

Vol. VIII.-No. 24.-Third Series.]
NEW YORK, TUESDAY, DECEMBER 14, 1869.
[Single Copies io Cents.

Railway Car Springs.

The importance of a good car spring is becoming daily more and more agitated, in proportion to the vast development and extension of our railroad system and its rapidly increasing traffic. The Roman conqueror made his triumphal entrance to the capital monnted on a chariot as devoid of springs as that of a Pharaoh. It was only, we believe, nnder the reign of Lonis XIV., when the science of road making began to be enerally introduced into Europe, that springs were first applied the carriages of the rich.
existence of its protection under the Goodxear patent, a good the fractnre. The imported volnte (see Fig. 4 of the accomspring was insured by responsible mannfacturers. But more panying illnstrations,) has more coils, is rolled thinner at the解 competition, has induced many to put in the market an adul- ing American, and works with greater uniformity throughont terated and worthless article. These springs are liable to injury the whole spring. Like rubber, however, once broken, it beby the over-heating of the journal-boxes, and when not of the comes almost valneless.
most superior manufacture, are badly affected by changes of In the form of wire spirals, the true principle appears to be temperature, stand at different heights under pressure, and developed in the production of an economical and highly effeccrack. Once broken, they are almost worthless, as vulcanized tive spring. In fact, steel

Our general remarks, how ver, on the nature of springs Velessarily be very limit . olumes have been written the subject. Centuries have ailed to produce a spring snit able to every case; and th heoretical knowledge and grea practical experience of our mas er mechanics, has proven to heir minds that there is no pring which, under every con dition and circumstance, al ways successfully meets the mergency.
To those who are unaware the numerous efforts in ou country to produce a novel and seful spring, we would suggest visit to the Patent Office, at Washington. The custodian here conducts you to a compartment devoted to models of springs, unlocks it, and, with a mile, leaves you to its perusal. Springs are there of every vaiety of form, construction and rinciple. Euclad would have ailed to define their form, and have explained their mechanical constrnction wonld have driven la Place mad. Most of these springs are, indeed, like man. "fearfully and
wonderfully made." The best known of ll steel springs is he elliptic, or semilliptic. This was onbtless snggested board, strengthened dear nidale sy a in the ion by a succesWith the introdnc on prings came to be made of that material. Still, the wooden spring is sed to this spring is n railrosds, even the Baltimore an Ohio road; not as a bearing it is true lont as a bnffer spring. The efficiency of the elliptic consists in its range of motion,
fig. 1.-UNION CAR spring applied with equalizing bar.

Fig. 2.-THE HEBBARD SPRING APPLIED.

Fig. 3.-the UNION WOOL-PACKED steel spiral spring as applied.
with eqnal capacity to the weight of metal. But to make this assertion good, the diameter of the wire and of the coil must be brought within the limits ascertained by experience to be that of its maximnm bearing capacity, and its quality, temper, and manufacture, must also be snbjected to the severest test.

In the steel spiral, known as the "Union Car Spring," (see Fig. 5), we have a three-eighths inch steel wire coiled on a one and a quarter inch mandrel, and forming a two-inch spiral. This is a standard spring. When empty or unpacked, it is but half depressed nnder a weight of over 600 pounds. This is, of conrse, the best condition under which to apply it to service; its action and re action being equal. It shonld be mentioned here, that the blow given to all springs comes first from below as the wheels strike the inequalities of the road. The weight above re maining the same, only re-act on the springs-a fact often overlooked but proved by ob servation. To exhaust or bring The coils of thi empty spiral home would reqnire apres snre of about 1,200 ponnds. Since, in practice, no very delicate attention was paid to the loading or nnloading of treight cars, it be came desirable to produce a spring to meet the frequen contingency of an extra burden, with ont being affected in its range of motion. Impressed with this presity, Mr. Perry G. Gardiner, abont is years since, devised the packing of the spiral, and dopted, as the best substance for this purpose, coarse woo (see Fra 6) Thi er is elastic and does elastic rubber cannot again be manufactured into a good spring. The ; compressible, does not suffer by abrasion, and does not inter combination of small rubber slices, nsed alternately with iron fere with the free action of the coils, as the amonnt of wool plates, the fist-like rubber balls, or the rubber cylinder, ban- used is calculated to assist in carrying only the over-weight, daged with iron, are devices which deserve more attention as after the spring is half depressed. For this, the coarse Doncnrious exhibitions of ingenuity than as springs calcnlated, skoi (or Russian) wool is fonnd the best. It was discovere to preserve rolling stock and rails, nnder the requirements of actual practice.
A word here concerning the "Volnte" spring, solargely nsed as a buffer. This spring has not been found to fulfil all the requirements of a good bearing spring, as it gives way under the repeated blows it has to receive. The volnte mannfactured in this country generally breaks at or near the same point on one of the large coils or folds. The smaller folds appear to contract very considerably before the larger outside onos are perceptibly affected ; and this unequal strain, no doubt, causes that each spiral, when packed, wonld carry double weight, or abont 2,000 ponnds before exhanstion. The compressibility o this fibrons material is a qnality equal, in importance to its elasticity. Rubber, being elastic but not compressible, must, under pressnre, change its form. Consequently, a rubber cylinder enclosed as a cnshion in a steel spiral, is prevented by such confinement from developing its fall elasticity. I must expand under pressure between the coils, causing fric tion, and interfering with the action of the spiral in the sam degree as it servesto carry the weight. In order to secure these
spirals, after being tested separately, they are inserted in eylinNers of one easting, with grooved reeesses to recive weured (see Fru. 8). As eight springa eaeh eontaining six spirals, are used as jonruals for a freight car, wo linve a bearing capaeity of 96,000 pounds.
Agnin, the range of motion of the spiral apring being governed by the number of coils, ean be modified or inereased to any required degree. On very rongh roads, where the whole range of motion of any spring is freqnently almost ex-
hansted, fewer coils should be
 used to the sinul j ent 4. The Importa
Steel spring eliwite spiral, jus as experience shows a shorter and stiffer elliptic to be necessany on sueh roads. On verysmooth roads,
where only a small part of the range of the spiral is apt to be brought into play, longer spirals ean be employed, forming the most delieate spring.
The durability of this spring is also one of its distinguishing features. Should a spiral break, it is still held in its plaee and the injury is hardly perceptible, and is repaired at a small cost. In faet, the entire spring never becomes useless and lost, so as ueeessarily to be thrown away

 Their eeonomy and easy aetion is attested by their daily inereasing use. When applied to equalizing bars, (similar to Fig. 1, wtth either one or two springs) to locomotive tenders, they save in first cost, at least one hundred dollars per tender exelusively, though they are, for this purpose, of somewhat more diffienlt application.
Finally, we again call attention of master mechatics to the
 Hzbbard spring. (See Fic. 9). This is formed of spirals of different sizes, eoiled concentrising a neat spring ef any reqnired diameter and strength. The weight and slightly longer spirals, the inner ones coming Fig. F.-Unon Car spring. into action under increased the aetion of the spring, and could be replaeed at little expense. The ensy applieation and great strength of the Hebbard spring must recommend it as a most desirable bnffer.

Fig. s.-TUnion Car Spring. Eig. 9.-The Hebbard Spring.
Fig. 2 shows the Hebbard spring applied as a bearing ; and Fla. 3, the Union wool-paeked steel spiral spring, with the method of using it for journals.

Method of Working Coal.
To the Entror: : Sir-Those engaged in working anthracite To -beds muging in thiekness from eighteen to forty feet, and in pitch from 30° to 90°, are frequently reminded, through in pitch from 30 , 10 , are frequently remindes, throgh seientinie
only autiquated, but extremely wasteful. Now all persons engaged in mining sueh beds know of and deplore this waste, gaged in mining suen beds know or ans deplore this waste,
and what they want is, that some of those who tell them of it should give in detail a system that will mine-say eighty per eent. of the coal contained in the beds, at a cost that will pay in the market for both labor and coal. Will your correspondent who has reeently called attention to this waste give such a plan through your Journal?

Maser,

The Blow-pipe Assay. sy prof. A. . . precocoti, or the cyivzasic

 III.silver.

1. Argentiferous Alloys. 2 Argentiferous Minerals, Ores, and Produ 2.- Argentiferovs minerals, ores and products. Sampling.-The entire snbstance submitted to the assayer
should be inspected, and such portions selected as will appashould be inspected, and such portions selected as will apparently represent an average of the whole. These portions are pulverized and mixed. If the material be not over one or two
onnces, it is better to pulverize it all ; if of several ponnds onnces, it is better to pulverize it all; if of several ponnds weight, at least an onnce should be pulverized. All of the powder must be passed throngh a (eoarse) sieve ; or, if any partieles (malleable) resist pnlverization and will not pass
the sieve, they must be earefully preserved, the whole of them the sieve, they must be carefully preserved, the whole of them
assayed, and the result thereof caleulated npon the entire assayed, and
weight sifted.
Pulverization.-Quartoze minerals are made friable by heating to redness and plunging in cold water. The steel-crusher and an agate mortar are portable and satisfaetory instruments for pulverization. When an iron mortar is at hand, it is pre-
ferable for ordinary ores. It nust be bright. In all cases, ferable for ordinary ores. It nust be bright. In all cases, after sifting the samples, so much as is to be assayed must be
redueed to an impalpable powder in an agate mortar. To enreduced to an impalpable powder in an agate mortar. To en-
sure this it may be passed through a sieve of eighty meshes to sure this it may
the linear ineh.
Weighing the Assay.-Precisely 0.100 is weighed for one assay. (An experieneed operator may work, of poor ores, con-
taining no redueible metal besides silver, gold, lead, bismuth, taining no redueible metal besides silver, gold, lead, bismuth,
0.200 or 0.300 in one assay.) As many assays must be worked and nnited into one finished globule, as shall make the globule and nnited into one finished globule, as shal make the globute large enough for weighing or lucasuring, or sivall dollars of silve
absence of a notable quantity of silver. Five per ton (of two thousand pounds) is the proportion of 0.000132 of silver. Hence of ore as poor in silver as five dollars per ton, the globule from 1,000 grammes of ore will weign 0.00013 grammes, and reqnire a very delicate balanec for its determi-
nation. But a globule from 0.100 of the same ore, and weighnation. But a globule from 0.100 of the same ore, and weigh-
ing 0.0000132 , may be neasured-eertainly should be deteeted ing 0.0000132 , may be measured-eertainly should be deteeted
It would rest on division 8 , of the measuring seale to be noIt would rest on division 8 , of the measuring seale to worked
tieed. Generally 1.000 to 2.000 of poor ore must be work for a globule to be weighed; and 0.200 to 0.500 of poor or for a globule to be measured. Measurement is nceessarily less aceurate
Dressing the Assay.-Proof-lead may be measured with suffieient aceuraey, it being a re-agent employed in exeess. Exact ness should be approximated, beeause the amount of lead is a datum for estimating eupellation-loss. The lead-measure is glass eylinder, fitted with a wooden piston filling the length of
the eylinder: the piston being graduated at one end in space the eylinder : the piston being graduated at one end in spaces
equivalent to half-grammes of proof-lead displacing the piston equivalent to half-grammes of proof-lead displacing the pist
within the cylinder at the other end. The instrument is easily made, with glass tube of about 3-16 ineh internal diameter, an may be graduated by weighed half-grammes and deeigramme of lead, or by comparison with another instrnment.
Borax.-For the blow-pipe assay, borax must be " vitrified and pulverized. It is vitrified (dehydrated) by projeeting crystallized borax, in small portions, into a large Hessian erueibl kept hot, continuing heat till intumescence ceases, and ponr ing the fused salt npon a stone or porcelain slab-to be pulver ized as soon as cool, and preserved in tightly-stoppered bottles, mixing-dish (or weighed within the latter). It is dressed as follows
Pulverized ore, 0.100 ; proof-lead, 0.500 (or enough more to remove the copper and niekel) ; borax, 0.100 (or 0.150 , if iron zine, or antimony be present). Mix very intimately. Have
eornets folded at hand. cornets folded at hand.
Sola-paper and Cornets.-Dissolve $\frac{1}{2}$ ounee of crystallized earbonate of soda (free from sulphate) in 1 flaid ounce of distilled water. Cut strips of fine writing paper, $1 \frac{3}{8}$ inehes broad Digest the strips in the solution for a few minutes, or until saturated ; then dry them in the air. Cut the soda paper strips transversely into pieees 答 inch broad.
Obtain a wooden eylinder a very little over $\$$ inch (about 9-32 ineh) in diameter. Place the eylinder along one of the shor edges of a pieee of soda paper, so that the end of the cylinder shall be 4 inch from the long edge of the paper. Double thi free border npon the end of the eylinder, wind the paper elosely and evenly about the eylinder, bending down the free paper upon the end of the eylinder at each quarter revolution. It is easier to do this aecurately if the paper be previously folded along one of its long sides at 4 inch from the edge.
Finally, strike the end on the table and withdraw the cylinder Finally, strike the end on the table and withdraw the cylinder.
The cornet is a necessity in all quantitative work on charcoal; and promotes the neatness and perfectness of many in the blow-pipe flame, a film of fused sodic carbonate remains, and this film protects the assay from loss (from blowing away and from falling into creases in the charcoal) until the surface is so fused with flux that the material is secure.
By means of a scoop or horn of brass, or by a fold of glazed paper, transfer the dressed assay to a cornet, using the brush and with forceps double over the free edge of the cornet. (The mixing is sometimes performed in a scoop.) It is assays as will be neess and put up before reduci
After some experience, the total number of assays which may be known to be required for a single result, may be weighed and dressed in bulk, then divided by inspection into the number of portions provided for, and each portion cornetted, the oxidated globules from each being united into one for cupellation.
Reduction.-Select a good-sized piece of charcoal, and upo
surface cut transversely to the grain with the charcoal borer, make a cylindrical cavity deep enough to receive the entire
cornet when pressed down. Press the cornetted assay firmly into the cavity.
Charcoal for quantitative blow-pipe supports needs to be well bnrned and free from fraeture. It should be sawed into cubes, or parallelopipeds, with the surfaces to be used cnt transversely to the grain. The cylindrical ehareoal borer is an instrument of steel, for boring cylindrical cavities. It is of the same diameter as the cornet stick.
Direet upon the assay a strong and strictly reducing flame, until the flnx is perfectly fused and quiet, and the reduced globules have gathered into one. The latter result is promoted by the rotation of the larger globule, while the flame is direeted on the bead of borax glass ; and by the inelination of the support to bring the rotating globnle into contaet with smalle globules. Continue the flame, for a short time, upon the completed globule. During the reduction, the snpport needs to frequently turned, to prevent adhesion of the glass and the metal to the charcoal.
If the assay contains volatile eonstitnents-sulphur, arsenic, merenry, antimony, or zinc--or if it eontains the easily oxidizable elements, iron or tin, the reduction on ehareoal is nov ehanged to
Scorification.-The elements just named are to be expelled on the chareoal, previous to the oxidation on bone-ash. Sulphur arsenic and antimony are drawn from the metal into the slag to some extent, during the reduetion. Sulphides cannot redneed by the carbon or eharcoal, or or the lane, for car bon has litte ammity for either aphor melals. Heat alo decomposes few snlphides. But $2 \mathrm{PbS}+2(\mathrm{NaO} .2 \mathrm{Bo3})+\mathrm{C}=$, $\mathrm{O}_{2}+2 \mathrm{NaS}_{\mathrm{T}}+\mathrm{Pb}_{2}+4 \mathrm{BO}_{3}$.
This reaetion is slow and ineomplete. In assaying, as in metallurgy, sulphur, arsenie and antimony are" most easily and perfeetly expelled by a "roasting" treatment, in an oxidizing ame or current. This, performed upon ehareoal, is terme the seorifieation of the assay. In this proeess, sulphur, arsenie and antimony are oxidized, and their oxides taken up by the slag, or vaporized and dissipated. At the same time, the metals of the sulphides, arsenides, etc., are also oxidized. Sueh metallic oxides are then redueed by the eharcoal, or, in ome eases, dissolved by the slag. Oxidation by the flame, and de.oxidar by the suppor, P . If
If the assay contains smphates, arseniates, ete., these are changed to sulphides, ete., during the reduction.
Seorification is condueted as follows : When the reduetion is completed, the flame is changed to an oxidizing one, the tip of which is directed upon the globule. This is continued till the olatile ingredients are expelled. Lead, copper, and even silver, appear after a time in metallic grains in different parts of the slag. By inelining and revolving the support, and by rotation of the main globule ander the side of the flame, the operaor gathers the grains into the globule. Some of the prodneed hitharge will go with the flame to the adjacent portions of the support, where it will be rednced to metallic grains; but these grains outside of the slag may be disregarded. Some copper is oxidized, absorbed and retained by the slag as copper oxide, and thus got rid of. PlattNer states that the time required or the rednetion and seorification of an assay varies from five to eight minutes.
The solidified mass is removed from the charcoal by the forceps, wrapped in paper, and struek gently on the anvil with the hammer; when the slag will erumble, and the globale be found detaehed. It should be malleable, and bright. If not so, it is not "workable lead," suitable for cupellation. If brittle, it is likely to suffer loss in being detaehed, in which ease the assay must be rejected. If it be still intaet, a brittle or dark-colored globule may be re-scorified, as follows : Place it, roof-le inax, and, if advisable, an ady fuse, and continue the seorification.
If the assay contains zinc, the reducing flame may be continued, until all the zinc is expelled from the assay. (Zinc componnas are decomposed by carbon in presence of borax, and the metal vaporized.)
In case mercury is present, the reduetion must be commeneed very gently, lest portions of the material be meehanically earried away by the rapor of mereury.
Amalgams, solid or liquid, require preliminary treatment. As much as may be necessary to furnish a globule of preeious metal sufficient for determination is weighed and placed in the bulb of a straight bulb tube of hard glass. The tube is placed rransversely over a lamp, and heated at the bulb; at first, with cxtreme gentleness, finally, for some time, at a red heat. The by gently condensed on the sides of the tube, may be collected residue is transferred to the scoop and dressed. For pure silver amalgam, two parts of lead and half its weight of borax will be sufficient. If copper or other metal be present, the suitable qnantity of lead and of borax will be added. Should the assay have adhered to the glass of the bulb, the adjacent lass is cut out and dressed with it, a little soda being added The dressed assay is enclosed in a cornet, reduced, and cupelled.
Mineralized iron requires no other treatment of the assay than that included in its reduction and seorification. If much ron be present, 0.150 of borax should be used in the dressing. Metallic iron, in alloy with silver, (argentiferous steel, argenferous cast iron) must be sulphuretted, in order that work ble lead may be produced by its reduction and scorification. borax, 1.000 prof-lead ; diviced matal add a fragment of borax glass, about 0.100 weight, and scorify. The presence of tin guires the silver segay to be dressed with 0.050 boras, and 0.050 soda. Bedres. Scorify It is the object of the operator to work the tin, as binoxide, into the
slag. During the seoriteation, if metallie grains appear in the glass, instead of endeavoring to gather them into the globule,
suspend the work ; when cool, detach the globule, dress it suspend the work; when cool, detaeh the globule, dress it
with 0.100 borax, inelose in a eornet, and continue the seorifwith 0.100 borax, inclose in a cornet, and continue the seorifi-
cation (if neeessary changing the flux a second time) until the globnle remains bright after cooling.
If seorificatiou be not conducted with eare, the loss of silve in this operation is liable to be mueh greater than "' enpella tion loss." By roasting the pnlverized ore, before it is dressed the volatile constituents are then so nearly expelled, that scori ficaion is unneeessary, unless the assay contains iron or tin. fying.
forsting the Assay.-The pulverized ore is subjected to a gradually increasing heat, in the opecu air ; the heeat being
finally earried as high as may be done without fusion, which is finally earried as high as may be done without fusion, which is
to be strietly avoided. The assay is re-pulverized, and the process continued so long as volatile matter is evolved by heat after pulverization. First method: in shallow basins of ironfoil, hammered to the suitable concavity. These may be made of a diameter of one to two inches. The inner surface is
thoroughly coated by rubbing with a pieee of "reddle," the thoroughly coated by rubbing with a pieee of "reddle," the
exeess of whieh is brushed off: The pulverized ore for one completed assay, aceurately weighed, is placed iu the basin, over a lamp protected from currents of air. Duriug the roasting, the ore is frequently and very eantiously stirred with a platinum or glass spatula. When the odor of sulphur, arsenie,
etc., ceases to arise, the ore is re-pulverized in the etc., ceases to arise, the ore is re-pulverized in the agate mor-
tar over glazed paper, and roasted again. This is repeated until no odor is evolved by heasted agter pulverization. If at any time fusion oecurs, the ore is very cautiously re-pulverized. The roasted ore may be dressed in bulk, if too mueh for one reduction assay, (the basin and mortar being rinsed with a little of the borax) and divided for the cornets, by inspection.
Second meflood: in elay basins with a "ehareoal furpace," in the same manner as hereafter described for the copper assay If over 0.300 , the weighed ore is divided by inspection into pareels under that weight, and each parcel roasted separately. Charcoal is not added, as in roasting the lead assay.
The workable lead obtained from silver ores is subjected to oxidation on sieved bone-ash, uniting the globules if necessary ; then to eupellation on elutriated bone-ash, as has been deseribed for the workable lead from silver alloys.
Measurement of Globules.-Hansorr's measuring seale is
drawn upon a drawn upon a strip of polished ivory, six and a half inehes long, two-thirds of an ineh brond, and one-eighth of an inch
thiek. Two very fine and distiuet straight lines diverye from thiek. Two very fine and distiuet straight lines diverge from are four-lundredths of an incl apart. In the usual form of
and the seale, this distance an ineli apart. fin the usaal form of spaces. On distance (six ineles) is divided into firty equal numbers of the side of the diverging lines are marked the is marked the the divisions; on the other side, at each division, of whieh the globule of silver obtained by assay just fills the space between the diverging lines at that division. This value is given in loths per Saxon handredweight (eentner) of ore. $=0.000284$ of $1-110$ of the Saxon hundredweight, or $1-3520$ tions heor of a Saxon hundredweight. As these denomina(ions have no simple relation to ours, we use a table giving (in thead or the loths per hundredweight) the per cents. of silver in the ore, for each divisiou of the seale. Exact eoincidence of the periphery of the globule with
The following table gives the pereeutage of silver, and gold, indieated by a globule derived from 0.100 gramme ore, and measured upon Haskort's scale

Division of scale.	Silver. Per cent	Gold . Per ecnt.	Division of scale	$\begin{aligned} & \text { silver. } \\ & \text { Per cent. } \end{aligned}$
1	${ }^{0.000028}$	0.00006	${ }_{28}^{27}$	$\widehat{0.54799}$
$\stackrel{2}{3}$	0.000223 0.000752	${ }_{0}^{0.000048}$	28 ${ }_{29}$	${ }_{0}^{0.661116}$
${ }_{4}$	${ }_{0}^{0.00178}$	-0.00388	${ }_{30}^{29}$	${ }_{0}^{0.675179}$
5	0.00348	0.00757	31	0.82941
6	${ }^{0.00601}$	0.01309	32	0.91229
7	${ }^{0.00935}$	0.02079	${ }^{33}$	1.00002
8	${ }^{0.01425}$	0.03103	${ }^{34}$	1.09426
${ }^{9}$	${ }^{0.02029}$	0.04418	${ }^{35}$	1.19368
10	0.02784	0.06061	36	1.2989
11	${ }^{0.03705}$	0.08066	37	1.41022
${ }_{13}^{12}$	${ }_{0}^{0.04811}$	${ }^{0.10473}$	${ }^{38}$	1.572769
${ }_{14}^{13}$	${ }_{0}^{0.06116} 0$	${ }_{0.16390}^{0.13296}$	${ }^{39}$	${ }_{1}^{1.65149}$
${ }_{15}^{14}$	${ }_{0}^{0.003936}$	${ }_{0}^{0.1683055}$	${ }_{41}^{40}$	${ }_{1}^{1.91882}$
16.	0.11404	0.24824	42	2.06268
17	0.13678	0.29776	43	2.21595
18	${ }^{0.16237}$	0.35346	4	2.37160
19	${ }_{0}^{0.19096}$	0.415750	45	${ }_{2}^{2.537700}$
${ }_{21}^{20}$	${ }^{0.22273}$	0.48485	${ }_{4}^{46}$	${ }_{2}^{2.70992}$
21	${ }^{0.25783}$	${ }^{0.56134}$	47	${ }_{2}^{2.89053}$
${ }_{23}^{22}$	${ }_{0}^{0.293644}$	${ }_{0}^{0.645741}$	48 49	
${ }_{24}^{23}$	${ }_{0}^{0.383787}$	${ }_{0}^{0.737484}$	59	${ }_{3.48011}^{3.27545}$
${ }_{26}^{25}$	0.43851 0.48933	0.09693 1.0653		
	0.48933	1.06523		

The per cents. and deeimals of per cent. in the table, divided by 100 , express decimals of nnity. As the table is based on the assay of 0.100 gramme, the decimal of unity, divided by
10 , gives the actnal weight of the globule in grammes 10 , gives the actnal weight of the globule in grammes. That
is, the table figures divided by 1000 , express the gramme is, the table figures divided by 1000 , express the gramme weight of the globules, or, the table gives the actual weight of the globules in miaigrammes. If the assay producing the globule be not precisely one decigramme, the per cent. figures must be uumber of grammes) of the assay or assays from which the globnle was derived.
Globules containing both silver and gold cannot be determined by measure. As the weights of globules vary as the cubes of their diameters, and absolute accuracy of adjustment between the lines is nnattainable, globules which are within reach of the balance should not be determined by measure. The value of the scale has been ixed by experiment, the flattening of the globnles rendering a calculation of their weights from their diameters unreliable.
Calculation of the Vahee per Ton.-It is ustually well for the as-
sayer to report a three-fold statement of the result: First, the per cent. of precious metal ; second, the number of troy ounces third, the conmercial value (of preeious metal) per ton of ore third, the commercial value (of preeious metal) per ton of ore,
The United States silver dollar weighs 24.8 grammes, or The United States silver dollar weighs 24.8 grammes, or
382.7 grains. Henee, one troy onnce of standard (ninety per cent.) silver makes $\$ 1.254$ of United States coin, and one troy ounce of "fine" or pure silver makes $\$ 1.393$ of United State coin. The cost of coinage, waste, and exchange lessen this
sum, the market value of pure silver not being very far from sum, the market value of pu
$\$ 1.30$ per troy ounce, in coin.

Experiments with the Hagan Furnace.

$$
\text { Ew York, Dec. 3, } 1869 .
$$

new York, Dec. 3, 1869.
To the Editos: Sir-Ai your request I beg to submit to y
ind attention a few facts concerning the Hagas Furnace. ind attention a few facts concerning the Hagas Furnace. I ereeted last winter, on the grounds of the Manhattan Mining
Company (late Mount Hope Mineral Company); a small experiCompany (late Mouut Hope Mineral Company), a small experi nenting with the Doctor's process on the gold bearing conglomerate ledge of the Shawangunk Mouutain. But that Company stopped work, and the experimeut has not yet taken In the meantime, about the month of March, the protracted law suit of Hagan rs. Mason, for the possession of the patent terminated in the vindieatiou of the Doctor's absolute right to the discovery. But three years of costly litigation had discouraged the shareholders of the companies organized on that patent; and although the question was wholly decided, the Whole business was completely prostrated.
It was then that some parties, desirous to see the proces demonstrated to them, applied to me for the purpose of fiuding some rebellions gold ore and working it in that furnace. After a long seareh, I found in the eity a package of ore (over one
hundred pounds) belongiug to the Montana Gold Company of hundred pounds) belongiug to the Montana Gold Company of
Colorado, which ore was labelled as yieldiug $\$ 20$ to the ton. Colorado, which ore was labelled as yieldiug $\$ 20$ to the ton.
It was the regular iron and copper pyrites of the Colorado It was the
formation.
When the furnace was snfficiently heated, I put the ore in, in battery size, and after forty-eight hours found it completely desulphurized and crumbled down to a fine state. From the furnace I dumped it into a barrel of water, where the sulphates
were immediately dissolved, leaving the ore, as I thought, in a were immediately dissolved, leaving the ore, as I thought, in a
splendid condition for amalgamation. I theu shipped the ore to the eompany's office, and a sufficient quautity was sent to Professor Earos, of Brooklyn. That cold in it in good conditiou (not having been overheated), and hasty amalgamation $\$ 84$ to the ton. One of our pinty made a subseqnent and careful amalgamation, boiling f'ue ore
with mercury and water, and fonud gold at the rate of s 110 to with mercury and water, and fonud gold
These experiments were only intended to show the perfect ondition of the ore for treatment ; as for the disintegration, a simple panning will tell the whole story. Any one of the incredulous may gratify his curiosity by calling at the office and panning some of that ore.
This conclusive demonstration could not but revive the previons experiments, almost forgotten during the weary months of the law suit, and consequently the company owning the right of the patent for the State of Colorado (the Colorado Gold and Silver Ore Separating Company) obtained the necessary funds to rent a mill near Mill City, Colorado, and put up there a twenty ton furnace. Doctor Hagas has gone there, the furnace has been started, and I understand the results already acquired, when known by the public, will ehange the whole mining business of the country.
As soon as it is in my power, I shall give you the exaet furnace.
Pacl Campaigniac, Box 5372, P. O. sulphurized to the entire satisfaction of the interested parties.

New California Tir Mines.

From a communication of Professor Ro

No metal has been more eagerly searehed after in the United States than tin ; and it seems as though faithful efforts meet with their reward at last, as reliable information has been furnished this offee the existence of workable tin mines nea San Jaert, Nan the United States was made by Dr Cuapis T. Jaceson, of Boston, whilst engaged in a geological survey of New Hampshire. It was detected in Eastans's hill; and the deposit consisted of five small veins in mica, slate and granite rock. They were so small, and disappeared so soon, as to be f no economical value. In the early days of gold mining, thi mountains, in what came to be designated as the Cajalco Mine Miners rushed in, claims were taken np, shafts sunk, and for short time much excitement prevailed. The mineral ex racted wary a much earthy matter, and any but a practiced eye would over look it. With the exhaustion of the miners' patience and money, these mines were abandoned. The next locality in which tin ore was discovered was in the vicinity of San Jacinto quired by a New Younty, California. The property was ac shaft was sunk, and considerable bodies of rich ore were found; they were, however, in disconnected pockets, and from
various other causes the company were discouraged from pro ceeding in their operations. Another company was organized in California, in the spring of 1868, which purchased the trac containing all the prineipal mines, consisting of abont fifty thonsand acres of land, upon which have been exposed fifty three ledges of tin. Their mining engineer engaged expert from Cornwall, and proceeded forthwith to construct new works. The latest reports show that they have driven dow two shafts, ninety and one hundred feet respeetively, and tuinels have been run four handred and fifty feet upon two level ander the vein, with four cross-euts at various distances, for the purpose of diselosing the value of the deposits in an unmistakable manner. They are found to be from three to fonrteen feet wide, and producing ore which by assay yields from fourteen to thirty per cent. Adaitional shafts are being opened, to facilitate the extraction of the ore. The engineer's report, dated July, 1869, states that there was in view at that time a fifty of ore estimated at three thousand seven hundred and fifty tons, which would average sixteen per cent. The cost of miniug and smelting appears to be moderate, and the necesary stamp mills and furnaces for the exploitation of the metal re beiug arranged for.
At the Seventh Indnstrial Fair, recently held in San Franciseo, the company exhibited several sacks of the ore, a numorks in the eity, a box of sheet-tin plate, also made on the pot, and finally a collection of tinware, sueh as milk cans and ther utensils. The metal is found to be of great fineness, being equal to $98-100$ of pure metal. A portion of the ores and mauufactured articles exhibited as above, have been received this office, and are now on exhibition in the Cabinet. There are no data before us to point out which are the geological connections of these veins; but, judging from the material reeived, they ocenr iu a dark soft rock, and are probably worked easily. In the Cornwall mines, the substances with which the ore is mineralized are a sonree of great tronble and expense, consistiug of sulphur, tungsteu, copper, arsenic and bismuth, and rendering the separatiou tedious and difficult. Twelve hundredweight of dressed ore, after treatment during twenty four honrs in the furnace, yield but two hundredweight of tin the remainder consisting of the above impurities.
In such an important matter as a suceessful establishment o tin works in the United States, prudence would dietate that all parties should not indulge iu sanguine expectations; but the plaiu and apparently faithfnl narrative from which we have ob tained the oregoing details, would serve to indicate the exist ence in California of a tin mine almost inexhaustible in its snp plies of ore, and also the skill to extriet the motal from it.

The Chameleon Diamond,

Or late there have been rumors of some very remarkable discoveries of peculiar parti-colored diamonds in Australia, and cer of these jels as having all the hnes of the raiubow, changing, commingling, and alternating like the flitting tints on the back of the chameleon.
We are reminded by these discoveries of some interesting faets on the subject of "chameleon diamonds," as they may In called, reported by M. Figuter, in his note-books for 1866 Iu that year, there was exhibited to the French Academy of Seieuces a very singular diamond, weighing about 4 grammes, Its general hue was white, slightly tinged with brown, and wa ranked a stone of the first second vater. When submitted to the action of heat, it assumed a roseate hne. This it would retain for eight or teu days, and then resume its original color The particular diamoud shown to the Academy had been thus tested several times, aud hence it would appear that the same experiment might be repeated indefinitely. Other diamonds of analogous color were similarly treated, but withont the same result. Were the rose color produced by the action of fire permanent, and were it possible to produce it at will, the process would afford an easy means of increasing the value of jewels of whieh we have referred, was estimated to be worth 60,000 franes, and could it durably retain the rosy hue imparted to it, this value would be tripled,
Ordinary colored diamonds, it is true, are less esteemed in general than colorless and limpid stones; but that is owing to the deficient sharpness and clearness of their hues. There are diamonds that reflect all the shades of yellow, green, red, and blue ; diamonds of topaz, yellow, of deep green, of briek red, of pale blue, then brown, darkly-clouded, and entirely black diamonds ; but all of these are more or less opaque, and thns are deficient in beanty and value, since their opacity prevents the play those reflections that come from the interior mass, he play of the fires of the diamond. However, when the olor is cear and pellucid, without any detriment to the transparency of the stone, it augments its valne. One of the most elebrated colored diamonds is the Hope blue diamond, whieh eighs 44 carats, or 9 grammes. It nnites with the most beaniful shad of the the the or pried prismatic hnes, and Mr. Hope himself alls it "snperlatively lovely"
In his excellent "Treatise on Precious Stones," Mr. Barbot hints the suspicion that the last named is but a fragment of the famons Blne Diamond of Franee, that once weighed sixtyseven carats, was worth three millions of francs, and was tolen in 1792, with other crown jewels. Mr. Hope aequired he one he has for fonr hundred and fifty thousand francs.
The Saxon Treasury at Dresden has an emerald-green dia ond, weighing thirty-one carats. The Marquis of Dree has 1 beantifnl rose-colored one of great size and value. The Prince carats. The reader has heard that in Europe a diamond
weighing over ten carats or two grammes，is called princely，
and is deemed worth fully twenty thousand france．Priees change and fluctuate to some extent，but we name the genera average in round figures．A Mr．BAPsT，in Paris，had a re markable jewel，called the Dwarf Diamond．It is of the color of tobacco juice，and is valued chiefly for its oddity．It was purchased by Louis XVIII．，for the crown，at the price of two hundred and fifty thousand francs，but it was never delivered It was cut very thin，and its superficial brilliancy was very striking．It was said to have formed a part of the Dogni col lection．There are many other very handsome colored dia－ monds known，and a few of them are in this country，but we have named the most celebrated．We might，says M．Fravire， add to this list the Great Mogul，one of the bulkest ent dia－ monds ever seen，since it weighed two hundred and eight carats．It was valued al twelve millions of frances．
The change of hue in the Chameleon Diamond mentioned the beginning of these paragraphs，is not by any means an ua－ paralleled phenomenon．Messrs．Halptex，the expert Parisia apidaries who owned it，themselves speak of having seen a other diamond which became rose－colored when rubbed，bu almost immediately lost that hue again．A yellowish tint also may be imparted to the diamond，but it does not last for any time．The conclusion to which those singular facts directly lead，is that in the atelier of the lapidary there are wondera yet to be wrought out by heat，electricity，friction，and chemi－ al combinations，as remarkably varied and captivating to the ancy as any in all the other realms of practical science．－Nev Yorle Mercuntile Journal．

Beton Constructions．

Londos Engineering contains an interesting account of some f the French constructions of Coignet＇s famous concrete，con cerning which so much has already been said in the co this Jouknale，and of the Manufacturer and Builier
For about Coraner has been employed in France，at first，sparingly，and with hesitation，bat ate so largely，and with so much con ene，that or the morge whis been constructed for the most part，or entirely，with this ma－ erial．So early 180 ， 1800 ） 1 Lin（ 1820 ）， her than his prade（1800）and Lebrun（1829）， but the conglomerate he then produced was unsatisfactory．In her lime and herpla orwer in wis lise ormer ingredient，and mixed it with powdered lime，moisten ing both oger，ind first done．The second procss al which hived，after mo ification and a long series of experiments with materials from ain the best propertions is the system which has now grow into such a vast industry，and which bears his name．
The béton Coignet is a mixture of a large proportion of sand with a small proportion of lime，to which is added a percent－ rapidity of setting required．Only a very small quantity of rapidity of setting required．Only a very small quantity of water is employed to mois is the pered，the mass is reduced，in a grinding mill，to a stiff paste， ubjected the anto means it is thoroughly agglenated，and the monl this means in elistly remored，the benton bhaped rope，shortly becoes set，and acquires the hardnes desired The material thus mixed and compressed under the bene． The material thus mixed，and compressed under the ham－ and density which renders it thoroughly trustworthy building material．On the average， 1.31 bushels of component parts of sand，lime，and cement，make a cubic foot of béton，which will weigh about 140 pounds，and offer a resistance of some $2 \frac{1}{2}$ tons per square inch，while ordinary mortar，formed of the same once．The will exhibit very insignificant powers of resist ance．The difference arises principally from the difference in manipulatich is distributed thror，wont the ofss，and sepay the particles of lime and sand，retarding the setting and whe the particles of lime and sand，retarding the setting，and when after a time
Theoretically，the Coignet process fills all the necessary con ditions，and produces a perfect béton，the sand and lime being moistened with a minimum of water，and mingled as inti－ mately as possible．Besides the thorough cohesion of the par tity of water used makes the setting more rapid and more uni form．In all cases，the lime used should be hydraulic，in uni powder，and well screened，to free it from lumps；for if there powder，and well screened，to free it from lumps；for if there
are any lumps admitted into the beton，they swell when the are any lumps admitted into the beton，they
mixture is diluted，and weaken the material．
The cements used are always，if possible，heavy and slo setting．The quantity used is proportioned to the rapidity of
setting required，and the hardness of stone which it is seting required，and the hardness of stone which it is sough small pebbles，is the best．If the pebbles sand，mingled with small pebbles，is the best．If the pebbles are large，the con crete produced is rough and unsightly；if it is too fine，it re make very good work，but to produce a stone so good as that formed on a base of river sand，the proportions of cement and lime have to be increased．Very fine sands，like those of thd Landes，require very careful mixing，and a prolonged compres sion in mould，to produce a first－class beton．The ingredients process，small quantities of water are gradually added as th mixing proceeds，until the beton becomes in the necessary condition ；the more completely this part of the work is done， the more rapid will be the setting，and the harder will the The ordinary
ron cistern，the bottom of which is perforated，and in the centre of which revolves a vertical shaft，armed with a number which in knives，and carrying beneath it a cycloidal ar penstock covering the outlet regulates the discharge of the beton．The material thus obtained from the mill is in a firm but plastic state，and it is thrown into a mould，in thin layers， and each layer，as it is laid in，is beaten and compressed by the regular and even blow of a sixteen－pound hammer．In order to secure a perfect adhesion and union of the different layers of material，especially when fine sand is used，it is generally the custom to cross－cut the surface of the layer，in order that Thperincumbent thickness may be thoroughly nnited to it 3 applie two kinds of moulding to which the Coignet beton applea，the first being used when the material is employed be subsequently employed．The moulds which are intended to be used in place are composed of close boarding，kept in place by means of cross bracing．This mould carries the orna－ ments which are destined to appear upon the face of the struc ure after completion．In the second class of work，all kinds f ornament can be produced，from cornices to statuary．
Or late years the application of the Coignet！＇béton has been qually extensive and varied．In Egypt，where it has been mployed on a rast scale，light－houses have been reared out of some fort impalpable sands of the Isthmus of Suez．In Faris， material ；and arches of the basement buildings of the Exhibi－ tion of 1867，saw mills at Aubervilliers，the numerous cellar of many private houses，entire buildings of five and six storie in height，railway bridges at Sainte Colombe，on the Paris， all，the large works connected with the new Paris water supply． The exact proportion of materials employed on works of dif ferent classes，and with sand and lime produced from differen districts，will be interesting．Thus the work about the Exhibi tion of 1867 was formed of a mixture by bulk of 5 of sand， 1 o lime，and 4 of cement．The same proportion holds good for the sewers，and the rapidity of setting is so great，that the cen tering can be struck within ten hours after the béton is got in place，and the sewers can be put into service in four or fiv tenth of the span，are generally made with a mixture of 5 o sand to one of lime，and $\frac{1}{2}$ of cement in bulk．
The church at Verinet is one of the most interesting of the onolithic structure，and was constructed of sand from pits a Verinet．The mixture was 5 of sand to 1 of lime and $亠$ o men．In the saw mill of Aubervilliers，the arches ar fourths feet thick at inches in span，and thirteen and 5 and 1 ，and $\frac{1}{}$ of cement．One of the most generally useful applica tions of this material is in the construction of the basement of houses．In the ordinary form of construction，stone piers， supporting rubble masonry arches，are employed，involving uumberless joints，and causing an absence of perfect uui formity．From this cause numerous settlements ensue，whic are avoided by the use of the homogenous beton；for th which the structure can be made in one single block， uniform pressure upon the foundation is obtained．One house in the Rue de Miromesnil，is constructed entirely of béton，an it contains two staircases，the one formed in the usual way， with a number of moulded blocks，the other a spiral staircase from basement to garret－a monolith．
The Béton aqueducts are now being constructed upon the works in course of construction for the supply of Paris with water from the Vanne．Already a part of the city draws its supply from the Dhuys，but the second portion of the system is not yet complete．The distance of Paris from the source of the Vanne is more than 94 miles，and in its course to the city the line has to traverse a series of valleys and ravines，to cros the works have involved the formation of extensive bridges aqueduets，syphons，and tunnels．An immense reservoir wil be completed close to the park of Montsouris，and a long queduct upon arches in buade almost close to the ol undertaking are those crossing the valley of Fontainebleau for distance of more than twenty－five suiles between the river Loing and the river Essones．This length，almost entirel without building materials，would have involved very costly orks if masonry had been employed，and the Engineer－i Chief，M．Belarand，has therefore availed himself of the Coigne process，and utilizing the vast masses of sand that hay Ceady queducts been constructed of this material，bat the tunnel lso，to the extent of several miles，about 6 feet 6 inches in iameter and $8 \frac{5}{8}$ inches thick，and these were all formed wit he same success that has attended the application of the sy most immediately after the béton had been rammed int place．The aqueducts crossing the valley are supported upo rches，extremely light，and rising to a maximum height 0 feet from the ground．The openings are about 42 feet inches，and the thickness at the crown 154 inches．The suc－ ess which allanded the applicalin or or ruction he narrow opporing aqueduct in－ aced the engineer to ext aits use to those wiaer arches pannig river，roads，and railways，and，a series of exper of 98 feet 6 inches and 115 feet 9 inches openings，and with ne－sixth rise，were rapidly formed
It will thus be seen that while wave refrained from perimenting（with one exception）in this method of constru
and to employ it largely for a variety of work，having tested it reliability by a series of exhaustive trials．The single excep Mr．Fowich we refer is the concrete briage constracted by Mr．Fowler across the Metropolitan Railway at Kensington，bu even that experiment was scarcely anslogons，for the materia but mixd was simply concrete，mixed with cement true， instead of be the ordinary way，and thrown ill combined，as in the Coignet process．But the extensive adoption of concret structures in France will probably be followed by an equally extended adoption of the system here．

MINING SUMMARY

Nevada

neview of the comadrock mines
The
llowing：Commercial Heralo，November 26th，has the Kentuck．－The annual meeting of this company was held on the Cash on hand，Nov．1， 1868.
Buliion product．．． Buliion product．
Preminm on buli
Aseesements－ 1 and $2 . .$.

 they were drifting north and south on the vein，and No． 3 had been earried in 48 feet．On the 23 ，they were making preparations to extract ore from Nos． 1 and 2，and were rumning drifts to connect these cross－cuts．On that date No． 3 drift had reached the west wall， the ore being 49 feet wide at that point．The raise from this cross－ cut is now upward of 20 feet above the level．As yet but a small
amount of ore has been taken from the sixth level，but hereafter amount of ore has been taken from the sixth level
about one－half the supply will eome from that level
＂Chousar the supply will eome from that level． tons of ore were extracted，against 874 tons the previons week．The Blue Wing loeality shows considerable improvement．The drift west fom the main trunk，passing through the Grass Valley ground，has come out in the
ning the drift．
＂Gocld \＆Curby－－They extracted $367 \frac{1}{2}$ tons of ore during the week ending Nor．22d．At the seventh station the eross－cuts to the has been carried through clay and porphyry，and the one running orth is altogether in porphyry．
The Humboldt Register，November 27th，says：＂G．W．Rafford， Superintendent of the Battle Mountain Miving Company，limited， ineorporated in Liverpool，Eng．，sends us a specimen of copper ore from the company＇s mine at Egremont，Copper Canyen．The ore is rom the mine，and shipped to the cempany at Liverpool．An iu－
fuality，and large quantities of it is now being extracted erior quality is being piled on the dump until shipping eharges are reduced．Mr．Rafford informs us that at present it eosts $\$ 2450$ per on freight to San Francisco，thenee to Liverpool about $\$ 7$ per long is constantly increasing，and a liberal poliey on the part of the rail road company will do mueh towards making it an immense soure of revenue to them．The freight on ores shipped by rail should be reduced to the lowest possible rate for which they can be carried without less to the company．Sueh a poliey on the part of the rail road company would tend to encourage the development of the base metal mines，the ores of whieh，by present modes of reduction，ean not now be profitably worked in this county．

REPORTED RICH strikg．
lena，November Copper Canyon，in the copper mine owned been recently made in Mining Company．A solid mass of almost pure virgin copper has been struck，but how wide the vein is or how extensive the mineral， I have been unable to ascertain．The other mines in the district are looking well，and work on many of them is being prosecuted vigor ously．I hear of many new discoveries as being made，but an not sufficiently informed to furnish particulars at present．
Work to Be REsUMED AT THE Rochester ming．
＂The same paper says：＂In consequence of the immense volume of water encountered in the Rochester shaft，on the Montana ledge， Sacramento district，operations were suspended in September，and the Superintendent，Mr．Onderdonk，went East to consult with his company in regard to the mine．The prospects of striking a good mine being flattering，by direction of the trustees，Mr．Onderdon has returned，prepared to resune worn the shal immediately．

Xdyance to Virg
Timber account．
耳iosting ores Hoisting ores．
Mine supples．
Sund supphies．．．
cash on hand，No
＂From the S
Sick
${ }^{310 \%}$
＂＇The poor exhibit of the present year，＇continues the Superin－ tendent，＇as cempared with the results of the previeus year，is
mainly，if not solely，attributable to the great fire whieh occurred in the mine on the 7th of April last，which for nearly five months caused an entire suspension of work in the prineipal ore－bearing lo－
calities．In the meantime all possible efferts were made by means of r－drifts and winzes，and powerful reaeh the ore－bodies on the 800 and 900 －levels，whieh，on the 20th of August last，we succeeded in doing，and commenced extraeting ore ； and since that time have extracted，on an average， 130 tons of ore
per day．＇During the fiscal year 27,867 tons of ore were extracted－ the old West ledge，between the 400 and 200 levels，yielding 6,667 ， and the East ledge as follows ：Between 700 and 550 levels， 9,$500 ; 800$ and 700 levels， 10,750 ；and 900 and 800 levels， 950 tons．The fellow－ ing named gentlemen are trustees for the eusuing year：J．D．Fry，
（President）A．Hayward，Thos．Sunderland，A．K．P．Haruon a 1 d Wm．Sharon．Seeretary，H．C．Kibbe．Superintendent，J．P．Jones． ＂Hale \＆Norcross．－For the week ending Nevember 20th the yield from the upper mine amounted to $466 \frac{1}{2}$ tons，and the lower mine 519 tons－total， $985 \frac{1}{2}$ ；previous week， $1,030 \frac{1}{2}$ tons．On the 21 st

From the Sul
8885,52194
wing com－ ative tables：

\qquad

[^0]\qquad
\qquad
\qquad
works as soon as it ean be procured from Sen Franeisco. An engine
for hoisting and pumping purposes is anreay in place on the
gronnd, and work will be carried on steadily during the winter." lor hoisting and pumping purposes is already in place on
groond, and work will be carried on steadily during the winter. We observe that captalisists from the East, upon satisfactory investigation by competent parties, are beginning to seek investments in
the White Pine, whieh eridently proves the riehness of that silvorpearing locality. In eonneetion with this we make the following extracts from the Neers of the 20th : "A gratifying improvement in the bullion shipment over that of last week is shown-the shipment for
this week being $\$ 57,33148$, agaiust $\$ 32,632$ 3 for last week. In September the price of milling was redueed to $\$ 20$ the ton. Sinee then, the priee has again dropped-or, at least, is rednced by arrangeent, so that large lots ean be contracted for at $\$ 16$ the ton. This hè bullion shipment has not incressed in proportion to the ineressef number of stamps. With the price for erushing reduced, nine saper-
intendents prefer to work all ore, with scarcely any assorting. Thus intendents prefer to work all ore, with scarcely any assorting. Thus
the average yield of ore in mill for the last quaster was $\$ 5889$ per on, while for the quarter ending Jnne 3oth it was 59975 per ton Mring the last quarter the number of tons of ore worked wa 174. Thns we are working eleaper ore and a largor amount of it etting out tho wealth of the mines more elosely, affording more work, and consequently showing a lower average vield."
A correspondent of the Elko Independent, writing from Sherman oown, November 22d, says of the miues: " "The ten-stamp mill at
Swansea, whieh was brought over here from Humboldt eounty this Fall, will be set in motion in a few days. It is a fine strueture, good machinery, and will work ore by the wet process. The Moolle mill
below Shermantown, is now presided over by Mr. Eeward Cotte young man well and favorably known in this loeality. Mr. Cntt yonng man well and favorably known in this loeality. Mr. Cutt
an experienced millman, and is doing exeolleut work. The Kohler or staples mill aro both kept steadily at work, na
are doing a smashing business. The Oasis mill loses no time and is turning out large quantities of bullion, the greater po tion of which is shipped, via Elko, to Chieago aud New York. The
eight-stamp mill, formerly owned by c. $\mathbf{0}$. Barker \& Co., is uow being run hy MeGee and Applegarth, and turning out bullion to the are both in good eondition, are well patronized by mino ownere are hoth running, at tiie present time, on tho wet prineiple, sa ford Hall, the most enterprising gentleman in White Pine or els where, has supplied our beantiful town-called by some inferna shoats, Hog Ranch-with a copious supply of water; and has also at nishling the neeessary wind for has ereeted alongside of his saw-mill ; sinee the eompletion of whicl loweere, he has sold-ir fhe don't have to take it back to get even on
the parties purehasing. The haso metal range on White Pine mountain is now attracting as mueh, if not more attention, than an other particular locality or character of mines in the distriet. The grade. Smelting furnaees are now to be seen in 'ffull blast' at ever turn of the roads and bend in the canyons, while the late increase in the shipments of rieh lead bullion attest the faet that the ore of the hase metal range ean he suecessfully reduced by the smelting pro-
eess. There are millions of tons of ore in this range which, owing to the high rates of transportation, ean not now be redueed either with profit to the mine owners or those engaged in the smelting business; will yield a profit even at the present high rates of tariff eharged the railroad eompany. Tho Miser's Dream and the Cadis \triangle. No. 2 are the principal ledges now furnishing ore to the smelting furnaces in this vicinity; yet work is being proseented upon scores of
other ledges of equal riehness. What is most needed here is the investment of a large amount of capital by parties experieneed in the smelting and refining of lead and silver ores. A refining establishment here would preelude the neeessity of sending our hase bullion 0 San Fraueiseo, theroby saving tha large sums of money now required to pay freight, besides, hec lead is or grear value to us here, tity of lead for smelting as is the case with the ores of sonie of the richest ledges in the mountain. The ledges on the northwest side of White Pine monntain soem to be almost entirely free from base metal; so much so, at least, that no diffieulty is experienced in working the ores by common mill process. In this vicinity is situated the pany, the titles to whieh are perfeet and undisputed, and are cousio red by good jndges as among the most valuable mines in the district. Tho White Pine Silver Mining Company is an Eastern corpo
ration, and is one of the most judiciously managed properties in the State. In the early Spring, work for the thorough development its mines will be commeneed and proseented with vigor. The mine t Treasure Hill are yielding ore in larger quantities, though perhaps not quite so rieh, than at any time sinee the diseovery of this fahnously rieh distriet of world-wide fane.

Arizona
The mining eamps of this Territory. are full of life, and rich strike
aro reported in seeral aro reported in several localities. Aecording to the Preseott Miner,
Nov. 6 , some fifty or sixty miners were at work in the dry diggings Nov. 6 , some fifty or sixty miners were at work in the dry digging
baek of La Paz, makking from 83 to 830 per day, by dry washing pro cess. Jndges Cartter and Reavis report seecing reeently, at La Paz
fifteen hundred dollars worth of gold that was taken out of the dig hifeen hundred doluars worth of gold that was taken out of the dig
gings in oono week. Pieees weighing thirty and forty dollars have frequently been found in these diggings, anc, oceasionally, ehunks a Yuma an old style ink bottle. Judge Harrey in. Carter, of La Pa ing lode named the Constautia. The mine is situated elose to the Preseott and La Paz wagon-road, thirteen miles this side of La Pazz convenient to wood and water. It belongs to an incorporated com-
pany, who aro ncgotia ting for a'ten-stamp mill to erush the ore with. Moubst of its coit of oning ane inficient sold to there ean be no reasonable donbt of its co: taining sufficient gold to pay well for working it Smith are about ready to start their arastras on ore from the Sutler lode. Smith found recently, near the Placeritas, ing ore rieher ly far than any yet discovered in the district. The placer miners at work in MeCloud's old elaim were making from 85 to 87 per day. The miners at work on the Old Mexican Camp, Lower Lynx Creelk, ars doing first-rate, and many of them have well-filled
purses. They are now working the bed of the ereek, washing the purses. They are now working the bed of tho ereek, washing the
dirt in rockers, there being an insufficient amount of water for sluicing prrposes. We have the Tueson Arizonian of Oetober 16th, and from twe learn that rich placor mines have been discovered in Sonora
or the diggings.
In an addres oovervor sifforp ox the arives.
cott, November 4 Ho in eitizens or Zavapia County, delivered at Pres present condition ind prospeets of the mining in terests of Arizone He said: "Now I come to the mineral resources of the conntry, and Ifeel that I ean speak of this hranch with more confidenee than any years in in sueceorsione spent all my manhood in the mines -for eigh cookcd my own menls; and for nearly twenty years have been connected with mining enterprises of one kind or another. I have dam med the Ynba river twice in the same year-onee when the water
was low, snd at another time when tho water earried our flume away. I have taken part in gold and silver quartz mining in California and Nernata, and have examined the priucipal mines and reduc
tion works of Europe. My previous knowledge of mining has nat rally led me to take. Ay prefocs st in examining the miucral sonrces of this country. I have travelled in varions directions from the Southeru boundary of Arizona north to this point. I have fonn far beyoud anything I have ever seen elsewhere, and I here prodie that tho time will come in the not very far off future when Arizon will produee moro gold and silver than ail the balanco of the Pacite east. This may be nsidered enthusiaste, hut when tis consil red hat there is hardy a mo cian o efves was Territory tha miles the ravines show prospeets for placer diwzings that wout thadden the heart of sny old California miner, and when it is consid dition will not appear so extrave mines. The inquiry will be made, Arizona contains sueh vast mineral wealth, why has it not be roven before this time? There are several reasons, either one which is snfifieient to ressul in the failnre of any ordinary paying nine.
First, the liostility of the Indians, whieh has almost wholly preveuted Trost, the hostility on the Indians, wiie has amost wine prevented ensive. Second, the expensive transportation of everything con peu the mines. Fourth, the want of experience and knowledge how to extract tho preeious metals from the ore. To aseertain the me thod of extraeting gold and silver from ores, and partieularly those mat are refractory, has in all new, mining districts required money, me, and experienee, but in no ease has either of these metals been hem, nor will this coonntry bo an exeecption. The ores aro fonnd here in vast quantities, fabmonsly rich. In experiments that hav who have made them the money has in moost instances, been lessly sqnandered. Large mills have been ereeted before opening he mino, or attempting to ascertain a method of saving the metal
Tho consequenee has heen that the mill, when ereeted, eould not b supplied with ore, or the parties managing it could not save the gol and silver; and the stockholder, who never saw the country, an knew nothing of the eause of failure, became disheartened, and the mine is abandoned and left to deeay. If mining eould be conduete whin the same coonomy hat the mertculd oluts hisusiness, he farmer tills his nilas, falu ures would seldom oeeur. But ou to break loose from all the woll established prineiples of doing hus ess, and adopt a new system for mining. Instead of seleeting a ma to open their mines and ereet their maehinery who is experieneed in end usiness, and has estabished a eharacter for integrity, they elthe be placed in eharge want to nin a place for, who is incompetenc hial stockholder, or, perhaps, in some instanees, very good basine nen, but invariably none of them know anything abont mining, machinery for the reduetion of ores, and their education proves ver eountry. Laboring under all theso disadvantages, still we have to day in successful operation one of the best paying mines on the ceific coast-the Vulture, at Wiekenburg. The Apache Pass mine Apache Pass, is just starting, with equally favorable prospeets
 al tests min an inexhaustitle supply of ore before it, and pracil orereome all obstacles, and that it will soon be numbered among th best paying mines on the eoast. The same may be said of the Ste ng. I visited it a few days since, and was impressed with the nd the largo quantities of ore it contsins I say to yon, not for the purpose of ereating a false hope, to be of good eheer; as sure as the son rises and sets, the day of your prosperity is dawning. Arizona Las seen the worst ; her immense wealth eannot lie dormant mueh heir mines, and who have a sunficient amount of work done, seenre a government title as soon as possible. You are suro of yo property then, wherever you go, and if you desire to sel, yout. When I arrivo in San Franeisco, I will endeavor to have the Surveyor Gen-
tite that give eonflen Iral of California appoint a mineral depnty here, and as soon as that done yon ean apply for a patent at once. The law pyining dis triet, then the Surveyor may establish some initial point, and con neet all the surreys t it, and after the pnblie surveys have,
tended, then this initial point will be conneeted with them.' California.

The Mariposa Gazette, Nov. 19, thns ehronieles the successfful progress of the Mariposa mill : "The Company's Qnartz Mill in this
town seems to be progressing in its work with commendable energy and enlivening results. The resumption of the 'wet process' in erushing proves very satisfaetory; the rock now being taken ont remmnerative, and the prospeet continues to be of an excellent ehaa
ecter. For the sake of all parties concerned, ineluding the town cher. For the sake of all partues concern
Mariposa, we wish them abundant success."
The following report from Mr. Rice, resident Engineer, furnishe the latest inteligenee in regard to the mining affairs of the estate: Tark Brexiaim, Esa., Trustee Mariposa Estate
Dear Sir: I ean now report the dam in condition to resist in safe the winter floods. It has lately been strengthened by bracing belo and filling in above, and there now need be no apprehensions for it safety. In Oetober the Upper Benton mill was overhauled, and th ioundations of the batteries, which had become somewhat out of it is in fine rumning order again, and the drums will again be put in operation, now that water is plenty. At the Middle mill two batteries
havo been eonneeted into wet erushing with improved form of bat-
teries, similhr to tho Oakes \& Reese mill, where a test was made on our Pine Tree rock, yielding $\$ 1692$ per ton, with a loss of only $\$ 235$ the tailings. If it suceeeds as well here, a great saving will be effected, and our erushing eapacity donbled. A comparative test is now being mado at the Benton mills between the wet and dry the mortar hock or fonndation having beeome very rotten and badily beaten up by the dry crushing. A new foundation will be put in, and
 avo tons. The riilroad is in ood condition now, and the expenses here will belessened. The Pine Tree mine is in splendid condition. The shaft whieh is being sunk shows better in the bottom than it has before. The "Garden Shoot" of ore shows well also. Tho drifts should be reeommeneed, to cut throngh this " shoot" on the Engine level, as well as to tap it below in the Midway level. The Josephine ins A in mills, b an is condition to farrish aluncanee of ore a a day's no ported to tho river. At the Mariposa mill abont twenty-two tons eing crushed daily. It is found, however, that the mortars, being the ofd ones, are in a dilapidated condition, and some of them hrokon. They will be inmediately replaced by new ones, similar to those Bentou Middle mill, fitted for wet crushing. The mine is being worked with larger force to supply the mill. The best ore comes not loe wo well in partality of main mine. The eastern portion does is partially assorted. Tho Speeimen shaft whieh in last month wa commeneed to be drained and eleaned out is now heing sunk. The gold within a short distanee. At any moment we may expeet a di covery of that kind. Yours respectrully, J. G. Rice

Michigan.

We condense from tho Portage Lode Mining Gazett, Nov. 18, the ollowing interesting items of mining news from the Ontonagon unsettled hy the reeent ehanges of the managements. The Aztee has, however, a good show of coppor, and will undonhtedly come safely tlirough her present difficulties and go ahead onee moro. The midee is working a large force and doing well. Some ten miners are work at the Adventure with good prospeets, and Cap tan' Hoatson
roposes to settlo ten miners in the Evergreen. The Nonesueh will ommeneo sinking and driving soon, and there is a rumor that the wing items on the mines of Portage Lode distriet:

- "Meren
"The produets of the Heela and Calumet mines, for the month of
 nent of operations on Lake Superior. Over 7,400 tons of roek were tamped during the month, giving a yield of a fraction over four per ent. mineral. The mineral will yiela 99 per eent. of ingot eopper Gigh figures all around. it a little easier to make the produet than it has been the past few months. No. 5 shaft of the Pewabie is down to the 190 -hy the way the greatest depth ohtained by any mine on Lake Superior-and considerable drifting done. The slip shaft is sinking as a winzeto expedite opening-when it will be squared up and ready for use by the time the stones are under wsy. Captain Hoskins is pushing everything as hard as it ean be, and although it eannot legitimately be called up-hill work, it is far more difienil. Another head oil sill be run day shifts only

Montana
mining active. The Deer Lodge City Independent, November 13th, says: "The cold weather has nearly put a veto upon mining operations at Highquite well. Prof. Swallow has elesed his mill for the season, whieh nas thrown a number of nien upon the labor market. The Las Chanee Company are still taking out very rieh quartz, hat they ar the only eompany that are working quartz lodes in that distriet
We understand that work will shortly be resumed on the Nevine lode, and perhaps one or two others,
"Freneh Gulch is now almost d entirely suspended for the season. The monntains in the viening Freneh are now eovered to a eonsiderahle depth with snow, whieh解 eason will be une of unusual prosperity. Should there be plenty of
rater there will be employment for a large number of miners, as the mines are rieh and very extensive
mes, and din quired the expenditure of a vast a mount of minsele and money to all who have perseerect. There are no idle men in the guleh, we aro informed that thero never was hut a very few of this class there at any timo sinee the first stampede. Pay dirt has been struek by each of the fluming companies, which insures a large return for supply of water. Some eompanies are still dritting with good re-
sol sults."
Mr. Boling writes from Enterprise, Nov. 24, in the Des Moines Register: "The county of Mahaska poseseses, perhaps, a larger coal urpassed by any in the West. tons or bushels th a dail V. R. R. Co. is building a switch of abont one milo in length to the ank of Price, Evan $\& \mathrm{Co}$. This bank is the greatest in depth of any yet found in the State, the mining surface being eight feet four ehes. The company is composed of practical miners and exper business men, and they intend within a month, at which time the rack will be completed to the bank, to be able to supply the demand or the trade, let that be what H may. The D. V. R. R. Compaily ave contributed largely to this enterprise, and it is a matter of nuch importanee to the non-coal sections of the state to know tha an good ooal so the West affords gresing rapidly, and will be completed in two weeks, should the ing the track,"

THE ENGINEERING AND MINING JOURNAL．－
gold，for English，and \＄76 © 877，currency，for
American at the Works in Pennsylvania．Bar is dull－from store there is no change，the market be ing very quiet at old qnotations．Russia Sheet con－ tinues nuusually duli，at about our quotations for lots from store．Common shee ismehaged．
import，from Jan．1st to Nov， 30,1850 －

 Zzxc．－American，dry，8zc．；French，dry，12c．； Frencl，metallic，13je．
mining stoeks．
tw Youk，Dec．9， 1869. Mining stocks are less active，at lower prices． of Quartz Hill at $\$ 235$ Board comprised large lot \＆Parmalee at $\$ 165$, and 12 ，smasce 15 c ． 18 c Copperstock are till wiet wendota at $\$ 2$ and Quiney at $\$ 25$ ．
Petroleum stocks are still more advanced in price； 300 shares of Rynd Farm sold t
1，000 Uniteü States，b 60 at 85 ．
Following is the latest report of prices at the
Board： Boarl

\section*{| Rennelofifi |
| :---: |
| Bincto |
| Broort． |

 }

San Francisco Stock Marke
（By Telegraph．）

（By Mail．）

S．
mrora Conosidiateal wintr pise．
 Yammoin

Golden Char＇L．．i．．．．．．．．．．．．．．．．． $1900{ }^{20}$

Losdon，E．C．，November 26,1869 The metal market has been inaetive，and prices generally tend in bnyers＇favor：
Makers－The Wesh Iron trate continues firm． mand for rails appears to increase．Staffordshi Iron is in moderate demand．Seotch Pig is shightly firmer at 54s．9d．cash．
Copper．－The market is dull．English raw and sold at lower rates，Burra and Wallan has been Chili bars have been sold for 66610 s ，and $f 6615$ and are now quotd at 167 ．Ores and Pegulus 13s．3d．，the charters for the first fourteen days， November， 1850 tons．
Tix．－The market is totally unhinged，and prices very irregular．The Enghish smelters have met three times without coming to any decision，butre－ fined has been sold at $£ 6$ and common $£ 4$ ，under nominal quotations．The nearest price of Straits here is $£ 113$ ，at which a very large parcel of Tin made on Dutch acconnt，f110 to $£ 112$ delivered here；but the nearest price now is f114．The Dutch market has declined to 65f．sellers，but has since improved to 66 fl ．

Ead－Is Lead，$£ 1817 \mathrm{~s}$ ． 6 d ．to f 19 ；LB， f 19 5s．；and WB f19 15s．
Spelter．－No business reported in Silesian，price nominally $£ 1910$ s．to $£ 1915$ s．here，and in outports gian，and Phenish，$£ 195 \mathrm{~s}$ ．to $£ 1910$ ．English，Bel

Yos Daderszen \＆North
Another Tin Mine in California
Axother tin mine has been discovered a few miles northeast of San Bernardino．The ore i pronomnced superior to the San Jacinto．

Tramways in Large Cities． motion ean deficiency in the means of loco tract considerable attention．The tramway which have been laid down in Liverpool have proved an undonbted success，and the plan there adopted entirely overcomes any objection on the score of interference with the ordinary
traffic．By the adoption of a small groove for the flange of the wheel to run in，too narrow to admit the wheel of even a light carringe，in preference to the old plan of rail raised above the surface of the street，the tram－plates allow of a passage across them of all kinds of traffic withont any jolting．There are two extensive sehemes now being matured for presentation to Parliament in the ensuing Session for the City of Glasgow．It is intended in Glasgow to lay tramways in all the omnibus routes throughont the city．The carriage to be adopt－ ed is large and commodions，and will be a far more comfortable conveyance than the time－ honored＇bns，with its damp straw and the perils incident to escalading its knife－board The roof of the new earriage is surronnded by a light hand railing，and leaves ample space for convenient passage to and fro，withont in－ jury to the nerves of the most sensitive，or peril to the most portly or stiff－limbed passen－ of Parliament，notices of the intention to lay down these tramways have been posted they will pass，and the municipal authorities are favorably disposed towards the measure． If the introduction of these tramways shonld should they be welcome in all our great towns， inasmuch as the＇buses of Edinburgh and Glas－ gow，in all that regards accommodation，clean－
liness，and punctuality，leave little to be de－ sired．In Birmingham，there are three schemes in existence，details of which will be presented； and in Leeds，similar exertions are being made for the establishment of these new roads．－ London Iron Trade Circular．
The British Iron Trade．
Tue heavy advance in the price of iron，$£ 1$
per ton，that has taken place in several iron dis－
tricts of England，bas caused considerable ex－ citement in the trade thronghout that country．
The motives which led to the rise，and its effect The motives which led to the rise，and its effect upon the business，are commented upon at
length，and rarious conclusions arrived at． The step is regarded by many as something like a leap in the dark．The condition of the trade it is thonght scarcely justifed the advance．So far as the market has yet been tested，heavy
consumers evince a desire to hold back as much as possible，and do not hesitate to express a be－ lief that when the orders now on hand are worked off iron will be cheaper than it is now．
Some threats of a further advance after Christ－ mas，are inducing some few parlies to purchase now．Many firms who are not fairly employed continue to sell bars，plates，and sheets，at from 10s．to 15 s ．below the advanced quotations．In and pig iron have all adranced in proportion to the rise in finisbed iron．In connection with this advance in price，the Belgian，French，and American competition question comps up， Continent are full of orders，their capabilities increasirg their production at a brief notice of generally admitted．The rapid advances in the stimulated the manufacture throughout German and Frauce．In regard to this market the rise has put a decided check upon consignarents of sheet iron，both galvanized and black，and has o a less extent，checked the trade in other kind of iron．

New Cold Fields
Gowd has been discovered in Lapland．Two men，who formerly worked in the California mines，wandered last summer over a part quantities．One nugget，as large as ducat piece，was pure．The remm the district in whe the governent bonght this piece for ninety．thee mas made bongt then pies it helsinger and then forwar ind endured many privations during the four weeks
employed in traversing an uninhabited region， and they were finally compelled to discontinue their search by scarcity of provisions．In con－ been with a third person，who had earlier been engaged in gold washing in Australia， they are now petisioning the governt permission to search for gold in Lappand．The were satisfactory，for they obtained sixty ounces of gold，for which they received six
thousand marks．

MINING COMPANIES AND STOCK QUOIATIONS．

	sro		${ }^{\text {ash }}$ P ${ }^{\text {P }}$		
	Onti Boise，	A．Queran， 108 Wall tit．．．．	22，00，000	sid	
	Humb	P． P ．	00，000	10	
砳				so ¢0．．．．．．．	
		W．F．Drate， 15 Broad	soo，000	500	
Brack Hawk．．．．．．．．．．．．．．	Coiorad	c．T．Whittington， 48 Broai．：	${ }_{2}^{1,5000000} 110$	10000	． 40
	color	aton，			
，					
Consolidatea are	Colorad				
Commintan siver．．．．．．${ }^{\text {Ne }}$				10000	
		J．E．Smith	s,000,		
don．．．．．．．．．．．．．．．Gil	Gilpin		2．500， 0100	2500	
Eagle goid	J				
Endel		A．Fuluer	1，0，00，00000		
		H．			
si	siberib	${ }_{\text {R．}}^{\text {E．Ad }}$	1，000，000		
雨			1.250		
${ }^{\text {Gunnell Contrai．．．．．．．．．．}}$ Col		C．B．Botw	3，006，000	0	
ciol fock Grass ciliey		R．M．Lockw	400，000		
International siviver．．．．${ }_{\text {col }}$		J．W．Brazier， 26 Pine			
man			5，000，000	2500	${ }_{3}^{1}$
Kip te meil			${ }^{320000000000}$	10	
crose ${ }^{\text {cold }}$ ．．．．．．．Ne	Nevada	P．P．Fullerton， 711 B way．．．	$1,000,000$	．1．．．．${ }^{14}$	
Lewis Gold ．．．．．．．．．．．：Ge	${ }_{\text {Cerar }}^{\text {Cera }}$	W．LLCatherwoon，4B	1，000，000		
Manhery toil	Ver	м．L．Og．Oflen．．．．	400，000		
rapoes eommou．．．．． $\mathrm{Ca}^{\text {a }}$		Ferion，	12，000，000	．．．．．．．	
antana coild		dooriov．	1000.000	5	
ntana M．L．\＆M．Co．${ }^{\text {cos }}$		Hoyt			
w Yoril siviver．．．．．．．．．．${ }^{\text {a }}$		Thos．Spronil，	1，50， 0,00		
T York and		E．R．siccomb，to wall．			
Vew Yorts and F		H．̇ıunroe，io wail	2，000，0000		
Y． 8 Moutana M．\＆D D．M			${ }_{2,000}^{1.200000}$		
Y． x Utah	Crem	W．H．Waalier， 108 wal			
Opyrhe foidid．．．．．．．．．．		H．smith， 63 Ex．			
Palranagat Central．．．．．${ }^{\text {a }}$	Ne	${ }_{\text {J．}}^{\text {E E S }}$ ． mith，	G，000，OOO		
Reeer niver Consol＇c．．．	Yeve	W．R． P giden	6,00000		
arilms		Thos．Bond， 132 B			
		H．A．Shewill 19 Bro	$1,000,000$		
Silver Bend		Macy			
silver Peask \＆R．M． m ．．．．．．		W．B．Ogden			
Smith \＆Parnelee ．．．．．． c		W．H．Holisiter， 6 Eroa			
Standart		C．B．Bostwick， 169 B wa	500,000		
Symonds Forks ．．．．．．．		jif．eiliauden 20 N	00，000	iöö 0 ．．．．．．${ }^{45}$	
		Pots， 11	50，000		
Wean bill $\alpha \mathrm{B}$ ．		Perkine， $71 \mathrm{~B}^{\prime}$			
Wanba Yuma．		slisby， 36 Pine	6，000，00		
and mbon comeanits．	situatiox of anse．		mana．	根	
			\＄1，600，000		
${ }^{\text {Andiburton Coal Co }}$		Keel			
		Rove ${ }^{\text {Lent，}} 165$	${ }^{150,0,000}$		
Cameron Coal Co		A．Sim			
Carron Hin Coal Central Coal．		，White 111 B			
Ciston rron co		\％．Wiorlan，${ }^{\text {a }}$	1.2000		
Conolilation Coal	Haryland	${ }^{\text {s．Mac }}$	100		
Crambor Coal．．i C		Kibean， 9 OB W Wa	6，00， 000	．	
Coal and		W．S．Davison， 11 L．Chase， 88 Wall			
Det．\＆Hudson C			10， 5000000	－ 10	
Fall River Bitumin		T．Banvelt， 43 Prin	${ }^{1,000}$		
Frimer		H．Elis，	100，		
Hamp rex Iront		．J．Canda， 52 wali	1，000， 0 O		
		A．Whelt 26 Ex．Hut	300，000		
ank Coal			1，200．000		
Lemis Runc C．d			\％		
Hickean co mit．Co		i1．Roliston，to B way．	1，600， 0 00		
Malunoy－．			Soino	\％	
Mount Riga 1 Iron．		i．Ne			
		T．Levine， $110 \mathrm{~W}^{\text {a }}$			
N．Y．t．ethigh		（	16，0，004		
kskil					
nemy		H．Smith， 165 E Wa	1，000，0，000		
，${ }^{\text {a }}$		Rim	2，		
ngifela d $^{\text {d }}$		D．Webb， 77 Cear．	comom		
na ${ }^{\text {d }}$					
${ }^{\text {col }}$					
West Point ron C					
		．Potter， 40 Ewos	1，000，000	\％o	

COPPER AND LEAD COMPANES．	situation of mine．	SECRETARY AND PLACE OF BUSINESS．	captral．	$\left\lvert\, \begin{gathered} \text { Par } \\ \text { valus, } \end{gathered}\right.$	OFY＇R＇D	ASKDED
		J．A．Fergnson， 8 Wall．				
Corinth Copper	Corinth，Vermont．．	S．H．Howard， 191 B＇way．．．	\＄500，000	2500		
Davidson Coppe	yie	W．H．Smith， 43 Ex．Place．	，00	2500		
Evergreen Bluft Copoer．	Michigan	F．W．Caper， 44 Ex．Place．．．	500，000	250		
		R．K．Rickard， 19 Nassan．．．	200,000			
Grand Portage Copper Co		A．S．Kellegg， 22 Pin	500,000			
Guymard Lead		nuel Vernor， 38 Pine				
Hilton Copper		W．M．Somith， 43 Ex				
Hope Copper	New York	T．Clarkson， 22 Wiliiam	1，500，000			
Indlana Copper		J．M．Mills， 25 Nas	，500，000			
Isle Royale Copp	Michig	F．W．Caper， 44 Ex ．Pasce．．．	1，000，000			
Keweenaw Copp	Miehtg	F．W．Caper， 41 Ex．Place．				
Lake snperi＇r sil	Michlgan	${ }_{\text {cooper }}^{\text {c }}$ Kellogg． 22 Pine				
Omiga copper．	Michligan	J．L．Gardiné，rr， 43 Ex P	500,000			
Rockiand Coppe	Michlgan．	A．Fullerton， 71 B＇way ．．．．	500，000			
st．Joseph Lead	Mich	J．W．Jones， 6 Broad st，				
St．Marguret		E．P．sntton， 43 Pi	250，00			
pollcraft Cop		A．Fullerton， 71 B $\mathrm{B}^{\text {bay }}$ way	500，000			
－Superior Coppe		A． S ．Kellogg， 22 Pine	S00，000			
Vermont C		S．C．F．ly， 19191 Bond 70 Brway	500，000			
Wallkin Lead，	－10．					
hscelilanzo	situation of ming．	asd place of businise．	captital．	$\stackrel{\substack{\text { PAB } \\ \text { valur．} \\ \hline}}{ }$	D	
		Lawno	\＄1，000，000			
Bigelow Blue Stone Co．		gardus， 14 P				
Covill B．L．M．en mioco		C．R．Boestwick， 302 Pee				
$\begin{aligned} & \text { nhattan Marble } \\ & \text { Jorney Zine Co. } \end{aligned}$			1，600			

MARKET REVIEW.		Wetmomand co...	
10, 18			
	Tomale		
- the stock is not large. The last forr disy of cold			
ali the transportation on the railroads, which, at			
			can
ment via the Philadelphia and Reading Railroad have fallen off one-half dnring the past week. This			tice.
		$\begin{aligned} & \text { Red or White Ash.. } \\ & \text { and Zebra Valley. } \\ & \text { Erelghte. } \end{aligned}$	
	$\xrightarrow{\text { recaptituamtos. }}$		
			canal.
tail will rule very low.			
The Delaware and Hidson Company have issmed the following prices for their excellent eoal for December : \qquad			
	Tin		
	Toail all kincos.		
The wholeale pries are "on hoarti at Weelaw-	Lehigh na suaguethann Ranliron		边
ken. This notice will pall of wholesale and retail dealers. We don't			
 trade in the state of Thie following tulue exinutulu the quantity of Coal pases.			
The following table exhlbits the quantity of Coal pass. Ing over the following routes of transportation for the week ending December 4, 1869, compared with			㖪
		(eamer	
	-		
Nume			
	- Mjuctimigh		
The Lehigh Valley Railroad closed its ofticial year Nov. 50th. The following is their statement of	Prices of Coallby the Cargo, 	Foreign and Provinelai Frelghts. Foreign, \qquad	
		Rentaidian to Boston.	
crase................ -01,e82 or			
TrasL- Trade has generall been didl during			
Meather, ensumeres are not eet statilied that coal			
cily			
		comem	
			(ex
Sew haven, and 8995 to bostor			
ent			Pate Figiten
\%			for Lake Baltimore, withont mueh offering: many holders refnsing to sell below 22e.
Elo	rDealers in these coals may be found in onr advertising columns. Company Coals.	To Manhats netueso	(tamen
		\%itio	
		,	$869 \ldots$. plates 34,819 1868,........plates 190,465 eign.
${ }^{3 \times 8.0}$			
Tout pribe fribhte..................			
Wetime 1 et yus			

gold, for English, and 876 @ ${ }^{877}$, curreney, for American at the Works in Pennsylvanip. Bar is ing very quiet athere is no change, the market be innes unusually dull, at abont our quotations for ots from store. Common Sheet is nnehanged.
nmport, from Jan. 1st to Nor. $30,1889-$
From Foreign Perts..
Coastwise.....
Total. tamin,
 French, metallie, 13se.

mining stocks.
ew York, Dec. 9, 1869.
Mining stocks are less active, at lower pricen The sales to-day at the Board comptised targe lot Quartz Hill at $\$ 235$ @ $\$ 260$; small lots of Smit Comperstocksare and La crosse live. cis 18 se . at $\$ 2$ and Quincy at $\$ 25$. Petroleum stocks arestin sold to-lay at 45 e . an 1,000 Uniteä States, b 60, at 85 c .
Fottowing is the latest report of prices at the

dimily
San Franciseo Stock Max

airir

(By Telegraph.)
(by salul.)

Soiritiond iideen i.
Amador
Coolem Cur
hart.

or. $25,1867$.

Lospow, E, C, Noveport. The metal market has been inactive, and prices generally tend in buyers' favor.
Tror.-The Wetgh Iron trade continues firm. Makers are well supplied with orders, and the deIron is in moderate demand. Scotet Pis is slightity firmer at 54s. 9 il . cash.
Copprr.-The market is dntt. English raw and sold at lower rates, Burra and Wallaroo $£ 73$ 10s Chili bars have been sold for $£ 6610 \mathrm{~s}$, and f6C 15 w and are now quoted at 567 . Ores and Regulns 13s. 3d., the charters for the first fourteen days, November, 1850 tons.
Tix.-The market is totally unhinged, and prices very irregular. The Enghish smelters have met three times without coming to any deeision, but refined has been sold at 26 and common $£ 4$, under nominal quotations. The nearest price of Straits changed hands. Some large sales of Banea were made on Dutch account, $£ 110$ to $£ 112$ delivered here; but the nearest price now is f114. The Dutch market has declined to 65fl. sellers, but has since improved to G6fi.
an plates.-No improvement in demand.
Lead-Is slightly firmer. Good soft English
Lead, $£ 1817 \mathrm{~s} .6 \mathrm{~d}$. to $£ 19$; LB, $\mathrm{f19}$ 5s.; and WB, Lead, f18 17s. 6d. to $\mathrm{f19;} \mathrm{LB}, \mathrm{f19} \mathrm{5s.;} \mathrm{and} \mathrm{WB}$ Spelter.-No business reported in Silesian, priee nominally $£ 19$ 10s. to $£ 19$ 15s. here, and in ontports
f19. Specials, 7s. 6d. per ton extra. English, Belgian, and Rhenish, $£ 1958$. to extra. English, Bel

Yos Dadetszen
 $\xrightarrow[\text { Yos Daderszen \& Nor }]{ }$
 Another Tin Mine in California

Another tin mine has been discovered a few pronomnced superior to the San Jacinto.

Thr Tramways in Large Cities. motion in our large cities, is beginning to at tract considerable attention. The tranways wich have been laid down in Liverpool have proved an undonbted snccess, and the plan there adopted entirely overcomes any objection on the score of interference with the ordinary traffic. By the adoption of a small groove for the flange of the wheel to run in, too narrow to admit the wheel of even a light carriage, in preference to the old plan of rail raised above the surface of the street, the tram-plates allow of a passage across them of all kinds of traffic without any jolting. There are two extensive chemes now being matured for presentation o Parliament in the ensuing Session for the City of Glasgow. It is intended in Glasgow to ay tramways in all the omnibus rontes throughont the city. The carriage to be adoptd is large and commodions, and will be a far nore comfortable conveyance than the timehonored 'bns, with its damp straw and the perils incident to esealading its knife-board. we roof of the new carriage is smronnded by light hand railing, and leaves ample space jury to the nerves of the most sensitive, or yers. In most porty or stin-landing orders of Parliament, notices of the intention to lay throngh the varions streets through whiel they will pass, and the manieipal authorities are favorably disposed towards the measmre If the introduction of these tramways shonld should they be welcome in all our great towns, inasmuch as the 'buses of Edinburgh and Glas gow, in all that regards accommodation, clean sired. In Birmingham, there are three scheme in existence, details of which will be presented for the establishment of these new roals. -

Lomlon Iron Trade Circular. The British Iron Trade.

The heavy advance in the price of iroll, $£$ per ton, that has taken place in several iron dis
tricts of England, bas caused considerable ex citement in the trade througbont that country The motives which led to the rise, and its effec
upan the business, are commented upon a length, and various conclusions arrived at The step is regarded by many as something like a leap in the dark. The condition of the trad
it is thonght scarcely justified the advance. So far as the market has yet been tested, heavy
consumers evince a desire to bold back as much as possible, and do not hesitate to express a be lief that when the orders now on band are
worked off iron will be cheaper than it is now. Some threats of a further advance after Cbrist mas, are inducing some few parties to purchase now. Many firms who are not fairly employed continue to sell bars, plates, and sheets, at from 10 s . to 15 s . below the advanced quotations. In
both North and South Slaffordshire, ore, coal and pig in and south slafirusher, or, the rise in finisbed iron. In connection wit this advance in price, Ihe Belgian, French, and American competition question comes up. Conting at the present time the works onl the increasirg their production at a brief notice generally admitted. The rapid advances in the price of irou in England a lew years ago, greatly stimulated the manufacture throughont Germany and France. In regard to this market the rise sheet iron, both galvanized and black, and has to a less extent, checked the trade in other kinds ol iron.

New Gold Fields
Gowd has been discovered in Lapland. Two men, who formerly worked in the California mines, wandered last summer over a part duantities One nuget, or large as larg dunt piece, was pure, The government the district in which the dise government of bonght this piece for ninety three maks, bonght this pis it to lsinfor endued many privatione during the four wee employed in traversing an uninhabited region, and they were finally compelled to dise their search by scarcity of provisions. In con heir search by scarcity of provisions. In conbeen engaged in gold washing in Anstralia been engaged in gold washing in Australia, permission to pearch for permission the search orgold in Lapland. The results of the sury ounces of gold, for which they received six thousand marks.

MINING COMPANIES AND STOCK QUOTATIONS.

Asid silver comp	sirvatiox of mixs.		caprial.	valuz.	
$\xrightarrow{\text { Alameata }}$ Sid		A. Queran, 108 Wall t .	\$2,000,000		
Ada Elmor			6о0, $0^{\circ}{ }^{\circ}$	10\% 00	
Atantic and					
Benton.	coiorado	w. F. Drake			
${ }_{\text {Briggs }}^{\text {Bramik }}$	${ }_{\substack{\text { Coiorad } \\ \text { Colorad }}}$		(100,000		
Bobtail.		S. Stanton	1,000,000		
Bultion Cons					
Clurch					
usoiiated Gre				100	
Columbia silver	Austin, Nevad				
men	Guipinc	1. Sammels, 40 B'way...	Som,		
Downievil		J. P . Davies, it ciaif.	(incouo		
Gold		H. Jobinson, 135 Fult	00,000		
Porest Oneen	sieribr	Hi. dimms, 71 Broadway.	${ }^{1}$		
Gregry Gunneí					
			3,0at,000		
Interratio	ciouràe.er.......			
${ }_{\text {and }}$			(200		
erbocke		IT.			
La		Mi.L.Catieer	1		
Lewis gold					
dhatan Sil					
Maraposa con	${ }_{\text {Callifor }}$	do.			
dana goid		Cord			
Montrose.		W. W. Peerking, $71 \mathrm{~B}^{\mathrm{m}}$	$1.000,000$		
-		E			
York and 0	Owyle		1,000,000		
Cork and		H. Mrnaroe, 10 W			
\& Silver	Nev		2,000,000		
	com				
rtz Hill goid		Berr	$2,500,0$ ${ }^{2} 35$	
		P			
		H. A. Shewill, 19. Bro			
		Moe			
${ }_{\text {Peak }}$		${ }^{W}$.			175
id 8 steptoe		${ }^{\prime}{ }^{\prime}$ Connor, 24 Nase			

COAL AND RON COMPANIES.	situation of mine.	gecretary and plack of business.	captial.	$\left\|\begin{array}{c} \mathbf{P A R} \\ \mathbf{V A L V E} \end{array}\right\|$	'R'D.	b.
Ameriean Coal		,				
Asiburton Coal Co		J. T. B. Keillins, 41 Pine.	$2.500,000$ 1,000060			
${ }^{\text {Block }}$ Brewster 1ron.			150,000			
Broad Top Coal \downarrow irou	Pennsylvani	B. Love.......	$2.000,0$			
Cameron Coal Co.....		J. A. Simpson,	$2,503,0$			
Carbon Hill Coal Co..			$1.000,000$			
Central Coal.		P. H. . Riordan, 44 Pin	2,000000	1006		
Clifton 1ron Co		E. D. Webb, 77 Ceda	1.000000			
Consolidation Coal.	Maryla	J. S. Mackie, 71 E	3,000,000			
crawford Coal.		E. Clapp, Prest, 137 l ¢ wa	1,000,000			
Cumberiand C. \& 1. co.		W. K. Disean, 90 B way .i......	5,000,000		26/2	27
Derby Coal Coa.i.....		W. S. Davison, 11 Broad..				
Del. \& Hudson Caual			10,000,000	1000		
Ebervale Coal.		G.L. Stout, Treas, 111 Br	500,			
Fail River Bituminons.:		d. T. Blanvelt, 43 Pine	1,000,000			
Fisher lron Com		M. Elis, 19 William.........	100,000			
Hamp're \& Balt. Coal.		M. Pond, $70 \mathrm{~B}^{\text {wwa }}$	500,0			
Iron cifits Co		C. I. Canda, 52 Wail.	1,000,050			
Jackson Iron.						
Keokrik Coal.		J. F. Frauklin. 12 B ${ }^{\text {cka }}$	100,000			
		E. C. Lynde, 52 Wall	1,200.000			
Lewis Run C. \& I.		C. A. Sauborn, 80 E'w	750000			
		f. A. Pati, Rolston, 80 Wiliam	$1,500,000$			
Leligh \& susquehanna.						
Malanoy...			401,000	1000		
Mc.eal C. di.		c. 6 Gowwin, $71 \mathrm{~B}^{\text {e way.... }}$				
New Boston Coal.		C. H. Ogden, $55 \mathrm{~B}^{\text {'way }}$	2,000,00te			
N. Y. Con. C. \& I. Co.		A. T. Levine				
N. Y. \& Lehigh Co		T. Simpson, $111 \mathrm{~B}^{\prime}$ W	150,000			
Paeific Coal co.		C. Wrighton, 31 Wurdok				
${ }^{\text {Peekssinivania Coal }}$		c. 11. Mead, in B^{\prime}	3.200 .000	\%0		
Richmond Irou Co.		Smith, $165 \mathrm{~B}^{\text {x}}$	1,000,000			
Scotia Coal		I. N. Soper, $42 \mathrm{~B}^{\text {b way }}$	${ }_{1}^{2,5000,000}$			
		E. D. Webib, 77 Cedar	Coo, 0001			
Stont Coal Co.		G. s. Comstock, 111 B'way..	500,000			
susquehanna \& Wyoming		E. Potter, 40 B	1,000,000			
Wanuerdale Coal.......		M. C. Baker, 117				
West Point Iron		R. C. Brock, $110 \mathrm{E}^{\prime}$ w				
Ikesbar						

$\begin{gathered} \text { COPPRR } \\ \text { AXD LEAD COMPANIES. } \end{gathered}$	situation opming.	SECRETAMY	capital.	$\stackrel{\text { par }}{\text { palotr }}$	OFF'R	KDED
${ }^{\text {Anita Copp }}$		8. H. H				
Corinth Coppe	Cor	8. H . H	\$500,003	2500		
Davidson Copple	Michig		\%00,000	2500		
Evergreen Bluft Copo	Michigan	F. W. Caper, 44 Ex. Place...	${ }^{\text {500,000 }}$	2500		
Globe Copper......		R. K. Plekard, I9 Nassan...	200,000			
Grand Portage Copper Co		A. S. Keliogg, 22 Pine	500,000			
Guymard Lead..........		W. H. Xmith, 43 Ex. Plac	во00000			
Hope Copper		J. W. Davis, 19 Nasssu.	500,000			
Hndson River	New Yo	T. Clarkson, 22 William.	1,500,000			
Indiana Copper	Miehig	F. W. Caper, 44 Ex. Place	1,000,000			
Keweenaw Copper	Michiga	F. W. Caper, 44 Ex. Place.	560,000			
Lake Snperi'r Sllve	Michiga	A. S. Kellogg, 22 Pine	1,000,000			
Omiga Coppe		Cooper,				
Rldege Co		J. L. Gardinér. Jr.,	500			
Roctiand Joopper	Michig	J. W. Jones, 6 Broad st	500,000 1,000000			
St. Margaret Co		E. P. Sntton, 43 Pine,	${ }^{2500000}$			
schoolcraft Cop Superior Copper	Michig	A. Fallerton, 71 B way	500,000 300,000			
Superion Copp		A. S. Kellogg, 22 Pine	800,000			
Vermont		C. Fily, $191 \mathrm{~B}^{\text {Pray }}$	600,000			
Wallikill Lead,	Pond, $70 \mathrm{~B}^{\text {way }}$				
mscrella	SITEATION OP MINE.	AXD PLAOKN OF BUSTNESS.	tal.	PA		
			\$1,000,000			
Bigelow Blne Stone Co..		rase, 14 Pine				
Covill B. L. M		C. H. Bostwick, 302 Pe				
Manhattan M		H. K. Gates, $70 \mathrm{~B}^{\text {P }}$				

Dubiva their experimental working of the last two years, the Hale Copper Mining Company have shipped from their small smelting works $\$ 17,000$ worth of copper, a small part of which was refined at the mines; the balance was sold to the Boston and the Taunton smelting works in the shape of black copper containing from ninety-three to ninety-six per cent. of copper. As there is extremely little arsenic and lead, and no antimony, bismnth, etc., in the ores, the metal produced by the very simple treatment it nnderwent, was very good, and was eagerly bonght ap in the North, after its qualities were once known. The metal shipped would have paid all expenses for working of dead work done in the deep shaft and the cost for making ronds, etco., swallowed the profits. Bnt as the main outlay for such work has got to be made only once, I insert the following calculations relating to the cost of production of the metal, in order to show that, although the mines contain what in other parts of the United States wonld be considered poor ores, a good profit may be relicd upon ceven from the manufacture, at the mines, of nothing but mietallic copper. The figures are taken from the books of the Hale Copper Mining Company, and are entirely reliable. The capacity of the furnaces is ten tons per day, so that two hundred tons of ore might be converted into matte, and fifty tons of matte into black eopper, every month ; but thus far it has been impossible to raise as much ore as that, partly because the mines were not sufficiently opened, partly on account of the scarcity of skilled miners. As soon as the furnaces can be run to their ful capa-
city, the cost of smelting will be less than it has been hitherto, when only about seventy-five tons of ore were smelted per month:
 Cost of roostion rostons of ore, in two open heaps, and Whod ires
Labor, 16 ordes, at at 8120.

 The regntitng 19 tonno of frrst taterte will have to be eaved
 thien cost one quarter of the single matte emelt-

 eent. concentrated matte. To. get the coneentrated
matte also in the shape of black eopper, it will heve

 Superintendence and sul.liy outside expenses.

9,500 libs. of copper sold in New York at 22 eents per 1b.,
Learing a monthly profit of..... 2,09000 This profit could be increased by at least $\$ 300$, if the company kept a store, so that over $\$ 700$ clear profit could be made
monthly, even with the present apparatus for beneficiation, if monthly, even with the present apparatus for beneficiation, if the cost of the deep shaft, which has been a little over $\$ 300$ per
month, had not to be covered out of that amount.
But by far a larger amount of profit can be realized from these mines by using every opportunity offered by nature in the large mineral deposits containca in them; ;y not alone
making the metallic copper, bnt by also manufacturing the same into such merchantable articles as can be made at a very low cost on the spot, and will secure a much higher gain per pound of copper made. This again will permit of working to the present time; and, in the processes employed for that purpose, additional new articles, which have so far not contri buted to swell the net profits, will be made for the market.
For this purpose, the company intend to entarge their very considerably during next spring, and it has been decided by the directors to work in future on the plan hereinafter contained. All ores of 6 per cent. aud over are to be smelted, as before, ties to be oxpidized in a reverberatory blast furnace (spleiss ofen.) After the copper has acquired the necessary grade of purity it is to be tapped into a basin of cold water, and ge lated. The granulated copper is to be dissolved in lead-lined vessels, under full access of the air, by sprinkling over it bet sulphnric "chamber acid," made at the mines. The blue ritriol thns formed is to be dissolved in hot water, recrysta lized in lend-lined tanks, then washed, dried and shipped. Ac cording to the chemical formula of sulphate of copper, one pound of the metal will make four of blue vitriol . and thus the company will secure, by bnt very little more outlay in addition to the cost for smelting, 40 cents per pound of copper, instead of 22
The ores containing less than 6 per cent, of copper, of which there are unlimited quantities on the property, averaging, say 3 to 4 per cent., are to be worked by precipitation. For this
purpose they are to undergo the following treatment. The

75000
ores, being wet when brought from the mines, have to be calcined, once in open heaps, in order to dry them ; then they are to be ground fine, roasted in a PARKE's double-roasting furnace, with stirring apparatas, so as to transform all the copper into ulplute; next, the ore is to be leached, the copper to be precipitated from the solution by iron, and added to the charges of the grannlating furnace. From this point on, it is to pass throngh the same operation as the copper prodnced by the meling operation above described, and innally to be sold as recitriol. The liquor remaining after the copper has been rawn lead-lined tanks, This is to be washed, dried and shipped a pure article. The scum trom washed, dried and shipped angs rom the bottom of the settlers are to be brrned at a high heat in a roasting furnace, and the resulting colcothar (Venitian Ted) to be sold.
this plan, an outlay of about $\$ 25,000$ for ad itional apparatus is required, as will appear in the estimates here following:

> One 4 -horse power engine and boiler.

Contershattery, op ptamps ar stubbb Building to corerethe why , whld belta

 One reverberatory blas turnace... tieWindpipe, granulating basin, iron
 Leadehamber $40 \times 12 \times 15 \mathrm{feet}=7,200$ cut feet

Iron 1,000 lbs, at 7 centions. of kilns and chamber

\qquad
 1200.ws. at 10 cents. 1 s.

 Two preserure, barrels, one for aid mother-
liquor the other for the las mother-1iquer,
with all necessary pipes, lead-lined

 Wasing tubs $3 \times 3 \times 4$ feet, and baskets, the former lead-lined. requiring 122 gavare
feet lead, at 6 libs $=732$ lbs., 83.20 ; wood-
fer

 One drying eystem, double bottom boxes, ete...

 Sundrics not ine puded abore, including superin-
tendence, etc., auring the crection of the
 tiens, until he produrtso of the werks can go
to market, and to provide 812,000 more for the expleration of the vein in depth
Total investment \ldots36000
441
00

By this outlay the company expect to be, and undoubtedly will be, enabled to reach such results, as will appear from the following calculations relating to the first cost of articles to be mannfactured:

The mining and smelting cost of 75 tons of 6 per
cent. ores is (according to statament given abore up to o oporint mhore alt the the given
 have to be meelted dow, and the impuritiee
oxidized in a reverberatory blast-furrace.

When the eample showw the neceesary purity, the copper is tapped and granulated by the copper is tapped and granuated by allowip it icrospe thin stran, atrean of oold water which falls mith the metal into

 he result would be, sas 9, ,ooo lobe. of granuilaied 2280

 furneco. cent. cement copper in grawling The cost thnn far wiil prodice isiouidios. of gran-
ulated and nearly fine copper. To this into blue vitriol, and fof gain all the cop-

All the work in the sulphuric acid works can be
done by three men (including breaking of

The monthly expenses for manufacturing the prosis templated nnder this plan and shipping them to New York by fast freight, would be $\$ 4537.77$. Of this amount there will bc about $\$ 0000$ paid profit of thist in goods at the company's store, furnishing a pront of thirry percent., or 860 . Delaceng from this the $\$ 500$ monthly profit will sords the cost of the rem ather say $\$ 4050$ per month. For the market the company will have $54,000 \mathrm{lbs}$ of blue ritriol at 10 ents.
60,000 lbs. of copperas, at 18 eents. 85,40000
1,050
10

The cost of production being $\$ 4050$, the execution $\$ 6,45000$ foregoing plan will secure $\$ 2400$ monthly profits to the company. In this estimate the amount of red paint which can be made from the sethings in the conccntrating vats, is not included, because the quanty wheh can be made monthly mus be determined by practice. The cost for working, fuel, etc., f the articles produced is abo he real one, and the price of the articles produced is assumed lower than their present
market value. Thus it may be fairly expected that the commarket value. Thus it may be fairly expecte
pany will really reach the results indicated.
These copper properties in Sonthwestern Virginia are, in ny opinion, destined to create a manufacturing industry, and thereby, such lasting wealth to the State and to those engaged later, as few other localities in the United States will be able to rival. Extremcly cheap labor and fuel, abnndance of raw material, and low rates of transportation to the northern markets, co bish with alle plish that end.

Patents for Mill Sites.

A Washington correspondent writes the Colorado Tribune as follows :-The question having been raised as to the propriety of issuing patents for mill sites in connection with as follows:-
"The ninth section of the Mining Act of 26th July, 1866, provides that the owners of water rights shall be maintained and protected in the same whenever they are recognized and courts, but makes no provision for issuing patents for them. The Act, however, enables claimants of mineral veins to include in their diagrams and obtain patents for snch reasonable quantity of surface gronnd as may be necessary for the convenient working of the same, as fixed by local rules conse and reduction works erected upon it, it is thought that a fair and liberal construction of the Mining Act will anthorize the Gencral Land Office in treating such mill-site as part of the mining claim, provided it is so held nnder the local mining laws or customs, and to include it in the patent with the vein or lode ; and actual contiguity between the ever, than as part of a mining claim, does the Act anthorize the issue of patents for mill-sites."
In another case, where an original location of 6,300 feet had been made in a lode by a nnmber of individuals, the present receive a patent for 2,200 flaims inquires if he can enter and claim, or whether he will be obliged to take the whole as originally located. The Commissioner has replied that the answer to the question is to be found in the provisions of the that the General Land Office issues a patent to any bona fide claimant of a vein or lode, who has previously occupied and improved his claim, according to the local cnstoms or rules of in actual labor and improvements an amonnt of not less than one thousand dollars, and in regard to whose possession there is no controversy or opposing claim,"

The Engineering

MINING JOURNAI.

 CONTENTS FOR THIS WEEK.[llustrated Articles are marked wilh an asterisk.*]

ROSSITER W. RAYMOND, Ph. D., Editor,

PUBLISHERS' ANNOUNCEMENT.

 reports, will form a prominent feature of the publication.
Suschirrios- $\$ 4$ per annum in autrance; $\$ 225$ or Six
 each inertion; the
quired in adrance

 made payable to their order.
 The Posta
year, payable quartery, in adsance, at the office where received.

WESTERN \& COMPANY,

37 Park Row,
P. 0. Box, 5969.
new york city.
The Darien Ship Canal.
Tue successful completion of the Suez Canal confers new vitality upon the scheme of a similar artificial maritime highway across the Isthmus of Darien. This subject, as is well
known, attracted much attention from Secretary SEwARD, who known, attracted much attention from Secretary Seward, who
negotiated through Mr. Caleb Cushrisa a ship-canal treaty negotiated through Mr. Cales Cushrisg a ship-canal treaty
with the Colombian government. That treaty has never been with the Colombian government. That treaty has never been
fally ratifed, and may be considered dead-a circumstance fally ratified, and may be considered dead-a circumstance
which need occasion no regret, since the notorious avarice o the Colombians demanded, and Mr. Cushisa weakly conceded conditions which made the whole project ridicalous. capitalists could have been found to undertake an enterprise burdened with the perpetnal payment of thirty-five per cent. of the gross receipts in return for nothing but the right of way. Unlike other nations, who measnre their importance by their territory, population, and indastry, the United States of
Colombia trade on their littleness ; and, happening to lie in a Colombia trade on their littleness; and, happening to lie in a
highway of traficic, propose to lift themselves above the neeessit highway of traffic, propose to lift themselves above the necessity of labor by the happy expedient of taking toll from all passers. only differ from the Raubritter who used to swoop down from hi fastness by the Neckar or the Rhine to plunder peaceful travellers, in the fact that they have neither courage nor enter prise themselves, and are largely protected and supported by the victims of their extortions.
Mr. Ceshing, like Mr. Reverdy Johssos and many another diplomat, was led away by his desire to obtain for himself the credit of accomplishing suceessfully the work entrusted to him. He made enormons financial concessions to Colombia, and his boasted success amounted to a treaty which, had it been ratified, could not have made a ship-canal possible, and which actually failed of ratification, because the effect of the concessions made was to stimulate the greed of the robber-beggars who received treaty The Colombian Congress refused to sanction the treaty because, having gained so much, they saw no reason
why they should not be able to exact more. And, indeed, this conclusion was logical enough.
We repeat that the failure of the Cussing treaty is not to be regretted. What is to be regretted is the fact that it was ever negotiated at all. It will be difficult to conduct diplomatic efforts in the same direction hereafter, on a basis of common sense and fair mutual advantage. In fact, our government cannot do better than to drop that part of the bnsiness where it is, and leave the matter to be managed more wisely by private parties.
Both the President's Message and the Report of the Secretary of the Nary refer to this sabject, and declare that surveys will be prosecuted, if the permission of Colombia can be obtainea, The report of Admiral Davis, published some years ago, discasses snperficially several routes, and seems to demonstrste that ronte proper line will be fonnd somewhere in the vicinity of the clusion to be drawn to Caledonia Bay. The principal conthe necessary knowledge of the interior to locate a ship-canal.
There will never be trore than one canal through the Isthmas, and this should therefore follow the ronte which is absolntely the best. There is therefore no objection to the step proposed $\begin{array}{ll}\text { of continued and thorough survecss of the interior, } & \text { But }\end{array}$

Admiral Davis does not seem to have had at his disposal the information possessed by the engineers of the Panama Railway Company, who are of all men the most familiar with the Company, who are of ale men the most camiliar with the
counte, as we have said, there can be no harm in further investigations, there is still a great deal of knowledge already acquired, which has apparently been disregarded in official reports.
The Panama Railroad Company, by the terms of its charter, mnst be a party to any arrangement for a ship-canal. The right of way for such a work, withont the consent of that company ; and the company is bound not to withhold its consent except so far as to secure full indemnity for the damage cansed to its lucrative bnsiness by the construction of a canal. The immense extent and proftable character of that business are well-known. The Pacific Railroad does not, and cannot seriously impair it ; for it is mainly the trade of the South American coast with France and England, which ponrs its tide through that channel. The whole California traffic was no not even all of that is taken away by the Pacific railway.
The construction of a ship-canal, however, would annihilat at once the whole business. Local traffic there is none ; the Panama railroad is simply a portage between the two oceans; and the moment water-communication is established, it might as well not exist ; for its occupation will be gone. If a ship solual company has to indemnify the road for this cutter and a
sost of that work will be necessarily augmente by an enormons sum.
Moreover, if we are not mistaken, the Panama Railroad Company holds the exclusive right to a canal as well as a railroad over the route from Aspinwall to Panama ; and this route is incomparably the best thus far discovered. The fact that it is not open to other parties must explain why it is so often disregarded, while vast schemes are propounded, involving locks, hage tunnels, and many miles of expensive cuttings. The dismiles ; the heariest grade in the road does not exceed sisty
mon feet to the mile ; and the utmost altitude, according to our present recollection, is less than 150 feet. The rock constitnting this ridge is volcanic breccia, not difficult to excavate. If any one fancies that any spot exists where the continental chain of mountains can be passed nnder more favorable conditions than these, he must be very sanguine.
In this conneotion, we pause to notice the prevalent notion, countenanced by some scientific men, that the two oceans "The map," it is said, "produces that impression on the mind at once." Now the map probably reflects the impression ready in the mind; and it is quite as natural to believo the Gnlf of Mexico to have been hollowed ont by the encroachmeats
of the sea, as to consider the Isthmns a recent conguest of the land. In point of fact, the marine fanna on the two shores, hough only separated by a few miles, are totally different. We believe there is no single species common to both. The recent discovery of a bed of sulphur in Lonisiana, five hundred feet below the surface, indicates that the volcanic region of Sontral America extends beneath the Gulf of Mexico oto the Sonthern States, and may be a piece of important collateral
evidence as to the original shape of the continent. We allode to this subject, becanse the hypothesis referred to is made the basis of a smpposition that still lower passes than that of Panama will be discovered in the monntains of the Isthmus. Or course no one can predict what will or will not be discovered In all haems to ns that the expectation is scarcely well-founded In all hnman probabiity, the Fanama ronte will remain, as il now seems to be, the only one upon which a ande-vater canal time, of all possible lines, the shortest. The idea of going of o another line, for the sake of a longer transit, cursed with innumerable difficulties of level, excavation, and water supply strikes ns as folly
But this route has another unique advantage. The existence of the railroad is more than half the battle in the construction of the canal. The saving of actual expense in transportng materials, would be enormous; and the mortality among construction of the Panama road itself), would be avoided by he facility with which all hands could be transported, after the day's work should be over, ont of the miasms of the Chagres To sum np this argument, it seems very plain to us that the Panama Railroad Company possesses the roate for a ship canal, and is also placed by the charter in the best position for recently obtained, in spite of Moseuras and the English, the renewal of that charter, will be likely to do mnch better than another Cusinsa in securing favorable terms for a canal Whoever proposes to build a canal should therefore buy the Panama Railroad. This is virtually the same thing as indemnifying the road for the destruction of its business, which yet : the Panama Railroad Company should brild the canal nd thus secure its construction under the political circnmstances, with the greatest economy and rapidity, and on the best line; while, on the other hand, the old company, merged in the new, wonld perpetnate a prosperity which, nnder a different plan, might be taken ont of thei reach.

The Tin Ores of the United States.
Is another column we publish one of the interesting commanications of Professor RoEssLLER, of the Unts from the
General Land Office, referring to the recent reports from tin mine of San Jacinto, in California. The Professor't resum
of tin discoveries in this conntry is incomplete, since it omits all mention of the operations in Missouri, and of the very handsome stream-tin found in Idaho, the original deposits of which have also, it is claimed, been discovered. Nor do we quite agree with the statement concerning the Temescal mines, which, it is hinted, never furnished more than a few cabinet specimens of tin-stone, and were abandoned because the miners could find no ore. Those mines furnished at different times a considerable number of tons of rich ore ; and the chief cause of their abandonment before they had been fully developed was the litigation which encompassed the title of Don Abel Stearns, their owner. Since the first abandonment, shipments of ore in small quantities have been reported as the result of squatter" workings ; but we have ne trustworthy data concerning these.
On the other hand, the difficulties attending the production of tin in this country have always seemed to us (the supply of ore being assnmed) of an economical rather than a metallurgical character. The great danger in California, for instance, will not be a failure of smelting processes, but a direct competition with East Iudian metal. Uatil that commerce is established, however, or the Californian market becomes important enough to be worth a struggle on the part of the Datch and other tin monopolists, it is quite likely that a moderate production, to satisfy the local demand of the Pacific coast, may be carried on with considerable profit. - In other in favored localities in this country with profit. But those rates are made np of four elements-the cost of mining and reducing in the East Indies ; the cost of shipment by sailing vessels the tariff ; and the profits which the mining and trading companies choose to demand. It is a notorions fact that the con ditions of tin-mining in Cornwall, Saxony, and Bohemia do not determine the market price, but are, on the contrary, largely affected by that price, as fixed at the Amsterdam sales. Herein lies the risk of mining and selling tin; and as Professo Roessler well remarks, "prudence wonld dictate that all parties should not indulge in sanguine expectations."

Boiling Water.

There is a popular notion that the heat of boiling water is always the same, namely, 212° Fahrenheit, or 100° Centigrade ways the same, namely, 212° Fahrenheit, or 100° Centigrade nnder the ordinary atmospheric pressure of fifteen ponnds to the square inch. But many persons do not realize that tho boiling point of a liquid depends npon the pressure to which it is subjected, and that any variation of this pressnre change the boiling point. As we rise in altitude above the sea, for in stance, the height of the atmosphere over us is diminished, and at a corresponding rate, its pressure decreases. Boiling water is not so hot on the top of a monntaia as at its base. In Qnito, for instance, some six thousand five hundred feet above the sea, the pressure of the atmosphere is only a little over ten pounds, and water boils at 194° Fahrenheit. This is not hot onough for all cooking purposes; hence some kinds of food cannot be eaten boiled, in Quito, as they are in other cities. A practical and frequent instance of the increase of boiling temperature, on the other hand, is found in steam boilers. Here the water is nnder a pressure of steam ; and the tempera ture of the water rises with the pressnre. The proportion of this increase is not difficult to be discovered; since the temperatnre of boiling water, confined in contact with steam, is exactly that of the steam. Superheated steam is another matter entirely, and does not enter into this discnssion, since superheated steam cannot be produced while water is present. We may even say that the water at the bottom of a boiler is hotter than the steam, since it is under the additional pressure of the column of water itself. If the steam has a pressnre of one hundred pounds, and the temperature of 388° Fahrenheit, which belongs to that pressure, then the water must be at least as hot as that, to generate more steam. A sudden diminntion of pressnre will freqnently canse an explosion, by lowering the boiling point of the water, and allowing a large quantity of fresh steam to be generated at once. This is a danger acknowledged to attend the use of safety-valves; and hence the engineer wishes his safety-valve to leak under pressure, not to open suddenly a wide escape for the steam.

The Poorman.

A perfectiv trustworthy private communication from Ruby City, Idaho Territory, informs ns that the Poorman looks far better than last summer. I winze has been sunk from the desth level south in a body of fair milling ore fifty feet in apth, the vein having taken an abrupt change and dipping abont sixty degrees to the east. It has kept the same dip, howing well deinned walls all tho ighteen inches wide on an average. This was sufficiently enonraging to induce M . Walande feet, and itis now going down. The Golden Chariot looks well, llison. Allison, now under lease by the Owyhee Company.

Bricks from Gas-Coal Ashes.
Walis of remarkable lightness, porosity, and dryncss masy be built cheaply of bricks made from the ashes of the coke derived rom gas-works. Mr. Wagner, the first inventor of the process for effecting this, instructs us as follows as to his modus operandi - The ashes, after heing takeli from the retorts, are spread on the surface of a clean floor; they are then finely pulveized, and ten per cent. of slacked lime, togetber with a small proportion of water is intimately stirred and incorporated with them. Alter rest of twenty-four bours, the misture is made into bricks b be ordinary process. These bricks are immediately transferred to the drying-sheds where a few days of exposure renders them io for nse,-The Manufacturer and Builder for November.

THE ENGINEERING AND MINING JOURNAL.
[December 14, 1869.

Quartz Miners Strike in Montana.

 A teureass from Helenn, December 7 th, says: "Yestereay the quartz Unionville, struck on account of the reduction of wages. New men were set at work, but were driven off by the strikers. Five of the strikers were arrested by the Sheriff, bnt they were instantly rescued by their friends. This moruing every miner in the district, some three or four hundred, struck and armed themselves against the Sherif. The latter collected a posse of about four hundred citizens, and proceeded to Unionville this afternoon, but the Mining Company acceded to to the demands of the strikers, who then gave themselves up and were discharged."
MISCELLANEOUS.

$T^{\text {He soth volume: }}$
NEL SERIESI NEW Form
the PICTORIAL
PHRENOLOGICAL JOURNAL, a first class
Family Magazine,
Sppecilly devoted to the " "craxce op MAs," Lisis im-
provement, by all te means indlcated hy Scizxce. provement, by all the means indicated hy Scorscres,
PrResocoor. The Brain and lta Fnactions ;

 stribed.
Puxsooxoury, witl all the "Signs of Character and
How to How to Read Them," is a speeial featire. Ertasoloory or, The Natchach hatoony or MAx.Tribes and Nations, will be given.

THE Let massex's
High and Low-Water Detector. Patented in the United stoteses, Eagiand and Franee
A perfeetly simple and rellibibe instrument for A perreety simple and reliable instrument for preverting explozion br burning of steam PRICEs, $825,530, \$ 35$, and sso, according to filisb. Every tustument waranted in erery reppeet
This Deteeror requires no adjusting after beiug ap. pried to tbe Boiler, and

CanNot be tampered hith. It may he applled on top, or in a separate chamber, at
the end of the Boller.
Adddress,

"rHE ENGINEERING AND MINING JOURNAL," an hllustrated werkly periodical. Intended to advance the intiresta of thone engaged in
volume vil. Comajexced suly e. engineering.
It contains matter of the higheest importance to
who onve en ed in
cive

the coal trade,
the metal trade
Where erer they affect tbee

 pretented remodeleed, improved, and in a
attractive form.
Among its contributors will be found gome of the
ablest men or the dayy and no effort or expense will be
 gyorthr, Axa Thooroom.

Subjecta requiring the ata of engravings will be fully
Illustrated by cuts repered by the beet arists.) Great

 STrais copirs, TEN CENTY EACH.

CAR SPRINCS.

UNION CAR SPRING MANUFACTURING CO., 4 Dey street, New York.

Hebaard.
Yolute.

BEST TBEARING AND BUFFER SPRINGS AT LOWEST PRICES.
nstructions from the sechetary of the
treasjry
Letter of the comaissioner to the seche TARY.
REPORT :
ART I.-Observations of the present condition of the mining industry :
SEcrior: I.-Notes on California
Chapter 1.-The new Almaden mines.
i1.- The Mother Lode of California.
iII.-The quartz and placer mines
IV.-Giant powder and common pawde

Sectiox II.-Notes on Nevada:
Cbapter V.-Present condition and prospects of
the Comstock mines.
vi.-Ormsby, Waslioc, and Churchiil Connties,
vil.-Lander County.
vili.-Nye County.
IX.-Lincol: County.
x. -Esmeralda Connty.
XI.-Humbolat Connty

SEctiox III- Notes on Montana :
Ohapter xII.-General geological features xIII.-Population, property, railiroad. єie
xIv.-Placer minee.

YV.-Quartz mines
xVI.-Operations of the Uniled siates law.
Notes on Idaho:
section IV-
Chapter XVIL.-Report of Mr. Asbburner. xvili-The War Eagle tunnel. xIX. - Buliton prodnci.

SEction V.-Notes on other nining fields:
Chapter XX.-Arizona.
XXI.-Utalf.
XXII.-The Isthmus of Panama.

PART IL.-The relations of government to mining , Introduction.
Sectiox VL-Miaing bur
Chapter XXIIL.-Mining and mining law amon
the ancients.
xxiv.-Mining law in the middle ages xxv.-The Spanish mining law. xxyl.-Modern Gerinan codes. XXVII.-The code of France. xxvili- - Mining law of Switzerland, xxix.-Mining law of England. xxx. - Mining regulations of Australia. xxxi. - Mining laws of Canada. xxxII.-Conclusions.

Section Vil.-Mining Edmation :
Chapter XXxili.-Means of disseminating information with regard to mining and metallurgy ; the National Scbool of mines.

Suctiox Vil- Yining Eltarion Cond

Chapter Xxxiv.-The Freiberg School of Mines. xxxv. -The Paris School of Mines. XXXVL.-The Prussian School of Mines. thal.

anprix-8tatifics of ballion, ores, etc., at San Fran.

cisco, for the ear 1868.

EXTRA CLOTB, 8178. SEND FOR ILLUSTRATED PAMPHLET.
S. VERNON MANN,
F. W. RHINELANDER, S. VERNON MANN, PAMPGLEAL. LEAVITT HUNT, Dec. 14 President. Treasurer. LEAVITT HUNT, Gemeral Agen

PUBLICATIONS.

THE NEW RELIGIOUS WEEKLY.
THE CHRISTIAN UNION,
An Unsectarian, Iudependent Jourual, devoted is Religion, Morals, Reform, Foretgn and Domestic news
of the Chureb and the World, Literatnre Sclence, Art of the Chureb and the Worla, Ltiteratnre, sclence, Ar
Agriculture, Trade, Finance, etc., etc. And containing houselhoid stories, cboice poems, walks with the children, etc., etc., embraeing contribntions from weli. known and eminent writer

Henry Ward Beecher,
whose powerful Editoriais, Literary Revicws, and
Lecture-Room Talks so rictiy fretghted with Christion Lecture-Room Talks, so rictiy fretghted with Christian experienee, appear regan suidance of the paper. With Mr Bexcher as its Editomincties ated With Mr. BEECHER as its Editor-ln-Chief, aided hy
some of the hest and most notahle talent of the land, the paper cannot hut carry good Christian food, for heart and soul, to its many increasing readers. That will be its constant endeavor. Aiming to be a trnly Christian Jourual, and a complete Family NEWSPAPER, and having for its purpese the presentation of essential
Bible truth, " THE CHRISTIAN UNION" will advocate in the spirit of love and liberty, the fellowship and co. operation of Christ's people of every name. Recog. niziog the rigbt and the necessity of different Cbnrcb organizations as the natural result of the many-mindedness of mankind, it wili endeavor to treat an Coristian
denominations with farrness and love, stating its own denominations winkarness and
opinions with frankness but tindess, and providing an arena for courteous dehate not hedged in by sectirlan houndaries. Without under raluing doctrinal
truth, it will ehiefly strivo truth, it whil ehielly divo to fortor and eaforce
chaistianity as a life,
rather than a theologieai system. It is a paper for Christians of all Denominations!

1ts Form: Sixteen Psges, Large Quarto, ent and stitched, so couvenieut, both for use and preservation,
as to be a great and special merit in its favor, apart from its superior literary attractions.
Its Circnlation : Spreading with wonderful rapidity,
showing that the paper supplies a real need of the khowing that the
Curitian pohlic.
Its Price: Only $\$ 250$ per year.
Suhscrihe forit! Get otbess to tike it 1 Circulars sent nyon application, containing list of liberal cash Copies sent free to any address.
J. B. FORE \& CO., Puhlishers,

39 Park Row, New York

Henry Ward Beecher's Sermons,

PLYMOUTH PULPIT,

rublished weekly

Is the only regular publication of Mr. BeECHER's current sermons-the one indorsed by bis approval as
correct, and sauetioned hy his anthority ; it is well prrect, and sauetioned hy his anthority; it is well Binding and Preservation, And it is cheap-within the reach of afl.
"PLYMOUTH PULPIT" contains aiso the Prayers aud the Scriptural lesson and hymns sung, making a each Sunday, all reported verbation hy Mr. T. J. Eulus
cis wood. for ten years Mr. Berchers's special reporter. These sermons are being read by peopie of every
class and denomination, all over this country and in Europe.
They are full of vitai, beautiful religions thought amd,
teeling. teeling.

Althongh one or two religlous papers Lave hee grapted permission to priut extraets from tbese admi
rahle reports, "PLYMOUTH PULP1T" is the only com ple te publication of Mr. Beecher's Sermons offered to the Christian public. Ta

TERMS: Siugle numbers, Ten Cents. Yearly sub pages each. $\$ 300$, giving two volumes of abont 40
The volume commences in S ptember and March of each year. Vol. III. commeneed September $25 \mathrm{th}, 1869$.
Half-searly subscription price, $\$ 1$ 75. may hegin with any number. Any back numbers can be snpplied.
A new and superb steel Portralt of Mr. Bezecze presented to all yearly subscribers.
" PLYMOUTH PULPIT" α
and the "Cirristian Union,"
(Whose combined price is 85
year for Four dollars

PUBLICATIONS.

NOW READY. HOPTON'S CONVERSATIONS On MINES,

FATHER AND SON,

 enlaiged from 112 to 192 pages.The Following are the Contents: Air, why it is propelled down, into and around the work-
": Quantity of, produced by the furnace.
"Thet great friction of prodiced by one mod

One currentor of (plann)
One current of, and how
Diviling of, but not lito "separate and and die

Bricks, mines (engravinge
Buadee's plat

Working out with no (regularity (plan)
Worring out by the "end was" or is
oplan)
Cubical dintenta of a plt, how to find
Sialing, the mode miayng

At Lund.hinl, in what part of the mine it was

Engraviangs. of grirent fround floor, frout and back
R. Hemw

Do. proporition or
(After, or chook yaporptites of of position of

The quantuty req.
The elestict of
The weifit of
The nature and quality of
Why ban mon mine generate end produce , more
than others
Why than others generate a mixture of

 $\underset{\text { Sataral ventititaion }}{\text { Planning, how working }}$

 Temperature oin sirface
Temperature in mines
 Theodoitites for mine surveying
 Theylht
UTpecoithe, how mines are surveyed with them

 v. Such Testimonlals, Reviews, etc. more soch p workt, weill umarertood by miners, would do do
ppectore
 country contents are reall valuable to the miners of thle
 Mat work, it replcte on tho sibiject of muderground
 Westerx dico.

Sol Agent for the United sitates.
 Bookseller. Price $\$ 1$.
Coal, iron, andotil.

> by daddow and bannan.

The Great Work on our National Re-

COAL SHIPPERS.

E. b. ELY \& co., Shippers of

OOAI,
39 tritty bullding. in broadway. Snw Yonk.
"Old Compan's's" Lelight, J. H. Swoyer's Enterprise,
 ap24-1y.q
POWeLton COAL ANDIRON COMPANY Powelton Semi-Bituminous Gas and anthractite coals,
104 Walnut street, Phlladelpha. branch offices
Cleveland, O.; Pittsburgh, Pa.
jan30-is
SAMUEL BONNELLL, JR. OFFERS FOR SALE
エEIIIGEI OOAIS, orfice:
43 and 45 thinity bunding, ill broadway,
H ONEY BROOK COAL COMPANY, ExHoney Brook Lehigh Coal, No. 111 BROADWAY, NEW YORE. james h. lyles, Agent. Wharves, Port Johnson, N. J. Philadelphia offlce,

209 Walnut street. | ap20-1y | J. B. McCREARY, President. |
| :--- | :--- |
| WILKESBARRE $^{\text {CoAL, DELIVERED D1 }}$ | |

$\mathbf{W}_{\text {rect from the Mines of }}^{\text {ILKESAR }}$
The Wikesbarre Coal and Iron Co.
hoboken and Jersey cit OFFICE:
WhTE, FOWLER \& \&NOW, stccessors
Wilkesbarre and Lehigh Coal, for steam and family use.
Room No. 75,111 Broadway, (Trinity buildugg).
janl-1y
JNO. WHTE,
LNDLEY H. FOWLER,
LOUIS T. SNOW.
THE PANY.
Mines at Newburgh, Preston Co., W. Va.
Company's Offle, No. 52 S. Gay St. Halti Company's Oifce, No. 52 S. Gay St. Baltimore, Md. OLIVER O'DONNELL .. .
Thls Company offer their very superior Becretary
It yield 10,996 ctbicic feet of gas to the ton of $2,240 \mathrm{Jbs}$, of good illuminativg power, and of remarkable purity
one bushel of ilme puriffing ,792 cmblc feet, with
large amount of cole of good quality. large amount of colke of good quality.
It has been for many years very extensively used by It has been for many years yery extensively ured by
variong cas Companies the thited state, and we beg
to refer to the Mannat tan , Metropolitan, and New York

COXE BROO.S \& CO., CROSS CREER COLLIERX
Cross Creek Free Burning Lehigh Red Ash COAL.
from thebuck mountain vein. offices;
Philadelphia, No. 341 Walnut street. Drifton, Jeddo P. O., Luzerne Co., Pa, agent in New York, samyel bonnell, Jr.,
Room 43, Trinlty Building, $\frac{111 \text { Broadway. }}{\text { f. X. Burbovohs, Prest. }}$ H. H. Shulisofozd, Treas.
 Bituminous Coal,
Tunnel Hill (Lemon Veln), Gallitinin, Cambria Co.
Beaverton, (Phenix Vein), OBcela Mills, Clearneld Co
 12J. Sonth Fourth street Fice:

C. S. S. Gove
sively by the

Consolidation Coal Company of Maryland For Blast, Puddling, Sinelting, and Glass Furnaces, and all other purposes reqniring the best quality. Diagrame
of finapes and prices will be furnifhed by the under
kigned. Also,
George's Creek Cumberland Coal OCEAN MINES.
 James A. Milliolland, id v. Pres. ${ }_{25}$ Ginmos Mzrediry,

COAL SHIPPERS.

PIER No. 14 NORTH PT. RICHMOND.
J. J. J. H. EASTWICK \& CO., SHIP C. J. of J. H. EASTWICK \& co., SHIPP White and Red Ash Coal, No. 228 DOck STREET, Philadelphia, and
No. 19 DOANE STREET, BOSTON. No. 19 DOANE STREET, BOSTON.
BURNE RED ASH, SHAMOKNN WHITE ASH,
LOCUST MOUNTAIN WHTTE ASH an-15-is s.a
THE DESPARD COAI CONIPANY OFFER 1 their Snperior DESPARD COAL to Gas Light Con
paniestriroughot the country.
MINES IN HARRISON COUNTY, West Virginia. Wharves, LJocust Point,
Company's Office, No. 29 South st. $\}$. Baltimore. PARMELE BROTHERS, No. g2 PRne street, New YOrk.
BANGS \& HORTON, NO. 31 Doane street, Boston. Among the consumers of Despard Coal we name Man-
hattan Gas Light Co..New Yort, Meropopilan Gas Light
Co Co., New York, Jersey City Gas Light Co., Jersey City, Portiand Gas Light Co., Portland, Maine. may $30-1 \mathrm{y}$
oference to them is requested. L EWIS AUDENRERED \& CO.,

ANHRACTIE COALS.
From Philadelphia and the Mine
Red Ash : BPoHN, Red ABh; OBC

 doah Coals. has therior cuabrerland coals.
Also
Broad top. barton, barto

 205 Walnut street, Philidelphin; 14 Killy street, Boston
44 Westminster
st., Frovidences
110
English coal and cannel.
despared coal, from Baltimore,
PROVINCLAL COAL,
anthracite coal.
For sale in lots to suit.
parmele bros.
agency of oscab I. Van Wart, Livetpool.
Office, No. 32 Pine street, New York.
Yard, West 22 d Street, near 10 Avenue. feb27-1y
W. D. crane \& co.,

Anthracite and Bituminous Coal NEW YORK:
115 Broadway.
BOSTON:
26 Kiby street.
V an wickle \& stout, Miners and Snip
Fulton \& Stout Lehigh Coals.
neo Office, 119 bioadway, rooni 18, New Yohe.
Onr Fulton Lump is a anpe
feb20-1y
G. B. Linderman \& co.
miners,
Sugar Loaf, Lehigh Coal.
office, 50 trinity building, 111 broadway may23-1y NEW YORK.

TYLER \& CO.,

 Also, dealers in the then
and wilkesbarre
$\underbrace{\circ}_{\text {Bumbrso, New York. }} \mathrm{I}$ I,

328 Walnve Staret, Philadelphia.
Hatch \& TyLER, Hartford, Conn.
nay1-15
$\mathbf{R}_{\text {origina! }}^{\text {ANDI }}$ BROTHERS, Sole Agents of the
Spring Mountain Lehigh Coal, Extensively nsed for Smelting Iron
ncir Rooms, 28 and 30 Trinity Builaing. new york.

Central coal. m. and m. Company,
15 AND 17 TRINITY BUILDING,
NO. II BROADWAY, NEW YORK.
miners and shippers of
George's Creek Cumberland Coal. H. Conrad,
Sept $28-1 y$
F. P. WHITE,
sec. and Treasurer

PICPROU COAL: THE UNDERSIGNED ARE
prepared to contract for the delivery of plis
kell
knova Cost either on board vessel at Prcton, or at any known CoAL, either on board
port in the United States.
required. perkins \& JOb,
39 India Wharf, Boston,
86 South street,
ang 10-3m
New York.

CUMBERLAND

COAL AND IRON COMPANY. Semi-Bituminous Coal from the Hoffman, Astor, and Eckhart Mines,
NEW YORK, GEORGETOWN, OR BALTMMORE Office, 90 Brosdway, Cor, of Wall-st., New York. Wx. M. RICHARDS, President, Kow York,
E. H. TRACX, Eng, and Supt, eumberland. Ma,

ENOINEERS.

Cilas. P. wilhinms,
nalytical and consulting chemist.
Laboratory, 327 Walnut St., Philadelphla.
Analyses and Assays of Natural and Artincial Sub-
stances. Researches and Consultations on Chemico-techtances. Researches and Consuitations on Chemico-tech-
nical questions.
and Metallurgy.
anstruction in Analytical Cheniontry
ang $17-1 y$
P. H. van der weyde, m. d.,

Chemistry and Metallurgy,
(Late Profesor of the N. . . Medical College, of Mechan-
ics, ete... at tho Cooper netitute, and of Ind Intrial
Science at the Girard College, Philadelpbia,) Analytical \& Consulting Chemist and Engineer.

R. P. ROTHWELL
gining and civil engineer and metallurgist,
From the Imperial School of Mines, Paria, member of
the Geological Society of France, etc.
OFFICE, WILKESBARRE, PA. Having had a large practical experlience in Europe an
this connurty, is preparcct to examine nad report on al
cind this conntry, is preparce to examine and report on all
kind of mincral propert, smperintend mines, and
metallurgical works, assay orcs, etc.
18-2. 2 q
$B^{\text {enjamin smith lyman, }}$
GEOLOGIST AND TOPOGRAPHER No. 135 South Firth street, Philadelphia
$\mathbf{A}^{\text {DOLPH OTM }}$ May be employed proteesionally as an expert on practi-
cal
kubjects, innovoling both Chemical and Mechaulean nuowledge. A specialist in varions brand cocen
 Whiten communications preferred. nov28-tf Hawkins, herthel \& burral, Mechanical
Butupzas or
Herithel's Patent Truse, and other Iron Bridges, hocis,
and Tunn-Tables. Also Howe's Patent Truss, and other
Tinter Timber Bridges, Reoff,
Corrugated Iron Doors shutter Corrugated Iron Doors, Shutters, and Iron Ballading
Material generaly
General lailrond Work. General Railioad Work. SPRINaFIELD, MABs.
July 20-1y A. D. BRIGGS \& © CO., Tuesdell's Patent Trunders or Brige, and other Iron Truse Bridge and Roof, and other Timber Briges and
Tur-Tables Particular attentlon given to repairing all linds of Bridqes. Alt work warranted to give antiog
faction. Plang, Estimates, and Specifications, upon ap.
plication. $\underline{\substack{\text { plication. } \\ \text { Jnly } 20-1 \mathrm{y}}}$ sprivgrield, mass. MISCELLANEOUS.
NAHUM PERRY \& co.,
BOILERS, PIPE, FITTINGS, VALVES, COCKS, steam pumps, \&c.
STEAM and GAS PIPING: in all its branches.
PROVIDENCE, R.I.
Public Bulldings, Stores and Dwellings heated with

$\mathbf{S}^{\text {ahgent card-clothing co., }}$ WORCESTER, MASS.,
MACHINE CARDS
on, Wool and Flax, set in Leather, Cloth, etc., ete. SPECIALTY.
Oar Patent PAPER-BACK CARDS, for Drying Machines
and heavy work. All deecriptions of Hand and Stripping Cards, Manu.
factures'
mappplices, etco, fornished to order at
mowest

A Gents and canvassers wanted stattes,

Engineering and Mining Journal.
Liberal inaucements. specimens sent free. Adare
WESTERN \& COMPANY,
D. W. LEE \& co,

37 Park Row, New York.
Stationers ard 131 ank Benol MANUTHCTURERS,
82 Nassa ustreet, near Fuiton, New Yoi
Have obtained the sole right to Mannacture the
PATENT SELF-CEMENTING BANDS, or bank bllls, curre is required.
Put op in boxes at $\$ 150$ por 1, cuc.
Send for sample tree
$\mathbf{W}^{00 D}$ engraving
EXECUTED at THE OEFICE
The Engineering and Mining Journa
No. 37 tark bow, new york ctix.

California stamp mills,
 patent
Excelsior Grinder \& Amalgamator CONOTDAL SEPARATOR AND

PAN AND SEPARATOR

 given A genta for UNTON IRON WORRS San Francleco.

r . мовег.

Kromis ORE CONCENTRATOR

Concentration by means of Air
 rachines which concentrate the various orese more per
 IImple, the maxhines therefore corrospondingly durable oonh othour is effected, hence very hintle attention is r ee

 ocall at No. 210 Elarlige street, New York, whero they

 STEPHEN R. KROM
B. Kreischet
new york fire brick and staten island

Clay Retort works Established 1845

Office, 58 Goervik Street, Corner Delancy Street, Eas River, New York.

INSTRUCTION.
SCHOOL OF MINES, COLUMBIA COL
 urgy; C. F. CHANDLER., Fu. D., Anslytical and Appled

 History; Analytical and Applied Chemistry. Special
thatents recel ed for any of the hranches tanght. Par ticalar attention paid to Asesying. For further infor not21-15-1s
R ENSSELAER POLYTECHINIC INSTI
engineering and practical science.
Younded, 1824.
The cours ruction. each extending over foor
yaars, are ang entineeriva.
2. MINING ENGINEERING.
4. Natural science.

Degrees confirerred in the different departments.
Applicants for admission must not be less than
years of age. in Geology includes extensive engineerin
The course in Geology includes extensive engineering
Sele practice. The proximity of iron, steel, and machine
works, together with railroadk, canals, and bridges

 Aor Arinual Begister giving foll partienlars apply to

 has been introduced into almost everyse country on the globe, and is overywhere rcceived with great and increasing
favor as a ilabor-saving machine of the frret order
 The Patents ontanined for this manchine in inc. United States and in England having been fully sustained
by the courte, after well contested suits in both countries, all persons are hereby cantioned not to violate them
 in Violation of
Mch. 14-1y.

BLAKE BROTHERS, New Haven, Conn.

The wilson patent

 Stea Are with

 with their propared to supply Miners and other parties

New Steam Stamp-Mills AT THE shomiest yotice.
These Mills have now been int operation for upwards
of a year, and have proved to be the most durahile and

 ahle cams on the piston rods or stamp stems, therehy
givnnt the operator aheolute control of the length and
velocity of motion and force of the blow. These Mills velocity of motion and fore of the blow. These Mills
are dadated for obth dry and wet crushing, and for the
hardest rock or mottest cement. Theee Mills are every
 the wilson patent steam stamp-mill Ang31-1y Company,
326 Walnut street, Phlladelphia.

SMITH \& SAYRE
minufacterivg co.,
PROPRIETORS AND manufacturers
of the
Mackensie Patent BLOWER and CUPOLA and
SMELTING FURNACE. Also. Mackensie's Patent
GAS EXHAUSTR and COM:GAS EXHACSTER and
PENSATOR. Address smith \& saybe Manupacturing Company, 95 Liberty street, N. Y. Send
for illustrated phamphlot for illustrated
$\mathrm{Mar} 2 \mathrm{Cl}-\mathrm{y}$

ALBERT BRIDGES

P. O. BoI, 284. NO. 46 CORTLANDT STREET,
NEW YoRE. NEYNABER'S MONITOR LOW-WATER

SIMPLICITY, PRECISION OF ACTION This indicator has no equal. it it
Low. Water Indicator in use. In use at the U. 8. Mini
Phila.: Treasury Departmeut snd Agticultura
Phila.; Treasury Departmeut snd Agricultural Depart
ment, WWahtugton, and Pot ofice Pulitadelpha, and
many others.
A. F. W. NEFNABER, Geu. A gent,

4.5 Girard
nov. $16: 1 \mathrm{l}$

NORWALK IRON works,
SOUTH NORWALK, CONN

Earle Steam Pump and Fire Engine (Patented in the United States, France, England an
Belgium.)

Air and Vacuum Pumps,
steam and blowing engines,
Pumping Engines for Water Worls, Horizontal and Tumbling Beam Engines, Mining, Wrecking, and Supply
Pumps.
iron and brass castivgs, of every dencription.

STEAM PUMPS.

THE woodward

Steam Pump Manufacturing Company. manutacturers op the
WOODWARD Patent mmproved safety
Steam Pump and Fire Engine.

stean, water, and gas yuttrges of alt tivo Aleo dealers in WROUGHT RRON PIPE, BOLLER
TMES, ete.
 marth street, New York. Formerly tit Beckman street.
GEORGE M. WOODWARD, Prest.

9 ADAMS STREET, BROOKLYN, N. Y.
Sole Manufacturcr of team Pump and Fire Engin Patented in England, Belgium and France. Send for Patented
circular.
Knowles' Patent Steam Pump.

factortes at warrex, mass.
WAREHOUSE, NO. 126 LIBERTY STREET, NEW YORK.
Air Pumps, Blowing Engines, Hydraulic Pressure Pumps, New Locomctive Pumps, Fire Pumps, Boller. Feed, Marine, Drainage, Sugar-work, Brewery, Distil Improved Horizontal and Vertical

MINING PUMPS
(Working with Plungers, and eeppecially arranged for
pumping water containing dirty or grity matter) punping water containing dirty or gritty matter.)
Pumps for every posibible duty, and all fully guaran-
teed. Also. kNOWLEs' patent safety boller feeder Send for Illnstrated Circular. $\quad 10-1$ jjuly IRON WORKS.
$\mathrm{W}^{\text {M. A. SWEETET SYR \& CO. NO. } 33 \text { WYOMING }}$ manufacturers of
OTEAM-1HAMMERS,
 Sweet's Celebrated steel Tire, and Cast-8teel Sleigh
pov, $16 ; 6 \mathrm{~mm}$

Lebby and duc patents T. F. ROWLAND, CONTINENTAL WORES, Greenpoint, Brooklyn, N. Y. pgo Send for Mustrated Circular. ${ }_{\text {juy }}$ jo-em-is J. clayton's

Patent Fly Wheel and Direct Action
 SIEAM PIMMS HAND PUMP AND steam bngine combined. These pumps are the
eheapest first-ciass pumps in the market.
All sizes mado oncr at thort notice.
JAMES CLAYTON, 24 \& 26 Water st, $H^{\text {YDRAULIC works. }}$
manufactory,
BROOKLYN, N. Y Steam Pumping Engines, Single, and Dupiex, Worth-
ington's Patent for all

 MINING PUMPS,

Water Meters, Oii Meters; ; Water Pressure Engines;
Stanp M, Mills for Gold, silver and Copper Ore ; Eaton's
Patent Amal Patent Amalgamators for Gold and silver; steam an
Gaa Pipe,
alves, Fititigs, etc. Iron and Brass Casting. H. Send for circular. worthington,
H. $\frac{\text { febl-1y }}{\text { CUILD \& GARRISON, MANUPACTCRERS OF }}$ $G^{\mathbf{U}}$

Steam Pomps, Vacuum Pumps, Steam Engines, \triangle and ail the various con
 26,28 and 30 First street,
williamsburgh,,$~ X$

MISCELLANEOUS.
CORLISS STEAM ENGINE CON GEORGE H. CORLISS, PREBLDENT.
WILLAM CORLISS,

PROVIDENCE, R.
STATIONARY AND MARINE ENGINES AND BOILERS.
Engines ranging from 15 h. p. to $1,000 \mathrm{~h} . \mathrm{p}$., These Engipes, manufacture 1 under the sever 4
patents granted $\mathbf{G E O} \mathrm{H}$. CORLISs, secure a perfecty

Duncan, sherman \& co.,
BANERERS,
Corner of Pine and Nassau Streets, New York.
Issue Circular Notes and Letters of Credit for Traveleri
transfers of monet to europe and the PACIFIC COAST BY TELEGRAPH. ns-Interest aliowed on Deposits.
 J. MATCHERS, ETC. Prices Low.
HELD $\&$ EON, Barre, Mass., Iron Founders and
Machiniste Machiniste, make the AND BEST PLANER to be found for the money. Send for Circularss.

 good condition. "For particulars and terms, addreese
STAMP
Jocrisil.
wright's patent cut.off by the governor. Marine engines and bollers IN. for Watre Woaks, warranted to
wilh the sme

SUGAR-CANE MILLS.

with suitable Steam Engines, Eoilers, and antendant
Maelhinery, Vacuum Pans, Cooiers, Tanks, and Refining
Maehinery Machinery,
Maehinery
Manufacturers of atwood's patent
SAFETY ELEVATORS AND HOISTING
Plain and Ornamental Machine
IRON WORK FOR BUILDINGS, WROUGHT AND CAST-IRON BRIDGES. ALso,
gearing, shapting, mon and brass
castings.
Address Washingto M New works,

MACHINISTS' SUPPLIES.

PATENT WATER-METER.
This Meter is also Used for the Measurement
aCCURACY, SIMPLICITY, AND REMARKABLE with sueh ease and cortanty of motion as to offer no ap-
preciahle obstructions to the flow of water in the pipe ow which it is connected, as it runs and registers upo three inches head, or when delivering the smalies
stream. These qualities, with itt low eost, have cansed
its extensive adoption hy corporations and individuals in extensive adoption hy many of our larger cities.
sept-13-1y HENRY. WORTHINGTON,
$\mathrm{R}^{\text {ICHARD DUDGEON, }}$

prompt attention.
JACKS for pressing on CABWHEELS or CRAN
May22:1 THE NOVELTY IRON-WORKS.

> (Foot of East Twelfth street.)
branch office, Nos. 77 and 83 Liberty stree Mannfacture

ACHITECTURAL IRON-WORK
feb 1-1y OF ALL KINDs.
Merrick \& sons
Southwark Foundry. No. 430 Washingtox avente, Philadelphia. William Wright's Patent Variable Cut-Or Steam En-
gine, regulated by the Goveraor. Merrick's Safety gine, regulated by the Goveruor. Merrick's Safety
Hoisting Machine, Patented June, 18es. David Joy's Hoisting Machine, Patented June, 1868. David Joy's Patent Valveless Steam Hammer. D. M. Weston's
Patent self-Centering, Self-Bulancing
Centrifugal Draining Mechine, and Hydro Extractor for Cotton and Woolen Manufacturern. nov1s-1y

MACHINISTS' SUPPLIES.
ANDREWS'
PATENT
Engines, Boilers, Pumps, Hoisters,
OSCILLATING ENGINES, run at great speed. Sizes
 CENTRIFUGAL P PMMPS, pass Sand, Coal, Corn, Gravel,
etc., without injury.
Capacity
90 CEx., with
per ninte.
HOISTING
HISTING MACHINES, run without nise ; speed
ehanged or reversed instantaneously.

TODD \& RAFFERTY, Machinery merchants, exgineers, and Manufacturers of Stationary and Portable Steam En-
gines and Boilers ; also Ylax, Hemp, Tow, Oalkum, and ROPE MACHINERY,
imll gearing,
shafting.
Lathes, Planers, Drills, Chucks, etc. Iron and Brass
Castings. Judson \& Snow's Patent Governors constantly on hand.
OFFICE and warerooms, no. 10 barclay Offiee and Works, Paterson, New Jersey Joszph C. Todd. oct-27-ts. Phinap Rayfentr. INCRUSTATIONS Prevented hy WINANS' BOLLER Powder, 11 wall
Street, New York. T. \&. Porr © Co., Benham, Texas, say: " Since using
Winas. Power, we save oNE cord of wod per day
(one-half our fuel), and have better steam, and would not be with cut the article for ten times steam, and woul."
The The Cleveland (Ohio) Paper Mills rem
inehes long by 9 wide and $11 / 4$ ineh thick.
Gxylord \& Co., Portsmouth, Ohio, have used it for
10 years (3,000 pounds yeariy) without injury.
Beware of Imitations H. N. WINANs,
ian-tf
11 Wall
H.
ENGINES, IRON WORK, ETC.
Rider's patent cut-off engines,
HORIZONTAL and VERTICAL,

DELAMATER IRON WORKS, Foot of West Thirteenth Street,

NEW YORK CITY.
and by the
Albany St. Iron
Works,
Corner of
Washingtonand A

NEW YORK IIANDREN \& RIPLEY,
Also, BoILERS, TANKS, and CASTINGS, of all dee ariptions. nov $2: 1 \mathrm{l}$

Hunt, waite \& flint,

Woolen Machine Manufacturers,
And Manufacturers or Up
right and Circular Saw
Mills,

STEAM BOILERS.
THE STEAM GENERATOR
Manufacturing Company of Penn.
This company is now prepared to foruieh WIEGAND's

Patent Improved steam Generator,
 with moen satisacact
rantee of Absolute
Safety from Destructive Explosion, They are cheaper in first cort and in expense of erec.
tion, more economieal in fuel, durable and convenient in nee, than any other apparatos for generating steam. Fo
nining purposes it ts nnequilied owing to the faclitit Mining purposes it ts nnequilifd, owing to the fa
with which it can be traneported aud erected.

Office of the Company, (Rooms Nos. 5 and 6 ,) Directors-NkLeon J. Nicherson, WALTER J. Budd
 NELSON J. NICKER OON. President
EDWARD H. GRAHAM, Sec. and Treas.

WORCESTER STEAM BOILER LOCOMOTIVE, FLUE AND TUBILAR
OLL
AND WATER TANES worcester, mass.
N. B.- Boitiers ingpected and repaired in the best man
neer and at short notice. may15-tt Chas. STEWART, Sup't.
D. M. DHLLON, Treas.

SAWS AND PLANERS.
Circular saws with emerson's patent

These Saws are meeting with unprecedented success,
and their great superiority over every other kind, both as to efficiency add economy, is now fully estahlished
Also, emerson's patent perforated circulab
and Long saws, (All Gnmming avoided,) and
emerson's patent adjustable swage, for Spreading, Sharpening, and Shaping the teeth of ali
Saws. Price, 85 . Mauufactured hy the american saw company
Office No. 2 Jacob St., near Ferry St., New York.
Factory, Trenton, N. J. Branch office for Pactad

Richardeson, Meriamid do Co., Manufue-
daniels \& woodworth planing machinves Matching, sash and moulding, tevon-
iNG, MORTISING, BORING, SHAPING, sawing machines.
sical and cicular
Saw Mills, Saw Arbor, Scroll Saws; Kailway, CuL-Oش,
and Rip-Saw Machines; Spoke and Wood Turning Lathea, and Rip-Saw Machhnes; spoke and Wood Turning Lathea,
and various other kiods of Wood-working Machinery.
Cataiogues and Price Lists sent on applleation.
Manufactory, Worcester, Mass Manufactory, Worcester, Mass.
Warehouse, 107 Liberty Street, New York.
apr24-1y.

R $\begin{aligned} & \text { OLLSturers of } \\ & \text { MACHINE } \\ & \text { works, Man }\end{aligned}$ band saws, rotary bed planers, Matching Machines. Moulding Macbines, Saw Benches,
Chair Lathees, Selfooliling Pullegs, etc. junab.ts FTTCHBURG, MASs.
United states assay office,
No. 30 Wall Street, New York City.

 conditions as at the U. .s. Mint. Bullion sent through
the agency of Exprens Companies ihould be hrogh
panied by explicit instructionsas to seturlo of procom. nop 2:19

1870.

1870.

PROSPECTUS OF

"The "tlanufacturer and Bnilder,"

PRACTICAL JOURNAL OF INDUSTRIAL PROGRESS.

This Journal has now been before the pnblic for one year, and has won golden opinions from all who have examined it. Prior to its rise, the manufacturing and building interests of the United States were withont any direct and adequate representation on the part of the public press. In magnitude and importance, they are second to no others on the continent. In publishing "THE MANUFACTURER AND BUILDER," it has been the aim of the proprietors to give to these interests a full, able and trustworthy representation-to supply, in fact, a want long existing among those engaged in indnstrial pursuits. As the cause of manufacturing and building is emphatically the cause of skilled labor, in working for the best interests of the former, the publishers have also advanced those of the latter.

"The Manufacturer and Builder"

Will therefore be as it has always been, a pracmear. Journal, appealing directly to the masses, either engaged or interested in the snbjects of which it treats. While it is built up upon a truly scientific basis, the superstructure itself is eminently popular, coming within the easy grasp of every intelligent mind.

Party politics find no place in its columms, althongh, of conrse, questions of political cconomy, in so far as they bear npon the manufacturing and building interests, can not be ignored.

Like its predecessor, the volume for 1870 will contain a large proportion of original ntatter, prepared by the ablest writers of the day. In which important industrial questions will be carefully considered. It will contain, among others, elaborate articles upon the following subjects, namely:
The Different Kinds of Manufacturing Machiner?;
The Manufacture of all Kinds of Materials, cither Useful or Ornamental, that enter into the Structure of Buildings;
The Stone, Slate, and Marble Interests: Our Extensire Iron curl Lumber Interests;
The Stability of the Various Kiurls of structiones: The more Common as well as the Higher Forms of Architecture; Lime, Mortars, Cements, etc.; Ventilation, Serragre, and Kindred Subjects;
Discussions regarding the Churucter, streugth and Relative Value of Building Materials;
HOMES HORE THE MILIION,
INCLUDING PLANS, DETAILS OF CONSTRUCTION, ETC.

Abstract

Whenever these articles admit of illnstration, no expense will be spared in getting up engravings, executed in the very best manner. Each of the numbers issued during the year 1869, contained from twenty to twenty-five engravings, and the volume for 1870 will be illustrated with equal profusion.

It will also contain Notes on New Discoveries and Improvements, Reviews of New Publications; Sumiary of General Progress in Manufacturing and Building, both at home and abroad; Selections from the best English, French and German Periodicals; Correspondence from the chief Manufacturing centres of Europe and America, keeping our readers well informed in regard to such industrial movements abroad as may have significance in reference to the progress of skilled labor at home ; a Home Department, in which will appear entertaining and instructive descriptions, explanations, etc., especially such as illustrate the applications of science to domestic life.

In a word, it is the intention of the publishers to make the paper, in every sense of the term, what is implied in its name. It will be printed from new type, upon the best quality of paper, and will contain thirty-two large quarto pages of interesting matter, closely printed and neatly put together. The rate of subscription will be contimed as heretofore at only $\mathbf{\$ 1 . 5 0}$ per year. It is hoped that this low rate, combined with the merits of "The Manufactcrer and Bridder," will secure for it success, a wide circulation, and make it welcome in every office, manufactory, workshop, and dwelling of the industrial classes of the community.

"THE MANUFACTURER \& BUILDER;"

ITS GREAT SUCCESS! WHY PEOPLE SUBSCRIBE TO IT!

REVIEW OF ITS CONTENTS OF THE PAST SIX MONTHS.

Show it to your Friends.

Abstract

Tre success which has attended our efforts to provide a first-class Monthly, devoted to the interests of the industrial classes, has far exceeded our most sanguine anticipations The Manufacturer and Butlder has been received with favor by every class of the community. Manufacturers have taken it for the information which it gives in regard to the improved processes in which they are interested; mechanics have taken it for the instruction which it conveys in regard to matters pertaining to special arts and trades; professional and literary men have taken it for the information which it conveys in regard to the progress of the industrial arts; people, in general, have taken it because it contains much pleas. ant reading matter for the family circle. That all these classes have been right in their estimate of this journal, will be evident to any one who will read the Table of Contents which we here append. When we state that these articles are almost all derived from original and authoritative sources, ii will be seen that we have presented a body of PRACTICAL, THOROUGM, AND RELIABLE INFORMATION, such as can nowhere else be obtained for the sum charged for a year's subscription to The Mantgacturer and Builder.

Subscription \$1.50 per Annum, with Liberal Club Rates and Premiums.

Table of Contents of the First Half-Volume of "The Manufacturer and Builder,"
[illutstrated artiole's are marked witil an asterisk]]

The above speaks for itself. In a period of six months we gave upwards of 500 COLUMNS OF MATTER, from the pens of the best writers in the country and presented in connectio therewith upwards of 150 ENGRAVINGS: Tbe second half volume is equal to the first half in every respect, and it is our determination, during $\mathbf{1 8 7 0}$, to eren surpass all our former efforts and make the MANUFACTURER AND BUILDER INDISPENSABLE to every

MECHANIC, ARCHETECT, BUILDER, ENGINEER, CARPENTER, MLACHINIST,
AND LABORING MAN IN THE COUNTRT.

VOLUME ONE, BOUND

In Clotb, with Gold Mountings, can be bad after Dec. 15th. Price \$2.25. Send in your orders at once. Those received in advance whll be filed first.
Address,
WESTERN de COMLPANT, Publishers, NO. 37 PARK ROW, NEW YORK.

 chast Loult, Mo.
$W^{\text {cod, hent \& co. }}$
HMPROVED LATHES, for turning shafting.
improved coupling box, with Locks on Shaft for counecting Shafting; a
IMPROVED bolt cutter. Persons purchasing Shafting, or engaged in its manu-
facture, or having nse for a Boitcuter, should examine
 20-Warchouse, 107 Liberty street, New York City. april24-1y-q

Gallatin \& brevoort
MACHINE WORKS, 223 FRONT STREET, NEW YORK
sHafing pullmys and hangers raig's Patent Oscillating Engines with Balanced Valve and Adjustable Cut-off.

HHLOSOPHICAL instredments
GLOBES, ELECTICAL MACHNE Mugneto-Etectric
Models, Air-Pamps, chemical and schol apparatus of every

PROVIDENCE TOOL COMPANY, Manufecturers of Nuts, Rnd Washers, Bolts, Chain Links,
Pick Axes Can Rling, Plate Hinge, Treehing Machinne Thackios, ship scrapers, Mariun Spikes. se., sc. Ponnectivg Hand-Cuffs and Ankle shackles, cast steel Hammers.
NEW YORE WAREHOUSE. 99 BEEKMAN STREET. Sept. 28:4
L UCIUS w. Pond's new tools.

IRON \&WOOD WORKING MACHINERY

TURBINE MATER WHEELL COMPANX OIIASE'S nMpRoved excelsior jonval
TURBINE WATER WHERL. f. D. Chase \& Sons and D. Pomeroy's Pateut, July 3T,
(860. Chase's celebrated improved superior circular saw millls.
Surveys for Dams, Mill-Sites, etc. Cotton, Woolen,
Paper, Luanber, Foouring and Grist Mills constroted.
Bhafting Gears, etc, at ahort notice. For Circulars Sparfing, Gears, etco, at anhort notice For Circulars
with cuts, representing prices aud description, please $\begin{array}{ll}\begin{array}{ll}\text { adidress } \\ \text { june5-tf-q }\end{array} & \text { J. D. CHASE \& SONS, Agents, } \\ \text { Orange, Mass. }\end{array}$
Wh. A. Harkis, Manufacticher of These engines are built under the several patents gront.
ed
emo. H. Conirs.
in uniformity

mis

MACHINISTS' SUPPLIES. NEW YORIK BELTTING AND PACKIVG
in the United St The oldest aud largest manufacturera

Vulcanized Rubber Fabrics, Adapted to Mechanical Purposes, Invite the attention of all who are interested in the sale
or une of fuch tioticles to the high stundard gnality and low prices of their various manuffactures, comprising and
orticles the hish stand and Machine Belting, Steam Packing, Leading Hose, 8v
Hoee, Car Springs, Wagon Springe, Billiard
oae, Car Springs, Wagon Springe, Billiar
"TEST $\begin{gathered}\text { etc., etc., etc., } \\ \text { HOSE }\end{gathered}$ made expressly for the use of Steam Fire Engines, and
will stand a pressure of too pounds per equare inch
Ofticers of Fire Departments requiring new hoee, will Officers of Fire Departments requiring new hooe, will
find this much superior in streagit and quality to any
other. patent sold emery vulcantte wheels a composition of rubber and emery, making a very hari
nuiform substance of the nature of stone thronghout
feee men These wheels for grinding and polishing metalas, "gum
ming ", kaws, ete.. are the most economical and effective
tools that can be used. WAREHOUSE, 37 AND 38 PARK ROW, NEW YORK JoHn h. CHEEVER, Treasurer. ase Price hists and further information
tained by mail or otherwise on application.
oct30-1y-os

ENGINEERS' SUPPLIES.

Leschots Patent DIAVONID - POINTED STEAM DRILLS

adapted to every variety of ROCK. DRILLING. The un-
equalled efficiency and economy of these Drills are now

 he mines and quarries of this countryy.res Thees
herils ane built of various sizes and patterns. both
rith and withe hol
hive

B

STATIONARY STEAM ENGINES. These Engines are fitted with flat sllde valvee, having
A cosstakT Triow, and consequently equal wear, under allctrcurastances ; our Patent AUThMATIC CUT-OFF operated throngh the eqovernor, by the direct action o
the steam, to suppress the steam at any point in the troke, and our Patent which pivee fur saxk frexp under all conditions
load and pressure of steam. They are niequalled for ECONOMY OF FUEL, REGULARITY OF SPREED,
AND SIMPLICITY OF MECJANISM BABCOCK \& WILCOX'S PATENT TUBULOUS
BOILER is superior to all others in

CUN-POWDER

THE LAFLIN \& RAND POWDER CO. IT0 BROADWAY, NEW YORE, deliver Mining,
Blasting, and Sporting Powder, from their Agencies in
all parts of the United States, and their Worke at Kinge. all parts of the United States, and their Works at Kinge
ton. Newburg. Saunertics. and actatkili. Wo. ..., Potuvilile
Carbondale, and Scranton, Pa., Baltimore, Ma., and Con. Newburg, Saugertics, and Catskill. N. Y., Pottsvile
Carbondale, and Scranton, Pa., Baltimore, Ma., and
Plstevile, Wis. G UNPOWDER PILE.DRIVER-TYOMAS sell rights, or machiness, or will contract for friving
piles quicker and better than it can be done bo any other piles quicicer and better than 1 tan be done Fifty Blows Per Minute and no Crushing For description ar Shattering.
august 17,th, Vol 8, No. .7. Adtrion ${ }^{\text {and ress }}$ aug 21-1 y o. $\begin{aligned} & \text { GUNPOWDER FILE.DRIVER, } \\ & \text { Nos }\end{aligned}$

manufacturers of
Steam vacuum and water gavges, boiller feeders and enaine room fixtures
No. 8 Corasla street, UHica, N. $\mathbf{~ X . ~}$

$25 \frac{520}{2240}$ Tans per Mile.
Light Locomotives, for use iu Collieries, Mines, etc. -...
 Steel Car Springs.

M. B. WASHBURN General Agent,
137 and 141 Elm Street, New York City ${ }^{\text {jan } 23-1 y-i s q ~}$

$\mathrm{Nl}^{1 \mathrm{RE}} \mathrm{E}_{\mathrm{R}} \mathrm{OP}^{8}$

John A. ROEBLING's sons, ned P

 cranes and Shearss,
Derricks, Tilers,
A larye stocrick of Wire Rops, Tillers, et
dens filled with dispatch.
dill be sent on application.

BTमस नालासु

PROM 4 TO 500 HORSE-POWER

miscellaneous.

President....
Vice Presiden

esident..........

 JaMEs P. HASEIS Vice President...........JAMEs P. HASKINS.

 1. tablishment.

Engraving, Designing, and Photographing on Wood,
in all its branchee, Machinery, Maps, Buildings, Hustrated Catalogues Views, etc.
N. B. Special attention given to Color Work of an de-
scriptions.

48 beeknan street, new york.
File-covers. FILE-COVERS. For pre-

PUBLICATIONS.
Pblications of the

AMERICAN INSTITUTE OF ARCHITECTS.

WESTERN \& COMPANY
Haviug made arrangements with the Committee or prepared to furuish the publications of the lustitute to the trade and the public.
The Publications consist of the Proceedings of the Ammal Couventions of the 1nstitute, and Papers read before the Chapters of that body, as well as Paper
contributed by Members of the Institute and published by its Commuittee on Library sud Publicatious.
They are elegantly printed Pamphlets of large quart They are elegantly printed Pamphlets of large quarto The Pamphlets thus to page. The Pamphlets thus far issued comprise the publithree years.
L.
proceedings of the annual conVENTION OF the
American Institute of Architects, Held in New York, October 22d and 23a, 1867.
Comprising, Minutes of the Convention, The Annua Address by Richard Upiohn, President; Reports the Trustees and standing Commil

FIRE-PROOF FLOORS
Banks, Insurance Companies, Office Build ings, and Dwellings.
ables shewing the Distances from Centres at which Rolled Iron Beams should be Placed, and the
Weight of Metal per superficial foot

Weight of Metal per sloor,
By R. G. hatfield, f. A. 1. A.
3 Pages, Quarto...
.......................Price, 30 cents.

Proceedings

of the CONVENTION

SECOND ANNUAL CONVENT

Held in New York, December 8, 1868 Comprisiug the Minntes of the Conveution, The Presi
deut's Address by Richard Upjohn, Esq, aud deut's Address by Richard Upjohn, Esq., a
the Reports of Trustees and Stunding

REMARKS

FIRE-PROOF CONSTRUCTION Paper read before the New York Chapter of the
American 1nstitute of Architects, April 8, 1869. by P. b. wight, f. A. I. A

THE

Architectural and Other Art Societies 01 Europe;
some accoust ior their
origin, processes of formation, and methods of administration,
With suggestions as to some of the fconditions neces sary for the msximum success of a Nstional with its local dependencies.
by A. J. bloor,
rellow or the american ixstitute of architects Read before the New York Chapter A. I. A., Februar 16, 1869.

The above Pamphlets may be had singly, and will_be THE The Publications of the Institute may also be ha ${ }^{2} 26$ pages, comprising the Transactions of the Institut for three years, ending November 16, 1869, the time of holding the Annual Convention for the present year Price, 83.
WESTE
WESTERN \& COMPANY will offer for saie the Proceedings of the Annual Convention, held on the 16t
and 17 th of November, 1899 , as soon as issued. Order Will now be received.
WESTERN \& COMPANY will also pnblish the papers to be read st Lae meetings of Chapters or the Institute Jochande, and ubstracts in the Manuracturer asm BuLLDER, which will be duly announced. Addreas WESTERN \& COMPANY

No. 37 Park Row, New York.

[^0]: 和

