number of species x 1000
$\mathrm{mOsmol} / \mathrm{L}=(100 / 180) \times 1 \times 1000=555.56 \mathrm{mOsmol} / \mathrm{L}$
2) A solution contains 156 mg of K^{+}ions per 100 mL . How many milliosmoles are represented in a liter of the solution?

Atomic weight of $\mathrm{K}^{+}=39$
156 mg x $1000=0.156 \mathrm{~g}$

0.156 g	100 ml
X	1000 ml

$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \times$ Number of species x 1000
$\mathrm{mOsmol} / \mathrm{L}=(1.56 / 39) \times 1 \times 1000=40$
3) Calculate the number of milliosmoles corresponding to 0.386 g of NaCl (m.wt. 58.5)?

$$
\mathrm{Wt}=0.386 \mathrm{~g} \mathrm{x} 1000=386 \mathrm{mg}
$$

No. of species $=2\left(\mathrm{Na}^{+}+\mathrm{Cl}^{-}\right)$
mOsmol= $\{$ Weight (mg) / Molecular weight $\} \mathbf{x}$ Number of species $\mathrm{mOsmol}=386 \mathrm{mg} / 58.5 \times 2=13.2 \mathrm{mOsmol}$
4) Calculate the osmolarity of 15 mOsm . Dissolved in enough water to make a total volume 100 ml ?

Osmolarity $=$ no. of $\mathrm{mOsmol} / \mathrm{L}$ of solution
Osmolarity $=15 \mathrm{mOsmol} / 0.1 \mathrm{~L}=150 \mathrm{mOsmol} / \mathrm{L}$
5) A pharmacist added 25 ml of 7.5% solution of magnesium acetate (m.wt. 142) to a patient's infusion solution. How many mOsmol of magnesium acetate did the patient receive?

No. of species of magnesium acetate $=\mathrm{Mg}^{+}+2\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)=3$ parts

7.5 g	100 ml		
x		\quad	25 ml
:---	$\quad=1.875 \mathrm{~g}=1875 \mathrm{mg}$		

mOsmol= $\{$ Weight (mg) / Molecular weight $\} \mathbf{x}$ Number of species $\mathrm{mOsmol}=1875 \mathrm{mg} / 142 \times 3=39.6 \mathrm{mOsmol}$
6) Calculate the osmolarity of a 3\% hypertonic sodium chloride solution. Assume complete dissociation.
M.wt. of $\mathrm{NaCl}=58.5$

No. of species $=2\left(\mathrm{Na}^{+}+\mathrm{Cl}^{-}\right)$
$\begin{array}{lr}3 \mathrm{~g} & 100 \mathrm{~mL} \\ \mathrm{Xg} & 1000 \mathrm{~mL}\end{array}=30 \mathrm{~g} / \mathrm{L}$

Osmolarity $=\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \mathrm{x}$ Number of species x 1000
$\mathrm{mOsmol} / \mathrm{L}=(30 / 58.5) \times 2 \times 1000=1025.64 \mathrm{mOsmol} / \mathrm{L}$

7) Calcium chloride dihydrate injection is a 10% solution of $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. How many milliosmoles are present in a $10-\mathrm{mL}$ vial? Assume complete dissociation.

M.wt. of $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=40\left(\mathrm{Ca}^{+}\right)+\left[2 \mathrm{X} 35.5\left(\mathrm{Cl}^{-}\right)\right]+\left[2 \times 18\left(\mathrm{H}_{2} \mathrm{O}\right)\right]=147$

No. of species $=3\left(\mathrm{Ca}^{+}\right.$and $\left.2 \mathrm{Cl}^{-}\right)$

10 g	100 ml
xg	1000 ml

$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \times$ Number of species x 1000 $\mathrm{mOsmol} / \mathrm{L}=(100 / 147) \times 3 \times 1000=2040.81 \mathrm{mOsmol} / \mathrm{L}$
2040.81 mOsmol x mOsmol

1000 mL
10 mL
8) If a pharmacist wished to prepare 100 mL of a solution containing 50 mOsmol of calcium chloride, how many grams of calcium chloride would be needed? Assume complete dissociation.
M.wt. of $\mathrm{CaCl}_{2}=40\left(\mathrm{Ca}^{+}\right)+\left[2 \mathrm{X} 35.5\left(\mathrm{Cl}^{-}\right)\right]=111$

No. of species $=3\left(\mathrm{Ca}^{+}\right.$and $\left.2 \mathrm{Cl}^{-}\right)$
$50 \mathrm{mOsmol} \quad 100 \mathrm{~mL}$
X $\quad 1000 \mathrm{~mL} \quad=500 \mathrm{mOsmol} / \mathrm{L}$
$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \times$ Number of species x 1000
$500=\left[\frac{\text { weight of substance }(\mathrm{g} / \mathrm{L})}{111}\right] \times 3 \times 1000$
Weight of substance $=(500 \times 111) / 3000=18.5 \mathrm{~g} / \mathrm{L}$
$18.5 \mathrm{~g} \quad 1000 \mathrm{~mL} \quad=1.85 \mathrm{~g}$ of CaCl_{2}
100 mL

9) What is the osmolarity of a solution containing 5% dextrose and 0.45% sodium chloride (D5 $1 / 2$ NS)? Assume complete dissociation.

Molecular weight of dextrose $=180$
Dextrose does not dissociate, therefore (no. of species) $=1$

```
5g crermarn
mOsmol/L = (Weight of substance (g/L) / Molecular weight g) x Number of species x 1000
mOsmol/L}=(50/180)\times1\times1000=277.78 mOsmol/L
M.wt. of NaCl=58.5
No. of species =2(Na+}+\mp@subsup{\textrm{Cl}}{}{-}
0.45 g }\quad100\textrm{mL}=4.5\textrm{g}/\textrm{L
mOsmol/L = (Weight of substance (g/L) / Molecular weight g) x Number of species x 1000
mOsmol/L = (4.5 / 58.5) x 2 x 1000=153.85 mOsmol/L
```

Total $=277.78+153.85=431.62 \mathrm{mOsmol} / \mathrm{L}$
10) PLASMA-LYTE 56 contains 32 mg of magnesium acetate tetrahydrate, 128 mg of potassium acetate, and 234 mg of sodium chloride in each 100 mL of solution. What is the osmolarity of this solution? Assume complete dissociation.
M. wt. of $\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}=24\left(\mathrm{Mg}^{+}\right)+\left[2 \times 59\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right)\right]+\left[4 \times 18\left(\mathrm{H}_{2} \mathrm{O}\right]\right)=214$

No. of species $=3\left(\mathrm{Mg}^{2+}+2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right)$

32 mg	100 mL
x	1000 mL

$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \times$ Number of species $\times 1000$ $\mathrm{mosmol} / \mathrm{L}=0.32 / 214 \times 3 \times 1000=4.49 \mathrm{mOsmol} / \mathrm{L}$
M. wt. of potassium acetate $\left(\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)=39\left(\mathrm{~K}^{+}\right)+\left[59\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right)\right]=98$

No. of species $=2\left(\mathrm{~K}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right)$

128 mg	100 mL
x	1000 mL

$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \times$ Number of species $\times 1000$
$\mathrm{mosmol} / \mathrm{L}=1.28 / 98 \times 2 \times 1000=26.12 \mathrm{mOsmol} / \mathrm{L}$
M.wt. of $\mathrm{NaCl}=58.5$

No. of species $=2\left(\mathrm{Na}^{+}+\mathrm{Cl}^{-}\right)$

234 mg	100 mL
x	1000 mL

$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \times$ Number of species x 1000 $\mathrm{mOsmol} / \mathrm{L}=(2.34 / 58.5) \times 2 \times 1000=80 \mathrm{mOsmol} / \mathrm{L}$

Total $=4.49+26.12+80=110.61 \mathrm{mOsmol} / \mathrm{L}$
11) Calculate the milliequivalents of sodium, potassium, and chloride, the millimoles of anhydrous dextrose, and the osmolarity of the following parenteral fluid. Assume complete dissociation.

Dextrose, anhydrous	50 g
Sodium chloride	4.5 g
Potassium chloride	1.49 g
Water for injection, ad	1000 mL

Sodium Chloride
$\mathrm{mEq}=4500 \times 1 / 58.5=76.92 \mathrm{mEq} \mathrm{NaCl}=76.92 \mathrm{mEq}$ of Na^{+}and 76.92 mEq of Cl^{-}
$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \times$ Number of species x 1000
$\mathrm{mOsmol} / \mathrm{L}=(4.5 / 58.5) \times 2 \times 1000=153.85 \mathrm{mOsmol} / \mathrm{L}$

Potassium Chloride
$\mathrm{mEq}=1490 \times 1 / 74.5=20 \mathrm{mEq} \mathrm{KCl}=20 \mathrm{mEq}$ of K^{+}and 20 mEq of Cl^{-}
$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \times$ Number of species x 1000
$\mathrm{mOsmol} / \mathrm{L}=(1.49 / 74.5) \times 2 \times 1000=40 \mathrm{mOsmol} / \mathrm{L}$

Dextrose:
Millimole $=50000 / 180=277.78 \mathrm{mmol}$
$\mathrm{mOsmol} / \mathrm{L}=($ Weight of substance $(\mathrm{g} / \mathrm{L}) /$ Molecular weight g$) \times$ Number of species x 1000
$\mathrm{mOsmol} / \mathrm{L}=(50 / 1800) \times 1 \times 1000=277.8 \mathrm{mOsmol} / \mathrm{L}$
76.92 mEq of $\mathrm{Na}^{+} ; 20 \mathrm{mEq}$ of $\mathrm{K}^{+} ; 76.92 \mathrm{mEq}^{2}$ of Cl^{-}and 20 mEq of $\mathrm{Cl}^{-}=96.92 \mathrm{mEq}$ of Cl^{-}

Osmolarity $=153.85 \mathrm{mOsmol} / \mathrm{L}+40 \mathrm{mOsmol} / \mathrm{L}+277.8 \mathrm{mOsmol} / \mathrm{L}=471.62 \mathrm{mOsmol} / \mathrm{L}$

Thank
a youl

