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Recap of Lecture 2

decision making

stable & unstable steady states
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STABILITY THEOREM

: : : dx
1 dimensional dynamical system = f(z)
. dx
1. find a steady state x = x,, so that (—) = f(xzs) =0
dt /o=
. df
2. calculate the derivative of f at the steady state (—)
dx T=Ist

3. if the derivative is negative then x, is stable
4. if the derivative is positive then x is unstable

5. if the derivative is zero then x_, can be stable or unstable



the sign of df/dx only tells us about local stability

ie: in some sufficiently small neighbourhood
around the point x = x,

these methods do not tell us how “small”

stable steady state
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LINEARISATION THEOREM

the dynamics of

is qualitatively similar to that of its linearisation

% - [(%> a:=a:sj ’

in the local vicinity of a steady state x = x,

derivative of f at x = X

provided that
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1 dimensional systems provide excellent intuition for n dimensional systems
The STABILITY and LINEARISATION THEOREMS hold in n dimensnions

but we need to understand
the derivative (in n dimensions)

what it means for an n-dimensional derivative to be “negative”

|Jacobian matrix eigenvalues




Matrix algebra for beginners, Part I
matrices, determinants, inverses
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some matrix algebra. You will find
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everything needed for the lectures Contents

1 Introduction 1

explained in the handouts

2 Systems of linear equations 1

3 Matrices and matrix multiplication

“Matrix algebra for beginners,

4 Matrices and complex nmumbers 5

Parts I II an ' II ¥y 5 Can we use matrices to solve linear equations? ]
J 8 Determinants and the inverse matrix 7

7 Solving systems of linear equations ]

8 Properties of determinants 10

9 Gaussian elimination 11



STABILITY THEOREM

: : : dx .
n dimensional dynamical system i f(z) xis avector!!!

= f(zst) =0

T=Tst

dx
1. find a steady state x = x,,, so that (E)
2. calculate the Jacobian matrix at the steady state A = (D f)|,—,_,
3. if all the eigenvalues of A have negative real part then x, is stable

4. if none of the eigenvalues of A are zero and at least one of the eigenvalues
has positive real part then x.,is unstable

5. if at least one of the eigenvalues of A is zero then x_, can be either
stable or unstable



Jacobian matrix

Df = ( afi / an ) n X n matrix

fi(z1,20) = Azp —axq

ary
) — —b
fo(z1,x2) Ft o T2
af]_ af]_ —a A
Df = g“;l g“;? — . Jacobian
a’ =
33:? 33:3 (k+z1) —b matrix



Eigenvalues

eigenvalue - a number (scalar)

AX:MX X#0

N

n X n matrix eigenvector
n x 1 €ol umn’vec tor

The eigenvalues satisfy the characteristic equation of the matrix A

det(A-ul) = 0

This is a polynomial equation in u, of degree n.

By the Fundamental Theorem of Algebra, this equation has n solutions
but some of them may be complex numbers (of the form a + i b)

An n x n matrix always has n (possibly complex) eigenvalues



Matrices are like numbers —
they can be added and multiplied together

except that multiplication is not commutative
and not all non-zero matrices have an inverse

for any n x n matrix A

A is invertible -A -1 exists — if and only if det = 0

det A

product of the eigenvalues of A

TrA = sum of the eigenvalues of A

det AB = (det A)(det B)




At the steady state (x;,x,) = (0,0)

—a— A
det( o )Z(a+u)(b+u))£
T —b—u k

-TrA det A

Characteristic equation is / /

u2+(a+b)u+(ab—)‘f) =0

_ disc A = (TrA)? 4 de tA
Eigenvalues are

_ —(a+0b) +[(a+b) - 4(ab - I)]/2
D

u
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A 0.08 (sec)? A 0.08 (sec)?
a 0.02 (sec)'1 a 0.02 (sec)'1
b 0.1 (sec)'1 b 0.1 (sec)'1
o 0.1 (uM)(sec)? o 0.1 (uM)(sec)?

k 5 (uM) k 2 (uM)
u2—|—0.12u—|—0.0014: 0 u2—|—0.12u—0.002 =0
u = -0.12 +0.094 u = -0.12 £0.1497
u = -0.214 u = -0.2697
u = -0.026 u = +0.0297



A simple theorem about stability
and instability in feedback loops.

Details in the handout.

Stability of steady states for a general autoregulatory loop

Jeremy Gunawardena
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This is a handout for SB200, “A systems approack to biology” It provides details of the theorsm
proverd in the lectures, which gives a graphical method for determining the stability of a steady state
for a general autoregulatory loop. If you hawve any comments or questions, and especially if you
notice any misprints or errors, please send me a message at jeremy®hms .harvard.edu.

T'he autoregulatory loop is shown schematically in Figure 1, where z; and z. are the concentrations
of protein and mE1TA, respectively. This scheme allows for first-order degradation of mEI11A and
protein, with (positive) rate constants b and a, respectively, but the rate of mRITA translation can
be an arbitrarily function, f(z2), of mRITA concentration and the rate of gene expression can be
an arbitrary function, g(z1), of protein concentration This translates into the following system of
differential equations

dry/dt = f(za)—az,

dra/dt = g(z1)— bza, (1)

which defines a two-dimensional dynamical system. We assume throughout that a, b > 0.

We want to work out the stability of a steady state of this system. As we discussed in Lectures 2 and
3, the stability a steady state depends on the eigenvalues of the Jacobian matrix at that steady state.
Sinee this is a two-dimensional system, we can work out the stability more quickly by calculating
the determinant and the trace of the Jacobian (as summarised in the Determinant/Irace diagram
for two-dimensional dynamical systems). It is easy to work out the Jacobian matrix at any state
z = (%,Z,). Leb us call this J(z). Calculating the partial derivatives, we find that

e cscif: \

..T[z):kE . ) (2)
dz1

Ilote that the partial derivatives in the Jacobian can be replaced by ordinary derivatives because f
and g are each functions of only a single state variable. We ses from (2) that TrJ(z) = —(a+b) < 0,
independently of z. It follows that the stability of any steady state will depend soley on the sign of
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Figure 1. The general autoregulatory loop. A single gene is transcribed into mEITA which is trans-
lated into protein which feeds back on its own expression. Both mEITA and protein are degraded
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arbitrary functions
d
® =1 =f(z2) —az;
p a,b >0
I
® = —=g(x1)— bxo

dt
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LINEARISATION THEOREM

in n dimensions the dynamics of

dx

E:f(l‘)

is qualitatively similar to that of its linearisation
Jacobian of f at x = x,

dx

E — [(Df)‘a:=3:qt} €

in the local vicinity of a steady state x = x,
provided that none of the eigenvalues of the Jacobian matrix

(Df)lpmay

are 0



dx

dt

— = f(x) with steady state at x = x_,

1 dimensional

()

dx/dt = ax

T=Tst

X(t) = exp(at)x,

exp(@) =1+a+a¥2+a’y3l+..

exponential

exp(a+b) = exp(a)exp(b)

n > 1 dimensional

A= (Df)‘a:=.1?5t

dx/dt = Ax

X(t) = exp(At)x,

exp(A) =1 + A + A%2 + A3/3! + ...

matrix exponential

exp(A+B) = exp(A).exp(B)
provided AB = BA



