

Bicycle Braking Performance Patrick Seiniger Maxim Bierbach Oliver Bartels Yannik Roth Adrian Hellmann

Structure and Concept – Bicycle Deceleration Performance

- Srake Performance of Vehicles with Independent Brakes
- Ideal Brakeforce Distribution
- Test Results Rear Brake Application
- Parameter Variations
- Conclusion

bast

Brake Performance of Two-Wheelers

Challenge #1:

Maintaining vehicle stabilty requires a rotating front wheel

Challenge #2:

Avoiding rear-wheel liftoff

Challenge #3:

Ideal brake operation requires two-channel brake control

Assumptions - Behavior

- High deceleration values require experience and control
 - Avoid front wheel lock
 - Avoid tip-over
 - Two-channel: Decreasing rear wheel force while increasing front wheel force
- It should probably not be assumed that typical riders are able to reach the physical limits
- The safest method for emergency braking on a two-wheeler is rear wheel only

Front Wheel Lock – Capsize Mechanism

- A locked front wheel cannot take side force, friction opposed to moving direction
- Vehicle is unstable in roll and yaw motion
- Small disturbances would lead to immediate capsize

Wheel loads for car and two-wheeler during deceleration

- Center of gravity high
- Wheelbase short
- Deceleration transfers wheel load from rear to front
- Wheel load of rear wheel might become zero
- For increased deceleration, vehicle (TW) tips over

bast

Ideal Brakeforce Distribution

- ⇒ Brake force per wheel: $F_{B,i} = \ddot{x} \cdot F_{z,i} \le \mu \cdot$
- ⇒ Wheel load for deceleration ($\ddot{x} < 0!$)
 - $F_{z,front} = \frac{l_h}{l} \cdot m \cdot g \frac{h_s}{l} \cdot m \cdot \ddot{x}$, increases during braking
 - $F_{z,rear} = \frac{l_v}{l} \cdot m \cdot g + \frac{h_s}{l} \cdot m \cdot \ddot{x}$, decreases during braking
- Brake force per wheel:
 - $\frac{F_{b,front}}{m \cdot g} = \frac{l_h}{l} \cdot \ddot{x} \frac{h_s}{l \cdot g} \cdot \ddot{x}^2$
 - $\frac{F_{b,rear}}{m \cdot g} = \frac{l_v}{l} \cdot \ddot{x} + \frac{h_s}{l \cdot g} \cdot \ddot{x}^2$
- Soth equations lead to brakeforce distribution diagram:

Exact Calculation of Maximum Deceleration for Rear-Wheel Brake Application

② Wheel load:
$$F_{z,rear} = \frac{l_v}{l} \cdot m \cdot g - \frac{h_s}{l} \cdot m \cdot \ddot{x}$$

Maximum possible deceleration:

$$m \cdot \ddot{x} = \mu \cdot \frac{l_{v}}{l} \cdot m \cdot g - \mu \cdot \frac{h_{s}}{l} \cdot m \cdot \ddot{x}$$
$$\Leftrightarrow \ddot{x} + \mu \cdot \frac{h_{s}}{l} \cdot \ddot{x} = \mu \cdot \frac{l_{v}}{l} \cdot g$$
$$\Leftrightarrow \ddot{x} = \frac{l_{v}}{\frac{l}{\mu} + h_{s}} \cdot g$$

Front Wheel: $(\frac{\ddot{x} > 0 \text{ for braking}}{2})$

• Wheel load:
$$F_{z,rear} = \frac{l_v}{l} \cdot m \cdot g + \frac{h_s}{l} \cdot m \cdot \ddot{x}$$

Maximum possible deceleration <u>case 1</u>:

$$m \cdot \ddot{x} = \mu \cdot \frac{l_{v}}{l} \cdot m \cdot g - \mu \cdot \frac{h_{s}}{l} \cdot m \cdot \ddot{x}$$
$$\Leftrightarrow \ddot{x} + \mu \cdot \frac{h_{s}}{l} \cdot \ddot{x} = \mu \cdot \frac{l_{v}}{l} \cdot g$$
$$\Leftrightarrow \ddot{x} = \frac{l_{h}}{\frac{l}{\mu} - h_{s}} \cdot g$$

Maximum deceleration <u>case 2</u>: Rear wheel load = 0, tipping over

$$0 = \frac{l_v}{l} \cdot m \cdot g - \frac{h_s}{l} \cdot m \cdot \ddot{x}, \rightarrow \frac{l_v}{h_s} \cdot g = \ddot{x}$$

S Maximum front wheel deceleration: $\ddot{x} = \min\left(\frac{l_{\nu}}{h_{s}} \cdot g; \frac{l_{h}}{\frac{l}{\mu} - h_{s}} \cdot g\right)$

Brakeforce Distribution Diagram

- Ideal brake force distribution as function of
 - CG Position
 - Wheelbase
- A: Maximum deceleration with front wheel brake
- B: Maximum deceleration with rear wheel brake

Experiment Bicycle

- Rear-heavy bike
- Equipped with deceleration and speed logger
- Application of rear wheel only
- 4 riders, masses known

Measurement Results (1)

Other Bikes

Geometry of saddle – CG – wheelbase comparable to other bikes

bast

Measurement Results (2)

Comparison of Bicycles and Riders

Speed Reduction for Braking at PoNR

v Bicycle [km/h]	a Bicycle [m/s²]	t PoNR [s]	s PoNR [m]	v avoidance [km/h]
10	3.5	0.58	1.46	21.18
<mark>15</mark>	<mark>3.5</mark>	<mark>0.72</mark>	<mark>2.72</mark>	<mark>30.15</mark>
20	3.5	0.88	4.59	41.06
25	3.5	1.06	7.03	52.75
30	3.5	1.25	10.04	64.83

Conclusions

- Rear wheel brake application considered as safest variant for emergency brake
- Typical bicycles in theory allow approximately 3.5 m/s²
- \bigcirc Measurements show: Maximum MFDD ~ 3.9 m/s², average 2.7 m/s²
- \bigcirc Effect of 3.5 m/s² on required speed reduction:
 - TTC for Braking \rightarrow 0.72 s
 - Avoidance Speed \rightarrow 30 km/h