Academia.eduAcademia.edu
ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh. Geol. B.-A. ISSN 0378-0864 ISBN 978-3-85316-058-9 Band 65 S. 181–210 Wien, 10. 11. 2010 Fifty Years of Geological Cooperation between Austria, the Czech Republic and the Slovak Republic An Early Eocene Fauna and Flora from “Rote Kirche” in Gschliefgraben near Gmunden, Upper Austria alFréd dulai1, lenka hradecká2, MaGda konzalová3, GyörGy less4, lilian Švábenická2 & harald lobitzer5 4 Text-Figures, 7 Plates, 4 Tables Österreichische Karte 1:50.000 Blatt 66 Gmunden Ultrahelveticum Salzkammergut Gschliefgraben Palynomorphs Nannofossils Foraminifera Brachiopods Rote Kirche Ypresian Contents Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location and Geological Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Studied Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brachiopods (A. Dulai) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Systematic Notes on Brachiopods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Taxonomic Composition of the Brachiopod Fauna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Palaeoecology, Palaeoenvironment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small Foraminifera (L. Hradecká). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Larger Foraminifera (Gy. Less) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Systematic Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calcareous Nannofossils (L. Švábenická) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microflora – Preliminary Results (M. Konzalová) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 182 182 182 183 183 184 186 186 187 187 187 187 188 189 190 191 194 208 208 Beiträge zur früheozänen Fauna und Flora der Lokalität Rote Kirche im Gschliefgraben bei Gmunden, Oberösterreich Zusammenfassung Erstmals wird eine Brachiopoden-Vergesellschaftung aus dem Eozän Österreichs beschrieben. Sie umfasst 6 Taxa (Gryphus kickxii, Meznericsia hantkeni, Terebratulina tenuistriata, Orthothyris pectinoides, Megathiris detruncata, Argyrotheca sabandensis?) und stammt aus mergeligen Kalken bzw. sandigen Mergeln des Ultrahelvetikums der Lokalität Rote Kirche im Gschliefgraben bei Gmunden. Die Dominanz der Genera Gryphus und Terebratulina spricht für einen relativ tieferen Ablagerungsraum, wahrscheinlich im äußeren Schelfbereich. Groß- und Kleinforaminiferen, kalkige Nannofossilien und Palynomorphen / Dinoflagellaten ermöglichen eine Einstufung der hangenden Ablagerungen des Aufschlusses Rote Kirche als frühes Eozän (spätes Ypresium). Eine neue Großforaminiferen-Chronosubpecies, Orbitoclypeus multiplicatus gmundenensis, die für die Zone SBZ 10 charakteristisch ist, wird beschrieben. Die Palynomorphen-Assoziation wird von marinen Dinoflagellaten dominiert. Es konnten aber auch Süß- bzw. Brackwasser-Algenzysten von Zygnemataceae (Ovoidites elongatus) nachgewiesen werden, die einen terrestrischen Einfluss bezeugen. Im Gegensatz zu den Pollen-Floren des Danium und des Thanetium Eurasiens stellen die ausgestorbenen Pollen-Leitformen der Normapolles im untersuchten (etwas jüngeren) Material lediglich einen geringen Anteil der Assoziation dar. 1 aLFrÉd dULai: Hungarian Natural History Museum, Department of Palaeontology and Geology, H 1431 Budapest POB 137, Hungary. DULAI@nhmus.hu 2 Lenka hradeCká and LiLian ŠvábeniCká: Czech Geological Survey, Klárov 131/3, CZ 118 21, Praha 1, Czech Republic. lenka.hradecka@geology.cz, lilian.svabenicka@geology.cz 3 MaGda konzaLová: Institute of Geology v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 165 00 Praha 6, Czech Republic. konzalova@gli.cas.cz 4 GYÖrGY LeSS: Department of Geology and Mineral Resources, University of Miskolc, H 3515 Miskolc-Egyetemváros, Hungary. foldlgy@uni-miskolc.hu 5 haraLd Lobitzer: Lindaustraße 3, A 4820 Bad Ischl, Austria. harald.lobitzer@aon.at 181 Abstract An integrated study of brachiopods, small and larger foraminifera (orthophragmines and nummulitids), calcareous nannofossils and palynomorphs / dinocysts was carried out from the marly limestones respectively sandy marls of the Ultrahelvetic zone at the locality Rote Kirche in the Gschliefgraben near to Gmunden in Upper Austria. Microfossils (including larger foraminifera) indicate the Early Eocene, more precisely the early-middle part of the late Ypresian (the NP 11 and NP 13 calcareous nannofossils, the P 7–8 planktonic foraminiferal and the SBZ 10 shallow benthic zones). Eocene brachiopods are described for the first time from Austria. Six species (Gryphus kickxii, Meznericsia hantkeni, Terebratulina tenuistriata, Orthothyris pectinoides, Megathiris detruncata, Argyrotheca sabandensis?) were identified, the taxonomic composition of which (based on the dominance of Gryphus and Terebratulina) refers to deeper water, probably outer shelf environment. These palaeoecological conditions are also confirmed by the composition of larger foraminifera. A new orthophragminid chronosubspecies, Orbitoclypeus multiplicatus gmundenensis, characteristic for the SBZ 10 Zone, is introduced. The palyno-association is dominated by marine dinoflagellates but freshwater-brackish algal cysts of Zygnemataceae (Ovoidites elongatus) are also present, testifying terrestrial input. In the Cretaceous and the Palaeocene (Danian and Thanetian) pollen floras of the Eurasian Normapolles Province Normapolles pollen are a characteristic element. In the investigated association, however, Normapolles are present only in low quantity. Location and Geological Setting Previous Work The Gschliefgraben area comprises a large land slide (e.g. Koch, 1898; Baumgartner & Mostler,1978; Millahn et al., 2008; Weidinger, 2009; Weidinger & Niesner, 2009) SE of the town of Gmunden in Upper Austria, exposing rocks of Jurassic, Cretaceous and Palaeogene age, which are attributed to the Ultrahelvetic thrust unit. Due to the mass movement and an intense tectonic overprint by a major strike slip system (Egger et al., 2009), extended undisturbed sections do not exist. In the south, the Ultrahelvetic rocks are bordered by middle Triassic limestones of the northern rim of the Northern Calcareous Alps. In the north, Upper Cretaceous turbidites of the Rhenodanubian Flysch­zone show a tectonic contact to the Ultrahelvetic unit (Text-Fig. 1). In the early geological literature of the Salzkammergut re­ gion the Gschliefgraben is mentioned repeatedly. Among the earliest records are the papers by Joseph August Schultes (1809) and Paul von Partsch (1826). Carl Lill von Lilienbach (1830) was particularly surprised to find there nummulite-bearing sediments containing green mineral grains (glauconite). Ami Boué (1832) was the first who published a cross section through the Gschliefgraben. Finally Franz von Hauer (1858) described the complex lithologic sequence. He was also the first, who described in detail the Eocene sediments of the “Rote Kirche” location. The slope, on which the Gschliefgraben is situated, extends from the eastern shore of Lake Traunsee (423 m) up to the small rock-cliff of the “Rote Kirche” (840 m), a famous site for the occurrence of Eocene fossils. The cliff consists mostly of yellow-orange coloured marly sandstones respectively sandy marls. On the top of the cliff limestones with nummulites, brachiopods, bivalves and echinoderms with intercalations of grey sandy marls, respectively brittle sandstones are cropping out (Text-Fig. 2). Glauconite is almost omnipresent, rarely also thin layers of “Bohnerz”, i.e. finely distributed limonitic ooides. For a long period the sequence of the Gschliefgraben was considered being part of the Flysch zone or of the Upper Cretaceous / Palaeogene Gosau Group of the Northern Calcareous Alps (e.g. Fugger, 1903). However, Karl Götzinger in 1937 expressed the opinion, that from the palaeogeographic point of view this sequence is part of the Helvetic zone. From the tectonic point of view Ernst Kraus (1944) considered the Gschliefgraben as transgressively overlying the Flysch zone, while for Max Richter & Gotthold Müller-Deile (1940) it represents a tectonic window of the Helvetic zone underlying the Flysch unit. Since 1951 the latter opinion was shared by Siegmund Prey. Prey’s papers, published between 1949 and 1983, improved the biostratigraphic record of the lithologically Text-Fig. 1. Location, regional geology and tectonic position of “Rote Kirche” in Gschliefgraben. Sketches courtesy Hans Weidinger, Kammerhofmuseum Gmunden. 182 posited on the shelf of the European Platform during the ­Ypresian transgression within Zone NP 12. Studied Material Text-Fig. 2. Uppermost stratigraphic sequence of the Rote Kirche section. Nummulite-limestone partly rich in ���������������������������������������������������������� “��������������������������������������������������������� Bohnerz” (limonite ooides) alternating with grey, glauconitic sandy marls. similar, but stratigraphically diverse rocks of the (Ultra)helvetic zone. In 1953 he argued that the Eocene sandy-marly-glauconitic sediments of “Rote Kirche” show Thanetian (Late Palaeocene) and probably also Ypresian (Early Eo­ cene) age, while the top of this section is represented by a few meters of iron oolithic nummulitic limestones of Lutetian (Middle Eocene) age, which he considered as an equivalent of the “Roterz” beds in Bavaria (Prey, 1953). This opinion was supported later by an oral communication of Franz Traub (in Prey, 1975). In his last paper Prey (1983) subdivided his Ultrahelveticum into two zones, namely the Northern Ultrahelvetic and the Southern Ultrahelvetic Klippen Zone. According to him “Rote Kirche” is part of his Northern Ultrahelvetic, which comprises a complex sequence of light to dark grey, partly variegated Albian to Maastrichtian marls, which are topped by Palaeocene to early Eocene glauconitic, more or less sandy marls and nummulitic limestones. Middle Eo­ cene nummulitic limestones in Adelholzen facies and Clavulinoides szaboi Beds also occur regionally. Rasser & Piller (2001) deal in detail with facies patterns, subsidence and sea-level changes in ferruginous and glauconitic environments of the Palaeogene Helvetic shelf. According to these authors the Rote Kirche exposures belong to the Southern Helvetic facies of the Austro-Bavarian Helvetic Zone, which is part of the Helvetic Shelf and as such part of the Alpine Foreland. During the Palaeogene a peculiar shallow water carbonate sedimentation took place on a wide carbonate platform. The sediments are characterized by the most intensive ferruginisation and glauconitisation known from Cenozoic shallow water carbonates of the Eastern Alps (Rasser & Piller, 2001). According to Egger (2007), the Rote Kirche outcrop is the easternmost exposure of the South Helvetic zone. ­There the nummulitic limestone of the Frauengrube Member and in particular the underlying marly sandstone (Prey, 1983) yielded calcareous nannoplankton of zone NP 12. This nannoflora is considered to indicate, that after a sea-level rise the nummulitic marlstones and limestones were de- Two of the authors (Harald Lobitzer and Alfréd Dulai) have visited the locality on 29.04.2010, with the guidance of two local private collectors, namely Ferdinand Estermann and Karl Bösendorfer from Pinsdorf. Several macromorphic brachiopod specimens were found in the field, and four samples were collected for washing and checking micromorphic brachiopods (sample 1: upper nummulitic limestone; samples 2–3: middle glauconitic sandstone; sample 4: lower Assilina sandstone). György Less (Miskolc) has also studied two of these washed residues for larger foraminifers (samples 1 and 4). During the field work two additional samples were collected from the upper part of the section (more or less identical with sample 1), for palynological (Magda Konzalová, Prague), nannofossils (Lilian Švábenická, Prague) and small foraminifera (Lenka Hradecká, Prague) studies. Karl Bösendorfer, one of the private collectors made it possible to use and study his brachiopod material from Rote Kirche locality. Collection of the Kammerhofmuseum in Gmunden also contains about a dozen brachiopod specimens from the same locality. The newly collected brachiopods and the photographed specimens are deposited in the collection of the Hungarian Natural History Museum, Budapest (inventory numbers of illustrated specimens: M 2010.477.1. – M 2010.509.1). Figured larger foraminifera ������������������������������ specimens marked by E. are deposited in the Eocene collection of the Geological Institute of Hungary, Budapest. Samples for study of small foraminifers and calcareous nannofossils were prepared in the Laboratory and deposited in the Collections and Material Documentation Department of the Czech Geological Survey, Prague. The palynological preparations were made in the Institute of Geology v.v.i., Academy of Sciences of the Czech Republic in Prague and are also deposited there. The samples for the palynological investigation were prepared in the Laboratory of the Czech Geological Survey, the preparations are deposited in the Institute of Geology v.v.i., Academy of Sciences, Prague. Brachiopods Brachiopods are generally rare in Eocene benthic assemblages, but they were published from several localities and numerous papers demonstrate their wide geographical distribution within the Western Tethys. Eocene brachio­ pods are known from England to Ukraine and from Belgium to Egypt (see details of their distribution in Bitner & Boukhary, 2009, Bitner et al., in press, Dulai, submitted). However, until now Eocene brachiopods were unknown from Austria. In some cases brachiopods were mentioned in faunal lists, but no description of Eocene brachiopods was published from Austrian localities. Recently Dulai (submitted) studied the Late Eocene (Priabonian) micromorphic brachiopods of two boreholes of the Upper Austrian Molasse zone (Helmberg-1 and Perwang-1). These samples, due to the solving method in acetic acid by Kamil Zágoršek (Prague) (Zágoršek & Vávra, 2000), yielded about 2000 very small, micromorphic brachiopods, representing 10 species of 7 genera, inclu183 ding three new species. The paper describing this fauna is submitted, but the date of appearance of the proceedings volume is uncertain (6th International Brachiopod Congress, Melbourne, 1.–5. February, 2010). Eocene deposits around Gmunden and their fossil contents are poorly known. Prey (1983) has listed fossils of different groups, including also two brachiopods from this area: Terebratula aequivalvis Schafhäutl and T. hilario­ nis Meneghini. Altogether 114 macromorphic brachiopods were collected during our fieldwork representing two species of large, smooth terebratulides: Gryphus kick­ xii (Galeotti, 1837) (108 specimen) and Meznericsia hantkeni (Meznerics, 1944) (6). Karl Bösendorfer’s private collection also contains large-sized brachiopods of the same two species (70 G. kickxii and 5 M. hantkeni). The collection of the Kammerhofmuseum in Gmunden contains a dozen Gryphus specimens. All of the four washed samples yielded more or less small-sized, so-called micromorphic brachiopod specimens. The richest and most diverse fauna is from the uppermost sample, collected from the weathered part of nummulitic limestone (sample 1), where the macromorphic brachiopods were also collected: Terebratulina tenuistriata (Leymerie, 1846) (20), Ar­ gyrotheca sabandensis? (Pajaud & Plaziat, 1972) (16), Gry­ phus kickxii juv. (3), Orthothyris pectinoides (Koenen, 1894) (1) and Megathiris detruncata (Gmelin, 1791) (1). Two samples (sample 2 and 3) of the second outcrop (upper and lower part of a grey glauconitic sandstone) contain very fragmentary brachiopods. Sample 2 with Terebratulina te­ nuistriata (15) and Gryphus kickxii (5) and sample 3 with Te­ rebratulina tenuistriata (28), Gryphus kickxii (15) and Argyrotheca sabandensis? (2). The lowest sample from yellow Assilina sandstone (sample 4) yielded only 2 fragments of Tere­ bratulina tenuistriata. All of the washed samples contain some other fauna elements, which are only partly studied in detail in this paper (larger foraminifers by Gy. Less). Sample 1: small and larger foraminifers (several), worm ­tubes (several coiled and some straight), echinoderms ­(several echinoid needles and crinoid stalk fragments), bryozoans (several), decapods (some fragments). Sample 2: small and larger foraminifers (several), echinoderms (several echinoid needles, some crinoid stalk fragments), fish teeth (few). Sample 3: small and larger foraminifers (several), echinoderms (several echinoid needles, some crinoid stalk fragments), molluscs (few ostreid fragments), worm tubes (few), bryozoans (few), fish and shark teeth (few). Sample 4: small and larger foraminifers (several), echinoderms (some echinoid needles and crinoid stalk fragments), molluscs (few ostreid and pectinid fragments), corals (few fragments), bryozoans (few), and decapods (few). Systematic Notes on Brachiopods Phylum Brachiopoda Duméril, 1806 Subphylum Rhynchonelliformea Brunton, Holmer & Popov, 1996 Williams, Carlson, Class Rhynchonellata Williams, Carlson, Brunton, Holmer & Popov, 1996 Order Terebratulida Waagen, 1883 184 Superfamily Terebratuloidea Gray, 1840 Family Terebratulidae Gray, 1840 Subfamily Gryphinae Sahni, 1929 Genus Gryphus Megerle von Mühlfeld, 1811 Gryphus kickxii (Galeotti, 1837) (Pl. 1, Figs. 1–11) 1843 Terebratula Kickxii Galeotti – Nyst, p. 335, Pl. 19, Fig. 4. in press Gryphus kickxii (Galeotti) – Bitner et al. (p. X), Figs. 3D–I, 4, 5A, B (cum syn.). ? 2010 Carneithyris subregularis (Quenstedt) – Sulser et al. p. 261–264, Text-Figs. 3, 4, 5. Material: 213 specimens. Notes: G. kickxii is a medium-sized, smooth brachiopod with rectimarginate anterior commissure and short incurved beak. The outline is very variable: elongate oval to subpentagonal or subcircular, as demonstrated on the figures of Pl. 1. This is the most common brachiopod of the Rote Kirche locality and it was very widespread in the whole of Europe during the Eocene (Bitner et al., in press). About 70 percent of the studied Austrian specimens belong to this species, which has a very complex taxonomic history and was described under different names. The two species names mentioned by Prey (1983) from Rote Kirche (T. ae­ quivalvis, T. hilarionis) are probably also synonyms of G. kickxii. Critical revision of this species was given just recently by Bitner et al. (in press) on the basis of an extensive Middle Eocene material from the Szőc Limestone of the Bakony Mts., Hungary. Very similar forms were mentioned from the Swiss and Austrian Alpine area in different names: T. kick­ xii by Ooster (1863) and Moesch (1878), T. aequivalvis and T. picta by Schafhäutl (1863) and T. subregularis by Quenstedt (1868–1871). All of these records may also refer to G. kick­ xii, but until now detailed study or revision of these faunas / localities is missing. The online version of the Sulser et al. (2010) paper appeared just during the preparation of this manuscript. They have studied Lutetian (Middle Eocene) brachiopods from NE Switzerland. Beside some undetermined Terebratuli­ na specimens, they have identified their common smooth tere­bratulides as Carneithyris subregularis (Quenstedt). They regarded T. aequivalvis Schafhäutl and T. hilarionis Davidson as separate species, and also assigned them to the genus Carneithyris. However, the outer morphology of the Swiss specimens is similarly variable, than in case of Lutetian fauna of the Bakony Mts. (Bitner et al., in press) as in the case of the studied Rote Kirche fauna. The three assemblages seem to be overlapping in outer morphological characters and in variability. The same is true for sub­ regularis / aequivalvis length / width comparisons (see Fig. 8 in Sulser et al., 2010). Sulser et al. (2010) attribute their material to the species subregularis, because Gryphus kickxii is “ill-defined” and its thorough revision is missing (although they also recognized the close relationship between kickxii and subregularis). However, a paper parallel to Sulser et al. (2010), a recent critical revision on G. kickxii is just prepared on a rich material from the Hungarian Middle Eocene by Bitner et al. (in press). As this latter paper justifies the Meznericsia hantkeni (Meznerics, 1944) (Pl. 2, Figs. 1–2) 1944 Magellania (s.l.) Hantkeni n. sp. – Meznerics, p. 46, Pl. 3, Figs. 13–16; Pl. 5, Figs. 21–23. 1975 Gryphus inkermanicus Zelinskaja sp. nov. – Zelinskaya, p. 94, Pl. 8, Fig. 1. in press Meznericsia hantkeni (Meznerics, 1944) – Bitner et al., p. X, Figs. 5C, D, 6–8. Material: 11 specimens. Text-Fig. 3. Polished surface of nummulitic limestone from Rote Kirche upper locality. The small sample contains several macromorphic brachiopods (both double valves and separated valves; probably Gryphus kickxii). The thin sediment infillings in some specimens indicate the original position of the rock sample. The mostly sparitic infilling refer to relatively quick sedimentation. Scale bar: 1 cm. ­validity of the G. kickxii species, and it has priority over sub­ regularis as well as over aequivalvis and hilarionis, in my opinion the Swiss Lutetian material probably also represents a new record of G. kickxii. Concerning the generic assignment, on the basis of the internal morphological characters and the shell ultrastructure, the Hungarian specimens clearly belong to the short-looped Gryphus (Bitner et al., in press). The internal characters of the Swiss specimens seem to be poorly preserved (at least on the basis of Fig. 5a–b in Sulser et al., 2010). Therefore their generic assignment to the fundamentally Cretaceous Carneithyris on the basis of some selected sections seems to be uncertain. Supposedly, the internal morphological characters of these terebratulides are variable similar to the external ones. For a more certain species and generic assignment of Alpian Eocene short-looped terebratulides, we need more studies in the future, including statistical comparisons of outer morphological characters, and serial sections of well-preserved specimens. The very limited time to prepare this paper inhibits the investigation of the internal morphology of the brachiopods by serial sections of the specimens at Rote Kirche. ­Later on it would be useful to check the intraspecific internal variability of specimens with different outer morpho­ logy. However, on the basis of the polished surface of the nummulitic limestone (Text-Fig. 3), most of the brachiopod specimens are infilled with sparitic calcite, therefore unfortunately the serial sectioning seems to be a little hopeless. Notes: M. hantkeni is a large-sized, strongly biconvex, smooth terebratulide with a massive, strongly incurved beak and paraplicate anterior commissure. The species was described by Meznerics (1944) as Magellania (s.l.) Hant­ keni. However, on the basis of the distinctive external and internal morphological characters, Bitner et al. (in press) recently erected a new genus, Meznericsia for this species. Zelinskaya (1975) described the same morphology as Gry­ phus inkermanicus from the Ukraine and its smaller size prob­ ably refers to a juvenile specimen. The specimens from the Rote Kirche locality have widened the known palaeogeographical distribution of this rare species. Distribution: Eocene of Hungary, Ukraine and Austria (see Bitner et al., in press). Superfamily Cancellothyridoidea Thomson, 1926 Family Cancellothyrididae Thomson, 1926 Subfamily Cancellothyridinae Thomson, 1926 Genus Terebratulina d’Orbigny, 1847 Terebratulina tenuistriata (Leymerie, 1846) (Pl. 3, Figs. 1–11) 2000 Terebratulina tenuistriata (Leymerie) – Bitner, p. 118–120, Figs. 2, 3, 4A–F, 5B–G (cum syn.). in press Terebratulina tenuistriata (Leymerie, 1846) – Bitner et al., p. X, Fig. 3A–C (cum syn.). Material: 65 specimens. Notes: T. tenuistriata is relatively frequent at the Rote Kirche locality, mainly in the washed residues. This is the commonest species in the Eocene brachiopod assemblages of the Western Tethys. Bitner (2000) gave detailed analysis of this species and its great variability during the ontogeny. Different sized Rote Kirche specimens confirm this variability (see Pl. 3, Figs. 1–11). Adults of this species are characterized by numerous fine ribs and an elongated oval outline, while juveniles have only 10–12 granular ribs which increase rapidly in number with the age of brachiopods. Distribution: Europe: Belgium, Italy, Switzerland, Austria, Hungary, Poland, Romania, Bulgaria, Ukraine and Turkey; Asia: Caucasus and Kazakhstan (see details in Bitner et al., in press). Distribution: Europe: Great Britain, Belgium, France, Spain, Italy, Poland, Hungary, Romania, Bulgaria, and Ukraine (see Bitner et al., in press; Dulai, submitted); Africa: Egypt (see Bitner & Boukhary, 2009). Family Gibbithyrididae Muir-Wood, 1965 Family Chlidonophoridae Muir-Wood, 1959 Subfamily Gibbithyridinae Muir-Wood, 1965 Subfamily Orthothyridinae Muir-Wood, 1965 Genus Meznericsia Bitner, Dulai & Galácz, 2010 Genus Orthothyris Cooper, 1955 185 Orthothyris pectinoides (Koenen, 1894) (Pl. 2, Fig. 3) 1894 Terebratulina pectinoides Koenen – Koenen, p. 1354– 1355, Pl. 99, Figs. 8–9. 2008 Orthothyris pectinoides (Koenen) – Bitner & Dulai, p. 35, Fig. 4.9–16 (cum syn.). Material: 1 specimen. Notes: This species seems to be very rare at the Rote Kirche locality, but it is a dominant faunal element in the recently studied nearby Helmberg and Perwang samples (Upper Austrian Molasse Zone, Late Eocene) (Dulai, submitted). The small, subcircular specimen agrees well with those hitherto described, however it is more similar to the Hungarian specimens (Bitner & Dulai, 2008, Figs. 4.10, 4.14) than to the more juvenile Austrian ones. Until recently, this species was attributed to the genus Terebratulina, but Bitner & Dieni (2005) and later Bitner & Dulai (2008) and Dulai (submitted) attributed it to the genus Orthothyris created by Cooper (1955) for Late Cretaceous brachiopods. On the basis of the Helmberg and Perwang materials, Dulai (submitted) recognized that Orthothyris and the very similar Terebratulina alternate with each other along the Upper Eocene layers and probably were competitors of the same ecological niches. Distribution: Eocene of Germany (Koenen, 1894), Ukraine (Zelinskaya, 1975), Italy (Bitner & Dieni, 2005), Hungary (Bitner & Dulai, 2008) and Austria (Dulai, submitted; and this paper). Superfamily Megathyridoidea Dall, 1870 Family Megathyrididae Dall, 1870 Genus Megathiris d’Orbigny, 1847 Megathiris detruncata (Gmelin, 1791) (Pl. 2, Fig. 4) 2007 Megathiris detruncata (Gmelin) – Dulai, p. 2–3, Figs. 2, 1–2 (cum syn.). 2008 Megathiris detruncata (Gmelin) – Bitner & Dulai, p. 35– 36, Figs. 5.1–4 (cum syn.). Material: 1 specimen. Notes: M. detruncata has very wide distribution both stratigraphically and geographically. It is one of the most common species in Palaeogene, Neogene and Recent shallow water assemblages. However, it is rare in deeper water environments, as it is also confirmed by the Helmberg and Perwang samples (Dulai, submitted), as well as the Rote Kirche locality (1 known juvenile specimen only). Distribution: Eocene: Italy, Hungary, Austria (see details in Bitner & Dulai, 2008; Dulai, submitted); Oligocene: Hungary (Dulai, 2010); Miocene: Central Paratethys (see details in Bitner & Dulai, 2004 and Dulai, 2007); Recent: Mediterranean, Eastern Atlantic and Caribbean Sea (Logan, 1979; Brunton & Curry, 1979; Cooper, 1977). Genus Argyrotheca Dall, 1900 Argyrotheca sabandensis? (Pajaud & Plaziat, 1972) (Pl. 2, Figs. 5–11) 1972 Cistellarcula sabandensis nov. sp. – Pajaud & Plaziat, p. 450–451, Text-Figs. 2–3, Pl. 1, Fig. 2. Material: 18 specimens. 186 Notes: This small sized micromorphic species is relatively frequent in the washed residues of the ���������������������� Rote ������������������ Kirche locality. Although all of the studied specimens are small and not very well preserved, they show remarkable similarity with A. sabandensis described by Pajaud & Plaziat (1972) from the Late Palaeocene of Spain. The outline of the specimens, the shape of the beak area, the length of the hinge, the number and character of the ribs seem to be consistent with A. sabandensis. However, some uncertainties are caused by the very poor illustration of this species in the original description. Based on external and internal morphological characters, genus Cistellarcula was synonymised with Argyrotheca by Calzada & Urquiola (1994). If the identification of these specimens is correct, the known stratigraphical distribution of this species is widened by this record from Late Palaeocene to Early Eocene. Distribution: Late Palaeocene (Thanetian) of Spain, and Early Eocene (Ypresian) of Austria (Gmunden). Taxonomic Composition of the Brachiopod Fauna Linguliformea and Craniiformea brachiopods are missing; all studied specimens belong to the Rhynchonelliformea subphylum. Within Rhynchonelliformea, all specimens belong to the ��������������������������������������������������� order ����������������������������������������������� Terebratulida (rhynchonellides and thecideides are missing). Within terebratulides the short-looped superfamily Terebratuloidea is dominant (Gryphus 69 %, Meznericsia 3.6 %) but Cancellothyridoidea is also significant (Terebratulina 21 %, Orthothyris 0.3 %). Two genera belonging to the superfamily Megathyridoidea are much less numerous (Argyrotheca 5.8 %, Megathiris 0.3 %). The above mentioned taxonomic composition is based on all studied specimens and therefore supposedly little biased against the micromorphic species: both the private collection and the material from ���������������� the Kammerhofmu������������ seum contain only macromorphic brachiopods (they did not examine washed materials). However, if we check only the new material of the upper nummulitic limestone (from where both macromorphic and micromorphic brachiopod specimens were intensively collected), the taxonomic composition does not change significantly: Gryphus 71 %, Meznericsia 3.9 %, Terebratulina 13.2 %, Orthothyris 0.7 %, Argy­ rotheca 10.5 % and Megathiris 0.7 %). The only significant difference is that Argyrotheca is more frequent, while Terebratulina is less common. Palaeoecology, Palaeoenvironment According to Logan (1979) and Logan et al. (2004) Argy­ rotheca, Megathiris and Lacazella dominate in shallow water environments (ranging down to about 200 m) of the Recent Mediterranean, while Gryphus, Terebratulina, Platidia and Meg­ erlia characterize the eurybathic species, which are more typical of the bathyal zone. The absence of thecideids, the limited rate of Megathyridoidea (Argyrotheca, Megathiris) and the dominance of Gryphus and Terebratulina clearly refer to deeper water environment at the Rote Kirche locality, maybe in outer shelf environments, as suggested also by larger foraminifera (see later). The distributional pattern of the �������������������������� Mediterranean upper bathyRecent Gryphus vitreus along ������������������������������ al continental slope was intensively studied by Emig & Arnaud (1988) and Emig (1989a, b). Ecologically, the described brachiopods belong to three categories. Most of the species are attached by a strong and short pedicle to hard substrates: Gryphus, Argyrotheca, Megathiris, Orthothyris. However, Terebratulina is attached directly to the loose sediment by a root-like, divided pedicle. Meznericsia is an extinct genus without recent representatives, but the very convex valves, and extremely incurved small beak may refer to non functional pedicle, at least in the adult phase. It should mean that after the “normal”, attached juvenile stage, the large-sized, nearly globular adult specimens secondarily became free-living, probably on soft substrate. Larger brachiopods can offer hard substrate for epifaunal encrusters, but the amount of epibionts is very variable both on fossil and Recent forms. Only two out of 213 studied specimens (0.9 %) of Gryphus kickxii show remains of worm tubes (some similar worms were also seen on large nummulitids). Both coiled worm tubes are situated on the ventral valve, very near to the terminal part of the anterior margin (Pl. 1, Figs. 10–11). Taking into consideration the life position of Gryphus, the ventral valve and mainly the terminal part of the ventral valve is situated at the highest point. These brachiopods are sometimes densely packed, and only these parts of the shells are available as solid substrate for the settlement of larvae. It suggests that they encrusted the ventral valves of Gryphus during the life of the brachiopods. As they attached very near to the anterior margin, the worms probably benefited from the feeding currents of the brachiopod. Similar situations were reported e.g. on the Palaeozoic Mucrospirifer (Schumann, 1967), on the Devonian Anathyris (Alvarez & Taylor, 1987), on the Eocene Paraplicirhynchia (Bitner, 1996), on the Miocene Argyrotheca (Dulai, 2007) and on the Cenozoic and Recent Tegulorhynchia (Lee, 1980). Small Foraminifera Material and method One sample from the locality Rote Kirche was collected for foraminiferal analysis. The sample was washed in the Laboratory of the ����������������������������������������� Czech ������������������������������������� Geological Survey in Prague using the standard washing method. The size of the sieve of 0.063 mm and coarse fraction was kept. The ��������������� f���������� oraminiferal assemblage was studied by a Nikon binocular microscope. Results The studied sample contains a relatively rich foraminiferal assemblage but the preservation of foraminiferal tests is mostly bad. Bryozoa and Echinodermata remains were also found, as well as some ostracods and fish teeth. In the anorganic ������������������������������������������������������� part of ������������������������������������� the material ��������������������������������� grains of glauconite appear. In the foraminiferal assemblage benthic species prevail, especially Heterolepa eocaena (Guembel). Among other benthonic foraminifers Spiroplectammina pectinata (Reuss), Globoro­ talites sp., Planulina costata (Hantken), Pararotalia lithothamnica (Uhlig) and Textularia sp. are present. Planktonic species are less abundant. Specimens of Truncorotalia aequa (Cushman & Renz), Subbotina triloculinoides (Plummer), Turborotalia primitiva (Finlay) and Globorotalia aragon­ ensis Nuttall were found. Some of the recognized species were mentioned in previous papers from the Palaeogene of the Austrian Helvetic Zone (Gohrbandt, 1963, 1967; Wille-Janoschek, 1966). Stratigraphic interpretation The presence of G. aragonensis in the studied sample allows to attribute this assemblage to the planktonic Zone P7 (Globorotalia formosa) to P8 (Globorotalia aragonensis) of the Early Eocene according to Blow (1969) and Berggren (1971). Palaeoecological interpretation Abundance of benthic foraminifers and a smaller amount of planktonic ones characterize shallow-water conditions at certain times. Larger Foraminifera Introduction Larger foraminifera occur in great quantity in two samples. These are the uppermost nummulitic limestone (sample 1) and the lower outcrop with Assilina (sample 4). They are represented by nummulitids (genus Nummulites and Assilina) and orthophragmines, which is an informal collective term for Eocene orbitoidal forms uniting two systematically independent families, such as Discocyclinidae (consisting of genus Discocyclina and Nemkovella) and Orbitoclypeidae (with genus Orbitoclypeus and Asterocyclina). The preserva­tion of fossils is average in both samples, megalospheric (A) forms are in great majority. Methods The inner morphology of larger foraminifera could be studied by opening them by the splitting method with pliers and painting with violet ink (described in detail in Less, 1981). In the determination of larger foraminifera the morphometric method (described in detail by Drooger, 1993) was followed, i.e. in each sample specimens were grouped into populations, the members of which are clearly distinguishable from the specimens of the other populations of the same sample. Taxonomic determinations are based on these populations (as a whole) and not on their separate individuals. These taxa are in most cases the members of a long-lasting and continuous evolutionary chain called lineage or phylum. In the case of orthophragmines lineages correspond to species while for the genus Nummulites and Assilina they form a series of chronospecies. In the determination of orthophragmines we focused on the internal features found in the equatorial section, thus we adopted principles and nomenclature used by Less (1987) as illustrated in Text-Fig. 4 and explained in the header of Table 1. Numerous orthophragminid lineages (their validity is proven biometrically by Less & Ó. Kovács, 2009) are used for biostratigraphic purposes after being artificially segmented into chronosubspecies separated from each other by arbitrary biometric limits of the mean deuteroconchal size, the most rapidly evolving parameter. A synopsis of subspecies identification based on the outer cross-diameter of the deuteroconch (parameter d) is given in Özcan et al. (2010). A revised stratigraphy of late Ypresian to middle Lutetian orthophragmines is presented in Özcan et al. (2007b). 187 Representatives of nine orthophragminid lineages could be found in the Gmunden samples. They are figured in Pl. 4, biometric data are summarized in Table 1. Because of the limited space, a complete statistical evaluation with the number of specimens (№), arithmetical mean and standard error (s.e.) is given only for parameter d, the crucial parameter in subspe­cific determination. If the population consists of only a single specimen, no subspecies is determined, in the case of only two or three specimens, the subspecies is determined as “cf.”. Since most orthophragmines found in the Gmunden samples are recently discussed in Özcan et al. (2007a, 2007b, 2010) and Less et al. (2007), we do not repeat here their description with the exception of Orbitoclypeus multiplicatus gmundenensis n. ssp. (see in the systematical part), which represents the most advanced developmental stage of the ­lineage known so far. Nummulitids appeared to be less diverse in the Gmunden samples. Four lineages could be identified, some small Nummulites have not been determined on the specific level. The segmentation of lineages into chronospecies by Schaub (1981) is typological and based mainly on microspheric (B) forms, however we also could use the mean proloculus (the first chamber) diameter of the megalospheric (A) forms in the Schaub collection measured by Less (1998b). Nummulitids are figured in Pl. 5, biometric data of the inner cross-diameter of the proloculus (parameter P) are summarized in Table 2. The specific determination within lineages is briefly discussed at particular samples. Results Sample 1 consists of a relatively rich assemblage of larger foraminifera dominated by both orthophragmines and nummulitids. The specific composition is as follows: Outer cross-diameter of the embryon Parameters deuteroconch Discocyclina archiaci cf. archiaci (Schlumberger) – Pl. 4, Fig. 6. D. fortisi fortisi (d’Archiac) – Pl. 4, Figs. 1–3. D. pulcra cf. landesica Less – Pl. 4, Fig. 5. D. dispansa taurica Less – Pl. 4, Figs. 4, 7. Nemkovella evae evae Less – Pl. 4, Figs. 8, 9. N. strophiolata cf. fermonti Less – Pl. 4, Fig. 10. Orbitoclypeidae Orbitoclypeus schopeni crimensis Less – Pl. 4, Figs. 12– 14. O. multiplicatus gmundenensis n. ssp. Less – Pl. 4, Figs. 15–19. Asterocyclina alticostata (Nuttall) indet. ssp. – Pl. 4, Fig. 11. Nummulitidae Nummulites nemkovi Schaub – Pl. 5, Figs. 1–4. N. irregularis Deshayes – Pl. 5, Figs. 6–8. N. indet. sp. (radiate forms) Assilina plana Schaub – Pl. 5, Figs. 9, 10. Comments on nummulitids: According to Schaub (1981) Nummulites nemkovi, N. irregularis and Assilina plana are members of the N. distans, N. irregularis and A. spira lineage, respectively. Specific identification within lineages is based on the measurements by Less (1998b). Concerning the N. distans lineage, the mean proloculus diameter (Pmean) given in Table 2 best fits to N. nemkovi. It is considerably larger than the characteristic values of N. haymanensis, the ancestor of N. nemkovi, and significantly smaller than those of N. distans, the offspring. In the case of the N. irregularis lineage, the dimension of the proloculus fits well N. irregularis and is considerably smaller than that of N. maior, the successor. Finally, the proloculus diameter of Assilina with an open spi- Adauxiliary chamberlets protoconch d (µm) Orthophragmines: Discocyclinidae width height Equatorial chamberlets annuli/ 0.5 mm width height Subspecific determination N W (µm) H (µm) n w (µm) h (µm) Species Sample N°. range mean±s.e. range mean range range range range range range Discocyclina archiaci Gmunden 1 3 415–510 462 260–295 278 25−30 40−45 65−75 8−9 35−40 70−90 cf. archiaci Gmunden 1 18 550–910 719±26 260–440 352 38−52 40−55 50−70 8−10 35−40 65−80 fortisi indet. ssp. D. fortisi p (µm) number Gmunden 4 1 − − 45 60 9−14 40 70 Gmunden 1 11 165–260 214±9 110–160 129 13−21 30−35 45−60 11−15 25−30 50−70 taurica Gmunden 4 4 160–260 205±18 90–150 122 13−20 30−35 45−55 12−15 25 45−60 taurica D. pulcra Gmunden 1 2 570–665 618 260 48 40−50 80−110 6−7 25 100−120 cf. landesica Nemkovella evae Gmunden 1 10 205–290 246±9 105–180 153 11−15 50–60 45–60 11–13 30–40 40–60 evae N. strophiolata Gmunden 1 2 115–145 130 60–90 75 6−7 40 25−30 18 25−30 30−35 cf. fermonti Orbitoclypeus schopeni Gmunden 1 17 295–550 418±13 150–335 235 28−40 40−50 50−60 8–10 30−40 60−100 crimensis O. multiplica­ tus Gmunden 1 11 455–790 613±32 250–430 318 32–48 45–80 50–70 6.5–8 40–45 75–100 gmundenensis n. ssp. Asterocyclina alticostata Gmunden 1 1 185 8 60–120 60 13 30–35 35–45 indet. ssp. D. dispansa 800 255 Table 1. Statistical data of orthophragminid populations. No: number of specimens, s.e.: standard error. 188 ral (the basic feature of their arrangement into the A. spira lineage) in sample Rote Kirche 1 falls between A. adrianen­ sis (the ancestor) and A. laxispira (the offspring) and corresponds well to A. plana. Age: This assemblage clearly determines the SBZ 10 Zone by Serra-Kiel et al. (1998) and the OZ 6 Zone by Less (1998a), indicating the early part of the late Ypresian (= Cuisian). Moreover, the OZ 6 Zone suggests the higher part of the SBZ 10 Zone. The correlation of orthophragminid (OZ) zones with shallow benthic (SBZ) and planktic zonations is given in Özcan et al. (2010). Discocyclina fortisi fortisi, Nummulites nemkovi and Assilina plana are zonal markers, whereas the range of all the other taxa includes this zone. Discocyclina archiaci archiaci and Orbitoclypeus multiplicatus are not known from younger strata, moreover this latter species in older layers is represented by O. m. kastamouensis, a more primitive developmental stage than the newly described O. m. gmundenensis. In the meantime Orbitoclypeus schopeni crimen­ sis, Discocyclina dispansa taurica, D. pulcra, Nemkovella strophiolata, Asterocyclina alticostata and Nummulites irregularis are unknown from older horizons. Facies: The richness of orthophragmines and the presence of nummulitids with an open spiral in combination with the lack of Nummulites with granules and porcellaneous forms (alveolinids and genus Orbitolites) indicate the deeper part of the photic shelf, very probably the outer ramp. Sample 4 contains a considerably less��������������� ������������������� diverse assemblage, in which the genus Assilina dominates. Orthophragmines and the representatives of the genus Nummulites are subordinate. The specific composition is as follows: Orthophragmines: Discocyclinidae Discocyclina dispansa taurica Less D. fortisi indet. ssp. Nemkovella indet. sp. (only a B-form was found) Nummulitidae: Assilina aff. placentula (Deshayes) – Pl. 5, Figs. 5, 11, 12. Nummulites indet. sp. (small radiate forms). Comments on Assilina: The representatives of this genus in sample 4 have a considerably tighter spiral than that in sample 1. Therefore, they are ranged into the A. exponens lineage. Based on the measurements by Less (1998b), the proloculus diameter in the given sample (see Table 2) is intermediate between A. placentula (characteristic for the Low­ er Cuisian, see Serra-Kiel et al., 1998) and A. cuvillieri (oc- Text-Fig. 4. The measurement system of megalospheric orthophragmines in equatorial section. See the header of Table 1 for explanation. curring in the Upper Cuisian). Such forms are determined by Schaub (1981) as A. aff. placentula, mainly from the Mid­ dle Cuisian. Age: Although the presence of Assilina aff. placentula suggests Middle Cuisian (SBZ 11) as discussed above, this rather narrow time-span cannot be confirmed by other larger foraminifera. The range of Discocyclina dispansa taurica is SBZ 10–12 (Özcan et al., 2007b, updated by Zakrevskaya et al., in review), i.e. the whole late Ypresian (SBZ 10–12), which is a more cautious age-estimate for sample 4. Facies: This sample indicates a slightly less�������������� ������������������ deep environment than that of sample 1, since orthophragmines are subordinate and Assilina aff. placentula with a tighter spiral replaces the representatives of the A. spira lineage with a more open spiral. Meanwhile forms, characteristic for the middle ramp (Nummulites with granules) or for the inner ramp (porcellaneous forms like alveolinids and the genus Orbito­ lites) are still missing. To sum up: the shallower part of the outer ramp seems to be the most realistic assumption. Systematic Part Order Foraminiferida Eichwald, 1830 Family Orbitoclypeidae Brönnimann, 1946 Taxon Sample N° Proloculus diameter (P) in mm Range Mean ± s.e. Nummulites nemkovi Gmunden 1 15 260 – 620 482,3 ± 17,6 N. irregularis Gmunden 1 8 150 – 350 241,9 ± 22,6 Assilina plana Gmunden 1 17 185 – 390 321,5 ± 18,8 A. aff. placentula Gmunden 4 15 270 – 560 350,3 ± 21,5 Table 2.  Statistical data of the inner cross-diameter of the proloculus of nummulitid populations (in µm). No: number of specimens, s.e.: standard error. Genus Orbitoclypeus Silvestri, 1907 Orbitoclypeus multiplicatus (Gümbel, 1870) Emended diagnosis: Average-sized, inflated, unribbed forms with “marthae” type rosette. The medium-sized to moderately large embryon is excentrilepidine, rarely eulepidine. The numerous, “varians” type adauxiliary chamberlets are rather wide and medium high as well as the equatorial chamberlets. The annuli are usually moderately undulated; the growth pattern is of the “varians” type. O. multiplicatus is subdivided into four successive subspecies as defined below: 189 O. O. O. O. m. m. m. m. haymanaensis dmean < 310 µm multiplicatus dmean = 310–420 µm kastamonuensis dmean = 420–550 µm gmundenensis dmean > 550 µm. Orbitoclypeus multiplicatus gmundenensis n. ssp. Less Pl. 4, Figs. 15–19. Etymology: Named after the city of Gmunden. Holotype: Specimen E.10.31 (Pl. 4, Figs. 18, 19.). Depository: Geological Institute of Hungary, Budapest. Paratypes: All the other specimens from Gmunden, sample 1, illustrated in Pl. 4, Figs. 15–17. Type locality: Gmunden (Austria), sample Rote Kirche 1. Type level: Lower Upper Ypresian, the OZ 6 orthophragminid and the SBZ 10 shallow benthic zone. Diagnosis: Orbitoclypeus multiplicatus populations with dmean exceeding 550 µm. Description (see also Table 1): Moderately large (3–5 mm), inflated, unribbed forms with “marthae” type rosette. The embryon is rather large, mostly excentrilepidine, some­ times eulepidine. The numerous “varians” type adauxiliary chamberlets are rather wide and relatively high. The equatorial chamberlets are also fairly wide and moderately high. The annuli can be slightly undulated; their growth pattern is of the “varians” type. Remarks: Representatives of the Orbitoclypeus multiplicatus lineage are mostly known from the Thanetian and early Ypresian (Ilerdian), in the SBZ 3 to 8 and OZ 1b to 4 Zones. Özcan et al. (2007b) reported one single specimen with similar characteristics as in Gmunden from the SBZ 10/11 or OZ 6/7 Zones corresponding to the lower part of the Upper Ypresian (Cuisian) of Kiriklar (N Turkey). Our material from Gmunden consisting of eleven specimens allows us to introduce the most advanced developmental stage of the lineage as a new chronosubspecies. Orbitoclypeus multiplicatus gmundenensis is hardly distinguish­able from O. schopeni schopeni and O. zitteli with similar embryonic size and type. Its equatorial chamberlets, however, is slightly wider than those of the other two taxa, which have a different stratigraphical position. Range: Early part of the late Ypresian (Cuisian), the SBZ 10 and OZ 6 Zones. It may include the SBZ 9 and 11 as well as the OZ 5 and 7 Zones. Gmunden (Austria) and very probably Kiriklar (Turkey). Calcareous Nannofossils Method Nannofossils were investigated in the fraction of 2–30 µm, separated by decantation following the methodology described in Svobodová et al. (2004). Simple smearslide was mounted by Canada Balsam and inspected at a 1000× magnification, using an oil-immersion objective on a Nikon Microphot-FXA transmitting light microscope. Biostratigraphic data were interpreted applying the zonations of Martini (1971) and Varol (1998). 190 Results The s��������������������� tudied f������������� raction 2–30 ������������������������� µm (samples A and B) contained predominantly anorganic material. The nannofossil abundance in sample A was generally 10–20 specimens per 1 field of view of the microscope, whereas sample B was extremely poor, only 1–3 specimens per 1 field of view of the microscope. Calcareous nannofossils were poorly preserved in both samples. Discoasterids and large placoliths were mostly fragmented and discoasterids and the central fields of placoliths partly etched, partly overgrown with calcite. Some specimens cannot be identified due to the poor preservation especially in sample Rote Kirche B. Sample A The nannofossil assemblage is characterized by a higher number of discoasterids exclusively of rosette shape, and by the rare presence of specimens of the genera Reticulofe­ nestra, Helicosphaera and Lophodolithus (Pl. 6). The following species have been found: Coccolithus pela­ gicus, C. eopelagicus, Sphenolithus radians, S. moriformis, S. edi­ tus, Campylosphaera dela, C. eodela, Helicosphaera seminulum, H. lo­ phota, Neococcolithes protenus, N. protenus-dubius, Cyclococcolithus (Ericsonia) formosus, Zygrhablithus bijugatus, Calcidiscus protoannulus, Micrantholithus flos, Pontosphaera pulcheroides, P. pulchra, Thoracos­ phaera sp., Discoaster barbadiensis, D. lodoensis (7 rays, mostly in fragments), D. kuepperi, D. sp., Toweius rotundus, T. crassus, Girgisia gammation, Clausicoccus fenestratus, Chiasmolitus solitus, C. eograndis (fragments), C. consuetus, C. sp., Lophodolithus mochlo­ porus, L. nascens, Braarudosphaera turbinea (probably reworked from the older sediments of the lowermost Palaeocene, Danian age). Sample B Poor nannofossils are characterized by a higher number of specimens of the genus Toweius. The assemblage consists of species Coccolithus pelagicus, C. eopelagicus, rare Ellipsoli­ thus macellus, Chiasmolithus solitus, C. bidens, C. eograndis, Discoaster binodosus, D. barbadiensis, D. kuepperi, D. multiradiatus, Zygrhablithus bijugatus, Neochiastozygus junctus, Lophodolithus nascens, Sphenolithus moriformis, Campylosphaera eodela, Pontosphaera pulchra, Coronocyc­ lus sp., rare pentaliths of Braarudosphaera bigelowii bigelowii, B. bigelowii parvula and Micrantholithus sp., Clausicoccus fenestratus, Toweius crassus, T. rotundus, T. pertusus. The assemblage also contained reworked species from older sediments of the lower and middle Palaeocene age, such as Fasciculithus cf. ulii, Cruciplacolithus tenuis, Sullivania danica and Markalius astroporus (Danian). Stratigraphic interpretation Sample A: Upper part of Lower Eocene (Ypresian), zone NP 13 sensu Martini (1971) according to the presence of Discoaster lodoensis (7 rays), rare Lophodolithus mochloporus and Reticulofenestra dictyoda. Sample B: Lower Eocene (Ypresian), the uppermost part of zone NP 11 (Martini, 1971), i.e. NNTe1D (sensu Varol, 1998) according to the joint presence of Discoaster kuepperi and Ellipsolithus macellus, and the relative abundance of To­ weius spp. Palaeoecologic interpretation The presence of calcareous nannofossils indicates a sea of average salinity, with an abundance of discoasterids, relatively warm waters, the presence of the genera Pont­ osphaera, Helicosphaera and penthaliths shallow-water conditions; the etching of placoliths and discoasterids may be the result of carbonate dissolution caused by the release of carbon dioxide during the oxidation of organic matter (Švábenická et al., 2010). Discussion Calcareous nannofossils of the Rote Kirche outcrop have already been studied by Egger et al. (2009). They mentioned an assemblage of zone NP 12 with Discoaster lodoen­ sis and Tribrachiatus orthostylus (Type B). Sample Rote Kirche A of the present study provided nannofossils of zone NP 13 with the genus Reticulofenestra. This small difference in results might be caused by taking samples from dissimilar places of outcrop. Varol (1998) mentioned the first occurrence of the genus Reticulofenestra within zone NNTe5 and correlated it with the uppermost part of the standard nannoplankton zone NP 12, i.e. with the upper part of the Lower Eocene. The first occurrence of Lophodolithus mochloporus is stated by PerchNielsen (1985) within NP 13. Joint occurrence of Discoaster kuepperi and Ellipsolithus macel­ lus in sample B delimits the short stratigraphic range within zone NNTe1D (Varol, 1998). This is supported also by the occurrence of Discoaster multiradiatus, its last occurrence known from NP 11 (Perch-Nielsen, 1985). The nannofossil content and stratigraphic interpretation of samples published by Egger et al. (2009) different from this study (samples A and B) may indicate a deposition in a longer period of time, spanning an interval from NP 11 (upper part) up to NP 13. Microflora – Preliminary Results Taxonomically varied microfossils of dinocysts, spores, pollen, remains of foram linings, tiny cuticles and xylitic splinters were obtained from the aleuritic sample derived from the section at Rote Kirche. Marine dinocysts, lack of typical Mesozoic cheirolepidaceous conifers and rare Normapolles characterize the assemblage. Reworked specimens from the Upper Cretaceous, composition of pollen taxa (Icacinaceae, cf. Sapotaceae) and comparable DinoZones point to the early Palaeogene. Observable organic matter originated rather in a near-shore than a far offshore environment. Characteristic of the assemblage Residues obtained by solution and maceration of the sample (Laboratory of the Geological Survey, Prague; geology and location of the sample site, Egger, 1996, 2007) contained no rich assemblage of palynomorphs. They are mainly composed of dinocyst microplankton (Table 3), with co-occurrence of foraminiferal linings and accessories of terrestrial plants, spores, pollen and other organic debris (Table 4). F e r n spores belong to the Osmundaceae, Schizaeaceae, Lygodiaceae, Gleicheniaceae and document presence of the terrestrial flora of the nearby coastland area. C o n i f e r s are represented by at least two groups. The first is documented by inaperturate pollen, resembling taxodiaceous pollen, the second comprises pollen provided with a bisaccate apparatus (bladders), grouped within Pinaceae. Both are commonly known from the Cretaceous and Tertiary pollen assemblages. Characteristic feature of the present microflora is a small number of coniferous pollen. Cheirolepidaceae pollen grains, common in the Cretaceous deposits, were not recorded. This could be in good accordance with their disappearing in the Palaeogene. F l o w e r i n g - p l a n t pollen genera (Normapolles and other angiospermous pollen) were represented by solitary species and single records (Table 4), in contrast to the non marine environments (e.g. Menat, Borna, Geiseltal a.o.). D i n o c y s t s dominated in the assemblage, pointing together with other organic remains to the ample nutrient supply. Some of dinocysts show poor preservation (broken cysts or only partly preserved specimens). These features may be interpreted as the result of reworking and/or transport on the shelf. Striking is relatively abundant dark organic matter, amorphous or with preserved structure. According to the residual phyto- and microzoo-remains, the flourishing associations can be considered in the time of silty clay deposition. Conclusions The pollen and several dinocyst records provided data for the preliminary evaluation of the relative age of the investigated assemblage (Chateauneuf, 1980; Kedves, 1969, 1970; Kedves & Russel, 1982; Krutzsch, 2004; Krutzsch & Vanhoorne, 1977; Davey et al., 1966; Köthe, 1990; Lentin & Williams, 1993; Stanley, 1965 ex Williams et al., 1998); based on the dinocysts and several flowering plant taxa, it is obviously the Palaeogene age, mostly the Palaeocene (Zone D 3) and Early Eocene (Zone D 4, D 5, D 6). The Early Eocene (Ypresian) age has also been supported by nannofossil zones NP 11 with Discoaster kuepperi and Ellipsolithus macellus and NP 13 with Discoaster lodoensis and Reticulofenestra dictyoda, as well as larger benthic foraminifera indicating the SBZ 10 Zone. Dinocysts, preliminarily recorded, show their range often within the Zone D 4, D 5, in comparison with the palynological investigation of the borehole sections in NW Germany, Lower Saxony area (Köthe, 1990). The fragmentary remains of some plankton specimens and taxa predominantly known from Cretaceous deposits (Ilyina et al., 1994; Marheinecke, 1986) are considered as results of reworking and bioturbation processes, possible also at a very short time scale and within thin layers. The observation of amorphous organic matter and evidently organic remains allows to consider rather bay or near shore sedimentation, not a far offshore environment. Calcareous nannofossils indicate a warmer sea of normal salinity. The presence of organic remains in the depositional area is supported also by the mode of nannofossil preservation: carbonate dissolution of coccoliths is usually caused by the release of carbon dioxide during oxidation of organic matter. 191 Dinoflagellates Remarks cf. Adnatosphaeridium vittatum Williams & Downie 1966 partly preserved Early Eocene cf. Achomosphaera aff. triangulata (Gerlach 1961) Davey & Williams 1969 cf. Apteodinium sp. Age D Zones and Subzones D 6b Early Eocene Late Palaeocene, Early Eocene, Late Eocene (LO?) Köthe (Kö), 1990, NW Germany, Gartow, Early Eocene (E Eo) Kö, 1990, Gartow, E Eo partly preserved Early Eocene Cordosphaeridium sp. – compared with C. fibrospinosum Davey & Williams 1966 and C. trompetum (Cookson & Eisenack 1982) Lentin & Williams 1985 Pl. 7, Figs. 1, 2 in present paper References Kö, 1990, Gartow, E Eo D 4, D 5b Kö, 1990, D 4 Late Palaeocene, Gartow, D 5b E Eo; (D 7 a. D 8 Late Eo, more in Kö, 1990) D3 Palaeocene Palaeocene, bore Söhlingen, ibid. D 5b Early Eocene, whole Palaeocene D 4 D 4, 4na, nb Kö, 1990; D 5b E Eo, Gartow D 4 Palaeocene, bore Penningsehl, Kö, 1990 [now Areoligera (Achomosphaera) danica] Pl. 7, Fig. 6 in present paper Upper Cretaceous, particularly in L./U. Maastrichtian Cretaceous, Marheinecke, 1986 Dipsilidinium pastielsii (Davey & ­Williams 1966) Bujak, Downie, Eaton, Williams 1980 Early Eocene Areoligera senonensis Lejeune-Carpen1938 sensu Köthe 1990 tier probably reworked D 5b Kö, 1990, Gartow cf. Odontochitina sp. partly preserved Palaeocene D 4a (rare) Kö, 1990 ? Ceratiopsis sp. partly preserved Palaeocene (e.g.) D4 Kö, 1990 Isabelidinium sp. (former Chatangiella Vozzhenikova 1967) probably reworked Upper Cretaceous (Campanian, Maastrichtian); Palaeocene, Early Eocene (another type, with broad cingulum) Isabelidinium cf. cooksoniae (Alberti 1959) Lentin & Williams 1977 reworked Cretaceous Coniacian, Campanian Late Cretaceous, Coniacian, Campanian, e.g. Siberia, Ilyina et al., 1994 cf. Homotryblium aff. tenuispinosum Davey et al. 1966 Eocene London Clay Davey et al., 1966 Thalassiphora cf. pelagica (Eisenack 1954) Eisenack & Gocht 1960, T. delicata Davey et al. 1966 Cretaceous, Palaeogene, Neogene London Clay Kö, 1990, e.g. Early Eocene, NW Germany, Gartow, Davey et al., 1966, Eocene Cretaceous, Tertiary, Pleistocene freshwater and brackish water genus commonly known from the basinal deposits ? Fromea sp. e.g. Canada, Siberia, Ilyina et al., 1994; Chatangiella ?, Palaeocene, South Dakota, Stanley, 1965 (ex Williams et al., 1998); Isabelidinium sp., Early Eocene, NW Germany, Kö, 1990 vermiculate surface Chlorophyta – Zygnemataceae, freshwater green algae Ovoidites elongatus (Hunger 1952) Krutzsch 1959 Table 3. Plankton (selected taxa). 192 Filicinae – ferns Leiotriletes adriennis (Potonié & Gelletich 1933) Krutzsch 1959 Leiotriletes microadriennis Krutzsch 1959 Mesozoic, Tertiary Schizaeaceae, Lygodium type Appendicisporites cf. auritus Aggassie in Singh 1983 Schizaeaceae, Lygodium type Palaeocene (e.g. Menat), Eocene (Geiseltal, Messel) and other sites of Tertiary deposits Mesozoic, Palaeogene (predomiGleicheniaceae nantly) Mesozoic, reworked Schizaeaceae Cicatricosisporites sp. Mesozoic, Palaeogene Schizaeaceae Trilites menatensis Kedves 1982 Palaeocene, Eocene Lygodiaceae (after Kedves in Kedves & Russel, 1982) Rugulatisporites quintus Pflug 1953 Mesozoic, Tertiary Osmundaceae ?Palaeocene, Eocene, Neogene Pinaceous conifers Cretaceous, Tertiary Pinaceae Cretaceous, Tertiary Taxodiaceous pollen – commonly known from Cretaceous and Tertiary Cretaceous, Palaeogene extinct Upper Cretaceous, Palaeocene, Early Eocene common Minorpollis sp. Cretaceous, Palaeogene extinct cf. Complexiopollis vancampoe Diniz et al. 1974, smaller-sized form Cretaceous reworked Portugal, Upper Cretaceous, L. to M. Turonian is considered Gleicheniidites sp. Conifers Pityosporites sp. – Pityosporites minutus (Zaklinskaja 1957) Nagy 1985, ?Pityosporites strobipites (Woodehouse 1933) Krutzsch 1971 Pityosporites sp. Pl. 7, Fig. 3 in present paper Inaperturopollenites Thomson & Pflug 1953 Inaperturopollenites hiatus (Potonié 1931) Thomson & Pflug 1953 (as Taxodiaceaepollenites sp.) in Mesozoic Angiospermae - Flowering plants Normapolles Angiospermae - Flowering plants cf. Triporopollenites robustus Pflug 1953 subfsp. minor Kedves 1970 cf. Betulaceae (after Kedves, 1970) cf. Compositoipollenites sp. Palaeogene cf. Icacinaceae aff. Intratriporopollenites sp. Palaeogene, Neogene cf. Malvaceae, Tilioideae Tricolpites, Tricolpopollenites – Tricolpo(roi)pollenites group – reticulate morphotypes s.l. Tricolporopollenites exactus (Potonié 1931) Thomson & Pflug 1953 Tricolporopollenites cf. gracillimus Krutzsch & Vanhoorne 1977 Early Cretaceous, Tertiary Hamamelidaceae, Platanaceae, partly extinct Fagaceae, Castaneoideae aff. Tricolporopollenites globus Deák 1960 Eocene (Hungary) Palaeogene, Neogene Palaeogene, Epinois „Bild“ sensu Krutzsch Pl. 7, Fig. 4 in present paper Tetracolporopollenites sp. Pl. 7, Fig. 5 in present paper Late Landenian, palynozone 11 after Krutzsch (in Krutzsch & Vanhoorne, 1977), Early Eocene Incertae sedis; Sapotaceae (after Kedves, 1969) Incertae sedis, ?Sapotaceae Other plant remains filamentous Algae or Cyanobacteria Precambrian – Recent, environmentally controlled charcoal splinters (rare) tiny cuticle fragments Remains of zoo-plankton different linings of microforaminifera Animal cuticle / epidermis remains Table 4. Vascular plants 193 Plate 1 Fig. 1: Fig. 2: Fig. 3: Fig. 4: Fig. 5: Fig. 6: Fig. 7: Fig. 8: Fig. 9: Fig. 10: Fig. 11: 194 Gryphus kickxii (Galeotti, 1837). a – dorsal view, b – lateral view, c – anterior view. Rote Kirche 1; L: 11.4 mm, W: 10.8 mm, Th: 5.5 mm. M 2010.477.1., 2×. Gryphus kickxii (Galeotti, 1837). Dorsal view. Rote Kirche 1; L: 12.4 mm, W: 9.7 mm, Th: 6.3 mm. M 2010.478.1., 2×. Gryphus kickxii (Galeotti, 1837). a – dorsal view, b – anterior view. Rote Kirche 1; L: 18.8 mm, W: 17.3 mm, Th: 10.0 mm. M 2010.479.1., 2×. Gryphus kickxii (Galeotti, 1837). a – dorsal view, b – lateral view, c – anterior view. Rote Kirche 1; L: 19.5 mm, W: 20.5 mm, Th: 12.1 mm. M 2010.480.1., 2×. Gryphus kickxii (Galeotti, 1837). Dorsal view. Rote Kirche 1; L: 19.2 mm, W: 16.1 mm, Th: 10.1 mm. M 2010.481.1., 2×. Gryphus kickxii (Galeotti, 1837). a – dorsal view, b – lateral view, c – anterior view. Rote Kirche 1; L: 24.4 mm, W: 24.5 mm, Th: 12.9 mm. M 2010.482.1., 2×. Gryphus kickxii (Galeotti, 1837). Dorsal view. Rote Kirche 1; L: 25.8 mm, W: 20.9 mm, Th: 11.8 mm. M 2010.483.1., 2×. Gryphus kickxii (Galeotti, 1837). a – dorsal view, b – lateral view. Rote Kirche 1; L: 28.5, W: 24.0 mm, Th: 14.6 mm. M 2010.484.1., 2×. Gryphus kickxii (Galeotti, 1837). Dorsal view. Rote Kirche 1; L: 27.7 mm, W: 31.2 mm, Th: 14.0 mm. M 2010.485.1., 2×. Tube worm on Gryphus kickxii (Galeotti, 1837). Ventral view. Rote Kirche 1; L: 21.8 mm, W: 23.6 mm, Th: 12.0 mm. M 2010.486.1., 2×. Tube worm on Gryphus kickxii (Galeotti, 1837). Ventral view. Rote Kirche 1; L: 21.2 mm, W: 19.3 mm, Th: 10.6 mm. M 2010.487.1., 2×. 195 Plate 2 Fig. 1: Fig. 2: Fig. 3: Fig. 4: Fig. 5: Fig. 6: Fig. 7: Fig. 8: Fig. 9: Fig. 10: Fig. 11: 196 Meznericsia hantkeni (Meznerics, 1944). a – dorsal view, b – lateral view, c – anterior view. Rote Kirche 1; L: 30.8 mm, W: 27.8 mm, Th: 18.2 mm. M 2010.488.1., 2×. Meznericsia hantkeni (Meznerics, 1944). a – dorsal view, b – lateral view, c – posterior view. Rote Kirche 1; L: 29.1 mm, W: 25.6 mm, Th: 19.0 mm. M 2010.489.1., 2×. Orthothyris pectinoides (Koenen, 1894). Dorsal view. Rote Kirche 1; L: 2.7 mm, W: 2.6 mm. M 2010.490.1., 20×. Megathiris detruncata (Gmelin, 1791). Dorsal view. Rote Kirche 1; L: 1.8 mm, W: 2.1 mm. M 2010.491.1., 20×. Argyrotheca sabandensis? (Pajaud & Plaziat, 1972). Dorsal view. Rote Kirche 1; L: 2.4 mm, W: 2.0 mm. M 2010.492.1., 20×. Argyrotheca sabandensis? (Pajaud & Plaziat, 1972). Dorsal view. Rote Kirche 1; L: 2.3 mm, W: 2.0 mm. M 2010.493.1., 20×. Argyrotheca sabandensis? (Pajaud & Plaziat, 1972). Dorsal view. Rote Kirche 1; L: 1.6 mm, W: 1.5 mm. M 2010.494.1., 20×. Argyrotheca sabandensis? (Pajaud & Plaziat, 1972). Lateral view. Rote Kirche 1; L: 2.0 mm, Th: 1.0 mm. M 2010.495.1., 20×. Argyrotheca sabandensis? (Pajaud & Plaziat, 1972). Oblique lateral view. Rote Kirche 1; L: 2.6 mm, Th: 1.4 mm. M 2010.496.1., 20×. Argyrotheca sabandensis? (Pajaud & Plaziat, 1972). Ventral view. Rote Kirche 1; L: 2.4 mm, W: 2.2 mm. M 2010.497.1., 20×. Argyrotheca sabandensis? (Pajaud & Plaziat, 1972). Ventral view. Rote Kirche 1; L: 2.0 mm, W: 1.8 mm. M 2010.498.1., 20×. 197 Plate 3 Fig. 1: Fig. 2: Fig. 3: Fig. 4: Fig. 5: Fig. 6: Fig. 7: Fig. 8: Fig. 9: Fig. 10: Fig. 11: 198 Terebratulina tenuistriata (Leymerie, 1846). Dorsal view. Rote Kirche 1; L: 2.1 mm, W: 1.5 mm. M 2010.499.1., 20×. Terebratulina tenuistriata (Leymerie, 1846). Dorsal view. Rote Kirche 1; L: 3.1 mm, W: 2.6 mm. M 2010.500.1., 20×. Terebratulina tenuistriata (Leymerie, 1846). Dorsal view. Rote Kirche 1; L: 2.5 mm, W: 1.8 mm. M 2010.501.1., 20×. Terebratulina tenuistriata (Leymerie, 1846). Ventral view. Rote Kirche 1; L: 2.6 mm, W: 1.9 mm. M 2010.502.1., 20×. Terebratulina tenuistriata (Leymerie, 1846). Ventral view. Rote Kirche 1; L: 2.5 mm, W: 2.2 mm. M 2010.503.1., 20×. Terebratulina tenuistriata (Leymerie, 1846). Lateral view. Rote Kirche 1; L: 2.6 mm, Th: 1.1 mm. M 2010.504.1., 20×. Terebratulina tenuistriata (Leymerie, 1846). Oblique lateral view. Rote Kirche 1; L: 2.7 mm, W: 1.3 mm. M 2010.505.1., 20×. Terebratulina tenuistriata (Leymerie, 1846). Ventral view. Rote Kirche 1; L: 3.9 mm, W: 2.9 mm. M 2010.506.1., 15×. Terebratulina tenuistriata (Leymerie, 1846). Dorsal view. Rote Kirche 1; L: 5.5 mm, W: 4.6 mm. M 2010.507.1., 15×. Terebratulina tenuistriata (Leymerie, 1846). Dorsal view. Rote Kirche 1; L: 5.2 mm, W: 3.9 mm. M 2010.508.1., 15×. Terebratulina tenuistriata (Leymerie, 1846). Dorsal view. Rote Kirche 3; L: 9.1 mm, W: 7.5 mm. M 2010.509.1., 15×. 199 Plate 4 Megalospheric orthopragmines (A-forms) from Gmunden, Gschliefgraben, sample Rote Kirche 1. Figs. 1–3:   Figs. 4, 7:   Fig. 5: Fig. 6: Figs. 8, 9: Fig. 10:  Fig. 11:  Figs. 12–14: Figs. 15–19: Figs. Fig. 200 Discocyclina fortisi fortisi (d’Archiac) Fig. 1: E.10.16. Fig. 2: E.10.17. Fig. 3: E.10.18. Discocyclina dispansa taurica Less. Fig. 4: E.10.20. Fig. 7: E.10.21. Discocyclina pulcra cf. landesica Less. E.10.05. Discocyclina archiaci cf. archiaci (Schlumberger). E.10.19. Nemkovella evae evae Less. Fig. 8: E.10.22. Fig. 9: E.10.23. Nemkovella strophiolata cf. fermonti Less. E.10.32. Asterocyclina alticostata (Nuttall) indet. ssp. E.10.24. Orbitoclypeus schopeni crimensis Less. Fig. 12: E.10.26. Fig. 13: E.10.27. Fig. 14: E.10.25. Orbitoclypeus multiplicatus gmundenensis n. ssp. Less. Fig. 15: E.10.28. Fig. 16: E.10.29. Fig. 17: E.10.30. Figs. 18, 19: holotype, E.10.31. 1–18: Equatorial sections, 40×. 19: External view, 25×. 201 Plate 5 Nummulitids from Gmunden, Gschliefgraben. Figs. 1–4: Figs. 5, 11, 12: Figs. 6–8: Figs. 9, 10: Nummulites nemkovi Schaub. sample Rote Kirche 1. Figs. 1, 2: E.10.06. Fig. 3: E.10.07. Fig. 4: E.10.08. Assilina aff. placentula (Deshayes). sample Rote Kirche 4. Fig. 5: E.10.11. Fig. 11: E.10.12. Fig. 12: E.10.13. Nummulites irregularis Deshayes. sample Rote Kirche 1. Figs. 6, 7: E.10.09. Fig. 8: E.10.10. Assilina plana Schaub. sample Rote Kirche 1. Fig. 9: E.10.14. Fig. 10: E.10.15. Fig. Figs. B-form, 5×, all the others are A-forms, 10×. External views, all the others are equatorial sections. 202 5: 1, 5, 6: 203 Plate 6 Calcareous nannofossils, samples Rote Kirche A, B. PPL – plane-polarized light, XPL – cross-polarized light. For magnification see Fig. 1. Fig.   1: Fig.   2: Fig.   3: Fig.   4: Fig.   5: Fig.   6: Fig.   7: Fig.   8: Fig.   9: Fig. 10: Fig. 11: Fig. 12: Fig. 13: Fig. 14: Fig. 15: Fig. 16: Figs. 17, 18: Fig. 19: Fig. 20: Fig. 21: Fig. 22: Fig. 23: Fig. 24: Figs. 25, 26: Figs. 27, 28: Fig. 29: Fig. 30: 204 Braarudosphaera turbinea Stradner. Sample A, XPL. Markalius astroporus (Stradner) Hay & Mohler. Sample B, XPL. Girgisia gammation Bramlette & Sullivan. Sample A, XPL. Toweius crassus (Bramlette & Sullivan) Perch-Nielsen. Sample B, XPL. Toweius rotundus Perch-Nielsen. Sample A, XPL. Clausicoccus fenestratus (Deflandre & Fert) Prins. Sample A, XPL. Ellipsolithus macellus (Bramlette & Sullivan) Sullivan. Sample B, XPL. Lophodolithus nascens Bramlette & Sullivan. Sample A, XPL. Lophodolithus mochloporus Deflandre. Sample A, XPL. Helicosphaera seminulum Bramlette & Sullivan. Sample A, XPL. Helicosphaera lophota Bramlette & Sullivan. Sample A, XPL. Calcidiscus protoannulus (Gartner) Loeblich & Tappan. Sample A, XPL. Discoaster multiradiatus Bramlette & Riedel. Sample B, PPL. Discoaster binodosus Martini. Sample B, PPL. Discoaster barbadiensis Tan. Sample A, PPL. Discoaster sp. Sample A, PPL. Discoaster kuepperi Stradner. Sample B, PPL. Fig. 17: high focus. Fig. 18: low focus. Discoaster lodoensis Bramlette & Riedel. Sample A, PPL. Chiasmolithus bidens (Bramlette & Sullivan) Hay & Mohler. Sample B, XPL. Chiasmolithus solitus (Bramlette & Sullivan) Locker. Sample A, XPL. Chiasmolithus sp. Sample A, XPL. Reticulofenestra dictyoda (Deflandre) Stradner. Sample A, XPL. Reticulofenestra sp. cf. R. dictyoda (Deflandre) Stradner. Sample A, XPL. Sphenolithus moriformis (Brönnimann & Stradner), Bramlette & Wilcoxon. Sample A, XPL, 25–0o, 26–45o. Sphenolithus radians Deflandre. Sample A, XPL, 27–0o, 28–45o. Rhabdosphaera sp. Sample A, XPL. Zygrhablithus bijugatus (Deflandre) Deflandre. Sample A, XPL. 205 Plate 7 Figs. 1, 2: Fig. 3: Fig. 4: Fig. 5: Fig. 6: 206 Cordosphaeridium sp. Dinocyst, one specimen at two optical levels. Size 110 µm. Light microscope photo. Pityosporites sp. Pollen of Pinaceae. Size 90 µm. Light microscope photo. aff. Tricolporopollenites globus Deák 1960. Angiospermous pollen, incertae sedis vel Sapotaceae. Size 30 µm. Light microscope photo. Tetracolporopollenites sp. Angiospermous pollen, incertae sedis vel ?Sapotaceae. Size 44 µm. Light microscope photo. Remains of dinocyst. ?Areoligera (Achomosphaera) danica type. Probably reworked. Size of the remains 75 µm. SEM micrograph. 207 Acknowledgements We are grateful to private collectors (Ferdinand Estermann and Karl Bösendorfer) for showing us the locality and make it possible to study their brachiopod collection. Best thanks to Hans Egger from the Austrian Geological Survey for critical reading of parts of the manuscript. We thank Hans Weidinger (Gmunden) for a critical review of the introduction and Text-Figure 1. We are also indebted to Hans for the possibility to study the brachiopods from the Kammerhofmuseum in Gmunden. A. Dulai and Gy. Less were supported by the Hungarian Scientific Research Fund (OTKA K 77451 and 60645, respectively). Small Foraminifera and calcareous nannofossil investigations have been made in the frame of the Research Goal of the Czech Geological Survey MZP 0002579801. Eszter Hankó (Budapest) took the macroscopic brachiopod photos. The SEM micrographs were taken in the SEM Laboratory of the Hungarian Natural History Museum, Budapest (Hitachi S2600N). The polished surface of the nummulitic limestone was prepared by Péter Gulyás (Budapest). ������������� Magda ������� Konzalová expresses her thanks to Dr. H. Lobitzer (Bad Ischl) and Dr. M. Svobodová CSc. (Prague) for the kind providing of the samples and preparations from the locality. The SEM micrographs were taken in the SEM Laboratory of the IG AS CR by Dr. Z. Korbelová CSc. The study of plant microfossils was supported by Project No. AVOZ 301305 16 of the Institute of Geology AS CR, v.v.i. Cz. References Alvarez, F. & Taylor, P.D. (1987): Epizoan ecology and interactions in the Devonian of Spain. – ����������������������������� Palaeogeography, Palaeoclimatology, Palaeoecology, 61, 17–31. Chateauneuf, J.J. (1980): Palynostratigraphie et paléoclimatologie de l’Eocène supérieur et de l’Oligocène du Bassin de Paris. – Bur. Rech. Géol. Min. Mém., 116 (1980), 1–360, Paris. Baumgartner, P. & Mostler, H. (1978): Zur Entstehung von Erdund Schuttströmen am Beispiel des Gschliefgrabens bei Gmunden (Oberösterreich). – Geol. Paläont. Mitt. Innsbruck, 8, Festschrift W. Heissel, 113–122, Innsbruck. Cooper, G.A. (1955): New brachiopods from Cuba. – Journal of Palaeontology, 29/1, 64–70. Berggren, W.A. (1971): Multiple phylogenetic zonation of the Cenozoic based on planktonic foraminifera. – In: Farinacci, A. (Ed.): Proc. II. Planctonic Conf., 1970, I., 41–56, Roma. Bitner, M.A. (1996): Encrusters and borers of brachiopods from the La Meseta Formation (Eocene) of Seymour Island, Antarctica. – Polish Polar Research, 17/1–2, 21–28. Bitner, M.A. (2000): Lower Eocene (Middle Ilerdian) brachiopods from the Campo region, Central Pyrenees, north-eastern Spain. – Revista Española de Paleontología, 15, 117–128. Bitner, M.A. & Boukhary, M. (2009): First record of brachiopods from the Eocene of Egypt. – Natura Croatica, 18, 393–400. Bitner, M.A. & Dieni, I. (2005): Late Eocene brachiopods from the Euganean Hills (NE Italy). – Eclogae Geologicae Helvetiae, 98, 103–111. Bitner, M.A. & Dulai, A. (2004): Revision of Miocene brachiopods of the Hungarian Natural History Museum, with special regard to the Meznerics collection. – Fragmenta Palaeontologica Hungarica, 22, 69–82. Bitner, M.A. & Dulai, A. (2008): Eocene micromorphic brachiopods from north-western Hungary. – Geologica Carpathica, 59, 31–43. Bitner, M.A., Dulai, A. & Galácz, A. (in press): Middle Eocene brachiopods from the Szőc Limestone Formation (Bakony Mountains, Hungary), with description of a new genus. – Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, DOI: 10.1127/0077-7749/2010/0113. Blow, W.H. (1969): Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. – Proceedings First. Internat. Conf. Planktonic Microfossils Geneva, 1967, 1, 199–422, Geneva. Boue, A. (1832): Description de divers gisemens interessans de fossiles dans les Alpes autrichiennes: 5. Notice sur les bords du lac de Traunsee en Haute-Autriche. – Mémoires géologiques et paléontologiques, 213–217, Paris. Non vidi. Brunton, C.H.C. & Curry, G.B. (1979): British brachiopods. – Synopses of the British Fauna (New Series), 17, 1–64. Calzada, S. & Urquiola, M.M. (1994): Sobre las Argyrotheca (Brachiopoda) del Eoceno surpirenaico. – Batalleria, 4, 17–25. 208 Cooper, G.A. (1977): Brachiopods from the Caribbean Sea and adjacent waters. – Studies in Tropical Oceanography, 14, 1–211. Davey, R.J., Downie, C., Sarjeant, W.A.S. & Williams, G.L. (1966): Studies on Mesozoic and Cainozoic dinoflagellate cysts. – Bull. Brit. Mus. (Nat. History), Geology, 3, 3–248, Pls. 1–26, London. Drooger, C.W. (1993): Radial Foraminifera; morphometrics and evolution. – Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, 41, 1–242. Dulai, A. (2007): Badenian (Middle Miocene) micromorphic brachiopods from Bánd and Devecser (Bakony Mountains, Hungary). – Fragmenta Palaeontologica Hungarica, 24–25, 1–13. Dulai, A. (2010): Palaeogene brachiopods from the Late Eocene of Austria and the Oligocene of Hungary. – In: Shi, G.R., Percival, I.G., Pierson, R.R. & Weldon, E.A. (Eds.): Program & Abstracts, 6th International Brachiopod Congress, 1–5 February 2010, Melbourne, Australia; Geological Society of Australia Abstracts, 95, 38–39. Dulai, A. (submitted): Late Eocene (Priabonian) micromorphic brachiopods from the Upper Austrian Molasse Zone (Helmberg-1 and Perwang-1 boreholes; Salzburg, Austria). – Memoirs of the Association of Australasian Palaeontologists Egger, H. (Ed.) (1996): Geologische Karte der Republik Österreich 1: 50.000, Bl. 66 (Gmunden). – Geol. B.-A., Wien. Egger, H. (Ed.) (2007): Geologische Karte der Republik Österreich 1:50.000, Erläuterungen zu Blatt 66 Gmunden. – 66 p., Geol. B.-A., Wien. Egger, H., Heilmann-Clausen, C. & Schmitz, B. (2009): From shelf to abyss: Record of the Paleocene/Eocene-boundary in the Eastern Alps (Austria). – Geologica Acta, 7, 215–227. DOI: 10.1344/105.000000266. Emig, C.C. & Arnaud, P.M. (1988): Observations en submersible sur la densité des populations de Gryphus vitreus (Brachiopode) le long de la marge continentale de Provence Méditerranée nordoccidentale). – C. R. Acad. Sci. Paris, 306, Série III, 501–505. Emig, C.C. (1989a): Observations préliminaires sur l’envasement de la biocoenose à Gryphus vitreus (Brachiopoda), sur la pente continentale du Nord de la Corse (Méditerranée). Origines et conséquences. – C. R. Acad. Sci. Paris, 309, Série III, 337–342. Emig, C.C. (1989b): Distributional patterns along the Mediterranean continental margin (upper bathyal) using Gryphus vitreus (Brachiopoda) densities. – Palaeogeography, Palaeoclimatology, Palaeoecology, 71, 253–256. Less, Gy. (1998b): Statistical data of the inner cross protoconch diameter of Nummulites and Assilina from the Schaub collection. – Opera Dela Slovenska Akademija Znanosti in Umetnosti (4), 34/2, 183–202. Fugger, E. (1903): Die oberösterreichischen Voralpen zwischen Irrsee und Traunsee. – Jb. Geol. R.-A., 53, 295–350, Wien. Less, Gy., Özcan, E., Báldi-Beke, M. & Kollányi, K. (2007): Thanetian and early Ypresian orthophragmines (Foraminifera: Discocyclinidae and Orbitoclypeidae) from the central Western Tethys (Turkey, Italy and Bulgaria) and their revised taxonomy and biostratigraphy. – Rivista Italiana di Paleontologia e Stratigrafia, 113/3, 419–448. Gohrbandt, K. (1963): Zur Gliederung des Paläogen im Helvetikum nördlich Salzburg nach planktonischen Foraminiferen. – Mitt. Geol. Ges. Wien, 56, 1, 1–117, Wien. Gohrbandt, K. (1967): Some new planktonic foraminiferal species from the Austrian Eocene. – Micropaleontology, 13, 3, 319–326, Götzinger, K. (1937): Zur Kenntnis der helvetischen Zone zwischen Salzach und Alm (Vorläufiger Bericht). – Verh. Geol. B.-A., 230–235, Wien. Hauer, F. v. (1858): Ueber die Eocengebilde im Erzherzogthume Oesterreich und in Salzburg. – Jb. Geol. R.-A., 9, 103–137, Wien. Ilyina, V.I., Kulkova, I.A. & Lebedeva, N.K. (1994): Microfytofossils and detail stratigraphy of marine Mesozoic and Cenozoic of Siberia. – Russian Academy of Sciences, Siberian Branch, Transac­ tion, 818, 5–192, Novosibirsk. Kedves, M. (1969): Palynological studies on Hungarian early Tertiary deposits. – 84 p., Pl. 1–22, Budapest (Akadémiai Kiadó). Kedves, M. (1970): Études palynologiques des couches du Tertiaire inférieur de la Région Parisienne. V. – Pollen et Spores, 10, 83–97, Paris. Kedves, M. & Russel, D.E. (1982): Palynology of the Thanetian layers of Menat. – Palaeontographica, B, 182/4–6, 87–150, Stuttgart. Koch, G.A. (1898): Die geologischen Verhältnisse der Umgebung von Gmunden. – In: Krackowizer, F: Geschichte der Stadt Gmunden. – Band 1, 31–35, Joh. Habacher, Gmunden. Koenen, A. v. (1894): Das Norddeutsche Unter-Oligocän und seine Mollusken-Fauna. – Abhandlungen zur geologischen Specialkarte von Preussen und thüringischen Staaten, 10/6, 1250–1392. Köthe, A. (1990): Palaeogene Dinoflagellates from Northwest Germany – Biostratigraphy and Palaeoenvironment. – Geol. Jb., A, 118, 3–111, Hannover. Kraus, E. (1944): Über den Flysch und den Kalkalpenbau von Oberdonau. Eine Anwendung der Unterverschiebungs(Subfluenz-)Theorie. – Jahrbuch Verein für Landeskunde und Heimatpflege im Gau Oberdonau (früher Jahrbuch des Oberösterr. Musealvereins), 91, 179–254, Linz. Krutzsch, W. (2004): Neue Untersuchungen über die präquartären Malvaceen-Pollen aus den Unterfamilien der Tilioideae, Helicteroideae und Bombacoideae. – Palaeontographica, B, Paläophytologie, 267 (2004), 67–160, Stuttgart. Krutzsch, W. & Vanhoorne, R. (1977): Die Pollenflora von Epinois und Loksbergen in Belgien. – Palaeontographica, B, Paläophytologie, 163 (1977), 1–110, Stuttgart. Lee, D.E. (1980): Cenozoic and Recent Rhynchonellide Brachiopods of New Zealand: Systematics and Variation in the Genus Tegulorhynchia. – Journal of the Royal Society of New Zealand, 10, 223–245. Lentin, J.K. & Williams, G.L. (1993): Fossil Dinoflagellates: Index to Genera and Species. – Am. Assoc. Stratigr. Palynol. Contrib. Ser. 28 (1993), 1–856. Less, Gy. (1981): New Method for the Examination of equatorial Sections of Larger Foraminifera (Új módszer orbitoid nagy Foraminiferák equatoriális metszetének tanulmányozására). – Magyar Állami Földtani Intézet Évi Jelentése, 1979, 445–457. Less, Gy. (1987): Paleontology and stratigraphy of the European Orthophragminae. – Geologica Hungarica series Palaeontologica, 51, 1–373. Less, Gy. (1998a): Zonation of the Mediterranean Upper Paleo­ cene and Eocene by Orthophragminae. – Opera Dela Slovenska Akademija Znanosti in Umetnosti (4), 34/2, 21–43. Less, Gy. & Ó. Kovács, L. (2009): ����������������������������� Typological versus morphometric separation of orthophragminid species in single samples – a case study from Horsarrieu (upper Ypresian, SW Aquitaine, France). – Revue de Micropaléontologie, 52/4, 267–288 Lill v. Lilienbach, C. (1830): Ein Durchschnitt aus den Alpen, mit Hindeutungen auf die Karpathen. – Jb. Miner., Geognosie, Geol. u. Petrefactenkunde, 1, 153–220, Taf. 3, Heidelberg. Logan, A. (1979): The Recent Brachiopoda of the Mediterranean Sea. – Bulletin de l’Institut Oceanographique Monaco, 72, 1–112. Logan, A., Bianchi, C.N., Morri, C. & Zibrowius, H. (2004): The present-day Mediterranean brachiopod fauna: diversity, life habits, biogeography and paleobiogeography. – In: Ros, J.D., Packard, T.T., Gili, J.M., Pretus, J.R. & Blasco, D. (Eds.): Biological oceanography at the turn of the Millennium. Scientia Marina, 68 (suppl. 1), 163–170. Marheinecke, U. (1986): Dinoflagellaten des Maastrichtium der Grube Hemmoor (Niedersachsen). – Die Maastricht-Stufe in NWDeutschland, Teil 6. – Geol. Jb., A, 93, 3–93, Hannover. Martini, E. (1971): Standard Tertiary and Quaternary calcareous nannoplankton zonation. – In: Farinacci, A. (Ed.): Proceedings of the Second Planktonic Conference Roma 1970. ��������������� Edizioni Tecnoscienza Rome, 2, 739–785, Roma. Meznerics, I. (1944): Die Brachiopoden des ungarischen Tertiärs. – Annales historico-naturales Musei nationalis hungarici, 36, 10–60. Millahn, K., Weber, F., Niesner, E., Grassl, H., Hyden, W., Kerschner, F., Morawetz, R., Schmid, Ch. & Weidinger, J.Th. (2008): Ergebnisse geophysikalischer Untersuchungen im Gschliefgraben bei Gmunden (Oberösterreich) im Hinblick auf Massenbewegungen. – Jb. Geol. B.-A., 148/1, 117–132, Wien. Moesch, C. (1878): Zur Palaeontologie des Sentisgebirges. – In: Escher v. d. Linth: Die Sentis-Gruppe. – Beiträge zur geologischen Karte der Schweiz, 13, 1–18. Nyst, P.-H. (1843): Description des coquielles et des polypiers fossiles des terrains tertiaires de la Belgique. – M. Hayez, 3–675, Bruxelles. Ooster, W.-A. (1863): Pétrifications remarquables des Alpes suisses. Synopsis des brachiopodes fossiles des Alpes suisses. – H. Georg, 1–71, Genève. Özcan, E., Less, Gy., Báldi-Beke, M., Kollányi, K. & Kertész, B. (2007a): Biometric analysis of middle and upper Eocene Discocyclinidae and Orbitoclypeidae (Foraminifera) from Turkey and updated orthophragmine zonation in the Western Tethys. – ���������� Micropaleontology, 52/6, 485–520. Özcan, E., Less, Gy. & Kertész, B. (2007b): Late Ypresian to Middle Lutetian orthophragminid record from central and northern Turkey: taxonomy and remarks on zonal scheme. – Turkish Journal of Earth Sciences, 16/3, 281–318. Özcan, E., Less, Gy., Okay, A.I., Báldi-Beke, M., Kollányi, K. & Yılmaz, İ.Ö. (2010): Stratigraphy and Larger Foraminifera of the Eocene Shallow-Marine and Olistostromal Units of the Southern Part of the Thrace Basin, NW Turkey. – Turkish Journal of Earth Sciences, 19/1, 27–77. Pajaud, D. & Plaziat, J.-C. (1972): Brachiopodes thanétiens du synclinal sud-cantabrique au S.-E. de Victoria (Pays Basque espagnol). Etude systématique et interprétation paléoécologique. – Bulletin de la Société d’Histoire Naturelle de Toulouse, 108, 446– 473. 209 Partsch, P. v. (1826): Bericht über das Detonations Phänomen auf der Insel Meleda bey Ragusa. Nebst geographisch-statistischen und historischen Notizen über diese Insel und einer geognostischen Skizze von Dalmatien. – J. G. Heubner, 1–211, Wien. Perch-Nielsen, K. (1985): Cenozoic calcareous nannofossils. – In: Bolli, H.M., Saunders, J.B. & Perch-Nielsen, K. (Eds.): Plankton Stratigraphy, 427–554, Cambridge University Press. Sulser, H., García-Ramos, D., Kürsteiner, P. & Menkveld-Gfeller, U. (2010): Taxonomy and palaeoecology of brachiopods from the South-Helvetic zone of the Fäneren region (Lutetian, Eocene, NE Switzerland). – Swiss J. Geosci., 103/2, 257-272, DOI 10.1007/ s00015–010–0018–0 Prey, S. (1953): Der Gschliefgraben in der Flyschzone bei Gmunden. – Mitt. Geol. Ges., 44 (1951), 263–265, Wien. Svobodová, M., Hradecká, L., Skupien, P., Švábenická, L. (2004): Microfossils of the Albian and Cenomanian shales from the Štramberk area (Silesian Unit, Outer Western Carpathians, Czech Republic). – Geologica Carpathica, 55/5, 371–388, Bratislava. Prey, S. (1975): Bemerkungen zur Paläogeographie des Eozäns im Helvetikum – Ultrahelvetikum in Ostbayern, Salzburg und Ober­österreich. – Sitzungsber. Österr. Akad. Wiss., math.-naturwiss. Kl., Abt. I, 184, 1–7, Wien. Švábenická, L., Li, X., Jansa, L.F. & Wei, Y. (2010): New biostratigraphic data for the Lower Cretaceous of Northern Tethys Himalayas, southern Tibet. – Geologica Carpathica, 61/5 (in press)., Bratislava. Prey, S. (1983): Das Ultrahelvetikum-Fenster des Gschliefgrabens südsüdöstlich von Gmunden (Oberösterreich). – Jb. Geol. B.-A., 126/1, 95–127, Wien. Varol, O. (1998): Palaeogene. – In: Bown, P.R. (Ed.): Calcareous Nannofossil Biostratigraphy. – British ����������������������������������� Micropalaeontological Society, 200–224, London. Quenstedt, F.A. (1868–1871): Petrefactenkunde Deutschlands. 1. Abt., 2. Band: Die Brachiopoden. – 1–160 (1868); 161–464 (1869); 465–748 (1870); 25 Pl. (1871), Tübingen – Leipzig. Rasser, M.W. & Piller, W.E. (2001): Facies patterns, subsidence and sea-level changes in ferruginous and glauconitic environments: the Paleogene Helvetic shelf in Austria and Bavaria. – In: Piller, W.E. & Rasser, M.W. (Eds.): Paleogene of the Eastern Alps, Schriftenreihe Erdwiss. Komm. Österr. Akad. Wiss., 14, 77–111, Wien. Richter, M. & Müller-Deile, G. (1940): Zur Geologie der östlichen Flyschzone zwischen Bergen (Ob.-B.) und der Enns (Oberdonau). – Zeitschrift Deutsch. Geol. Ges., 92, 416–430, Berlin. Schafhäutl, K.E. (1863): Der Kressenberg und die südlich von ihm gelegenen Hochalpen, geognostisch betrachtet in ihren Petrefacten. – Süd-Bayerns Lethaea Geognostica, L. Voss, Leipzig. Weidinger, J.Th. (2009): Das Gschliefgraben-Rutschgebiet am Traunsee-Ostufer (Gmunden/OÖ) – Ein Jahrtausende altes Spannungsfeld zwischen Mensch und Natur. – Jb. Geol. B.-A., 149/1, 195–206, Wien. Weidinger, J.Th. & Niesner, E. (2009): Die Rolle der Geomorphologie bei der Sanierung der Gschliefgraben-Erdströme. Pilotprojekt zur nachhaltigen Untersuchung katastrophaler Massenbewegungen im Salzkammergut. – In: Weingartner, H. (Ed.): Landschaft und nachhaltige Entwicklung, 2: Dachstein und Salzkammergut. Aktuelle Veränderungen und Prozesse in einem alpinen Landschaftsraum, 39–54, Eigenverlag AG Landschaft und Nachhaltige Entwicklung, Salzburg. Wille-Janoschek, U. (1966): Stratigraphie und Tektonik der Schichten der Oberkreide und des Alttertiärs im Raume von Gosau und Abtenau (Salzburg). – Jb. Geol. B.-A., 109, 91–172, Wien. Schaub, H. (1981): Nummulites et Assilines de la Tethys Paléogène. ��������������������������������������������������������� Taxonomie, phylogénèse et biostratigraphie. – Schweizerische Paläontologische Abhandlungen, 104–106, 1–236 + Atlas I– II. Williams, G.L., Lentin, J.K. & Fensome, R.A. (1998): The Lentin and Williams index of fossil dinoflagellates, 1998 edition. – Am. Assoc. Stratigr. Palynologists, Contributions series, 34, 817 p. Schultes, J.A. (1809): Reisen durch Oberösterreich, in den Jahren 1794, 1795, 1802, 1803, 1804 und 1808. – I. Theil: 244 p., II. Theil: 198 p., J.G. Cotta´schen Buchhandlung, Tübingen. Zágoršek, K. & Vávra, N. (2000): New method for the extraction of Bryozoans from hard rocks from the Eocene of Austria. – Jb. Geol. B.-A., 142/2, 249–258. Schumann, D. (1967): Die Lebensweise von Mucrospirifer Grabau, 1931 (Brachiopoda). – Palaeogeography, Palaeoclimatology, Palaeo­ecology, 3, 381–392. Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferràndez, C., Jauhri, A.K., Less, Gy., Pavlovec, R., Pignatti, J., Samso, J.M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J. & Zakrevskaya, E. (1998): Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. – Bulletin de la Societé géologique de France, 169, 281–299. Zakrevskaya, E., Beniamovsky V., Less, Gy & Báldi-Beke, M. (in review): Integrated biostratigraphy of Ypresian–Lutetian deposits in the Gubs section (Northern Caucasus) based on larger benthic foraminifera, planktonic foraminifera and calcareous nannoplankton with special attention to the Peritethyan-Tethyan correlation. – Turkish Journal of Earth Sciences. Zelinskaya, V.A. (1975): Brakhiopody paleogena Ukrainy. – Nau­ kova Dumka, 1–148, Kiev (in Russian). Received: 17. September 2010, Accepted: 12. October 2010 210 View publication stats