
Parallel Buses
ECE 153B

Sensor & Peripheral Interface Design
Winter 2016

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

2

Sensor & Peripheral Interface Design
 Keyword is Interface

 In this instance, it refers to the interface between a processor and its peripherals
in a digital system

 Sensors and peripherals (I/O devices), as well as memory, normally
interface to a processor via buses

 Definition of a bus

 From the Latin omnibus meaning “for all”

 A shared interconnect within a digital system
 As opposed to dedicated, point to point connections

 Sharing managed through an agreed upon bus protocol

 If a device can communicate with the bus (using the bus protocol) then it
can be used in a digital system

 Bus connected devices “speak” the same language

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

3

Bus Structure – Isolated I/O
 Early bus architectures separated memory access from I/O access

 Memory access tightly coupled to processor

 Instruction and data fetch from magnetic core memory

 I/O access handled via a “channel” (or channel controller)

 A channel is essentially a small computer dedicated to the handling of I/O
with peripherals

 Channels allowed the efficient use of interrupts generated by peripherals

 Channels were introduced on the IBM 709 in 1958

 This structure requires separate I/O instructions

 Early Intel microprocessors had IN and OUT instructions (for peripherals)
and MOV instructions for memory and register transfers

 Advantage is that it saves limited memory address space
 16 bit addresses = 64K of memory

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

4

Bus Structure – Memory Mapped I/O
 Later, mini and micro computers made use of memory mapped

I/O

 Maps peripherals onto the memory bus so that the input and output
devices appear to be memory locations

 This was first implemented on the Digital Equipment Corp. (DEC) Unibus of
the PDP-11 around 1969

 Advantages:

 No special I/O-related instructions or datapaths needed

 Simplifies and standardizes processor design

 Disadvantages:

 Device interfaces must decode their addresses and adapt to processor's bus
cycles added complexity

 Memory and I/O devices utilize same clock…difficult to increase clock
frequency

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

5

Bus Components
 Data Bus

 Typical data widths of parallel buses are 8, 16, 32, 64

 Serial buses exist too (serial width = 1)
 Much more on serial buses later

 Address Bus

 Often, but not always, same as data bus wires (shared or multiplexed)
 Separate address and data buses on ECE 153B processor

 Control Signals (or Control Bus)

 Clock (or clocks)
 Bus arbitration signals (Request & Acknowledge)
 Direction control (read vs. write)
 I/O vs. memory access
 Internal vs. external access
 Width specifiers (byte, word, long word, etc.)
 Parity and error control/status signals
 Cycle framers and timing edges
 Interrupts

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

6

System Bus Structure
 General System Bus Structure (below) applies to both

isolated and memory mapped I/O

 Address and Data buses are normally shared in both structures
 Differences are handled via Control bus

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

7

Bus Interface Design
 Bus interface design involves generating the control signals

the peripheral requires from the control signals the
processor generates

 In a “chip set”, both processor and peripheral come from
the same vendor (or second source) and the connection is
direct

 When interfacing a processor from one vendor with a
peripheral from another vendor, a hardware interface must
be designed

 Generally accomplished via programmable logic (i.e., CPLD,
FPGA, etc.)

 Bus control CPLD (U101) on E153BSYS board

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

8

Bus Interface Design
 Bus Interface Design involves satisfying the following four

requirements

 Device Address Decoding

 Recognize a unique address (or address range) and ensure that it is only
addressed during valid cycles and has correct transfer direction

 Sequence Domain Constraints

 Determine the order and relationship of events in a bus transaction

 Time Domain Constraints

 Determine if device meets timing requirements
 Add wait states or select different device

 Electrical Requirements

 Ensure that logic levels and voltage, current and power requirements are
satisfied

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

9

Device Address Decoding
 Memory mapped I/O technique maps a range of

regular address space onto a given device

 Any processor access to this range goes to the device

 Device sees address (i.e. its “name”) and responds as a
slave in master/slave bus cycle

Address xxxxx ... xxx xxxx … xx
bits

Device address
(unique in system)

Don't care bits
(cause “aliasing”)

Low-order bits
address internal
device registers

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

10

Device Address Decoding
 Implementation requires an address decoder

 Device address derived from high-order bus address bits

 Matches with device's unique address pattern during
active bus cycles

 Low-order bits used to address internal registers

 Generate appropriate READ, WRITE and RESET control
signals from processor control signals

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

11

ECE153BSYS Memory Map

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

12

Address Decoder Design Example
 The table below illustrates the data, address and (portions of) the control

buses for the Texas Instruments TMS32C031 DSP (the processor on the
ECE 153B SYS board)

 32 bit data bus
 24 bit address bus
 Single R/W* direction control signal
 STRB* signal indicating external access
 RESET * signal

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

13

Address Decoder Design Example
 The Intel 8255A

Programmable
Peripheral Interface

 Three addressable 8 bit
ports

 8 bit data bus

 Discrete RD* and WR*
signals

 High true RESET signal

 Low true CS* (chip
select signal)

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

14

Address Decoder Design Example
 8255A Basic Operation

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

15

Address Decoder Design Example
 Assuming that this is the only peripheral device connected

to the ‘C31 processor, design the interface circuitry to place
it at the lowest address(es) in the peripheral decode space

 Memory map shows peripherals located from address (hex)
10 0000 to 3F FFFF ((0001)b0 0000h) to ((0011)bF FFFFh)

 8255A should be at address (0001)b0 0000h

 Internal ports and registers should be at:

 Port A: 1X XXX xx00
 Port B: 1X XXX xx01
 Port C: 1X XXX xx10
 Control: 1X XXX xx11

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

16

Address Decoder Design Example
 Four most significant bits of address bus

used for chip select (CS*)

 1X XXXX enables chip

 Two least significant bits used to
address ports A, B and C and control
register

 8255A data I/O connected to 8 least
significant bits of DSP data bus

 Individual RD* and WR* signals derived
from DSP R/W* and STRB* (external
access) signals

 Polarity of 8255A RESET signal is high
true vs. low true RESET* signal from
DSP

 Decoder easily realizable using
programmable logic device (PLD, FPGA,
etc.)

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

17

Address Decoder Design Example
 Address of 8255A is not fully decoded

 To fully decode address, all 23 bits of address bus would be utilized
 A23 – A2 = 10 0000 for chip select (CS*)
 A1 – A0 = Port / Control select

 Not necessary in this design because the 8255A is the only
peripheral and the memory map defines the peripheral space as
10 0000 through 3F FFFF

 This results in “aliasing” since any address between 10 0000 and
1F FFFF will select this device

 This approach requires much less hardware than fully decoding the
address

 If additional peripherals are included in the design, progressively more
address bits can be included

 The only requirement is that the peripheral addresses are mutually
exclusive and all reside in the peripheral space of the memory map

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

18

Sequence Domain Constraints
 Once the address decoding of the device has been determined, the next

step in designing the bus interface is satisfying the sequence domain
constraints

 At a high level, this requires that you:

 Thoroughly understand the cycles that will be seen on the bus side

 Thoroughly understand the operation of the device being interfaced

 Plan your own device transactions so that they will be as compatible as possible
with bus cycles

 Formalizing the above description, we assert that in the sequence domain,
events are ordered such that

 A precedes B, or

 A and B are concurrent (no relationship), or

 A and B are identical

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

19

Sequence Domain Constraints

 Two Phase
(Cycle) & Four
Phase (Cycle),
Equipotential
(Isochronic)
Signaling

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

20

Sequence Domain Constraints
 If the timing information is stripped out of the diagram on

the following page, we are left with the sequence domain
constraints

 Three additional signals (H1, H3 and RDY*) are required to
effect handshaking and define sequence domain operation

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

21

Sequence Domain Definition of
TMS32C031 Read Operation
 H1 going low precedes STRB* going

low (12)

 H1 going low precedes ADDRESS
becomes valid (15)

 STRB* going low is concurrent with
ADDRESS becoming valid (**)

 ADRRESS becoming valid precedes
RDY* going low (24)

 RDY* going low precedes processor
READ operation enabled (18)
 RDY* is sampled and READ is enabled

on rising edge of H1

 DATA becomes valid precedes H1
going low (16)

 RDY* going low is concurrent with
DATA becoming valid (**)

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

22

Incorporating Sequence Domain Constraints
into Address Decoder Design Example
 The following sequence domain constraints are guaranteed by the

processor

 H1 going low precedes STRB* going low (12)

 H1 going low precedes ADDRESS becomes valid (15)

 STRB* going low is concurrent with ADDRESS becoming valid (**)

 The sequence domain constraint that must me satisfied by the
interface is

 ADRRESS becoming valid precedes RDY* going low (24)

 The sequence (and time) domain requirement that must be
satisfied by the peripheral

 DATA becomes valid precedes H1 going low (16)

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

23

Incorporating Sequence Domain Constraints
into Address Decoder Design Example
 From Address Decoder Design Example,

8255A CS* = (A23’ • A22’ • A21’ • A20)’

 i.e., Valid Address = 1XX XXXX

 Actual timing of Address bus vs. 8255A CS* vs. RDY* is unknown (at this point), but
sequence domain characteristic of:

“ADRRESS becoming valid precedes RDY* going low” is guaranteed

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

24

Time Domain Constraints
 The next step is adding time domain information to the sequence

domain constraints

 The fundamental timing equation of a synchronous digital system:

Clock period ≥ CLK to Q + Prop Delay + Setup

 The table on the following page attaches timing parameters to the
waveform diagram introduced earlier (slide 21)

 The Delay times are simply the combinational min and max case
times between event occurrences, generally signal edges to other
signal edges or signal edges to data validity

 Clk to Q and Prop Delay are delay times

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

25

Time Domain Constraints
 Setup and Hold times define the timing

relationship between event occurrences (again,
generally signal edges) and data validity for
correct sequential operation. Specifically:

 Setup time (tsu)
 the amount of time the data input to a flip-flop must be

stable before the active signal edge in order to guarantee
correct latching operation

 Hold time (thold)
 the amount of time the data input to a flip-flop must

remain stable after the active signal edge in order to
guarantee correct latching operation

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

26

Time Domain Definition of
TMS32C031-50 Read Operation
 The table below indicates the timing parameters for the various speed and

voltage grades of the TI TMS30C31 processor

 ‘C31 indicates a 5V part; ‘LC-31 indicates a 3.3V part

 The -27, -33, -40, etc. extensions indicates the maximum clock frequency in
MHz

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

27

Time Domain Definition of
TMS32C031-50 Read Operation
 12 Delay time, H1 low to STRB*

low (5 ns MAX)

 15 Delay time, H1 low to A valid
(9 ns MAX)

 24 Delay time, RDY* from A
valid (6 ns characterized, not
tested)

 18 Setup time, RDY* before H1
high (6 ns MIN)

 19 Hold time, RDY* after H1
high (0 ns MIN)

 16 Setup time, D before H1 low
(read, 10 ns MIN)

 17 Hold time, D after H1 low
(read, 0 ns MIN)

40ns

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

28

Incorporating Time Domain Constraints
into the Design Example
 Our next step is determining if the interface design satisfies the

performance requirements of the processor

 For the time being, we’ll only be concerned with reading from the
8255A Programmable Peripheral Interface

 There are two timing parameters that must be satisfied by the
interface and the 8255A

 The RDY* signal must be generated by the interface prior to the rising
edge of H1 to avoid adding a wait state

 This includes all combinational delays through the interface as well as
satisfying the setup and hold times for sampling around H1

 The DATA must be on the bus and valid before the next falling edge of
H1 at which time the data is sampled by the processor

 Once again, this will include propagation delays through the interface and
through the appropriate path within the peripheral and the satisfaction of
the setup and hold requirements around the falling edge of H1

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

29

Incorporating Time Domain Constraints
into the Design Example
 We’ll look at generation of the RDY* signal first and assume we’re

using the 50MHz version of the DSP

 This yields a system clock period of 20 ns and an H1/H3 clock period
of 40 ns

 The first timing parameters to look at are the generation of the
valid address bits since the RDY* is generated from address bits
A23 – A20.

 The table indicates that the worst case delay (MAX) between H1 going
low and ADDRESS valid (timing parameter 15) is 9 ns

 The next relevant delay is the combinational propagation delay
through the address decoder and the enabling of the tristate output to
generate the RDY* signal

 We’ll assume this is the value to be determined, i.e., the interface must
meet this requirement for it to operate correctly with the processor

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

30

Incorporating Time Domain Constraints
into the Design Example

 Finally, we have to satisfy the setup time of of the RDY* signal with
respect to the rising edge of H1 (timing parameter 18)

 The table defines this as worst case (MIN) of 6 ns

 Since the delay from H1 going low to H1 going high is 20 ns, the
maximum propagation delay through the interface is:

 20 ns – 9ns (H1 low to valid A) – 6 ns (setup time) = 5 ns

 If this requirement is not met, either the interface needs to be redesigned
(using different hardware) or a wait state needs to be inserted

 The last piece of the analysis would be satisfying the hold time (19) of
the RDY* signal after H1 going high but since this is specified as 0 ns,
it is correct by construction

 In reality, hold times are often negative but are always specified as 0 ns in
that case

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

31

Incorporating Time Domain Constraints
into the Design Example
 The next critical timing parameter is valid data being available on

the data bus on the next rising edge of H1

 From the DSP side of the interface, data is sampled on the falling edge
of H1 so the timing requirement to be met is:

 H1 period – setup time (DATA valid to H1 going low)

 At 50 MHz, the period of H1 is 40 ns and the Data valid setup time before
H1 going low is 10 ns (timing parameter 16)

 This allows 30 ns for the combinational delay of generating (worst case) CS*
or RD* plus the internal delay in the 8255A

 On the 8255A side of the interface, recall that

 the CS* signal is generated from address bits A23 – A20 and

 the RD* and WR* signals are generated from DSP signals STRB* and R/W*

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

32

Incorporating Time Domain Constraints
into the Design Example
 Worst case propagation delay to generate control signals, is longest of:

 (12) 5 ns MAX H1 low to STRB* (for RD* and WR*)

 (15) 9 ns MAX H1 low to valid Address (for CS*)

 If we assume the propagation delays through the interface are roughly
equivalent, the generation of CS* will be the critical path to the inputs of the
8255A

 The setup time for Data becoming valid before H1 going low (timing
parameter 16) is 10 ns and thus the worst case delay through the 8255A
is:

40 ns (H1 period) – 9 ns (H1 to A valid) - 5 ns (max delay to generate CS*)
– 10 ns (setup time, D before H1 low) =

16 ns worst case delay through 8255A critical path (propagation delay)

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

33

Electrical Requirements

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

34

Level Shifting
 Sometime level shifting is necessary to allow different logic

families to communicate, sometimes it is not necessary

 Some (many) contemporary processors operate at 3.3 Volts
but their inputs can accept (tolerate) outputs from 5 Volt
devices

 Use of inverters to change levels when necessary

 Use a pair of TTL inverters to boost 3.3 Volt levels to 5 Volt
levels

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

35

Interface to External Board
 E153BSYS board interfaces to user board (E153PLGIN)

through EUROcard connector

 Physical vs. Logical Interfacing

 Sometimes interface includes both

 Electrical Isolation

 Public Networks
 Telephone, etc.

 Card Cages

 Backplanes

 Daughter boards

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

36

74541 Octal Tristate Buffer
 Buffers with tri-state

controls

 available in many logic
families)

 LS, ALS, C, HC, ACT,
HCT, ABT, ...

 Version with inverting
buffers is 74540

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

37

74573 Octal Latch with Tri-state
 Latch with tri-state controls (available in many logic families)

 Octal latch that enables Di to Qi while CLK high (latches when CLK
low). There is a common output enable control line.

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Parallel Buses

38

74245 Octal Transceiver
 Bi-directional bus

switch (available
in many logic
families)

 74ACT245 used on
E153BSYS board
address and data
buses

