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ABSTRACT

Evolution of Lindenmayer Systems (L-Systems) provides a
powerful method for creating complex computer graphics and
animations. This paper describes an interactive modelling system
for computer graphics in which the user is able to “evolve”
grammatical rules and surface equations. Starting from any initial
L-System grammar the evolution proceeds via repeated random
mutation and user selection. Sub-classes of the mutation process
depend on the context of the current symbol or rule being mutated
and include mutation of: parametric equations and expressions,
growth functions, rules and productions. As the grammar allows
importation of parametric surfaces, these surfaces can be mutated
and selected as well. The mutated rules are then interpreted to
create a three-dimensional, time-dependent model composed of
parametric and polygonal geometry. L-System evolution allows
with minimal knowledge of L-Systems to create complex, “life-
like” images and animations that would be difficult and far more
time-consuming to achieve by writing rules and equations
explicitly.

1.    INTRODUCTION

Computer Graphics and Computer Aided Design (CAD)
systems allow for the creation of three-dimensional geometric
models with a high degree of user interaction. Such systems
provide an adequate paradigm for modelling the geometric and
splined surfaces made by humans. Many organic and natural
objects, however, have a great deal of complexity that proves
difficult or even impossible to model with surface or CSG based
modelling systems. Moreover, many natural objects are
statistically self-similar, that is they appear approximately the
same but no two of the same species are identical in their
proportions.

L-Systems have demonstrated an ability to model natural
objects, particularly botanical and cellular models [1]–[7]. L-
Systems work on the principle of data-base amplification which
allows complexity to be generated by the repeated application of
rules. The resultant output can be many orders of magnitude larger
than the input – in much the same way as a complex biological
organism’s “blueprints” are stored in the relatively small amount
of information contained within its DNA.

However, despite the flexibility and potential of L-Systems,
(and procedural models in general), they are difficult for the non-
expert to use and control. To create specific models requires much
experimentation and analysis of the object to be modelled. Even
an experienced user can only create models that are understood
and designed by the human creator.

1.1 L-Systems

Lindenmayer Systems (L-Systems) are a class of string-
rewriting mechanisms, originally developed by Lindenmayer [3]
as a mathematical theory of plant development. The original
emphases was on plant topology – neighbourhood relations
between plant cells or higher structures. They arose from an
interest in string rewriting based on Chomsky’s work on formal
grammars in the late 1950’s [8]. The main difference between
Chomsky grammars and L-Systems is that in Chomsky grammars
productions are applied sequentially as opposed to L-Systems
where productions are applied in parallel.

Hogeweg and Hesper [1] studied propagating, deterministic
bracketed 2L-Systems to produce a rich variety of tree structures,
however their graphical results were limited to 2D black and white
line drawings.

The use of L-Systems for computer graphics modelling was
latter developed by Smith [9] who coined the term graftals and
made reference to the “fractal” nature which can form a part of
rewriting grammars. Prusinkiewicz created many highly realistic
models from a wide class of L-Systems. He showed the technique
particularly useful in modelling herbaceous (non-woody) species,
by extending grammars and providing pre-defined surfaces and
advanced turtle interpretations, rendering models using a ray
tracing technique [4, 5, 6, 7].

1.1 Evolution

Natural evolution, first proposed by Charles Darwin [10]
provides a theory for the development of species. Through a
process of natural selection organisms as complex as humans have
evolved. The genetic algorithm, proposed by Holland [11] follows
this evolutionary paradigm and provides a method for searching
very large spaces for an optimal solution. Genetic algorithms have
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been used to solve a number of problems in design, optimisation
and fitness [12, 13, 14, 15].

In his book, The Blind Watchmaker [4], Richard Dawkins
demonstrated simulated evolution by evolving “biomorphs” –
simple two-dimensional structures resembling organic creatures
created from simple sets of genetic parameters. The survival of
each generation of biomorphs is selected by the user who evolves
features according to their personal selection.

Other applications of the genetic algorithm to image and
object generation include Todd and Latham who have evolved
computer sculptures using CSG techniques [17]. Sims has evolved
procedural models to create branching structures, textures,
parametric surfaces and dynamic systems [18, 19].

1.3 Genetic Terminology

Genetic terminology is also applied in the case of simulations.
The genotype is the genetic information that contains the codes for
the creation of the individual. In organic life this is usually the
DNA of the organism. In the case of simulations the genotype can
be a string of digits or parameters. In the case of L-Systems
grammars, it is the rules and parameters.

The individual, object or system created from the genotype is
known as the phenotype. The process of expression (genome to
phoneme) usually generates the complexity from the relative
simplicity of the genotype.

Fitness of phenotypes is determined by selection. In a real
world environment fitness of an organism determines it’s ability to
pass on it’s genes from generation to generation – survival. In the
real world, there are many factors which influence an organisms
fitness to the task of survival. In simulated genetic systems, the
fitness can be determined either automatically, by a defined fitness
function, or, as is the case with this work, selected implicitly by
the user.

In a natural situation, genetic variation is achieved through the
process of reproduction. In the system described, “child”
genotypes are created by mutation of the parent genotype. Such
mutations cause different phenotypes to result. By a repeated
process of selection by the user and mutation by the computer
aesthetic characteristics of the resultant forms can be optimised
(the genetic algorithm can be thought of as an optimisation
process).

The next section looks at the syntax and structure of L-
Systems used. Section 3 examines the mutation process, section 4
the interactive evolution process and section 5 discusses the
implementation. Finally section 6 presents a summary of results
and possibilities for further work.

mutation
Child Genotype

Phenotype

Parent Genotype

Phenotype

Child Genotype

Phenotype

Child Genotype

Phenotype

Selection

Figure 1: Mutation and selection process

2.    L-SYSTEMS

A brief explanation and definition of L-Systems is presented
here. For a fuller, more formal definition and explanation of L-
Systems, the reader is  referred to [4].

Basically, L-Systems consist of a finite set of let ters
(collectively called the alphabet). Letters are arranged in arbitrary
length sequences to form strings. Each letter is associated with a
rewriting rule. For example consider the letters a and b and their
associated rules a →  ab and b → a. These rules mean
(respectively) that each occurrence of the letter a in a string is to
be replaced by the sequence ab and that letter b is to be replaced
by a. Substitution of letters takes place in parallel across the entire
string. The initial string of letters is called the axiom. Using the
above rules as an example and applying them to the axiom a, we
obtain the following sequence of strings each time the rules are
applied:

a
ab
aba

abaab
abaababa

abaababaabaab

As can be seen the string length can grow quickly after only a
few rewrites. In order to convert strings into geometric models a
turtle interpretation [21] is applied. The concept is based on the
idea of an imaginary turtle that walks, turns and draws according
to instructions given. At any time the turtle has a current position
in 3-space and a heading vector (the forward direction of
movement). Individual letters in a string are treated as commands.
Different letters change position or heading, record vertices in a
polygon, apply pre-defined surfaces to the current position and
orientation, change colour, etc. Bracketed L-Systems provide two
special letters (usually square brackets: [,]) which push and pop
(respectively) the current turtle position, heading and possibly
other attributes. This feature allows for the generation of
branching structures.
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2.1 L-Systems implementation

This paper describes a modelling system developed for
creating three-dimensional animated models using L-Systems. The
foundation of the system is a parser which takes a set of rules and
parameters and creates a time dependent geometric model as its
output. The system permits timed, parametric deterministic (D0L-)
and non-deterministic stochastic (0L-) Systems, both of which are
context-free. Currently, context sensitive 1L and 2L-Systems are
not implemented. Many of the results obtained with 1L and 2L
Systems can be achieved with parametric 0L-Systems [6].

Parametric L-Systems allow an arbitrary number of
parameters to be associated with each letter. These parameters can
be used during interpretation of the produced string. For example
the letter F is interpreted as “draw a line in the current direction”.
With a parameter, the distance of the move forward can be
controlled. (i.e. F(3.0) means draw a line 3.0 units long).

Stochastic L-Systems allow for the simulation of random
feature variation in a model. For example the rules:

a →0.5 ab

a →0.5 bb

mean that the letter a has will be replaced by the string ab with
a probability of 0.5 or by bb also with a probability of 0.5.
Stochastic rules for a single letter must total 1.0 exactly. A rule
without a probability parameter implies a probability of 1.0.

Timed L-Systems give each letter a life time over which it
exists. An example of timed rules is written:

(a,5) → (a,0.5)(b,0)

This means that the letter a has a life of 5 seconds. When a
reaches an age of 5 seconds the transition rule is applied. A new
letter a is born with age 0.5, and a new letter b is born with age
0.0. Age values on the right side of a rule specify terminal age, age
values on the left side of the rule specify birth age. Birth ages
should never exceed death ages. Associated with each letter is a
growth function which controls the behaviour of the letter over its
lifetime. Growth functions are written: g(a,t,T) - g is the growth
function for letter a at time t, with overall life time T. Growth
functions are usually expressed as some mathematical function.
Figure 2 shows an example image generated using these L-System
techniques.

Figure 2: An L-System model

3.    MUTATION OF L-SYSTEM RULES

In order for the structure and form of an L-System model to
change its rules and parameters must be changed. Small changes
in genotype are usually preferred so as not to completely alter the
form on which it is based. However, for radical change larger
amounts of mutation are required.

There are three basic areas to which mutation can be applied:

1. Mutation of rules and letters.

2. Mutation of parameters and parametric expressions.

3. Mutation of growth functions and letter ages.

In addition, pre-defined surfaces may themselves be mutated,
for example using techniques described by Sims [18].

3.1 Rule Mutation:

For each production letters and rules are mutated. The
probability of each mutation is specified separately. The types of
mutations possible is listed below:

• A letter in a production may be removed

• A new letter may be added to a production

• A letter may change to another, different letter

The above three rules work either on previously defined letters
or new letters may be created. In addition it is sometimes
necessary to disallow mutation of some letters whose purpose is
some kind of control (such as output resolution), or to limit a
search space.
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In addition to individual letter changes, rules may be created
and deleted:

• A rule can split into a stochastic rule. For example the rule
a→ b b c may mutate to become a →0.22 b c c and a →0.78

b c. The new rule is a mutated version of the old rule.

• A new rule can be created. This rule must contain a
previously defined letter. If all previously defined letters
already have a rule then this mutation can’t take place.

• An existing rule may be deleted. If it is stochastic then the
previous rules gain in probability in equal amounts equal to
the probability of the deleted rule.

• The probability of a stochastic rule may change. The addition
or difference redistributes probabilities over all the other
stochastic rules involving that letter.

3.2 Parametric Mutation

For the sake of efficiency and ease of implementation, letters
may not gain or loose parameters during mutation. New letters
may be created, however with the default number of parameters,
or if no default exists, a random number of parameters. Rules
involving parametric letters on the left hand side may split as
follows:

• Rules involving letters with parameters may spit on
conditions. For example:

a(length) → a(length × 2.0) b(length2.0)

could become:
a(length) : length > 10.0 : → a(length × 2.0) b(length2.0)

and
a(length) : length < 10.0 : → a(length × 2.0) c(length / 2.0)

Again the new rule is a mutation of the old.

Parameters on the right side of rules are expressions. The are
parsed into a tree structure and executed during application of
productions. Each node on the expression tree can be recursively
subject to mutation by the following rules:

• If the node is a variable is can mutate to another variable.

• If the node is a constant it is adjusted by the addition of some
random amount.

• If the node is an operator it can mutate to another operator:
i.e. x + 5 becomes x / 5.

• A node may mutate to a new expression.

• Nodes may become the arguments to a new expression: i.e. x
+ 5 becomes y * (x + 5).

• An expression may reduce to one of its operands: i.e. x + 5
becomes x.

In the current implementation only simple arithmetic operators
are supported (addition, subtraction, division, multiplication,
negation and power). Other functions (such as trigonometric
functions) could be added if required. Parameters on the left side
of rules do not mutate as this serves no useful purpose.

3.3 Growth Function and letter age mutation

If a letter is timed it must have a birth and terminal age. Both
these values must be constants. Both constants can be mutated by
the addition of a random value. The range of the random value is
usually proportional to the size of the constant.

The growth function for a timed letter controls the behaviour
of that letter over its growth period. It is expressed in the form
g(L,a,t), where L is the letter, a is the current age and t is the
terminal age. An simple example growth function could be:
g(leaf,a,t) = a/t  which is a simple liner function which ranges
from 0 to 1 as the letter ages. Since growth functions are
expressions their internal and external construction is the same as
for a letter’s parameter expressions. Thus the mutations are
identical to those described for expressions in the previous section.

3.4 Mutation Probabilities

Different sorts of mutations occur with different probabilities.
An important part of evolving structures is correctly setting
mutation probabilities. For example, it is better to set rule
mutation probabilities to maintain or slightly shrink current rule
size. If rule mutation is biased towards adding rules and/or letters
then genotypes tend to become larger without necessarily creating
greater fitness. Large rules take longer to parse and in general,
take longer to generate. This does not stop rules evolving
complexity by selection.

Mutation probabilities can be changed interactively by the user
during the evolutionary process. This provides a useful aid when
one appears to be approaching the desired result and wishes to
limit mutations to specific areas.

4.  THE INTERACTIVE PROCESS

To evolve forms interactively we begin with a parent genotype
- namely a set of rules. The rule set may be empty or the result of
some previous mutation process. A list of external surfaces to be
used is also supplied. The parent rule set is then mutated according
to probabilities specified. After mutation the rules are parsed and
applied to a specified level. The user may interrupt the process at
any time. The process will be automatically interrupted by the
software if the computation time exceeds a specified limit. In
traditional uses of the genetic algorithm, population sizes can be
large as the selection process is automatic, however in the case of
this type of system, selection is based on the vague human notion
of aesthetics. This is one reason why the population size in this
case is limited. A much more overpowering reason is the space on
the screen to display phenotypes and the computation time
involved in generating large populations.
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Usually around 16 mutations per generation are performed.
This provides a trade off between generation time and variety.
With increased computation (or more patience) larger populations
can be created. The screen size also limits the number of
phenotypes that can be displayed an manipulated. The parent
phenotype is displayed in the upper left-hand corner of the screen
followed by its mutated children (figure 3).

At the conclusion of the mutation and generation process, the
user may interactively manipulate and examine the phenotypes in
space and over time. At some stage the user decides which
phenotype is the most suitable and this becomes the new parent.
Selecting the existing parent provides more mutations if none of
the current generation are deemed suitable. At any time the
genotype (rule set) for a particular phenotype may be saved to disk
as a ASCII file. This file can be latter used as a parent for further
mutations or generated with a higher degree of accuracy for final
output.

The mutation/generation/selection process is repeated until a
satisfactory form is achieved or the user runs out of time or
patience.

Figure 3: Parent (top left) and 14 mutations

5.    IMPLEMENTATION

The system has been implemented in the C programming
language, on Silicon Graphics workstations under the IRIX

operating system. The workstations high speed graphics
performance permits real time previewing interpreted strings.
Since models evolve over time this is previewed as well. A display
sub-system accepts graphics primitives on an object time basis.
While the models are defined continuously over time they are
usually sampled at regular discrete moments in time for playback.
For the case of video animation this is either 25 times per second
for frame rendered animation or 50 times per second for field
rendered animations.

The generation of several seconds of animation for 16 or more
phenotypes can be quite time consuming and thus for preview
purposes the samples are taken at wider intervals. For complex
geometries, simplified representations of complex surfaces can be
substituted to increase display speed.

Once generated, the models are stored in the workstations
graphics memory as display lists. This enables to user to examine
the generated models from any position or angle, play the
development either forward or backward. Once the most suitable
phenotype is picked the display lists are cleared and a new set of
phenotypes are created. At any time the user can save the L-
system rules for a particular resultant phenotype to a human
readable file. This can be used to regenerate the model at a latter
time or as a genotype for further mutation and evolution work.

Even simple rules can evolve highly complex models which
can not be displayed in real time by the workstation graphics
hardware. An option exists to save geometry to disk for rendering
by the Advanced Visualizer system. Advanced Visualizer is an
animation and rendering package from Wavefront Technologies
[21]. The software rendering of these models has a number of
advantages over the simplistic real time display of the workstation
hardware. It allows advanced shading and illumination models
(such as ray-tracing), texture, bump and transparency mapping and
as well as anti-aliasing and spectral sampled colour space
definition. This extra quality comes at a price, however,  as
rendering of even a single frame can take 20-30 minutes or more
(including model generation time). Integrating with the animation
system was a key goal in development and the system takes
advantage of the features of a powerful existing animation and
rendering system.

To date the system has been used to produce a variety of
successful works, both still and animated [22, 23, 24]. Figure 4
shows some of the results achieved with the system. The
emphases on the system has been one of a sculptural tool for
modelling and observing growth, form and behaviour.
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Figure 4: Example models generated with the system

6.    CONCLUSION & FURTHER WORK

The interactive evolutionary technique provides advances in
two areas: firstly, it enables a synergy between human and
machine. Many of the models and results created by this technique
would be extremely difficult, if not impossible to have created by
explicit writing of rules.

Secondly, the technique allows novice users to create highly
sophisticated models with little or no knowledge of the underlying
processes involved. Users do not need to learn or understand how
L-Systems work or write rules, a simple aesthetic selection is the
all that is required.

One current limitation of the technique is the speed of
generation of phenotypes. Sixteen or more animated models must
be generated in a relatively short space of time in order to
genuinely call the system “interactive”. Simplified surfaces and
wire-frame representation help to minimise display time. One
would expect as workstation hardware performance increases
larger and more complex populations could be created.

Currently context sensitive nL-Systems are being implemented
which will allow even greater flexibility in modelling possibilities.
Context sensitive rules can also be mutated, however in most
cases this can significantly change the resultant phenotype. Proper
mutation rules and probabilities is an area still under investigation.

As a modelling language, L-Systems have large scope in the
type of models they can represent. However a fundamental
limitation of the current system that the representation via L-
System letters is highly topological. Several extensions to allow
greater control over surfaces, geometry and texture are currently
being tested. Greater control over constraints and physical effects
such as light and weather is also needed.
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