A systems approach to biology

SB200

Lecture 3
23 September 2008

Jeremy Gunawardena
jeremy@hms.harvard.edu

Recap of Lecture 2

decision making

stable \& unstable steady states

$$
\begin{gathered}
\frac{d x_{1}}{d t}=\lambda x_{2}-a x_{1} \\
\frac{d x_{2}}{d t}=\frac{\alpha x_{1}}{k+x_{1}}-b x_{2}
\end{gathered}
$$

positive feedback
.

STABILITY THEOREM

1 dimensional dynamical system $\frac{d x}{d t}=f(x)$

1. find a steady state $\mathrm{x}=\mathrm{x}_{\mathrm{st}}$, so that $\left.\left(\frac{d x}{d t}\right)\right|_{x=x_{s t}}=f\left(x_{s t}\right)=0$
2. calculate the derivative of f at the steady state $\left.\left(\frac{d f}{d x}\right)\right|_{x=x_{s t}}$
3. if the derivative is negative then $x_{s t}$ is stable
4. if the derivative is positive then $x_{s t}$ is unstable
5. if the derivative is zero then $x_{s t}$ can be stable or unstable

the sign of df/dx only tells us about local stability

$i e$: in some sufficiently small neighbourhood around the point $x=x_{\text {st }}$
these methods do not tell us how "small"

LINEARISATION THEOREM

the dynamics of

$$
\frac{d x}{d t}=f(x)
$$

is qualitatively similar to that of its linearisation

$$
\frac{d x}{d t}=\left[\left.\left(\frac{d f}{d x}\right)\right|_{x=x_{s t}}\right] x
$$

in the local vicinity of a steady state $x=x_{\text {st }}$ provided that

$$
\left[\left.\left(\frac{d f}{d x}\right)\right|_{x=x_{s t}}\right] \neq 0
$$

1 dimensional systems provide excellent intuition for n dimensional systems The STABILITY and LINEARISATION THEOREMS hold in n dimensnions but we need to understand
the derivative (in n dimensions)
what it means for an n-dimensional derivative to be "negative"

Jacobian matrix
eigenvalues

Matrix algebra, for beginners, Part I matrices, determinants, inverses

Jeremy Gunawardena.
Department of Systems Biology Harvard Medical School
200 Longwood Avenue, Cambridge, MA 02115, USA
jeremy@hms.harvard.edu

24 September 2007

Contents
1 Introduction
2 Systems of linear equations 1
3 Matrices and matrix multiplication 2
4 Matrices and complex numbers 5
5 Can we use matrices to solve linear equations? 6

6 Determinants and the inverse matrix $\mathbf{7}$
7 Solving systems of linear equations 9
8 Properties of determinants 10

9 Gaussian elimination 11

STABILITY THEOREM

n dimensional dynamical system $\frac{d x}{d t}=f(x) \quad x$ is a vector !!!

1. find a steady state $\mathrm{x}=\mathrm{x}_{\mathrm{st}}$, so that $\left.\left(\frac{d x}{d t}\right)\right|_{x=x_{s t}}=f\left(x_{s t}\right)=0$
2. calculate the Jacobian matrix at the steady state $A=\left.(D f)\right|_{x=x_{s t}}$
3. if all the eigenvalues of A have negative real part then x_{st} is stable
4. if none of the eigenvalues of A are zero and at least one of the eigenvalues has positive real part then $\mathrm{x}_{\text {st }}$ is unstable
5. if at least one of the eigenvalues of A is zero then x_{st} can be either stable or unstable

Jacobian matrix

$$
\begin{gathered}
\mathrm{Df}=\left(\partial \mathrm{f}_{\mathbf{i}} / \partial \mathbf{x}_{\mathrm{j}}\right) \quad \mathrm{n} \times \mathrm{n} \text { matrix } \\
f_{1}\left(x_{1}, x_{2}\right)=\lambda x_{2}-a x_{1} \\
f_{2}\left(x_{1}, x_{2}\right)=\frac{\alpha x_{1}}{k+x_{1}}-b x_{2} \\
\mathrm{Df}=\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)=\left(\begin{array}{cc}
-a & \lambda \\
\frac{\alpha k}{\left(k+x_{1}\right)^{2}} & -b
\end{array}\right)
\end{gathered} \begin{gathered}
\text { Jacobian } \\
\text { matrix }
\end{gathered}
$$

Eigenvalues

The eigenvalues satisfy the characteristic equation of the matrix A

$$
\operatorname{det}(A-u l)=0
$$

This is a polynomial equation in u, of degree n.
By the Fundamental Theorem of Algebra, this equation has n solutions but some of them may be complex numbers (of the form $a+i b$)

An $\mathbf{n x n}$ matrix always has \mathbf{n} (possibly complex) eigenvalues

Matrices are like numbers they can be added and multiplied together

except that multiplication is not commutative and not all non-zero matrices have an inverse

for any $\mathrm{n} \times \mathrm{n}$ matrix A
A is invertible $-A^{-1}$ exists - if and only if det $\neq 0$
$\operatorname{det} \mathrm{A}=$ product of the eigenvalues of A
$\operatorname{Tr} \mathrm{A}=$ sum of the eigenvalues of A

$$
\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)
$$

At the steady state $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=(0,0)$

$$
\operatorname{det}\left(\begin{array}{cc}
-a-u & \lambda \\
\frac{\alpha}{k} & -b-u
\end{array}\right)=(a+u)(b+u)-\frac{\lambda \alpha}{k}
$$

Characteristic equation is

$$
u^{2}+(a+b) u+\left(a b-\frac{\lambda \alpha}{k}\right)=0
$$

Eigenvalues are

$$
u=\frac{-(a+b) \pm\left[(a+b)^{2}-4\left(a b-\frac{\lambda \alpha}{k}\right)\right]^{1 / 2}}{2}
$$

$\lambda \quad 0.08 \quad(\mathrm{sec})^{-1}$
a $0.02(\mathrm{sec})^{-1}$
$\begin{array}{lll}\text { b } & 0.1 & (\mathrm{sec})^{-1}\end{array}$
$\begin{array}{lll}\alpha & 0.1 & (\mu \mathrm{M})(\mathrm{sec})^{-1} \\ \mathrm{k} & 5 & (\mu \mathrm{M})\end{array}$
$u^{2}+0.12 u+0.0014=0$
$u=-0.12 \pm 0.094$
$\mathbf{u}=-0.214$
$\mathbf{u}=-0.026$
$\mathrm{u}=-0.026$

$\begin{array}{lll}\lambda & 0.08 & (\mathrm{sec})^{-1}\end{array}$
$\begin{array}{lll}\text { a } & 0.02(\mathrm{sec})^{-1}\end{array}$
$\begin{array}{lll}\text { b } & 0.1 & (\mathrm{sec})^{-1}\end{array}$
$\begin{array}{lll}\alpha & 0.1 & (\mu \mathrm{M})(\mathrm{sec})^{-1} \\ \mathrm{k} & 2 & (\mu \mathrm{M})\end{array}$
$u^{2}+0.12 u-0.002=0$
$u=-0.12 \pm 0.1497$
$\mathbf{u}=-0.2697$
u = +0.0297

A simple theorem about stability and instability in feedback loops.

Details in the handout.

This is a handout for SB200, "A systems approach to biology". It provides details of the theorem proved in the lectures, which gives a graphical method for determining the stability of a steady state for a general autoregulatory loop. If you have any commente or questions, and especially if you notice any misprints or errors, please send me a message at jeremy@hms .harvard.edu.

The autoregulatory loop is shown schematically in Figure 1 , where x_{1} and x_{2} are the concentration of protein and mRNA, respectively. This scheme allows for first-order degradation of mRNA and protein, with (positive) rate constante b and a, respectively, but the rate of mRNA translation can be an arbitrarily function, $f\left(x_{2}\right)$, of mRNA concentration and the rate of gene expreasion can be n arbit equations

$$
\begin{align*}
& d x_{1} / d t=f\left(x_{2}\right)-a x_{1} \tag{1}\\
& d x_{1} d t=o\left(x_{1}\right)-b t
\end{align*}
$$

which defines a two-dimensional dynamical system. We assume throughout that $a, b>0$
We want to work out the sta.bility of a stea.dy state of this system. As we discussed in Lectures 2 and 3 , the stability a steady state depends on the eigenvalues of the Ja.cobian matrix a.t that steady state Since this is a two-dimensional system, we can work out the stability more quickly by calculating the determinant and the trace of the Jacobian (as summarised in the Determinant/Trace diagram for two-dimensional dynamical systems). It is easy to work out the Jacobian matrix at any state $x=\left(x_{1}, x_{2}\right)$. Let us call this $J(x)$. Calculating the partial derivatives, we find that

$$
J(x)=\left(\begin{array}{cc}
-a & \frac{d f}{d x_{2}} \tag{2}\\
\frac{d g}{d x_{1}} & -b
\end{array}\right)
$$

Note that the partial derivatives in the Jacobian can be replaced by ordinary derivatives because f and g are each functions of only a single state variable. We see from (2) that $\operatorname{Tr} J(x)=-(a+b)<0$ dependently of x. It follows that the stability of any steady state will depend soley on the sign

Figure 1: The general autoregulatory loop. A single gene is transcribed into mRINA which is translated into protein which feeds back on its own exprescion. Both mRNA and protein are degraded.

arbitrary functions

- $\frac{d x_{1}}{d t}=f\left(x_{2}\right)-a x_{1}$

$$
\frac{d x_{2}}{d t}=g\left(x_{1}\right)-b x_{2}
$$

$$
a, b>0
$$

x_{1} nullcline lies above x_{2} nullcline, both in the positive quadrant

OR x_{1} nullcline in positive quadrant

x_{2} nullcline in fourth quadrant

STABLE

x_{2} nullcline lies above x_{1} nullcline both in the positive quadrant

UNSTABLE

LINEARISATION THEOREM

in n dimensions the dynamics of

$$
\frac{d x}{d t}=f(x)
$$

is qualitatively similar to that of its linearisation

$$
\frac{d x}{d t}=\left[\left.(D f)\right|_{\left.x=x_{s t}\right]} x \quad \text { Jacobian of } \mathrm{f} \text { at } \mathrm{x}=\mathrm{x}_{\mathrm{st}}\right.
$$

in the local vicinity of a steady state $x=x_{\text {st }}$
provided that none of the eigenvalues of the Jacobian matrix

$$
\begin{gathered}
{\left[\left.(D f)\right|_{x=x_{s t}}\right]} \\
\text { are } \mathbf{0}
\end{gathered}
$$

$$
\frac{d x}{d t}=f(x) \quad \text { with steady state at } \mathrm{x}=\mathrm{x}_{\mathrm{st}}
$$

1 dimensional

$$
\begin{gathered}
\mathrm{a}=\left.\left(\frac{d f}{d x}\right)\right|_{x=x_{s t}} \\
\mathrm{dx} / \mathrm{dt}=\mathrm{ax}
\end{gathered}
$$

$$
x(t)=\exp (a t) x_{0}
$$

$$
\begin{aligned}
\exp (a)= & 1+a+a^{2} / 2+a^{3} / 3!+\ldots \\
& \text { exponential }
\end{aligned}
$$

$$
\exp (a+b)=\exp (a) \exp (b)
$$

$$
\mathrm{n}>1 \text { dimensional }
$$

$$
\begin{gathered}
A=\left.(D f)\right|_{x=x_{s t}} \\
\mathrm{dx} / \mathrm{dt}=\mathrm{Ax}
\end{gathered}
$$

$$
x(t)=\exp (A t) x_{0}
$$

$$
\exp (A)=I+A+A^{2} / 2+A^{3} / 3!+\ldots
$$

matrix exponential

$$
\exp (A+B)=\exp (A) \cdot \exp (B)
$$

provided $A B=B A$

