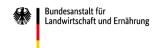
Ökonomische Berechnung zu Spot-Spraying und Hacke

Dr. Tobias Jorissen und Prof. Guido Recke, Hochschule Osnabrück, Fachgebiet Landwirtschaftliche Betriebswirtschaftslehre


Feldtag des Experimentierfelds Agro-Nordwest auf Hof Langsenkamp: Ackerbau der Zukunft mit Traktoren, Drohnen und Robotern - Möglichkeit für mehr Diversität, 07.06.2023

Gefördert durch

aufgrund eines Beschlusses des Deutschen Bundestages Projektträger

Einleitung

Problemstellung:

- Green New Deal: Reduktion von Pflanzenschutzmitteln bis 2030 um 50 %
- Aus einzelbetrieblicher Perspektive müssen entsprechende Maßnahmen wirtschaftlich sein

Fragestellung:

 Welche Maßnahmen sind wirtschaftlich gegenüber ihren betriebsüblichen Varianten und welche Parameter wirken sensitiv?

Analyserahmen:

Auswahl von zwei Versuchen in 2021 und 2022

Ziele:

Reduktionen beim chemischen Pflanzenschutzes mittels Spot-Spraying

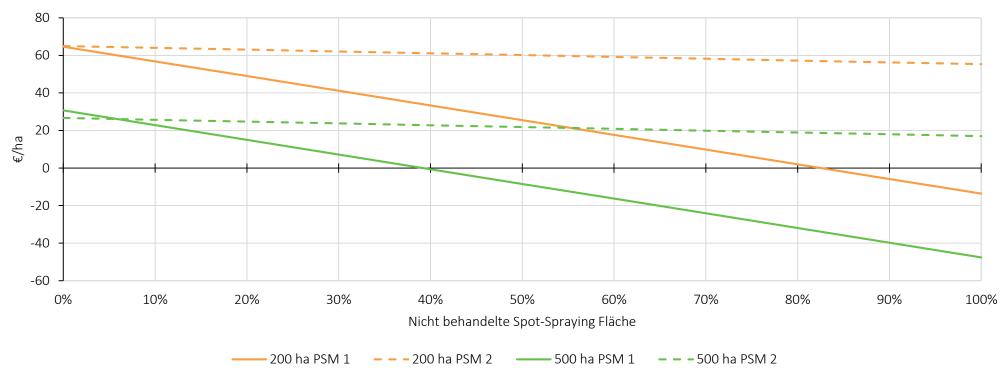
Versuchsdurchführung:

- 2 Praxisversuche in 2021 und 2022 im Mais zur Durchwuchskartoffelbekämpfung
- Auswahl der Fläche nach Identifizierung von Durchwuchskartoffel -> Drohnenflug -> Kartenerstellung -> Pflanzenschutzmittelapplikation

<u>Drohnen- und Spot-Sprayingeinsatz:</u>

- Einsatz der Drohnentechnik: DJI Phantom Multispectral mit RTK Mobile Station
 - o Flughöhe = 25 m; Auflösung = 1,2 cm
 - o Mosaikiert zu einem **Orthophoto**
 - o Training eines **Bildklassifikationsalgorithmus** -> Differenzierung zwischen Mais und Kartoffeln
 - Erstellung einer maschinenlesbaren
 Applikationskarte
- Pflanzenschutzmittelapplikation: Fendt 724 Vario mit Amazon Anbaufeldspritze UF 2002

Berechnungsgrundlagen:


Strategien beim Pflanzenschutz						
Variante (Überfahrt)	PSM	Kosten in € ha ⁻¹				
1 (1.)	Elumis und Spectrum Gold	41,65				
1 (2.)	Callisto, Onyx und Effigo	78,32				
2 (1.)	Gardo Gold, Temsa, Primero und Peak	41,33				
2 (2.)	Temsa	9,69				

Kalkulierte Betriebsdaten beim Drohnenflug								
Parameter	Wert	ME						
Flächenleistung	8	ha/h						
Maximal mögliche Flugzeit	5	h/d						
Mögliche Flächenleistung	40	ha/d						

Kostenvergleichsrechnung:

• Mehrkosten bei Pflanzenschutzmittelapplikation mit Spot-Spraying-Technik und Drohneneinsatz

Zusammenfassung:

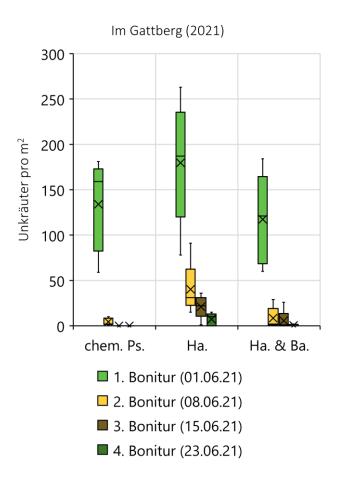
- Auslastung der Drohnentechnik ist entscheidend
 - o Überbetriebliche Nutzung
 - o Begrenzte Einsatzfenster und Witterung sind zu beachten
 - o Alternative Einsatzgebiete sind zu Prüfen (z. B. Wildtierrettung)
- Technischer Fortschritt könnte kostensenkend wirken
 - o z. B. effiziente Kamerasysteme oder Steigerung der Akkuleistung
 - o z. B. verbesserte Algorithmik steigert die Flughöhe
- Pflanzenschutzmittelpreise sind entscheidend
 - o In dem Zusammenhang steht auch die Durchwuchsrate der Kartoffeln
- Ertragseffekte auf den Mais ist zu prüfen

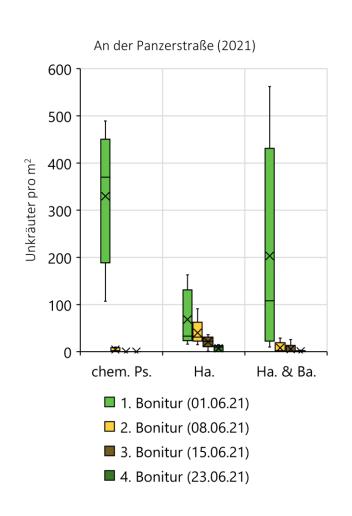
Ziele:

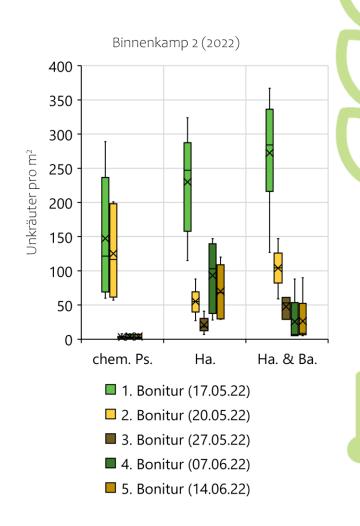
• Reduktionen beim chemischen Pflanzenschutzes durch mechanische Unkrautbekämpfung

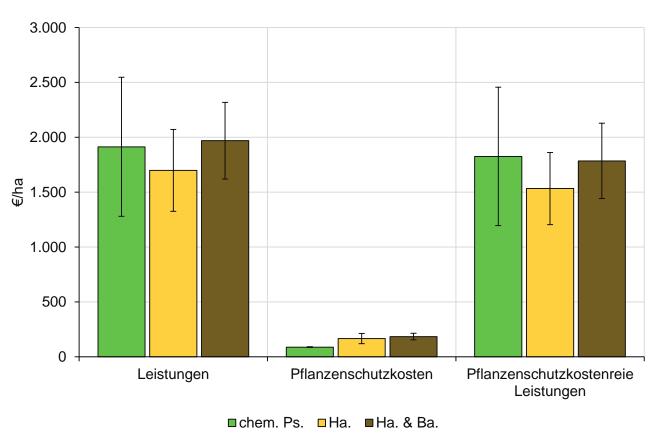
Versuchsdurchführung:

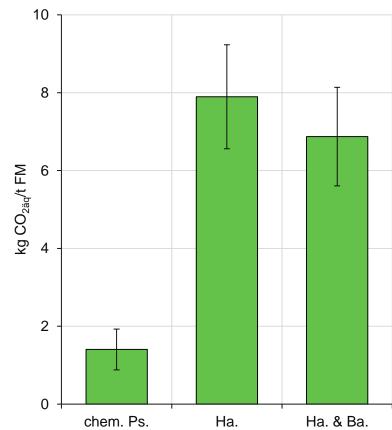
- 3 Praxisversuche in 2021 und 2022 mit jeweils 3 Varianten:
 - o chemische Pflanzenschutz (chem. Ps.), Hacken (Ha.) und Bandspritzung (Ha. & Ba.)
- Regelmäßige Bonituren und abschließende Ertragsmessungen



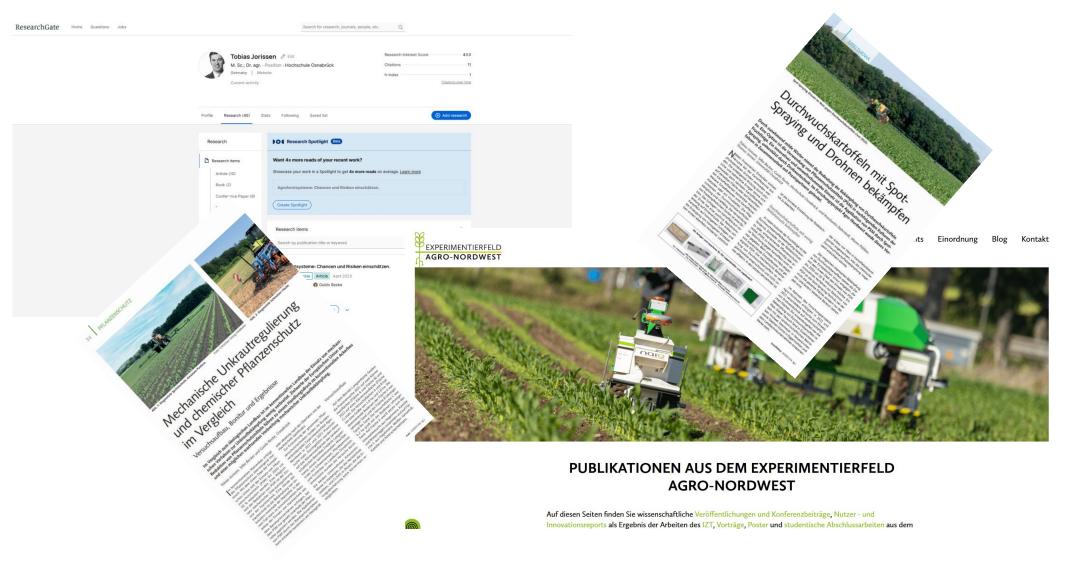

Häufigkeit und Datum der verschiedenen Pflanzenschutzmaßnahmen:


Versuchsfläche (Jahr)	PSM-Applikation		Striegeln		Hackeinsatz	
	chem. Ps.	На. & Ва.	Ha.	На. & Ва.	На.	На. & Ва.
Im Gattberg (2021)	02.06.21	02.06.21			01.06.21	01.06.21
					17.06.21	09.06.21
An der Panzerstraße (2021)	02.06.21	02.06.21			01.06.21	01.06.21
					09.06.21	09.06.21
					17.06.21	17.06.21
Binnenkamp 2 (2022)	18.05.22	25.05.22	03.05.22	03.05.22	24.05.22	24.05.22
			17.05.22	17.05.22	02.06.22	02.06.22
					10.06.22	


Boniturergebnisse:



Wirtschaftlichkeit (links) und Treibhausgasemissionen (rechts):



Zusammenfassung:

- Zunehmend chemischer Pflanzenschutz ist am effizientesten, ...
 - o ... muss aber nicht am wirtschaftlich vorteilhaftesten sein.
 - o Kosten sind bei mechanischer Bekämpfung am höchsten.
- Begrenzte Einsatzfenster und Witterung bei mechanischer Bekämpfung sind zu beachten
- Treibhausgasemissionen sind bei mechanischer Bekämpfung am höchsten, ...
 - o aber eher von geringere Bedeutung

Weiterführende Informationen

RUB

Vielen Dank!

Gefördert durch

aufgrund eines Beschlusses des Deutschen Bundestages

Projektträger

RUHR UNIVERSITÄT BOCHUM

Kontakt:

Dr. Tobias Jorissen

Wissenschaftlicher Mitarbeiter / Hochschule Osnabrück

Mail: t.jorissen@hs-osnabrueck.de

Telefon: 0541 969-5308 Handy: 0151 23375346