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Abstract
We study the phase response properties of the PD neutioe $tomato-gastric Ganglion
(STG). We use model equations describing a square wave purstiflation to define
and analyze the phase response dynamics for weak and perturbations. In the real
and model neurons, we observe that the PRC saturateamplitude. We show that for
strong perturbations, much of the phase response is thee teitthe addition of spikes in
the active phase, the deletion of spikes or the tetmmaf the active phase of the
oscillation. Discontinuities are also present in®B#Cs we obtain. This discontinuity
may be related to the method of obtaining the PRCsyilmgtto understand the onset of
these phenomena, we use a phase model to determine appecomditions under
which square shaped current pulses cause spike addition afidrdelVe break apart the
phase response over the active and silent phasesadditiation and, in the companion
paper, describe algorithms to predict the full phase regpfbom both pieces. We also
discuss here two possible methods to understand the r@saeamse in the active phase.
We also use ideas from geometric singular perturbateeryrand dynamical systems
theory to describe burst truncation and in particular shown that the saturation of the
PRC can be explained using the calcium dynamics forgsirdmbition in the active
phase and strong excitation in the silent. Furthermtbeediscontinuity in the PRC for
strong excitation is shown to be a ‘topological’ prapén the sense that it cannot be
removed.



Introduction

The experiment of phase resetting has a long historghndates back to the extensive
work done by Winfree [19] on certain biological and cleahoscillators. The
experiments were originally carried out on the ciraadhythm, the idea being to
characterize responses of the period of the cycle/rhighprecisely timed stimulus. The
phase resetting or response curve (PRC) is then afyilug Gesponse’ of the period
against the timing of the stimulus that elicited thep@nse’. The notion of a ‘response’
will be fixed later on in this paper. In short, howeleneasures the response of the
oscillator period to timed inputs.

Mathematically, the biological oscillator is modeledabget of ordinary deterministic
differential equations which possesses a stable perioldiicn. Under this setting, one
can view the impulse of current as causing excursiomns tinis periodic solution. The
assumption of stability implies that these perturbatidie out and the oscillator returns
to its original periodic motion. The PRC can be showhe determined by what is
known as ‘isochrons’ [11]. Isochronous points are thwisese time evolution ‘look
alike’ and thus have essentially the same ‘timing’. &wyical systems theory, which is
the qualitative theory of ordinary differential equatigreds relevant characterizations
of the isochrons of periodic motions. In sectionthaf paper we shall draw on elements
of dynamical systems theory to explain the PRC efitiological oscillator which we
consider and model.

The notion of a PRC is not just a long winded formalgsmd it is a useful notion when
one considers networks of biological oscillators. Ifkmew the PRC of the individual
oscillators then presumably, given any input into thellagais we know how they shall
respond and hence we know the future states of the ¢®@ll& hus given any network
of oscillators, once we figure out the network connégtor coupling which describes
how the oscillators in the network ‘talk’ or sendrgls/inputs to each other, as well as
know the individual PRCs, then, in theory, we can deitez the individual and also the
collective behavior of the network. In this paper, e r@ot primarily concerned with
network behavior of any kind. It would be untrue thoughatpthat network behavior is
not part of our problem situation. We study the PRC rdw@ral oscillator which is part of
a network of oscillators in the Stomato-gastric Gang(STG) of the cralCancer
Borealis.Very little information is needed about the STG to untdeids this paper since
we study one neuron kernel in isolation from the netw®dhks isolation was achieved by
applying pharmacological agents which block the synapses o&then and hence block
inputs to the neuron. However, as we have indicatedamo Will be done if one keeps
the big picture (i.e. network) in mind in trying to understéime implications of our
experiments and results.

The kernel we study is the anterior burster/pyloriatdil (AB-PD) neuron kernel which
is the pacemaker kernel for the pyloric rhythm of th€&SBoth cells are electrically
coupled and it is for this reason that we treat themsasgle unit in so far as the synaptic



coupling between the PD and other cells in the netwodn®ved. The PD neuron is an
endogenous bursting neuron. Its membrane potential protikepisted in (Fig 1). Its
membrane potential has periods of fast spiking activitym@phase) and slow quiet
activity (rest phase). We compute the PRC by injectingeatipulses of different
amplitude into the biological and model (i.e. mathenaditiceurons. The PRC of this
pacemaker kernel of the STG has been studied quite esdbnfr various types of
stimuli [1, 8]. It has been shown that there is arsdion of the PRC with varying
amplitude of stimulus [1]. In computing their PRCs, they signaptic conductance pulses
via Dynamic clamp as opposed to the current pulses weeutdize. Nonetheless, with
the use of current pulses, the PRCs of the biologichhaodel PD neuron still shows
saturation with amplitude. Such saturation has relewagplications for the global
network function [1].

Apart from the saturation of the PRC with amplitude, made some other interesting
observations. For larger stimulus input the main causelasfges in the period of the
oscillator is either one of spike deletion, spike addiand burst truncation. Burst
truncation is a termination, by a perturbatory input, ofatieve phase of the oscillation.
Spike deletion (addition) is a shortening (lengtheninghefactive phase of the oscillator
by the decrease (increase) in the number of spikeg iadiive phase of the oscillation.
These notions will be fixed in later sections of tegper. Our description will provide an
explanation of the results obtained in [8] where gilpoupled biological and
engineered (artificial) neurons were considered. Thegmed anti-phase locked (1-1
locking) of the biological and engineered neuron. Theoreasll become evident with
our discussion of burst truncation.

Much theoretical work has been done [17] describing schergetermine the stability
of neural networks composed of simple integrate andIffengurons or some Type 1
neurons. Recall that Type 1 neurons are neurons for tacfiequency at the onset of
oscillation can be arbitrarily small. These worky tetavily on the phase variable and
notion of phase reduction, concepts which do not generdigity to higher dimensional
relaxation oscillators, or at least not for the sgrperturbations typically considered for
bursting neurons where the PRC saturate with amplitudéamchich phase resetting is
caused by burst truncation by the strong inputs. Our goalishte give mechanisms,
based on the intrinsic dynamics of the oscillatovy tleese phenomena come about. We
also consider a novel approach of determining the PRCdifferent parts of the
oscillator and then piecing them together to explagnfiii PRC. For instance, we
compute the PRC using the spike shifting in the active pbiase oscillator and then
use this to predict the actual PRC of the full oscillatibhis has the added advantage of
breaking the PR dynamics into two parts each of whiahbeaunderstood independently.
This method will of course have its domain of applicatisiwell as its limitations which
we try to elucidate. The paper is divided into (five) &t First we present our
experimental and numerical methods for determining B€;Rve also briefly describe
the mathematical model used. Next, we discuss the exgatiahand numerical
observations. We then focus on the phenomena of dpikéion, spike addition and burst
truncation and we mathematically derive conditions (snesessary, some sufficient) for
spike deletion and spike addition using ideas from theryhaef ordinary differential



equations. Next we define and describe burst truncation usnfjsrérom geometric
singular perturbation theory. We then quantify our napgroach to computing the PRC
and qualify it using earlier results.
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FIG 1: (A) Trace of membrane potential of the model (mathematigalron is shown.
(B) Trace of membrane potential of the PD Neuron with DPsinapse in tact. The
average period of the oscillation is about ©. Trace of intracellular G4 concentration
for the model neuronD)) Plot showing various terms in the definition of tHe@®




SECTION |

M ethods and Definitions

The PRC: The free running oscillator is assumed to have an intrpeiod ofPyas
measured from the start of one active phase or lmutketstart othe next burst as
illustrated in Fig 1d. Phase zero is arbitrarily sethdtart of the burst. The timing of the
perturbation is measured from the zero phase and is ddp@teshown in Fig 1d and for
this input the stimulus phase or what we call here thespbfggerturbation is defined &/Py.

For a single perturbation, we define the phase resgoris®the period change, i.e. the
difference between the time of the start of the thafter the stimulus input and the time
of the burst assuming there was no input. This differensanplyAP= Py-P’as
indicated in Fig 1d. If a perturbation causes the next boifs¢gin earlier than it would
have, the perturbation is said to have advanced the jgimaisit is clear thatP > 0. This
situation is that shown in Fig 1d. If the perturbatianses the burst to begin at a later
time than it would have, the stimulus is said to havaydel the phase and in this case
AP < 0 holds. A PRC is then a plot of the normalizedqukdhange AP/ Py) versus the
phase of perturbation defined above. This same methodaiag used irrespective of
whether it was a biological or model neuron conceréel offer slight variations of this
definition in a later section especially as concehnesnodel neurons.

Remarkl: An important assumption that we make in the experiai@nd numerical
determination of PRCs is that the biological oscilldtas an observable reference event
(RE). In the case of a tonic spiking cell this couldheepeak (or trough) of an action
potential. In the case of a bursting cell it could becttossing of some arbitrary but fixed
membrane potential in a specified direction or it couldheeth spike in a burst. It
should be clear that different experimentalist caroskdlifferent REs and that the PRC
is dependent on the RE chosen [7]. What is not so islehat, but we will show later, is
that the choice of RE may lead to misleading results.

Physiological Recordings. Cancer Borealis we purchased and maintained in sea atater
about 12 °C until used. The Stomatogastric nervous sy$&hSs) were dissected out
and pinned on Petri dishes coated with Sylgard and the #&@s-sheathed with fine
forceps to enable entry by electrodes into the cellsthédlugh the experiments the cells
were kept healthy and maintained at specific temperatdr@arconcentrations by
continuously passing cold saline throughout the dish.

Extra cellular recordings were made using stainless$ @iteelectrodes in Vaseline wells
around certain motor nerves. The Vaseline well servedet@te a potential difference
between the region immediately surrounding a motorenand the rest of the dish. The
signals were amplified by a differential amplifiertrncellular recordings were made



using salt (ion) filled glass micro-electrodes whossstances were in the range of 18 —
40 MQ. Both intra cellular and extra cellular voltage tsaeere digitized and recorded
using Clampex. The PD and lateral pyloric (LP) neurorevigentified using their
voltage traces and matching them against the pyloric rhyflhen LP to PD synapse, the
only synapse into the pacemaker kernel, was blocked using €fbea neurotoxin that
blocks spike mediated components of action potentalslocked by hyperpolarizing the
LP neuron.

The PRC was computed by in house software. To injectuitnent, the software tracked
the state of the voltage variable by detecting whero#sed some fixed threshold with
positive slope. The time of first crossing was deterchigwed the perturbation was sent at
the required phase as measured from the prior crossthg tfireshold. The next input
was spaced at least 4 burst periods away from the previeu® @nsure that the neuron
returned as close as possible to its intrinsic periodigom and also in order to prevent
entraining the oscillator. The voltage current traceewaved and analyzed offline. The
perturbations were injected at ten equally spaced poitke inycle corresponding to a
phase resolution of 0.1. This enabled us to perform moreimqr@s and average the
PRC over all of them.

Remark2: Slight complications arise because the peridtdefeal biological neuron is
not constant. The complication is two fold becausesiprably, the period of the
oscillation is changing already and it is difficultéstimate just which changes in period,
if any, are due to the stimulus and not to the alr@attiynsically varying period. The

other relevant implication of the changing period i¢ tha normalizations done in
computing the PRC are not done using the same period sohegeinds on the period just
before that in which the perturbation occurs. The only wa knew to side step these
complications was to use data from experiments ti@awed as little variation as

possible. We would like to point out, however, thataswmever possible to get absolutely
constant periods.

Model Equations: In our mathematical model we use adopt a reduced mbdedquare
wave burster as in [12]. The model is essentially arigiduecar type model with an
addition of slowly varying calcium currents which is resgible for creating bursting
behavior as proved using geometric singular perturbati@rytitescribed in [3]. The
model equations are the following:

dv _ o B
Ca_(lext o=l =1 (+ms(t—¢))
aw _ p(w, (V) - w)
dt 7,(V) (1)
dCa

at =&(-plc,(v)-Ca)



V represents the membrane potentiatepresents a phenomenological variable which
represents the gating process for the ions passing throegheimbrane arnda
represents the aforementioned intracellular calcfoms.the membrane capacitance &nd
represents external, calcium, potassium or leak cudepending om. The full equations
and parameters are described in Appendix A and the XPPwngthidehich it is run is
also described in the same appendix. The relevantdaetitithat the parameters
assumed small in the model and it is responsible fo'stbness’ of the calcium
equation. We shall exploit this separation of time schter to help describe certain
aspects of the model. The last term on the righterfitst equation represents our
perturbation term which is implemented in our numeoalulations as a step function
the height of which is the amplitude of the perturbadstbmulus and the width
corresponds to the duration of the stimulus given by thengesism andy respectively.
The PRC of the model neuron was computed as outlined ddotles biological neuron.

Mathematical Aspects of PRCs. PRCs are mostly computed for biological oscillators and
the idea is to measure how the oscillator reactssitrete disturbances. In our case the
biological oscillator is the bursting PD cell of the®in the Crab. We have assumed that
the cell can be modeled as a differential equation/digaslystem which we write as:

X = F(X) (2)
Or equivalently by the flow:
W(X,1) (3)

Where D, \PL:O = F(X) (D denotes partial differentiation w.r.t to time) ahe flow

essentially carries us from some initial positiorsbme state after tinteHere

X OM whereM is a smooth manifold. In our casdé, =R". More so, we assume that (2)
has a stable limit cycle which we denotd byFurthermore we assume thas
asymptotically orbitally stable. In this case, éxstence of isochrons (stable manifolds)
is guaranteed for all points &6n The additional assumption of normal hyperbolicity
ensures that the attraction in a direction normBli$ greater than the tangential
attraction. The existence of isochrons is thenrggdly a theorem of dynamical systems.
We shall soon briefly describe isochrons.

In addition we assume that the perturbed systenbeamitten as:

X =F(X,m
Here mO R denotes the perturbation, positive values signbjtatory perturbations
while negative values signify inhibitory perturlmats. Clearlyi,rd gives the amplitude of
the perturbation. We also adopt the standard dieimof phase as the time elapsed from

the reference event. Note thas a periodic solution to (1) and has period T. For
trajectories close towe expect that the time between the reference swvalitapproach

T. We adopt the standard definition for the phase @: M - S'whereS' is the unit



circle and® defines the phase or asymptotic phase of a poMtdepending on whether
the point is on™ or in an appropriately defined neighborhood ofVe also adopt the
standard definition of isochron [2, 7] and the stable m&hdban invariant set [4]. As
pointed out above, the existence of isochrons is agheof dynamical systems when the
limit cycle is assumed to be normally hyperbolic.cAtkey foliate the neighborhood of
the limit cycle [6].

As we mentioned earlier, we assume that there BEaand that this reference event is
triggered in some determinate way (i.e. it is not randdmnost PRC experiments the
RE is triggered when the membrane potential crosses poedetermined threshold or
when the membrane potential reaches its peak. It shou@dethat the threshold
defines am-1 dimensional hyper-plane in phase space. In theafasang the voltage
peak as a reference event, the RE is also determinetypeasurface of some sorts. In

. - : . . dv .
this case it is the null surface of thequations since on this surfat(;ﬁz Oin

accordance with the idea of a peak in voltage. In det@rghithe PRC we used a
combination of these two prescriptions. We require tiawbltage cross a threshold with
a positive slope. This defines a plane in the regigrhate space whevas increasing.

In both cases the RE events determine and are uniquelyrageed by a manifold in
phase space. As in [7] we call this manifold the detectianifold (DM). More precisely
the DM is a connected subset\that intersectE at exactly one point and is defined
such that if a trajector¥ (t) crosses the DM, the RE is triggered. It is importamci®

that the DM is not necessarily an isochron even thaugiie experiments and numerical
simulations we assign the phase 0 or 1 as soon ag&drgjcrosses the DM.



SECTION I

Results and Observations

We summarize here the main results of our experineaumerical simulations. We
begin first be depicting some of the typical numerRRCs obtained for weak Fig 2 a-b
and strong Fig 2c-d perturbation amplitudes of perturbatidheomodel and biological
neuron. The PRCs for weak perturbations can typicallglissected into three regions.
The first is the active phase in which the oscillasdhe most sensitive. In the middle
phases, the phase response is typically small andsdi&ator becomes more sensitive in
the late phase. In the weak perturbation regime, ti@ ¢fRhe inhibitory stimulus is a
reflection of that of the excitatory stimulus abouw tkaxis. For strong perturbations,
however, this symmetry is lost Fig 2c-d. From our debfingiabove, we see that
inhibition causes advance in the early and late pras@éttle delay or no change at all
in the middle of the oscillation.

A PRC for weak perturbations
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Strong perturbation PRC for Biological Neuron
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FIG 2: (A) Plot of the PRC of the model neuron for weak exariaaind inhibitory
perturbations.B) PRC of biological neuron for weak perturbation (0.5nA).eNbe
general qualitative agreement with the model (Red traf®)n(C) Strong perturbation
PRC for the model neuron. There is a sharp disconyinuthe red trace at the point
corresponding to the end of the active phadg Strong perturbation PRC of the model.
It agrees qualitatively with the model (Black traceaq)) (

Saturation of the PRC with Amplitude: We also observe that the PRC saturates with the
amplitude of the perturbation for both the model andolgiehal neuron as shown Fig 3a-
b. In order to facilitate a more direct comparison wanalize the PRC by the amplitude
of the perturbation. These results are shown in Fig\&csee from this figure that, in the
active phase of the oscillation, weak perturbatioed é&nd black curves) cause delays
while strong perturbations cause advances in this redgimmeid phase there is qualitative
agreement of the PRC for all the amplitudes considelsle there is some substantial
deviation at late phase. This observation thus markheuwctive and late phases as
regions of interest. We shall study the PRC of ti&v@ phase more in depth later.
Shown also (Fig 3e) is a plot of the phase respongeeohodel neuron as a function of
the phase of perturbation and the perturbation amplifticke different PRCs can thus be
obtained by passing relevant planes across this surfa@xaadting the curve of
intersection.
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FIG 3: (A) Plot shows that the phase response saturates wigaging amplitude for the
model neuron. Note again that during the active phase ofsthiations, perturbations
cause a phase delay (i.e. negative phase shifts) butnatkrasing inhibition,

perturbations cause an advan®. RPlot shows saturation of phase response as in (a) but
for the biological neuronQ) We normalize the phase response in (b) by the amplitude t
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facilitate comparison between different amplitud&y. Rlot shows phase response at
three different fixed phases as a function of amplitudéhe limit of large perturbations
(positive and negative), each curve asymptotes to a ntaeizoe. The green curve
corresponds to a phase of perturbation in the active palse oscillation. This was
computed for the model neuroi)(Multi-dimensional plot of the phase response as a
function of phase and amplitude of perturbation to the huelaons.
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SECTION Il

Spike Deletion, Spike Addition and Burst Truncation: Given the general qualitative
agreement between the PRCs of the model and biolaggaabn, we focus mainly now
on the model neuron to try to understand the factorsddtatmine its phase response.
We observed that for strong perturbations, the phapemss is due mainly to spike
addition, spike deletion and burst truncation. As we Isanv@ before, spike addition is the
elongation of the active phase of the oscillator sesalt of the perturbation. This
elongation is as a result of the appearance of ndesaction potentials) in the active
phase. Spike deletion is the shortening of the activeeptassed by a reduction in the
number of action potentials in the active phase. Buustation is a termination of the
active phase by a perturbation given in the actives@hBurst truncation is, of course,
accompanied by a reduction in the number of action potentawever, burst
truncation, as we have defined it, differs from spikletiten mainly in that the
perturbations that cause burst truncation can only b& givihe active phase, while we
cannot exclude the possibility of a perturbation in fl@sphase causing fewer spikes in
the following active phase.

These phenomena are illustrated in Fig 4. We obseratdbolh intermediate strength
inhibition and strong excitation can cause spike add{ttg 4 b&f). Interestingly
though, the mechanisms appear to be different. In tleeafashibition (4b), there is a
long delay, almost of the order of the duration of tttéva phase, between th& and 4"
spikes followed by an extra spike. In this case, theug®ation was given during the
active phase. In phase space (not shown), the wajeattually moves backwards in a
straight line and then traces out previous spikes. ggl&ishows, making the distinction
between a burst truncation and a spike deletion carffimltli This situation is peculiar
because there is a long period in which there are nossaiiet after which the active
phase begins. Fig 4d shows the situation just describdthsespace. The red curve
corresponds to the trajectory after perturbation. Thajed¢tory moves backward during
the long period corresponding to no action potentials lagwl finally makes a transition
to the active phase.

Spike addition by strong excitation appears to show aréiffemechanism behind it. In
phase space, the perturbed trajectory (red curve in Figdias extra windings before
transiting to the silent phase. More so this tramsipoint is seen to be different from the
transition point of the unperturbed trajectory (black curvéis jump down’ point, in

the case of no perturbation, is determined by a bifurcatdue of the slow variable
(C&. It is typically the maximum value of the slow \abrle. Fig 4g shows that this
maximum has increased suggesting that change of the jumpmont is responsible for
the extra windings of the trajectory in phase spabesTwe see that understanding how
perturbations affect the transition from active phasglent phase and vice versa will
help us understand the phase response of the neuron.
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FIG 4: (A) Spike deletion.B) Spike addition due to inhibition. Note the elongated
interval between spikes 3 and 4. In phase space (not shiherjajectory traces a
horizontal line after the'8spike and then traces the same spikesBurst truncation
due to inhibition in active phase. In fact, burst truncatian only be caused by
inhibition. However this burst truncation is on thedwmrtine of spike addition in (b)D)
Trajectory in phase space corresponding to (c). Theuea is the trajectory resulting
from the perturbation and the black curve is the unperturagttory. E) Phase space
trajectory corresponding to spike addition by strongtakon in active phase. The black
curve is the unperturbed trajectory. Note that the pextLitajectory (red trace) makes
multiple windings and that the jump down point of thgettory has been moved:)(
Trace of voltage corresponding to (&}) (Trace of the slow variable, €ashowing that
its maximum value, which corresponds to the jump down pbag been increased.
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We try here to derive a priori conditions on the atagk of the current to cause spike
addition and deletion. To begin, we assume the modelifsearphase description (i.e.
there is a mapping of the limit cycle or@y the circle). Each point on the circle
corresponds to a particular phase of the oscillator.d¥ewthis phase is not represented
by a single point on the limit cycle but by a familypmints which is the isochron. Thus,
as in [11], we can write the following phase equation:

0=1+2(8)! () (4)
HereZ(0) is the adjoint or infinitesimal PRC and®) is the perturbatory input usually in
the form of a square pulse. Setting the input to zerresponds to periodic bursting as is
expected. Le®, be the phase of perturbation, afiddbe the phase point after

perturbation wheré, 1[0, 6,,]; 6,,being the phase at the end of a burst (without any

perturbation). Essentially then, we are consideoinly perturbations that occur in the
active phase. If we are going to have spike addiitovould seem necessary tHat 0

for some interval of time so that the phase poatds out old values again thus allowing
for the possibility of tracing the older spikes egd his is the situation shown in Fig 4b.
To rule out the possibility of spike addition weosld require tha > 0for 8 [0,6,,].

This simple requirement implies that

ZO)1(6)>-1 (5)
We must point out here that this phase descripsizalid only when perturbations do not
cause too much deviation from the unperturbed layatie. Thus the situation in Fig 4e
will not be allowed. The reason is that it is ntelac how the change in the jump down
point will affect the isochrons. The violation &) (explains why intermediate inhibition
can cause spike addition (Fig 4b) and weak pertiorgdo not. Strong inhibition
invariably causes burst truncation.
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Going along with this analysis, Bk &, <6, <6,,. Define:d =ISI% wherelSI IS

the maximum inter-spike interval in the unperturbed bams{T is the period of the entire
GpT +1
oscillation. To guarantee spike deletion we require th§t @dt={ (r is the
EpT
duration of the perturbation) which is a way of saying#ha 6, ={ . This is a
reasonable requirement because it says that the haaépoint is one spike away. Thus

we get:
HpT +7 HpT +7

[ A+Z ()1 (6))dt=¢ = [ (Z(6)1(8))dt={ -1 . Multiply both sides byr™
6T 6T
and using the average value theorem of calculus and reddfifj=¢), we obtain that:
-7
<| pZ> :ZT
Assuming that the perturbation is a square pulse we d¢amdhe following
_¢-r
|, ===
{Z)
This gives a parameterization of the perturbation ctibghe duration of the
perturbation witlr # { . For fixed non-zero current you can also determine aunrath

perturbation. We now have sufficient conditionsdpike deletion (and with minor
modifications, spike addition).
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SECTION IV

Breaking apart the Phase Response Dynamics: In order to better understand the phase
response dynamics of the neural oscillator, we studi?R@ of the oscillator over the
active and silent phases of the oscillation separatedythen piece them together obtain
the full response. In so far as such piecemeal operegtipossible, one fundamental
assumption that has to be made is that the perturbafioes to the oscillator in the

silent phase for example, will only advance or deffeeydtart of the following active
phase without drastically affecting the events, p&es, in the active phase. As we have
indicated, strong perturbations, for instance, can cauise addition by increasing the
jump down value. Hence, we explicitly exclude strong pesdtishs from our
considerations here. Furthermore, we assume that lpatitns given in the silent phase
will not cause spikes to be added or deleted and more sootvithange the relative
timing of the spikes in the active phase. This seemalile@sonable assumption in so far
as we do not perturb too close to the transition frontreénesition from active to silent
phase or vice versa. Likewise, we assume that pertorbatihe active phase do not
affect passage in the silent phase.

We would like to point out here some of the possiblaigstin utilizing such a method to
reconstruct the PRC. If we were to analyze networksidting coupled neurons, it
seems clear that there are different types of syncabon that may occur [2, 13].
Neurons may become synchronized in their active phasethe spikes in the active
phase will become phase locked. Their resting stateslsoysynchronize without having
their active phases synchronize. Other different pdisigib abound. The upshot is that in
order to understand such network behavior, it may becomesageao perform such a
dissection of the PRC.

Our old method of computing the PRC can be described foopeigf the discussion
here as measuring the change in timing ofie active phase in the ongoing
perturbation. We call this method M1 to facilitate oucdssion. The first method (M2
for short) we propose is to compute the PRC by perigrini the active phase and then
measuring the change in timing of the end ofdingentactive phase. More precisely, set
the RE to be the start of the active phase and aagipase of zero to this point. Tt

be the time of the end of the active phase of the tumbexd neuron as measured from the
RE. Lett,be the time of the stimulus as measured from thellRBote adep, newthe time
of the end of the active phase after the stimuluenNTep= Tep -Teb, new Will be the

change due to the perturbation. We then wish to\ugkg (after normalization by the
period of the entire oscillator, which is the sum @&f tluration of active and silent
phases) as an estimator for the PRC using M1 at legsefturbations that occur in the
active phase. If what we have said above about theaittion between both phases is
granted, then it seems reasonable that M2 should agsedycio M1 used previously, a
method widely used by experimentalists and theoreticiddes dahe following figures
shows that the two methods do indeed agree for perturbabmssdered.
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FIG 5: (A) The PRC computed for a perturbation of -0.1 using M1 outkiede. B)
PRC computed using M2. Note the qualitative similarity betw@) and (b). This
suggests that M2 is a good approximation to M-(©) Numerically computed adjoint
or infinitesimal PRCs for the"2and & inter spike intervals of the oscillation
respectively. Note the qualitative similarity. Both inf@simal PRCs have been plotted
against their periods.
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We then proceeded to further dissect the active phasgibg to reconstruct the PRC for
perturbations between each spike in the burst and tyieg to use this predict the PRC
again. The idea is that since the infinitesimal PRf@snearly identical (Fig 5 c&d),
perturbations given in each inter spike interval déf@ytiming of the spikes in a
predictable fashion. Since we know that the phase respodse mainly to the shifting
of the relative spike times, we can thus predict tlesphiesponse of the neuron by
simply understanding how two consecutive spikes shiftiveléo perturbations. We
briefly outline one method and its shortcomings here afat the details to the
companion paper [18].

The main idea is that perturbations which occur afteitth@g= 1, 2, 3) spike shifts the
timing of the (+1) st spike without changing tihelative timing of the subsequent spikes.
If this would be so, then the perturbation will causey ¢imé following spike to be shifted
while the rest are simply translated. This gives usatag@redict the timing of the end o
the burst, and, then, using the results above, we eardgtermine the PRC. We can do
this because we know M2 to be able to predict M1, thus #necehift in the spike
immediately following the perturbation will transldtea shift in the end of the active
phase, we thus have an approximation to M2 which we know apmtes M1, our
original method. The results of this method, which a#M3, are summarized in [18].
We note however that this method is only approximataulsez perturbations may or may
not transmit the spike shifting linearly through the déf& inter spike situation. Two
representative case of nonlinear shifting are shown i Bejow.

A i i ] ] ] B

Fig 6 above shows how the spike time shifts that occtireiractive phase may vary
nonlinearly with the inter spike intervals. In 6a, geturbation is given in the first
interval and the perturbed voltage trace (red curve indjgouas its second spike shifted
relative to the unperturbed trace (black curve). The tipikbsshows an even greater
shift while the fourth spike shows a smaller shift. Tthesassumption that the shift is
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translated linearly may fail to hold. In 6b, the perttidiais given in the second inter
spike interval. It causes the third spike to occur tdten it would have without a
perturbation. The fourth spike shows a shift much biggar that seen in the third spike
thus indicating that the effect of the perturbatiocampounded nonlinearly.

It may turn out that determining or even approximatingnndinear nature of the spike
shifting will be non trivial. However, we are working ama possible methods of
figuring out how perturbations change the inter spikeiale and hence the timing of
the spikes. The first method then can be briefly desdrin words as this: we record the
different inter-spike interval duration without any pepation. For discussion purposes
suppose that a perturbation is delivered in the firstW&l.can use the adjoint or PRC to
determine by how much the second spike will be shiftedcaiethen use this shift and
thesamePRC to predict the timing of the third spike and so on.idéa is to compound
the effect of one perturbation through out the actives@ha

The third method is more mathematical in the sensetthses ideas from bifurcation
theory. We again describe the method in words leavinddtals to future work. The
active phase corresponds to spiking due to the fast subvsg$tee differential equations
(see section v below). This fast spiking activity teratés due to a saddle homoclinic
bifurcation of the periodic orbits corresponding to spkiClose to this bifurcation value,
the system can be described by so called reduced modelsnmalriorms [2]. Hence we
obtain the reduction:

V= f(V,Cab)

Ca=Ca@Y
The two equations above are decoupled from eadr,otlinich helps us in out analysis.
© represents factor which might influence the tirales of evolution of the G4
equation. Further more, close to this bifurcatianivave that the (instantaneous)
frequency of the periodic orbits depends on therbition parameter, which is €aThis
dependence can be written &&8q = g(Cg whereg is determined entirely by the normal
form for this particular bifurcation. Since the peris the inverse of the frequency, we
can thus determine the inter spike period. The theal is to determine how perturbations
changeg and thus the frequency and the inter spike period.
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SECTION V

Further Analysis of Burst Truncation: We promised in the previous section to qualify
the distinction between a burst truncation and a spikl@ian. In order to do this and
more we resort here to geometric singular perturbatieoryh This discussion here
closely follows that in [3] although we adapt the dis@arssere with the aim of
explaining burst truncation. Burst truncation is hardartalyze without imposing
extraneous conditions on the phase model. To explast ttuncation as well as give
possible insights into why the PRC saturates, we usedhkements from dynamical
systems theory. The main assumption here is that ther clear separation of time scales
in which two distinct but interrelated systems evol¥e idea is to construct a special
solution as one that periodically visits the invariaanifolds of the fast subsystem. We
can generically write the equations as due to the gesettaig of the problem:

x=f(xy 2 (6)
y=9(x Yy 2 (7)
z=€eh(x Y 2 (8)

With £ small as usual and (3&4) forming the fast subsystem 8)hermore we
assume as usual that the FS has a cubic shaped linedop&xe as shown below:

P Periodic Branch

X

Z here represents calcium in our model and isltw gariable. We letZ., correspond to
the value at which a saddle-homoclinic bifurcatmeurs in the FSZ,, and Z,,

correspond to saddle-node bifurcations. BetwgnandZ,,the FS is bi-stable. It is this
bi-stability that enables bursting behavior sifee $low variable modulates how
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trajectories visit the attracting invariant sets & BS. What interests us immediately is
the middle-branch which we assume is made of saddléspdio each saddle we can

ascribe stable and unstable manifoMs, andW" respectively. If we take the union of
these manifolds we gét’, and\;, . These manifolds are uniquely and clearly defined in

the case where= 0. However, it is shown in [3, 14] that these mddgcstill persist for
e small but positive. Usually, one transitions from #eéive phase (spiking) to the rest
phase via the homoclinic bifurcation however, whilehia bi-stable region, we can

transition from the active phase to resting by having deation push us pa®t/° which

tot
separate the two regimes. This would be an instance dftbumsation. Perturbations
that push us into such regimes will be called strong pextiorb Thus we see that

W, forms a sort of threshold for perturbations and detersrifree perturbation will cause

a truncation or not. We computed the limiting valuesbiiition at and beyond which
there was a burst truncation. The idea is simple:emd screasing inhibitory
perturbations at a fixed phase in the active partebttillation and the value of the
inhibition at which a truncation is first observed tewcis the threshold value. We note
that this threshold is not the (voltage) threshold ithttte stable manifold we have
described above, but it is related to it. The actualestalanifold can be computed as
outlined in [20]. The qualitative result of our computati®shown below:

slope shows that less

inhibition required for
truncation

We can use this to explain the saturation in the PR€.rain idea is that if strong
perturbation which pushes the orbit from the active ppasg\,, the orbit is then

tot ?
carried into the basin of attraction of the loweartwh of stable fixed point and hence into
the active phase. Hence sufficiently large (and bpefjurbations all have the same
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effect of carrying the orbit into the lower branchohder to quantify this description, we
can attempt to reduce the dynamics to that of the géiable for strong perturbations
and then use this to measure the PRC. The basic assortipgn is that after we give a
strong perturbation in the active phase, the slow variddés not change much. If we
assume that the lower branch is very strongly dthgcwe than then say that the
trajectory tracks the lower branch almost as sodheperturbation is given and thus we
land very close to the original limit cycle. Thus wea®nly to follow Z as it varies
betweenZg,andZ,,, to predict the next jump points and hence the staheofiext

burst. We must add that in reality the time it takesestime to get close to the lower
branch again. The time is can be reasonably assuntedsimall for perturbations given
in the active phase. However, perturbation in tlensphase require some time for the
orbit to return to the original limit cycle, for if nperturbations given during the silent
phase will cause essentially no phase shifts and we koowthe figures above that this
is not the case. How then do we explain the saturatidghe PRC for perturbations in the
silent phase? We hypothesize that because the pertmdbatiour for some fixed
duration, the time it takes to get close to the lowanbtih can be related to the
(exponential) rate of attraction to the lower brarfgince this rate is bounded, the time it
takes to get close to the lower branch is also boundae. tNat this analysis then implies
that strong perturbations of different durations witusate but to different values.

To cement this idea of tracking the dynamics of the slakable alone, we turn to a
crude implementation. Shown below is the trace otHieium variable over one period
of the burst. To make the analysis easier, we fitttaise with exponentials and redefine
the dynamics of the calcium variable depending on whétksein the active or silent
phase. This allows us to derive simple equations foPRE making it analytically
tractable. We assume that the slow equations can bemas:

Z=22Z,if0<t<T, (9)
Z=-1,Z,T, <t<T  (10)

eb —

Here A, A, > 0and are determined uniquely by the boundary conditions

Z(0)= Zg,,
Z(Ty,) = Zgy
Z(T) = Ly,

Everything is as defined before but h&res the period of the unperturbed neuron. t et

be the time of perturbation and furthermoretLe]][O,Teb] . Since we assume that orbit is

pushed to the lower branch at the same value of tbeigal/ariable, Z. we denote &5
the time at whiclZ=Z,, . This time will correspond to the “jump up” time. Using (10)

we can write an exact equation for this time:
Zso = P, (t )€™, which yields that;

RETNE )
AZ q)l(tp)
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Here®,(t,) is the solution of (9). Denote &sthe time of the start of the next active
phase as measured from the start of the current @ttage. It is clear that =t -t'.

Putting it all together we obtain the that phase sRR {n the formula) due to this
perturbation is given by”

N
PR—T(T t)

The results of this computation are shown in the figpaélew. The PRC obtained is seen
to be a straight line and it can be shown that the sibfies line depends only da

and.,. In fact, one could extend this method of tracking tbes slariable to explain the
saturation of the PRC with increasing excitation inditent phase. In this case, however,
we do not have a burst truncation. The situation thémaisstrong perturbations given in
the silent phase pushes the trajectory in to the gohigse. It is this start of the active
phase we measure as the phase response and it showdrid@enh that it should result in
a straight line since the start of the active phagssentially at the instant of
perturbation. This explains the red curve in Fig 2c andhdursuggests that the
discontinuity is not an artifact but a topological peay of the PRC.
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Discussion, Conclusion and Future Directions

Our numerical and theoretical studies, though far fromplete, give us some insight to
the mechanisms determining the sensitivity of the newgetturbations. The response
has been shown to be qualitatively different dependingleather we have strong or
weak perturbations and depending on whether we perturb active or silent phase.
We also showed that much of the phase response faggtesturbations is due to spike
addition, spike deletion and burst truncation. For weatugd@ations in the active phase,
the phase response is caused by a shift in the timin@ apikes. Strong perturbations
cause burst truncation or spike addition depending orsiirihibitory or excitatory and
depending on the phase. The results are summarizedfwildweing table:

Strength
Weak Intermediate Strong
Perturbations Perturbations Perturbations
Phase of
Perturbation.
Burst Truncation
Shifting of Inhibition can (Inhibition)
Active Phase spikes cause spike Spike addition
(Inhibition and | addition and and Increase in
Excitation) delayed burst Jump down point
truncation. (Excitation)

Silent Phase

Little effect with
the most
sensitivity at late
phase (Inhibition
and Excitation)

Little effect with
the most
sensitivity at late
phase (Inhibition
and Excitation)

Excitation causes$
active phase to
begin abruptly.
In late phase, ca
also cause spike

addition

Thus we can see how two coupled bursting neurons congiohej@ would be likely to
exhibit anti-phase synchrony if they are coupled strobglinhibition. This anti-phase
synchrony is due to burst truncation so that one neurog bethe active phase will
preclude the possibility of the other neuron also beinbearattive phase.

To our knowledge, it is still an open question how oneccasé PRCs to predict other
different types of synchrony. We proposed the new metbbdsnstructing the PRC as a
first step towards this and other goals. However, thitiodewe developed in [18] is only
a first order approximation. We still need an algorithat gredicts the timing of the
spikes in the active phase given only the PRC betwweeronsecutive spikes. As we
showed above the spike shifting is nonlinear. We are diynmarking on a method in
which the spike shift is compounded from one inter spiteral to another using only
one PRC since we have shown them all to be equivat®ve.
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We also predict that the effect of spike addition Wwdbome pronounced when one
considers networks of coupled oscillators. As the ababie indicates, spike addition is
occurs because there is a change in the jump down valhe slbw variable. Thus a
more intricate analysis needs to be performed to stated how strong excitation or
intermediate inhibition changes the jump down value. # jinmmp down value can be at
least approximated then we can perform an analysisasitoithat in Section v where we
reduce the phase response to tracking the value of thevatiable.
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Appendix

Here is the XPP code:

dv/dt = (I - ICa-(gk*w+gkca*z)*(V-VK)-gl*(V-VI)+m*(s(t-tau)))/c
dw/dt = phi*(winf(V)-w)/tauw(V)
dca/dt=pert*eps*(-mu*Ica-ca)

tau'=0

Ica=gca*minf(V)*(V-Vca)

z=Cal/(Ca+Ca0)

v(0)=-18.7

w(0)=.071

ca(0)=10.39

minf(v)=.5*(1+tanh((v-v1)/v2))
winf(v)=.5*(1+tanh((v-v3)/v4))
tauw(v)=1/cosh((v-v3)/(2*v4))
s(t)=heav(t)*heav(sigma-t)

param vk=-84,vI=-60,vca=120

param i=45,gk=8,gl=2,c=20

param v1=-1.2,v2=18,pert=1

param m=0,sigma=50 t0=931
#param_figl-3 v3=2,v4=30,phi=.04,gca=4.4
param v3=12,v4=17.4,phi=.06666667,gca=4
param v3=12,v4=17.4,phi=.23,gca=4

param mu=.2,ca0=10,eps=0.005,gkca=.25
aux zbar=z

aux icaa=ica

aux vprime=( | - ICa-(gk*w+gkca*z)*(V-VK)-gl*(V-VI)+m*(s(t-tau)))/c
aux prc=1-tt0

aux phase=tau/t0

aux amp=m

@ xp=zbar,yp=v,xlo=0,xhi=1,ylo=-75,yhi=20,total=2000,dt=1,meth=gear;ttk-5
@ dtmax=5,dtmin=1e-10,bound=1000

@ back=white

done
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