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Recap of Lecture 2

k  ≥  /ab k  <  /ab

decision making

stable & unstable steady states

positive feedback
bifurcatio

n



1 dimensional dynamical system

1. find a steady state  x = xst , so that

2. calculate the derivative of f at the steady state

3. if the derivative is negative then xst is stable

4. if the derivative is positive then xst is unstable

5. if the derivative is zero then xst  can be stable or unstable

STABILITY THEOREM



the sign of df/dx only tells us about local stability 

ie: in some sufficiently small neighbourhood 
around the point  x = xst

these methods do not tell us how “ small”

stable steady state

•x = xst

small stability neighbourhood to the left large (unbounded) stability neighbourhood to the right



the dynamics  of 

is qualitatively similar to that of its linearisation

derivative of f at x = xst

in the local vicinity of a steady state x = xst

provided that 

LINEARISATION THEOREM



1 dimensional systems provide excellent intuition for n dimensional systems 

The STABILITY and LINEARISATION THEOREMS hold in n dimensnions 

but we need to understand

the derivative (in n dimensions)

what it means for an n-dimensional derivative to be “ negative”

Jacobian matrix eigenvalues



From this point we will need to use 

some matrix algebra. You will find 

everything needed for the lectures 

explained in the handouts

“ Matrix algebra for beginners, 

Parts I, II and III”



n dimensional dynamical system

1. find a steady state  x = xst , so that 

2. calculate the Jacobian matrix at the steady state

3. if all the eigenvalues of A have negative real part then xst is stable

4. if none of the eigenvalues of A are zero and at least one of the eigenvalues 
has positive real part then xst is unstable

5. if at least one of the eigenvalues of A is zero then xst can be either 
stable or unstable

x is a vector !!!

STABILITY THEOREM



Df = Jacobian 
matrix

Jacobian matrix 

Df = ( fi / xj ) n x n matrix



Ax  = ux

Eigenvalues 

n x n matrix eigenvector
n x 1 “col umn” vec tor

 eigenvalue –  a number (scalar)

det(A - uI)  =  0

The eigenvalues satisfy the characteristic equation of the matrix A

This is a polynomial equation in u, of degree n.

By the Fundamental Theorem of Algebra, this equation has n solutions
but some of them may be complex numbers (of the form a + i b)

An n x n matrix always has n (possibly complex) eigenvalues

x  0



A is invertible – A -1 exists –  if and only if det    0

for any n x n matrix A

Matrices are like numbers –  
they can be added and multiplied together 

except that multiplication is not commutative
and not all non-zero matrices have an inverse

det A = product of the eigenvalues of A

Tr A = sum of the eigenvalues of A

det AB = (det A)(det B)



At the steady state (x1,x2) = (0,0)

Characteristic equation is

Eigenvalues are

–  Tr A  det A

 disc A  =  (Tr A)2 – 4 de t A



 0.08 (sec)-1

a 0.02 (sec)-1

b 0.1 (sec)-1

 0.1 (M)(sec)-1

k 5 (M)

 0.08 (sec)-1

a 0.02 (sec)-1

b 0.1 (sec)-1

 0.1 (M)(sec)-1

k 2 (M)

u  =  -0.12  0.094 u  =  -0.12  0.1497

u  =  -0.214
u  =  -0.026

u  =  -0.2697
u  =  +0.0297



A simple theorem about stability 

and instability in feedback loops.

Details in the handout.
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a, b  >  0

arbitrary functions



x2 nullcline

x1 nullcline

positive quadrant

 x2 nullcline lies above x1 nullcline 
both in the positive quadrant

x1 nullcline

x2 nullcline

positive quadrant
x1 nullcline

x2 nullcline

positive quadrant

x1 nullcline lies above x2 nullcline, 
both in the positive quadrant

x1 nullcline in positive quadrant 
x2 nullcline in fourth quadrantOR

UNSTABLE

STABLE



unstable 

x1

x2

stable 

x1 nullcline

x2 nullcline



in n dimensions the dynamics  of 

is qualitatively similar to that of its linearisation
Jacobian of f at x = xst

in the local vicinity of a steady state x = xst

provided that none of the eigenvalues of the Jacobian matrix

are 0

LINEARISATION THEOREM



1 dimensional n > 1 dimensional

 a =  

dx/dt = ax dx/dt = Ax 

x(t) = exp(at)x0 x(t) = exp(At)x0

exp(A) = I + A + A2/2 + A3/3! + ...exp(a) = 1 + a + a2/2 + a3/3! + ...
matrix exponential

exp(a+b) = exp(a)exp(b) exp(A+B) = exp(A).exp(B)
provided AB = BA

exponential

with steady state at x = xst


