Bicycle Braking Performance
Patrick Seiniger
Maxim Bierbach
Oliver Bartels
Yannik Roth
Adrian Hellmann

Structure and Concept－Bicycle Deceleration Performance

Brake Performance of Vehicles with Independent Brakes
－Ideal Brakeforce Distribution
－Test Results－Rear Brake Application
－Parameter Variations
－Conclusion

Brake Performance of Two-Wheelers

- Challenge \#1:

Maintaining vehicle stabilty requires a rotating front wheel

- Challenge \#2:

Avoiding rear-wheel liftoff

- Challenge \#3:

Ideal brake operation requires two-channel brake control

$$
F_{z, v}
$$

Assumptions－Behavior

－High deceleration values require experience and control
－Avoid front wheel lock
－Avoid tip－over
－Two－channel：Decreasing rear wheel force while increasing front wheel force
－It should probably not be assumed that typical riders are able to reach the physical limits
The safest method for emergency braking on a two－wheeler is rear wheel only

Front Wheel Lock－
 Capsize Mechanism

Seen from rear
－A locked front wheel cannot take side force，friction opposed to moving direction
－Vehicle is unstable in roll and yaw motion
－Small disturbances would lead to immediate capsize

Seen from top

Wheel loads for car and two-wheeler during deceleration

Center of gravity high
© Wheelbase short
D Deceleration transfers wheel Ioad from rear to front
© Wheel load of rear wheel might become zero

- For increased deceleration, vehicle (TW) tips over

Ideal Brakeforce Distribution

－Brake force per wheel：$F_{B, i}=\ddot{x} \cdot F_{z, i} \leq \mu$ ．
－Wheel load for deceleration（ $\ddot{x}<0$ ！）
－$F_{z, f r o n t}=\frac{l_{h}}{l} \cdot m \cdot g-\frac{h_{s}}{l} \cdot m \cdot \ddot{x}$ ，increases during braking
－$\quad F_{z, r e a r}=\frac{l_{v}}{l} \cdot m \cdot g+\frac{h_{s}}{l} \cdot m \cdot \ddot{x}$ ，decreases during braking
－Brake force per wheel：
－$\frac{F_{b, f r o n t}}{m \cdot g}=\frac{l_{h}}{l} \cdot \ddot{x}-\frac{h_{s}}{l \cdot g} \cdot \ddot{x}^{2}$
－$\frac{F_{b, \text { rear }}}{m \cdot g}=\frac{l_{v}}{l} \cdot \ddot{x}+\frac{h_{s}}{l \cdot g} \cdot \ddot{x}^{2}$
Both equations lead to brakeforce distribution diagram：

Exact Calculation of Maximum Deceleration for Rear-Wheel Brake Application

Eq. of Motion: $m \cdot \ddot{x}=F_{B, \text { rear,max }}=\mu \cdot F_{z, \text { rear }}(\ddot{x} \geq \underline{0}$ for braking $)$
Wheel load: $F_{z, \text { rear }}=\frac{l_{v}}{l} \cdot m \cdot g-\frac{h_{s}}{l} \cdot m \cdot \ddot{x}$

- Maximum possible deceleration:

$$
\begin{aligned}
& m \cdot \ddot{x}=\mu \cdot \frac{l_{v}}{l} \cdot m \cdot g-\mu \cdot \frac{h_{s}}{l} \cdot m \cdot \ddot{x} \\
& \Leftrightarrow \ddot{x}+\mu \cdot \frac{h_{s}}{l} \cdot \ddot{x}=\mu \cdot \frac{l_{v}}{l} \cdot g \\
& \Leftrightarrow \ddot{x}=\frac{l_{v}}{\frac{l}{\mu}+h_{s}} \cdot g
\end{aligned}
$$

Wheel load: $F_{z, \text { rear }}=\frac{l_{v}}{l} \cdot m \cdot g+\frac{h_{s}}{l} \cdot m \cdot \ddot{x}$

- Maximum possible deceleration case 1:

$$
\begin{gathered}
m \cdot \ddot{x}=\mu \cdot \frac{l_{v}}{l} \cdot m \cdot g-\mu \cdot \frac{h_{s}}{l} \cdot m \cdot \ddot{x} \\
\Leftrightarrow \ddot{x}+\mu \cdot \frac{h_{s}}{l} \cdot \ddot{x}=\mu \cdot \frac{l_{v}}{l} \cdot g \\
\Leftrightarrow \ddot{x}=\frac{l_{h}}{\frac{l}{\mu}-h_{s}} \cdot g
\end{gathered}
$$

(Maximum deceleration case 2: Rear wheel load $=0$, tipping over $0=\frac{l_{v}}{l} \cdot m \cdot g-\frac{h_{s}}{l} \cdot m \cdot \ddot{x}, \rightarrow \frac{l_{v}}{h_{s}} \cdot g=\ddot{x}$

Maximum front wheel deceleration: $\ddot{x}=\min \left(\frac{l_{v}}{h_{s}} \cdot g ; \frac{l_{h}}{\frac{l}{u}-h_{s}} \cdot g\right)$

Brakeforce Distribution Diagram

Max front brake decel: $6.60 \mathrm{~m} / \mathrm{s}^{2}$
Max rear brake decel: $3.16 \mathrm{~m} / \mathrm{s}^{2}$

- Ideal brake force distribution as function of
- CG Position
- Wheelbase
- A: Maximum deceleration with front wheel brake

D B: Maximum deceleration with rear wheel brake

Measurement Results (1)

- Geometry of saddle - CG wheelbase comparable to other bikes

Measurement Results (2)

Comparison of Bicycles and Riders

Speed Reduction for Braking at PoNR

v Bicycle $[\mathrm{km} / \mathrm{h}]$	a Bicycle $\left[\mathrm{m} / \mathrm{s}^{2}\right]$	t PoNR $[\mathrm{s}]$	s PoNR $[\mathrm{m}]$	v avoidance $[\mathrm{km} / \mathrm{h}]$
10	3.5	0.58	1.46	21.18
15	3.5	0.72	2.72	30.15
20	3.5	0.88	4.59	41.06
25	3.5	1.06	7.03	52.75
30	3.5	1.25	10.04	64.83

Conclusions

－Rear wheel brake application considered as safest variant for emergency brake
Typical bicycles in theory allow approximately $3.5 \mathrm{~m} / \mathrm{s}^{2}$
－Measurements show：Maximum MFDD～ $3.9 \mathrm{~m} / \mathrm{s}^{2}$ ，average $2.7 \mathrm{~m} / \mathrm{s}^{2}$
Effect of $3.5 \mathrm{~m} / \mathrm{s}^{2}$ on required speed reduction：
－TTC for Braking $\rightarrow 0.72 \mathrm{~s}$
－Avoidance Speed $\rightarrow 30 \mathrm{~km} / \mathrm{h}$

