Mathematics Across the Iron Curtain

 A History of the Algebraic Theory of Semigroups| $\left(\begin{array}{llll}1 & 2 & 3 \\ 1 & 2 & 2\end{array}\right)$ | $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 3\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 2 & 3 & 3\end{array}\right)$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{llll}1 & 2 & 3 \\ 2 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 3 & 2 & 2\end{array}\right)$ |
| $\left(\begin{array}{llll}1 & 2 & 3 \\ 2 & 1 & 2\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 3 & 1 & 3\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 3 & 2 & 3\end{array}\right)$ |
| $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 1\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 1 & 3 & 1\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 2 & 3 & 3\end{array}\right)$ |
| $\left(\begin{array}{llll}1 & 2 & 3 \\ 2 & 2 & 1\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 3 & 3 & 1\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 3 & 3 & 2\end{array}\right)$ |
| $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 2\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 1 & 1 & 3\end{array}\right)$ | $\left(\begin{array}{llll}1 & 2 & 3 \\ 2 & 2 & 3\end{array}\right)$ |

Christopher Hollings

Mathematics Across the Iron Curtain

A History of the Algebraic
Theory of Semigroups

Mathematics Across the Iron Curtain

A History of the Algebraic Theory of Semigroups

Christopher Hollings

American Mathematical Society
Providence, Rhode Island

Editorial Board

June Barrow-Green
Bruce Reznick
Robin Hartshorne
Adrian Rice, Chair

2010 Mathematics Subject Classification. Primary 01A60, 20-03.

For additional information and updates on this book, visit
www.ams.org/bookpages/hmath-41

Library of Congress Cataloging-in-Publication Data

Hollings, Christopher, 1982-
Mathematics across the Iron Curtain : a history of the algebraic theory of semigroups / Christopher Hollings.
pages cm . - (History of mathematics ; volume 41)
Includes bibliographical references and indexes.
ISBN 978-1-4704-1493-1 (alk. paper)

1. Semigroups. 2. Mathematics-History-20th century. 3. Cold War. I. Title.

QA182.H65 2014
$512^{\prime} .27$ - dc 23

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C)2014 by the author.

Printed in the United States of America.
@ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Preface vii
LanguagesixAcknowledgements
Chapter 1. Algebra at the Beginning of the Twentieth Century 1
1.1. A changing discipline 1
1.2. The term 'semigroup'
1.3. An overview of the development of semigroup theory 73
Chapter 2. Communication between East and West 11
2.1. Communication down through the decades 14
2.2. Access to publications 29
Chapter 3. Anton Kazimirovich Sushkevich 45
3.1. Biography 47
3.2. The theory of operations as the general theory of groups 54
3.3. Generalised groups 58
3.4. Sushkevich's impact 73
Chapter 4. Unique Factorisation in Semigroups 77
4.1. Postulational analysis 81
4.2. E. T. Bell and the arithmetisation of algebra 83
4.3. Morgan Ward and the foundations of general arithmetic 88
4.4. Alfred H. Clifford 91
4.5. Arithmetic of ova 93
4.6. Subsequent developments 103
Chapter 5. Embedding Semigroups in Groups 107
5.1. The theorems of Steinitz and Ore 111
5.2. Embedding according to Sushkevich 116
5.3. Further sufficient conditions 122
5.4. Maltsev's immersibility conditions 124
5.5. Other embedding problems 133
Chapter 6. The Rees Theorem 135
6.1. Completely (0-)simple semigroups 137
6.2. Brandt groupoids 140
6.3. Sushkevich's 'Kerngruppen' 145
6.4. Clifford's 'multiple groups' 149
6.5. The Rees Theorem 151
6.6. Unions of groups and semigroups 156
Chapter 7. The French School of 'Demi-groupes' 161
7.1. Paul Dubreil and Marie-Louise Dubreil-Jacotin 164
7.2. Equivalence relations 166
7.3. Principal equivalences and related concepts 171
7.4. Subsequent work 177
Chapter 8. The Expansion of the Theory in the 1940s and 1950s 183
8.1. The growth of national schools 184
8.2. The Slovak school 186
8.3. The American school 192
8.4. The Japanese school 201
8.5. The Hungarian school 206
8.6. British authors 208
Chapter 9. The Post-Sushkevich Soviet School 217
9.1. Evgenii Sergeevich Lyapin 220
9.2. Lyapin's mathematical work 225
9.3. Lazar Matveevich Gluskin 238
9.4. Gluskin's mathematical work 239
9.5. Other authors 246
Chapter 10. The Development of Inverse Semigroups 249
10.1. A little theory 251
10.2. Pseudogroups and conceptual difficulties 252
10.3. Viktor Vladimirovich Wagner 258
10.4. Wagner and generalised groups 259
10.5. Gordon B. Preston 268
10.6. Preston and inverse semigroups 269
Chapter 11. Matrix Representations of Semigroups 277
11.1. Sushkevich on matrix semigroups 281
11.2. Clifford on matrix semigroups 285
11.3. W. Douglas Munn 289
11.4. The work of W. D. Munn 291
11.5. The work of J. S. Ponizovskii 298
Chapter 12. Books, Seminars, Conferences, and Journals 303
12.1. Monographs 305
12.2. Seminars on semigroups 323
12.3. Czechoslovakia, 1968, and Semigroup Forum 326
Appendix. Basic Theory 333
Notes 337
Bibliography 373
Name Index 429
Subject Index 433

Preface

A semigroup is a set that is closed under an associative binary operation. We might therefore regard a semigroup as being either a defective group (stripped of its identity and inverse elements) or a defective ring (missing an entire operation). Indeed, these are two of the original sources from which the study of semigroups sprang. However, to regard the modern theory of semigroups simply as the study of degenerate groups or rings would be to overlook the comprehensive and independent theory that has grown up around these objects over the years, a theory that is rather different in spirit from those of groups and rings. Perhaps most importantly, semigroup theory represents the abstract theory of transformations of a set: the collection of all not-necessarily-invertible self-mappings of a set forms a semigroup (indeed, a monoid: a semigroup with a multiplicative identity), but not, of course, a group. The development of the theory of semigroups from these various sources is the subject of this book. I chart the theory's growth from its earliest origins (in the 1920s) up to the foundation of the dedicated semigroup-oriented journal Semigroup Forum in 1970. Since the theory of semigroups developed largely after the Second World War, it might be termed 'Cold War mathematics'; a comparison of the mathematics of semigroup researchers in East and West, together with an investigation of the extent to which they were able to communicate with each other, is therefore one of the major themes of this book.

I believe that semigroup theory provides a particularly good illustration of these problems in East-West communication precisely because it is such a young theory. We are not dealing here with a well-established mathematical discipline, to whose traditions and methods mathematicians in East and West were already privy and had in common when the Iron Curtain descended. Instead, the foundations of many semigroup-theoretic topics were laid independently by Soviet and Western mathematicians who had no idea that they were working on the same problems. Thus, different traditions and priorities were established by the two sides from the earliest days of the theory.

The structure of the book is as follows. In Chapter [1, I set the scene by considering the status of algebra within mathematics at the beginning of the twentieth century. I discuss the coining of the term 'semigroup' in 1904 and give an overview of the broad strokes of the subsequent development of the theory of semigroups.

Chapter 2 is devoted to the major theme mentioned above: the East-West divide in mathematical research. I provide a general discussion of the extent to which scientists on opposite sides of the Iron Curtain were able to communicate with each other and the degree to which the publications of one side were accessible to the other.

The description of the development of semigroup theory begins in Chapter 3 with a survey of the work of the Russian pioneer A. K. Sushkevich. I investigate his
influences, the types of problems that he considered, and the legacy of his work, with an attempt to explain his lack of impact on the wider mathematical community.

Chapter 4 is the first of two chapters dealing with the semigroup-theoretic problems that arose in the 1930s by analogy with similar problems for rings. Thus, Chapter 4 concerns unique factorisation in semigroups, while Chapter 5 deals with the problem of embedding semigroups in groups. In these two chapters, we see how the investigation of certain semigroup-related questions began to emerge, although this was not yet part of a wider 'semigroup theory'. The beginning of a true theory of semigroups is dealt with in Chapter6, which concerns the celebrated Rees Theorem, together with a result proved by A. H. Clifford in 1941, which might be regarded as semigroup theory's first 'independent' theorem: a result with no direct group or ring analogue.

Paul Dubreil and the origins of the French (or, more accurately, Francophone) school of 'demi-groupes' are the subject of Chapter 7 while Chapter 8 concerns the expansion of semigroup theory during the 1940s and 1950s, both in terms of the subjects studied and also through the internationalisation of the theory. I thus indicate the major semigroup-theoretic topics that emerged during this period and also give an account of the various national schools of semigroup theory that developed. Chapter 8 marks something of a watershed in this book: the material appearing before Chapter 8 represents the efforts of the early semigroup theorists to build up their discipline, while that coming after may be regarded as being part of a fully established theory of semigroups.

Chapter 9 concerns the development of the post-Sushkevich Soviet school of semigroup theory through the work of E. S. Lyapin and L. M. Gluskin. I pick up the discussion of Chapter 2 and try to give an indication of the extent to which Soviet semigroup theorists were aware of the work of their counterparts in other countries and of the level of knowledge of Soviet work outside the USSR.

In Chapters 10 and 11, I deal with two major aspects of semigroup theory that emerged in the 1950s: the theory of inverse semigroups and that of matrix representations of semigroups. Both of these remain prominent areas within the wider theory (though the latter was considerably slower in its development), and both furnish us with well-documented examples of the duplication of mathematical research across the Iron Curtain.

In the final chapter, I draw the book to a close by considering the first monographs on semigroups, the early seminars, and the first conferences.

The focus here is upon the history of the algebraic theory of semigroups, rather than that of the topological theory, which is dealt with elsewhere (see the references on page 10). I have, by necessity, been very selective in the material that I have included here, particularly in connection with the semigroup theory of the 1960s, which is simply too broad to cover in its entirety. A historical account that attempted to cover the whole of semigroup theory would be near-impossible to write and little easier to read. Nevertheless, the book is liberally sprinkled throughout with endnotes in which I give rough indications of other aspects of the theory that are not covered in the main text. One broad area that is perhaps somewhat conspicuous by its almost total absence is the theory of formal languages and automata, together with the Krohn-Rhodes theory of finite semigroups: when choosing which topics to include here, I decided that these theories were simply too large to do justice to within the confines of a book such as this.

I have tried to make this book accessible to as large an audience as possible. Thus, although I have supposed a general familiarity with abstract algebra on the part of the reader, I have not assumed any knowledge of the specifics of semigroup theory. Many elements of the relevant mathematics are introduced as we go along, but some of the more fundamental notions from semigroup theory are summarised in the appendix.

With regard to the notation used throughout the book, I have, as far as possible, retained the notation used by the original authors. Notable exceptions are those few cases where the original notation might prove to be confusing or ambiguous. Some of the authors considered here composed their functions from right to left, while others, following a convention often adopted in semigroup theory, composed from left to right (see the appendix). I have not imposed a uniform direction for the composition of functions but have again retained the conventions of the original authors. Nevertheless, I have endeavoured to make the particular direction clear in each case.

Languages

The presentation of as full a picture as possible of the international development of semigroup theory necessarily involves the use of sources in many different languages. Wherever I have quoted from a foreign source, I have provided my own English translation (unless stated otherwise), together with the text of the original in an endnote. However, I have saved space in the bibliography by only giving the English translations of titles of foreign sources, except for those items in French or German (plus one or two in Spanish and Italian), for which I have only given the original: readers are, I estimate, likely to be able to translate these for themselves. With regard to non-English terminology, I have endeavoured to supply appropriate translations but in every case have provided the original term in parentheses at the point of the translation's first appearance in the text.

Regarding the Latin transliteration of Cyrillic characters, I have, for the most part, adopted the conventions of the journal Historia Mathematica. These conventions are summarised in Table 0.1. Notice in particular that the two silent letters, the hard (ъ) and soft (ь) signs, are omitted from transliterations altogether. Indeed, this latter point and the use of i instead of $\breve{1}$ for й are the only differences between the Historia Mathematica transliteration conventions and those employed in Mathematical Reviews. I have chosen the conventions in the table purely on the grounds of simplicity and aesthetics. I deviate from these conventions, however, in the cases of names that have commonly accepted Latin spellings. Thus, for example, 'Шмидт' is transliterated as 'Schmidt', rather than 'Shmidt', and 'Вагнер' as 'Wagner', rather than 'Vagner'.

Some of the Soviet authors whom I mention here have had their names transliterated in various ways, according to different conventions. Thus, for example, Сушкевич has appeared as 'Sushkevich', 'Suškevič', 'Suschkewitz', 'Suschkewitsch', and 'Suschkjewitsch', while Ляпин has been rendered as 'Lyapin', 'Ljapin', and 'Liapin', and Мальцев аs 'Maltsev', 'Mal'tsev', 'Malcev', and 'Mal'cev'. In some cases, these authors published work under different transliterations of their names; these works have been listed in the bibliography according to the name under which they were published. Thus, for example, A. K. Sushkevich's work appears under both

Table 0.1. Conventions for transliteration from Cyrillic characters.

For Russian			
$\mathrm{Aa}=\mathrm{Aa}$	$\mathrm{Kk}=\mathrm{Kk}$	Xx =	Kh kh
Бб $=\mathrm{Bb}$	Лл $=\mathrm{Ll}$	Цц =	Tsts
$\mathrm{Bb}=\mathrm{Vv}$	$\mathrm{Mm}=\mathrm{Mm}$	Чч =	Chch
$\Gamma_{\Gamma}=\mathrm{Gg}$	$\mathrm{HH}^{=} \mathrm{Nn}$	Шш =	Sh sh
Дд $=$ Dd	Oo = Oo	Щщ =	Shch shch
$\mathrm{Ee}=\mathrm{Ee}$	Пп = Pp	ъ	-
Ёë $=$ Ee	$\mathrm{Pp}=\mathrm{Rr}$	ы	y
Жж $=$ Zhzh	$\mathrm{Cc}=\mathrm{Ss}$	ь	-
$З_{3}=\mathrm{Zz}$	$\mathrm{T}_{\mathrm{T}}=\mathrm{Tt}$	Ээ =	Ee
Ии $=$ Ii	$\mathrm{Y}_{\mathrm{y}}=\mathrm{Uu}$	Юю =	Yu yu
Йй $=$ Ii	$\Phi \Phi=\mathrm{Ff}$	Яя =	Ya ya
Additional letters for Ukrainian			
$\epsilon_{e}=\mathrm{Ee}$	$\mathrm{Ii}=\mathrm{Ii}$	Ïï =	Ïi

'Sushkevich' and 'Suschkewitsch', while A. I. Maltsev's is listed under 'Maltsev' and 'Malcev'.

Acknowledgements

The material presented in this book represents research that I have been pursuing, on and off, for around nine years. It began as a side-project when I was a postgraduate student at the University of York (UK) and then continued in this capacity through postdoctoral positions at the Centro de Álgebra da Universidade de Lisboa and the University of Manchester. A further post at the Mathematical Institute of the University of Oxford (later supplemented by a position at The Queen's College) then enabled me to work on this project full-time, under the auspices of research project grant F/08 772/F from the Leverhulme Trust, whose funding is gratefully acknowledged. I must note here that I have reused material from my published articles Hollings (2009b c, 2012).

Mathematicians and historians of mathematics and science who have supplied information, advice, papers, and in many cases their own memories are Michèle Audin, June Barrow-Green, Leonid A. Bokut, Ronald Brown, J. W. S. Cassels, W. Edwin Clark, Leo Corry, Chandler Davis, Helena Durnová, Ralph Erskine, Charles Ford, John Fountain, Olival Freire, Slava Gerovitch, Manfred Goebel, Gracinda M. S. Gomes, Maxim Goncharov, S. S. Goncharov, Victoria Gould, J. A. Green, Terry Griggs, Karl H. Hofmann, Charles Holland, Hvedri Inassaridze, Mitchel T. Keller, Robert J. Koch, Joachim Lambek, Jan Kotůlek, Mark V. Lawson, Andrey Lodkin, Yuri I. Lyubich, A. A. Maltsev, I. A. Maltsev, Tony Mann, László Márki, Yuri Matiyasevich, John Meakin, Paul S. Mostert, W. Douglas Munn, K. S. S. Nambooripad, William Newman, Boris V. Novikov, Lee Parsons, Sir Roger Penrose, Mario Petrich, David Rees, Sarah Rees, Miles Reid, Norman Reilly, Peter Roquette, J. E. Roseblade, Mark Saul, Boris M. Schein, Boris Shapiro, Alexander Shen, Lawrence Shepp, Lev N. Shevrin, Reinhard Siegmund-Schultze, Edward Simpson, Martin Skoviera, Maria Paula Beirão Oliveira Marques Smith, Alexey

Sossinsky, Halyna Syta, Frode Weierud, Richárd Wiegandt, and David E. Zitarelli. Special thanks must go to Paul S. Mostert for supplying, and for giving me permission to use, unpublished material on the 1968 Smolenice semigroup conference, and for permission to use private email communications of 15 September 2010 and 16-17 January 2013. I am grateful also to Andrey K. Batmanov and Alexander Sternik, Olivia Boggs, Karl H. Clifford, Geralyn W. Caradona, Alexandre Coutelle and Adele Torrance, Helen Fearn, Richard Hughes, Anna Mayer, Karen McKinley, Sinclair McKay, Patrícia Paraiba, Valerii Shemeta, Liz Summers, and Yuri Volkov. Special thanks must also go to Clare Munn for supplying copies of letters from her late husband and for permission to quote from them.

Librarians and archivists who have helped me to get hold of copies of relevant files and papers are Kyle Ayers, Liliya Belousova and Stepan Zhelyaskov, Larisa P. Belozerova, Els Boonen, N. M. Borodulin, Donna Marie Braquet and Seth M. Jordan, Ekaterina Budagova, L. V. Egorova and O. L. Svirshchevskaya, April Colosimo, Mary Curry, Janice Docking, Ruth Ellebracht, Natalia Ermolaeva, Wilhelmine Fahje, Yu. N. Gerasimova, Kyra Giorgi and Jane Rumbold, Jessica Goff, Lyudmila L. Gorbunova, Natalya I. Guseva, E. A. Suntsova and E. A. Derevnina, Anja Herwig and Antje Kreienbring, Tracey Holloway, Cathy Hunt, Jennifer Innes, Donald Juedes and Kelly Spring, A. G. Karapuzova, Loma Karklins, V. V. Kostygov and T. N. Emelyanova, O. P. Kostyukova, O. Loshitskii, G. G. Lukyanov and O. I. Zakharova, Yu. G. Matrynova, I. A. Matveeva, Arnot McDonald, Natela Nodarjevna, N. G. Novoselova, O. K. Kavtsevich and T. N. Gutyra, Brian Oakley, Susan Office, Irina V. Penkova, Natalia Pierce, Alexandra Quauck, Inna RikunShtein, Ljilja Ristic, N. I. Shirshova and A. V. Ruzaikina, E. V. Shtern, Betsy Smoot, A. K. Sorokin and E. E. Bartseva, Rene Stein, A. V. Tyurin, Eric Vanslander and Morris Izlar, and Malte Vogt. I am grateful also to anonymous correspondents at the Department of Social and Economic Development of Borisoglebsk Territory (Russia), the State Archive of Donetsk Region (Ukraine), the Howard-Tilton Library at Tulane University, Louisiana (USA), and the Department of Mathematics (Geometry Cathedra), Saratov State University, Russia.

I am very grateful to Larissa E. Lyapina, Sergei E. Lyapin, Eugenia M. Mogilyanskaya, and Stanislav I. Kublanovskii for their warm welcome and assistance in Saint Petersburg in April 2012, and similarly to Nikolay S. Khripchenko and the librarians of the Mathematical Literature Room of Kharkov National University and the Korolenko State Scientific Library for their help during a visit to Kharkov in September 2011. I must also single out Nick for particular thanks, for his tremendous efforts in helping me to obtain copies of A. K. Sushkevich's various publications.

Special thanks must go to Jackie Stedall and Peter M. Neumann: to Jackie for making possible the luxury of the full-time pursuit of this project by submitting the necessary application to the Leverhulme Trust and for her gentle guidance in what it means to be a historian of mathematics; to Peter for sharing his vast experience both in mathematics and in its history and for pulling me up on my many mathematical slips; to both of them for reading early drafts of the various parts of this book and for providing many insightful comments. Finally, I am extremely grateful also to Adam McNaney for his proofreading, for his streamlining of the process of typesetting Cyrillic characters in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, and for his critical input throughout this project.

Notes

Unless stated otherwise, a cross-reference to a numbered note is to that numbered note in the same chapter.

Chapter 1, Algebra at the Beginning of the Twentieth Century

Section 1.1, A changing discipline

${ }^{1}$ The Oxford English Dictionary (accessed online, December 2012) lists the first appearance of 'algebra' in English as being in around 1400, when it was used to refer to the setting of fractured bones: the original sense of 'al-jabr'/'restoration'. The first use of 'algebra' in connection with the solution of equations is given as being in Robert Recorde's The pathway to knowledg [sic] of 1551, while George Boole (in his An introduction to the laws of thought of 1854) is given the credit for first using the word in its 'abstract algebra' sense.
${ }^{2}$ Instead, for a general overview of their histories, see Katz (2009). On the development of group theory, see Wussing (1969). For Galois theory, see Neumann (2011) and the further references cited therein.
${ }^{3}$ In fact, a paper published by Galois in 1830 contains a treatment of what are essentially finite fields - see Neumann 2011, §II.4) and Stedall 2008, §13.2.1).

Section 1.2, The term 'semigroup'

${ }^{4}$ In line with the comments in the main text, the Oxford English Dictionary (accessed online, December 2012) cites Dickson (1904) as being the first appearance of 'semigroup' in English, although no comment is made on the different uses of the word, which is defined only in its modern sense.
${ }^{5}$ The Oxford English Dictionary (accessed online, December 2012) lists the first English use of 'monoid' in this sense as being in Claude Chevalley's Fundamental concepts of algebra of 1956.
${ }^{6}$ See note 13 of Chapter 5

Section 1.3. An overview of the development of semigroup theory

7 Knauer (1980) notes, for example, that systems of not-necessarily-invertible matrices were studied by Loewy (1903), Burnside (1905), and Frobenius and Schur (1906). To take just one of these papers, it seems that Frobenius and Schur dealt with semigroups simply because they found it unnecessary to postulate the existence of an identity and inverses (see the comments in Lawson 1992 and Petrich 1970). This paper is perhaps best classified as representation theory, or, along with the papers of Loewy and Burnside, as linear algebra.
${ }^{8}$ It was also around this time that semigroups received their first explicit mention in Mathematical Reviews; the following classifications were introduced in 1959:
06.70. 'Ordered semigroups, other generalizations of groups'
20.90. 'Semigroup algebras, representations, characters'
20.92. 'Semigroups, general theory'
20.93. 'Semigroups, structure, and classification'
22.05. 'Topological semigroups and other generalizations of groups'
47.50. 'Semigroups and groups of operators'
54.80. 'Transformation groups and semigroups'

Further semigroup-related classifications were added in 1973. The bulk of research on algebraic semigroups is now classified under the heading 20M ('Semigroups'), which is subdivided into a
range of specific topics, including, for example, 'Inverse semigroups' (20M18) and 'Semigroups of transformations, etc.' (20M20).
${ }^{9}$ It might also be said that this book focuses upon 'classical' semigroup theory, in the sense defined by Rhodes (1969a b): broadly speaking, the early semigroup theory of Rees, Green, Clifford, etc., with strong ring theory connections and a focus upon the Rees matrix construction (see Chapter 6). 'Classical' semigroup theory stands in contrast with so-called 'modern' semigroup theory, which Rhodes deemed to have begun with the Krohn-Rhodes theory of finite semigroups and which has a much more group-theoretic flavour.

Chapter 2, Communication between East and West

${ }^{1}$ In the interests of precision, we must remember that the 'Iron Curtain' did not exist before 1945. Since our story begins earlier than this, a discussion of 'communication between East and West' does not, strictly speaking, always equate with 'communication across the Iron Curtain'. Nevertheless, 'Iron Curtain' will sometimes be used here as a convenient term for describing the divide between communist Central and Eastern Europe and the rest of the world, even before 1945.
${ }^{2}$ See, for example, Wolfe (2013) and also the articles in volume 101 (2010) of Isis and those in volume 31 (2001) of Social Studies in Science.
${ }^{3}$ Douglas Munn, private communication, 24th June 2008.
${ }^{4}$ For example, see Shabad (1986), Anon (1986, 1987), and Rich 1986) on (apparently spurious) claims that an American professor plagiarised a Russian electromagnetism textbook.

5 "Когда я жил в СССР, то обижался, что часто западные математики не отражают приоритета советских учёных, не ссылаются на их работы. На Западе я увидел другую сторону медали. Подавляющее большинство западных математиков не ссылалось на своих советских коллег только потому, что было почти невожможно что-то узнать об их результатах. Просьбы о присылке оттисков, посланные в СССР, оставались без ответа. Посланные в СССР письма пропадали." (Schein, 2008)

Section 2.1. Communication down through the decades

${ }^{6}$ Just one Soviet delegate attended the 1920 congress in Strasbourg (Villat, 1921), probably because of the continuing civil war, while six appear to have attended the 1924 Toronto congress, though a further twelve were listed as 'corresponding members' (Fields, 1928). Distance and cost of travel probably account for the low Soviet turn-out at the 1924 congress. These figures should be contrasted with those from earlier ICMs. Twelve delegates at the 1897 Zürich congress are listed as having originated from 'Rußland' (Rudio, 1898), while 15 of those in Paris in 1900 came from 'Russie' (Duporca, 1902). In both cases, the label 'Rußland'/'Russie' was applied also to people from Ukraine and from other areas within the Russian sphere of influence (for example, Poland). It is a little more difficult to give exact numbers of 'Russian Empire' delegates at the 1904 (Heidelberg; see Krazer 1905), 1908 (Rome; see Castelnuovo 1909), and 1912 (Cambridge, UK; see Hobson and Love 1913) congresses since their proceedings give only cities of origin for the delegates, rather than countries; there appear to have been approximately 30,19 , and 30 delegates at the 1904, 1908, and 1912 ICMs, respectively, who originated from within the Russian Empire.
${ }^{7}$ For a short introduction to the Marxist philosophy of science, see Graham 1972, Chapter II) or Graham (1993, Chapter 5).
${ }^{8}$ On Soviet ideology of mathematics, see Vucinich 1999, 2000, 2002) or Graham and Kantor (2009) ; for a more compact and more elementary exposition, see Hollings (2013).
${ }^{9}$ See, for example, Demidov and Ford (1996), Demidov and Levshin (1999), Kutateladze (2007, 2013), Levin (1990), Lorentz (2002, §6), Shields (1987), and Yushkevich (1989).
${ }^{10}$ The word 'prominent' is used here, fairly arbitrarily, to mean a mathematician who features in the book Sinai (2003); 'extensive' indicates that their number of foreign publications was in double figures. All of the mathematicians in the table were publishing well before 1936, with Aleksandrov's first listed publication dating from 1923, for example. The dates of the earliest listed publications of the other members of the table are as follows: Bernstein, 1917; Kantorovich, 1928; Khinchin, 1918; Lavrentev, 1924; Luzin, 1917; Menshov, 1922; Pontryagin, 1927; Smirnov, 1918; Tikhonov, 1925. In general, the figures in the table do not represent the total numbers of publications for these mathematicians, most of whom produced further works after the publication of Kurosh et al. (1959). Many of these later papers are listed in the follow-up bibliography Fomin and Shilov
1969). The one exception is Luzin, who died in 1950 but whose publications continued to appear for a few years after this.
${ }^{11}$ For a general discussion of why Soviet authors stopped publishing abroad, including comments on the 'Luzin affair' and nationalistic considerations, see Aleksandrov (1996).
${ }^{12}$ See Graham (1993, p. 207). Gerovitch (2013), on the other hand, offers a rather more nuanced view of the success of Soviet mathematics, in which the 'blackboard rule' is just one factor.
${ }^{13}$ On the early development of Soviet mathematical publishing, see Bermant (1937).
14 "Среди большинства советских математиков сохранилась традиция печатать свои лучшие работы в иностранных журналах. Больше того, существовала и пользовалась распространением точка зрения, усматривавшая в факте печатания большого количества наших работ за границей положительное явление Этот взгляд, конечно, неправилен: рассыпанная по журналам Германии, Франции, Италии, Америки, Польши и других буржуазных стран советская математика не выступает как таковая, не может показать собственного лица.
"Рост научных кадров внутри СССР ... ставят перед нами задачу создания журнала отражающего эти сдвиги и организующего советскую математику в направлении активного участия в соцстроительстве.
"Группа московских математиков обратилась в редакцию с письмом, в котором принимает на себя обязательство печатать свои статьи, в первую очередь, в «Математическом сборнике» и призывает к этому других математиков Советского союза." (Anon, 1931)
${ }^{15}$ On Dobzhanskii, see Ford (1977) or Ayala (1985); on Gamov, see Hufbauer (2009).
${ }^{16}$ This was by no means the only such statement of solidarity that was issued during the war - see note 36
${ }^{17}$ Indeed, some went further and employed ideological language for their own ends: see Gerovitch (2002).
${ }^{18}$ The term 'samizdat' ('самиздат') is derived from the abbreviation of the Russian word 'издательство', meaning 'publishing house', together with the prefix 'само-' ('self-'). It refers to manuscripts that were circulated privately within the Soviet Union, where the recipient would often retype a copy for him- or herself before passing on the original to another interested party. This was the only means of distributing materials (in particular, those dealing with politically sensitive subjects) that could not be published through official channels. Related to samizdat is 'tamizdat' ('тамиздат', from the Russian 'там', meaning 'there'): the formal publication of samizdat texts outside the Soviet Union. An early usage of the term 'tamizdat' appears in Medvedev's original essays. Indeed, their translator into English (Vera Rich) credited Medvedev with the coining of the word (Medvedev, 1971, p. 288). On samizdat, see Boiter (1972) and Johnston (1999).
${ }^{19}$ In a later book, Medvedev referred to 'The Medvedev papers' as a "rather trivial title invented by the publisher" but deemed the subtitle 'The plight of Soviet science today' to be "more relevant" (Medvedev, 1979, p. xi).
${ }^{20}$ Medvedev was also the author of a more general critique of Soviet science Medvedev, 1979) and an account of Lysenkoism (Medvedev, 1969). The former contains further details of the communications difficulties of scientists across the Iron Curtain.
${ }^{21}$ Some similar problems with regard to mathematical conferences are mentioned briefly in Kline (1952, p. 84).
${ }^{22} \mathrm{~A}$ few years later, Ziman wrote 'A second letter to an imaginary Soviet scientist' Ziman, 1973), in which he highlighted the plight of refusenik scientists in the USSR and wondered what action Western scientific organisations could take. Some suggestions were provided in a response by Medvedev (1973). The problems faced by dissident scientists in the USSR, and by refuseniks in particular, came to be discussed extensively in the pages of Western scientific publications during the 1970s and 1980s. See, for example, the series of articles in Nature: Rich (1976), Adelstein (1976), Meyers (1976), Levich (1976). Further references on the closely-related issue of anti-Semitism in Soviet academia may be found in note 51
${ }^{23}$ More of Schein's experiences with regard to international contacts may be found in Breen et al. (2011, pp. 7-8).
${ }^{24}$ Medvedev referred to 'England' but he almost certainly meant the UK as a whole since Scottish universities were mentioned elsewhere in his essay.
${ }^{25}$ See Petrovsky (1968), Lehto (1998, §8.2), or Curbera (2010). For a Western account of the congress, see Lorch (1967).
${ }^{26}$ Demidov 2006, p. 796) goes so far as to assert that the 1966 Moscow ICM contributed to the growth of dissidence in the USSR:

An important event in the life of the Soviet mathematical community was the 1966 International Congress of Mathematicians in Moscow, which hosted a record number of participants (more than five and a half thousand!). At this congress our country declared itself one of the leading mathematical powers of the world, and, especially important, our mathematicians felt themselves to be competent and respected members of the world mathematical community. An awakened spirit of freedom found its expression in the growth of free thinking and even dissidence among Soviet mathematicians.
${ }^{27}$ A very nice example of an $a d h o c$ exchange of mathematical news is provided by the experience of Peter M. Neumann (private communication, 30th April 2013). On his way to Canberra in the Summer of 1970, Neumann stopped over in Moscow, where he participated in a very well-attended seminar within the algebra section of the mathematics department of Moscow State University. During the seminar, which ran non-stop from the morning until around $4: 30 \mathrm{pm}$, Neumann and his Russian counterparts exchanged news of what they, their students, and their colleagues were currently working on. Neumann relates that his notes from the seminar "created considerable excitement" when they were subsequently shared with colleagues in Canberra.
${ }^{28}$ Specific references are Aleksandrov and Kurosh (1959), Bari and Menshov (1959), and Shafarevich (1959). There were also reports in the same volume on particular areas of mathematics at the congress; see Kurosh (1959a), for example, for that on algebra.
${ }^{29}$ See instead the references in note 51

Section 2.2. Access to publications

Section 2.2.1. Physical accessibility
${ }^{30}$ See Montagu et al. (1921), Schuster (1921), Anon (1921), and Gregory and Wright (1922).
${ }^{31}$ Indeed, Ziman's second letter (see note 22) suffered a similar fate (Medvedev, 1973, p. 476).
${ }^{32}$ On which society, see Sintsov (1936), Akhiezer (1956), Marchevskii (1956b), and Ostrovskii 1999).
${ }^{33}$ The Сообщения Харьковского математического общества to which I am referring here is in fact the fourth series of the journal of that name. The first series consisted of 18 volumes (1879-1887), the second of 16 volumes (1887-1918), and the third of only 3 (1924-1926). The fourth series had its first volume in 1927, with volumes I and II being published under the name given at the beginning of this note. For volumes III-V, и Украинского института математических наук (and of the Ukrainian Institute of Mathematical Sciences) was added to the end of the title; this was replaced by и Украинского научно-исследовательского института математики и механики (and of the Ukrainian Scientific Research Institute of Mathematics and Mechanics) for volume VI. From volume VIII, при Харъковском государственном универcumeme (for Kharkov State University) was also added to the title. The journal ceased publication in 1940 with volume XVIII; it resumed with volume XIX in 1948, now with the title Записки научно-исследовательского института математики и механики и Харъковского математического общества (Notes of the Scientific Research Institute of Mathematics and Mechanics and of Kharkov Mathematical Society). From volume XXII, ownership of the journal seems to have transferred from the Ukrainian Scientific Research Institute of Mathematics and Mechanics to the mathematics department of Kharkov State University, and this is reflected in yet another new title: Записки математического отделения физико-математического факультета и Харъковского математического общества (Notes of the Mathematics Department of the Physico-Mathematical Faculty and of Kharkov Mathematical Society). The final name change of which I am aware is that applied to volume XXIV in 1956, at which point it was evidently felt to be necessary to specify the full name of the university in the journal title: Записки математического отделения физико-математического факультета Харъковского государственного университета им. А. М. Горъкого и Харъковского математического общества (Notes of the Mathematics Department of the Physico-Mathematical Faculty of the A. M. Gorky Kharkov State University and of Kharkov Mathematical Society). To complicate matters further, the volumes of the journal from the 1930s are sometimes cited under a French title: Communications de la Société mathématique de Kharkoff.
${ }^{34}$ S. H. Gould was one of the translators into English of E. S. Lyapin's monograph Semigroups (see, in particular, Section 12.1.2).
${ }^{35}$ Such accounts, which in many cases were written merely as technical guides to Soviet scientific organisation, stand alongside works of a more 'academic' nature; we have, for example, Joravsky (1970), Graham (1972), Lewis (1972), Lubrano and Solomon (1980), and Berry (1988) from the Soviet era and many more from the last twenty years, including Birstein (2001), Gerovitch (2002), Graham (1993, 1998), Hollowav (1994, 1999), Koievnikov (2004), Krementsov (1997), and Pollock (2006).
${ }^{36}$ An earlier symposium on Soviet science was that held at Marx House in London at Easter 1942, though this conference was rather more about propaganda than appraisal (Faculty of Science of Marx House, 1942). The conference proceedings cited here contain an appeal for solidarity between British and Soviet scientists that is reminiscent of the statement published in Nature in 1941 and reproduced here on page 19
${ }^{37}$ The latter, in conjunction with questions of Soviet ideology, was also examined in a range of books and articles published in the 1940s, 1950s, and 1960s: see, for example, Bauer (1954), Feuer (1949), Joravsky (1961), London (1957), Muller (1954), Philipov (1954), Romanoff (1954), and Turkevich (1966).
${ }^{38}$ In its drive to document itself, the USSR also produced several surveys of the progress of Soviet mathematics, including, but not limited to, the books Aleksandrov et al. (1932), Kurosh et al. (1948), Kurosh et al. (1959), Shtokalo and Bogolyubov (1966), and Shtokalo et al. (1983). I use some of these surveys at the beginning of Chapter 9 to track the acceptance of semigroup theory into the Soviet mathematical canon.
${ }^{39}$ Other Western materials on Soviet education include Anisimov (1950), Bernstein (1948), Friese (1957), Joravsky (1983), Litchfield et al. (1958), Miller (1961), Sobolev (1973), and Vogeli (1965). We have also Gnedenko (1957), published in the West but written by a Soviet author. For Russian accounts of the development of Soviet mathematical education, see Lapko (1972) and Velmin et al. (1975); for latter-day academic research on this topic, see Karp (2006, 2012) and Karp and Vogeli (2010).
${ }^{40}$ Indeed, to these, we might add two further articles, this time written specifically for historians of Soviet science: Demidov (2007) and the 'Bibliographical essay' at the end of Graham (1993).

Section 2.2.2, Linguistic accessibility

41 "Советская математика может и должна иметь журнал международного значения. Поэтому мы продолжаем обычай снабжать иностранными резюме статьи, написанные на русском языке, и печатаем статьи на иностранных языках. Опыт показал, что и математические статьи, написанные на русском языке, доходили до иностранного читателя." Anon, 1931)
${ }^{42}$ 'Foreign' in this context does not relate to an author's nationality (which I have not always been able to determine) but merely indicates that they gave an affiliation at a non-Soviet university.
${ }^{43}$ Medvedev (1979, p. 154) suggested that Western authors may also have been deterred from submitting papers to Soviet journals by the lengthy refereeing and publication process. Some of the delays that he records for Soviet biological journals in the mid-1970s (for example, one year from submission to publication) seem quite trivial when compared to the typical delays for modern mathematical journals.
${ }^{44}$ See the comments of O'Dette (1957) and also the conclusions of the report Litchfield et al. (1958, §11). Moreover, Soviet citizens applying to travel abroad were, by the 1970s, required to pass a foreign language exam (Medvedev, 1979, pp. 206-207).
${ }^{45}$ Medvedev 1971, p. 132) lamented the decline in the use of Russian at international (biological) congresses, citing the lack of Soviet delegates at such meetings during the middle decades of the twentieth century. His comments seem to imply that there was a tradition of using Russian as a working language at these conferences during the first half of the twentieth century. An examination of the proceedings of the International Congresses of Mathematicians for these decades, however, reveals that the same was not true in mathematics, although Russian was adopted as the third official language of the International Mathematical Union, alongside English and French, in 1958 Leht0, 1998, p. 109, footnote 6). It should be noted that Soviet attendees of Western conferences did sometimes insist upon delivering their lectures in Russian, necessitating the use of an interpreter, even when they were fluent in a Western language Kline, 1952, p. 83).
${ }^{46}$ More recent (post-Soviet) books include a new Russian-Ukrainian mathematical dictionary (Karachun et al., 1995) and a glossary of Russian/Ukrainian/English mathematical phrases (Kotov et al., 1992).
${ }^{47}$ The Amkniga Corporation (Furaev, 1974, English trans., p. 67) had in fact been supplying American readers with Russian books in English translation since the early 1930s, but they appear to have dealt with literary works, rather than technical materials.
${ }^{48}$ On the Office of Naval Research's funding of such civilian projects and on the funding structures of post-war American science more generally, see Wolfe (2013, Chapter 2).
${ }^{49}$ Up until this point, the only translations of Russian scientific literature that had been available in the UK were those purchased by the UK government's Department of Scientific and Industrial Research from the USA (Anon, 1958b).
${ }^{50}$ A longer list of currently translated journals is available from the American Mathematical Society: http://www.ams.org/msnhtml/trnjor.pdf (last accessed 31 May 2013).
${ }^{51}$ Pontryagin accused Jacobson of having been part of a 'Zionist conspiracy' to take over the International Mathematical Union, which he (Pontryagin) claimed to have thwarted. The editor of Russian Mathematical Surveys gave Jacobson the opportunity to respond to this accusation and printed his reply at the end of the translation of Pontryagin's article. Further correspondence between Jacobson and the then-editor of Uspekhi matematicheskikh nauk, P. S. Aleksandrov, was subsequently printed in the June 1980 issue of Notices of the American Mathematical Society. Moreover, charges of anti-Semitism were levelled against Pontryagin within the pages of Science (see Kolata 1978 and Pontryagin 1979). For the political background to Pontryagin's accusations, see Lehto (1998, §10.1). Jacobson's correspondence in Notices of the American Mathematical Society formed a part of the discussion concerning anti-Semitism in Soviet academia (particularly Soviet mathematics) that had been going on in the letters to the editor since the publication, in the November 1978 issue, of an anonymous samizdat essay (see note 18) entitled The situation in Soviet mathematics, whose purpose was to draw attention to such discrimination. This discussion continued, on and off, for the next couple of years, though the focus shifted slightly from anti-Semitism in general to the plights of several individual refusenik mathematicians. On anti-Semitism in Soviet mathematics, see Freiman (1980), where the essay The situation in Soviet mathematics may also be found. See also note 35 of Chapter 10

Chapter 3. Anton Kazimirovich Sushkevich

${ }^{1}$ On the other hand, we note in passing that Sushkevich is not mentioned in one (non-Soviet) source where we might have expected to find him: in a list of group generalisations given by Wussing (1969, English trans., p. 292, note 239) in his book on the history of group theory.

Section 3.1. Biography

${ }^{2}$ There are several biographical articles on Sushkevich: Gluskin and Lyapin (1959), Anon 1962a), Gaiduk (1962), Gluskin and Schein (1972), Gluskin et al. (1972), Lyubich and Zhmud (1989), Zhmud and Dakhiya (1990), and Hollings (2009d). Parts of the final article in this list have been reused here. Note that the Soviet-era biographies can be limited in their usefulness owing to their often rather impersonal style, as discussed in note 5 of Chapter 9 Another useful resource on Sushkevich has been his Kharkov State University personnel file, which is held by the Ukrainian State Archives (Kharkov Region): Ф.Р-2782, оп. 20, спр. 572.
${ }^{3}$ I say 'tentative' because it is not absolutely certain that this evidence does indeed refer to Sushkevich's father. The evidence in question comes from the so-called Memorial book of Voronezh Province (Памятная книжка Воронежской губерніи) for 1908: a directory which details the local governmental structure of the province, gives statistics on its population, and lists prominent citizens, etc. Within its pages, we find two passing references to a Kazimir Fomich Sushkevich (Казиміръ Фомичъ Сушкевичъ). I cannot say for certain that this was our Sushkevich's father, but his name is at least consistent with Sushkevich's patronymic 'Kazimirovich'. The different Cyrillic spelling of 'Sushkevich' that is found in the Memorial book is easily explained: it pre-dates the 1918 Russian spelling reforms, as a result of which the silent letter ' $ъ$ ', which had hitherto appeared at the ends of many Russian words, was largely dropped. The references to K. F. Sushkevich list him first as a member of the provincial committee of prison trustees (p. 6 of the Memorial book), and then as an assistant to I. I. Kharitonovich, a manager at the South-Eastern Railway Company (p. 41 of the Memorial book). This last reference is again consistent with other sources on Sushkevich: in his Kharkov State University personnel file, Sushkevich recorded that his father
had been an employee of South-Eastern Railways (Ф.Р-2782, оп. 20, спр. 572, арк. 1). The final point to address in arguing that this K. F. Sushkevich was indeed the father of our Sushkevich is the Voronezh connection: although Borisoglebsk now lies in Voronezh Province, it then lay in Tambov Province, so it is not clear why Sushkevich Senior should be involved in Voronezh provincial affairs. In fact, I have already noted that the Sushkevich family had some connections with Voronezh: A. K. Sushkevich was educated there, and the family appears, certainly by 1910, to have been living in the city: some lecture notes made by A. K. Sushkevich in that year are noted as having been written up in Voronezh (perhaps during a visit home from Berlin?).
${ }^{4}$ This claim is made by Pflugfelden (2000). Assuming that it is untrue, I offer the following suggestion as to how this notion may have arisen. In the Voronezh Memorial book (see note 3), K. F. Sushkevich, whom I argue is the father of A. K. Sushkevich, is listed with the title of Collegiate Secretary (коллежский секретарь, abbreviated as кскр). This is the 10th rank in Peter the Great's 'Table of Ranks': the scheme established by the tsar in 1722, whereby, in principal, anyone in his administration, no matter how low-born, could rise through the ranks on merit. Each rank came with a particular title and style of address: a Collegiate Secretary, for example, would be addressed as 'Ваше благородие' ('your nobleness'). Anyone achieving the 8th rank (later changed to the 5th) received a hereditary title, but those with lower ranks, such as K. F. Sushkevich, were awarded merely 'personal nobility' ('дворянство'). Thus, K. F. Sushkevich attained a certain degree of personal prestige, but this did not transfer in any formal way to his family.
${ }^{5}$ Many of Sushkevich's lecture notes survive in the mathematics library of Kharkov National University. The following list gives the courses represented by the lecture notes, in varying degrees of completion, arranged semester by semester:

- winter 1906-1907: differential calculus (H. A. Schwarz), analytic geometry (R. Leh-mann-Filhés),
- summer 1907: integral calculus (H. A. Schwarz),
- winter 1907-1908: infinite series, products and continued fractions (G. Hettner), algebra (I. Schur), number theory (F. G. Frobenius), integral calculus (R. Lehmann-Filhés),
- summer 1908: theory of determinants (F. G. Frobenius),
- winter 1908-1909: algebra, part I (F. G. Frobenius), analytic geometry (F. G. Frobenius),
- summer 1909: algebra, part II (F. G. Frobenius), ordinary differential equations (I. Schur),
- winter 1909-1910: general mechanics (M. Planck),
- summer 1910: mechanics of deformable bodies (M. Planck),
- winter 1910-1911: theory of electricity and magnetism (M. Planck), integral equations (I. Schur),
- summer 1911: theory of optics (M. Planck).

Among Sushkevich's files may also be found some notes on lectures by Frobenius, which Sushkevich recorded as having been given in the mathematics seminar of Berlin University: Chebyshev's Theorem (November 1909), Bernoulli numbers (summer 1910), and the theory of matrices (winter 1910-1911, continuing in summer 1911). For further details on mathematics in Berlin in the early years of the twentieth century, see Rowe (1998) and Begehr (1998).
${ }^{6}$ Фонд 14 , опись 3 , дело 45212 .
7 "склав екстерном державний іспит" Gaiduk, 1962, p. 4).
${ }^{8}$ A transcript of this certificate is held by the Ukrainian State Archives (Kharkov Region): Ф.Р-2782, оп. 20 , спр. 572 , арк. 4.

9 "Исследования мои по этому предмету начались в 1918 году и, следовательно, проходили в весьме тяжелое время, часто прерываясь из-за посторонних причин на более или менее значительные промежутки времени." (Sushkevich, 1922, p. 1).

10 "была высоко оценена С. Н. Бернштейном и О. Ю. Шмидтом" (Zhmud and Dakhiya, 1990, p. 23).

11 "В 1926 г. я защищал докторскую диссертацию в Харькове (на Украине была тогда восстановлена ученая степень доктора) и получил степень доктора математики." (Ukrainian State Archives, Kharkov Region: Ф.Р-2782, оп. 20, спр. 572, арк. 3).
${ }^{12}$ The 1927 lecture was 'On non-uniquely invertible groups and their representation by generalised substitutions' ('Об однозначно необратимых группах и об их представлении посредством обобщенных подстановок') (see Privalov 1927, p. 213), an account of the results of the paper Suschkewitsch (1926). The ICM talk was entitled 'Untersuchungen über verallgemeinerte Substitutionen'; this appeared as a paper in the congress proceedings (Suschkewitsch, 1930). Both of these papers are studied in Section 3.3.1
${ }^{13}$ I choose the term 'cathedra' to represent the Russian word 'kafedra' ('кафедра') both on aesthetic grounds and also to emphasise the word's origins in the Latin 'cathedra' (derived in turn from the Greek ' $\kappa \alpha \theta$ é $\delta \rho \alpha$ '), meaning 'chair' and now used in English to refer to a bishop's throne (hence 'cathedral'). Thus, the Russian 'kafedra' is somewhat akin to the English usage of 'chair' to mean a professorship. However, the Russian term tends to be used a little differently: to signify not the incumbent of the chair specifically, but the research group gathered around him/her. Thus 'kafedra'/'cathedra' denotes a subdivision of an academic department or faculty.
${ }^{14}$ From the Ukrainian Голодомор, a reversal and contraction of 'морити голодом': literally 'to kill by hunger'. For a succinct account of the Holodomor, see Snyder (2010, Chapter 1); for a more detailed treatment, see Conquest (1986).
${ }^{15}$ The specific references for these articles are Sushkevich (1934) and Sushkevich (1938b), respectively. Sushkevich's interest in systems of numerals appears to pre-date the latter article by at least a decade. The mathematics library of Kharkov National University preserves a folder of notes made by Sushkevich on a range of books and papers. Most of these notes are meticulously dated, and the notes on Steinitz (1910), made in March 1927, are dated not only in modern HinduArabic numerals, but also in two of the older forms of these numerals that feature in Sushkevich's article. Another (broadly similar) version of Sushkevich's numerals article was published a decade later (Sushkevich, 1948b).
${ }^{16}$ The term 'steklograph edition' ('стеклографое издание') is often found in Soviet publications lists of this period, in connection with informal (often handwritten) publications such as lecture notes; 'steklograph' appears to have been the Russian name for a photographic printing technique, possibly akin to what is known in the West as collotype.
${ }^{17}$ Other sources that comment on the new system are Medvedev 1971, p. 99), Medvedev (1979, p. 80), and Kojevnikov (2004, p. 95).
${ }^{18}$ Or, in Ukrainian: Вища атестаційна комісія.
${ }^{19}$ Ukrainian State Archives (Kharkov Region): Ф.Р-2782, оп. 20, спр. 572, арк. 5, 7.
${ }^{20}$ Ukrainian State Archives (Kharkov Region): Ф.Р-2782, оп. 20, спр. 572, арк. 6, 8.
${ }^{21}$ Ukrainian State Archives (Kharkov Region): Ф.Р-2782, оп. 20, спр. 572, арк. 3 зв.
22 "Мені особисто запам'яталися дні кінця 1941 року, коли було зруйноване наше життя: замовкло радіо, погасла електрика, зникла вода - це означало, що прийшли німці. багато не пережило вже першу зиму 1941 року - померли, пригнічені голодом, хворобами i всілякими бідами ..." (Zaitsev and Migal, 2000)

23 "Харьковские ученые благодарны ему и за спасение библиотеки института математики." (Maznitsa, 1998).

24 "Предание гласит, что в составе зондеркоманды, направленной в УФТИ, оказался майор, с которым Сушкевич учился в Германии. Они встретились. В память студенчества немец предложил Сушкевичу: «Сформулируй мне одну просьбу и я ее выполню, но только одну». Сушкевич, подумав, сказал: «Сохрани библиотеку». Библиотека работает и доныне." (Maznitsa, 1998).

25 "В настоящее время я работаю главным образом в области истории отечественного математики." (Ukrainian State Archives, Kharkov Region: Ф.P-2782, оп. 20, спр. 572, арк. 3 зв).

Section 3.2, The theory of operations as the general theory of groups

${ }^{26}$ A short survey of Sushkevich's dissertation may also be found in Gluskin and Schein (1972).
27 "В довольно богатой литературе, которая была мне доступна, я не нашел и следа тех обобщений понятия о группе, о которых я говорю. Я пытаюсь заполнить этот пробел и дать примеры групп относительно действий, существенно отличных от обычного действия классических групп." Sushkevich, 1922, p. 1).
28 "В заключеные считаю своим долгом выразить искреннюю благодарность бывшему профессору Харьковского Университета А. П. Пшеборскому за интерес, который он проявил к

моим исследованиям в мою бытность в Харькове, и который побуждал меня к далнейшей работе" (Sushkevich, 1922, p.1).
${ }^{29}$ The relevant references are Weber (1882, 1893), Frobenius (1895), Huntington 1901a b, 1903, 1905), Moore (1902, 1905), Pierpont (1900), Burnside (1911), and Dickson (1905a. b).
${ }^{30}$ Frobenius (1895, p. 81): "In der Theorie der endlichen Gruppen betrachtet man ein System von Elementen, von denen je zwei, A und B, ein drittes $A B$ erzeugen. Über die Operation, durch welche $A B$ aus A und B hervorgeht, wird nur vorausgesetzt, dass sie folgenden Bedingungen genügt . . . Sie soll sein

1. eindeutig. Ist $A=A^{\prime}$ und $B=B^{\prime}$, so ist $A B=A^{\prime} B^{\prime}$.
2. eindeutig umkehrbar. Ist $A B=A^{\prime} B^{\prime}$, so ist jede der beiden Gleichungen $A=A^{\prime}$, $B=B^{\prime}$ eine Folge der anderen.
3. associativ, aber nicht nothwendig [sic] commutativ. Es ist also $(A B) C=$ $A(B C)$, aber im Allgemeinen nicht $A B=B A$.
4. begrenzt in ihrer Wirkung, so dass aus einer endlichen Anzahl der gegebenen Elemente durch beliebig oft wiederholte Anwendung der Operation nur eine endliche Anzahl von Elementen erzeugt wird."
31 "отвлеченная теория действия занимается изучением групповых свойств действия вообще и различных частных случаев деиствий." (Sushkevich, 1922, p. 21).

Section 3.3. Generalised groups

Section 3.3.1, The 1920s

${ }^{32}$ See note 12
33 "Erstens, führt er das Studium unserer abstrakten Gruppen zum Studium des konkreten Falles der verallgemeinerten Substitutionsgruppen zurück, was in mancher Hinsicht leichter ist." Suschkewitsch, 1926, p. 372).
34 "Zweitens, zeigt er einen inneren Zusammenhang zwischen dem associativen Gesetz und den Substitutionen: bei der Komposition der Substitutionen gilt bekanntlich das associative Gesetz; wir können aber jetzt auch umgekehrt sagen: in allen Fällen, wo das associative Gesetz gilt, hat man mit der Komposition der Substitutionen zu tun." (Suschkewitsch, 1926, p. 372).
${ }^{35}$ Note that here and elsewhere (most notably, Section 6.3), I have replaced Sushkevich's ' + ' for union by the modern ' u ', in the interest of clarity.
${ }^{36}$ In the early days of semigroup theory, similar studies of the powers of an element in a semigroup were carried out independently by a number of authors: not just Sushkevich, but also Poole (1937), Rees (1940), Schwarz (1943), and Climescu (1946), for example. Indeed, a very brief such study had been carried out by Frobenius (1895, pp. 633-634) even earlier, though he did not consider the elements of a group or semigroup, but the complexes (subsets) of a finite group, multiplied in the usual way (that is, $A^{2}=\{a b: a, b \in A\}$, etc.). Nowadays, such material appears somewhere in the early pages of any semigroup textbook. Howie (1995b, §1.2), for example, gives the following treatment: consider an element a of a semigroup S. We have the collection of all powers of $a:\langle a\rangle=\left\{a, a^{2}, a^{3}, \ldots\right\}$. This is clearly a subsemigroup of S, which we call the monogenic subsemigroup of S (or cyclic subsemigroup, in the terminology of Clifford and Preston 1961, §1.6); we may of course also speak of monogenic semigroups (cyclic semigroups) $\langle a\rangle$ independently, that is, without regarding them as subsemigroups of some other semigroup. If S is infinite, then $\langle a\rangle$ may also be infinite, that is, it contains no repetitions. If this is the case, then $\langle a\rangle$ is evidently isomorphic to $(\mathbb{N},+)$. On the other hand, suppose that $\langle a\rangle$ does contain repetitions, and suppose also that m is the smallest repeated power of a, that is to say, m is the least element of the set

$$
\left\{x \in \mathbb{N}: a^{x}=a^{y}, \exists y \in \mathbb{N} \backslash\{x\}\right\} .
$$

Following Clifford and Preston (1961, §1.6), Howie terms this m the index of a. It follows immediately that the set

$$
\left\{x \in \mathbb{N}: a^{m+x}=a^{m}\right\}
$$

is non-empty and therefore also has a least element, which Howie denotes by r and terms the period of a. The minimality of m and r imply that the powers

$$
a, a^{2}, a^{3}, \ldots, a^{m}, a^{m+1}, \ldots, a^{m+r-1}
$$

are distinct, and so a is said to have order $m+r-1$. We note in particular that the subset

$$
\left\{a^{m}, \ldots, a^{m+r-1}\right\}
$$

is a cyclic subgroup of $\langle a\rangle$. The elements of a semigroup may then be classified in terms of their indices and periods; in particular, a monogenic semigroup is completely determined by its index and period. For further comments on the study of powers of elements in semigroups, see note 22 of Chapter 6

Section 3.3.2, The 1930s

${ }^{37}$ The definition of a 'distributive group' has some features in common with that of a rack, as used in knot theory (see Fenn and Rourke 1992): a set R together with a binary operation for which the equation $a x=b$ is uniquely soluble for any $a, b \in R$ and for which $a(b c)=(a b)(a c)$, for any elements a, b, c. Thus, a rack is in some sense a 'one-sided' version of a 'distributive group'.

38 "Im folgenden betrachte ich Matrizen, deren Rang kleiner als Ordnung ist; für die Komposition (Multiplikation) solcher Matrizen gilt bekanntlich das assoziative Gesetz, im Allgemeinen aber nicht das Gesetz der eindeutigen Umkehrbarkeit. Diese Matrizen eignen sich also zur Darstellung der Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit." (Suschkewitsch, 1933, p. 27).
${ }^{39}$ Similar terminology was used by Kurt Hensel in his 1913 book Zahlentheorie, where an early notion of ring was defined to be an object that satisfied all the field axioms except 'the axiom of unrestricted and uniquely determined division' ('das Gesetz der unbeschränkten und eindeutigen Division'), a condition that postulates the existence of a multiplicative identity, multiplicative inverses, and the lack of zero divisors (Corry, 1996, 2nd ed., pp. 207-208). However, I have no evidence that Sushkevich had seen Hensel's book.
${ }^{40}$ In particular, Baer and Levi drew upon the axioms given by Hasse (1926), Loewv 1910, 1915), and Weber (1882).
${ }^{41}$ Such substitutions were also studied by an Italian mathematician, Giulio Andreoli (1915), although Sushkevich gave no indication of being aware of this. Andreoli later followed this up with some work on other types of transformations: in a paper of 1940, he considered 'generalised substitutions' ('sostituzioni generalizzate'), though he used the term a little differently from Sushkevich. Rather than being well-defined transformations, Andreoli's 'generalised substitutions' were multivalued functions on a set. Nevertheless, he considered collections of these that are closed under an appropriate composition, terming such collections 'generalised groups' ('gruppi generalizzate'). However, Andreoli did not subsequently undertake a systematic study of such 'generalised groups': his 1940 paper appears to have been his only published contribution to this area.
42 "die . . . Elementen sind miteinander . . . nach einigen nicht sehr einfachen Regeln verknüpfbar" (Zbl 0013.05503).
43 " \mathfrak{K} ist ... eine weitere Verallgemeinerung von Semigruppen, die bei den Verallgemeinerungen endlicher Gruppen der sogen. „Kerngruppe" entspricht." (Suschkewitsch, 1935, pp. 94-95).
44 "Obwohl wir im Folgenden mit den Matrizen operieren werden, wollen wir doch jetzt, um die Sache möglichst allgemein anzufassen, axiomatisch verfahren ..." (Suschkewitsch, 1935, p. 89).
45 "яка була відома ще на початку XX сторіччя" Sushkevich, 1936, p. 49).
46 "Крім того я ще дослідив один цікавий тип узагальнених безконечних груп, який не має аналогії в теорії скінчених узагальнених груп ..." (Sushkevich, 1936, p. 49).
47 "де всі вищезазначені дослідження будуть докладно викладені" (Sushkevich, 1936, p. 50).
48 "виявити характерні особливості того тину узагальнених груп, який може бути представлений через матриці скінченного порядку" (Sushkevich, 1936, p. 50).

Section 3.3.3. The 1940s

${ }^{49}$ This is not an entirely arbitrary choice: the Grave memorial volume is freely available online and so should be accessible to the reader; as observed in Section 2.2.1 however, the journal of the Kharkov Mathematical Society is not particularly easy to get hold of outside Ukraine.
${ }^{50}$ Around this time, the Dnepropetrovsk Mathematical Society provided funds to bring guest lecturers to the city; Sushkevich was one of several lecturers who came - see Nikolskii (1983). Note that 'Dnepropetrovsk' ('Днепропетровск') is the Russian name for the city, which appears on the cover of Sushkevich's lecture notes (which are in Russian). The city is now more commonly known by the Ukrainian version of its name: Dnipropetrovsk (Дніпропетровськ). On the term 'steklograph', see note 16

Section [3.4] Sushkevich's impact

51 "Авторы обязаны Б. М. Шайну за указание на пионерские работы А. К. Сушкевича." Clifford and Preston, 1967, Russian trans., vol. 2, p.304). This line does not appear in the original English edition.
${ }^{52}$ Fedoseev's paper contains as an example the system of real numbers together with the operations of addition and that of taking the maximum of two numbers, subject to certain conditions. This is a very early appearance of what is now termed the tropical semiring, an object of widespread and popular study in modern mathematics - see, for example, Speyer and Sturmfels (2009).
${ }^{53}$ Ukrainian State Archives (Kharkov Region): Ф.Р-2782, оп. 20, спр. 572, арк. 13.
${ }^{54}$ It has been asserted (in Pflugfelder 2000, for example) that the main reason for Sushkevich's work having passed into obscurity was the fact he was barred from supervising students as a result of the authorities' suspicion of him (he had studied abroad, and then lived under - hence 'collaborated with' - Nazi rule in Kharkov, etc.). Indeed, I have repeated these assertions myself (Hollings, 2009d). However, in the years since writing this article on Sushkevich, I have found no particular evidence for this 'suspicion'; the Soviet authorities were probably no more or less suspicious of Sushkevich than they were of any other citizen. In particular, the list of students cited on page 74 (details in note 53 above) effectively disproves the claim that Sushkevich was not permitted to supervise dissertations.

Chapter 4. Unique Factorisation in Semigroups

${ }^{1}$ I use the term 'multiplicative system' rather loosely, to mean a set with a binary operation ('multiplication') defined upon it. The vague terms 'multiplicative system' and 'domain' are used more or less interchangeably.
${ }^{2}$ Brief accounts of Noether's wider contributions to commutative ring theory can be found in Gilmer (1981) and Kaplansky (1973). Another account, this time within the context of the development of modern algebra, may be found in Corry (1996, 2nd ed., Chapter 5).
${ }^{3}$ In the early decades of the twentieth century, a parallel development of arithmetical theories for hypercomplex numbers and more general algebras was also taking place, though I do not attempt to describe this here; I instead refer the reader to Fenster (1998) for a comprehensive account.
${ }^{4}$ The main perpetrator was E. T. Bell (see Section 4.2). He considered the positive rationals $\left(\mathbb{Q}^{+}, \times\right)$to have unique decomposition since he was only interested in the factorisation properties of \mathbb{Z}^{+}within \mathbb{Q}^{+}. Intuitively, the positive integers should be the 'integral' elements of the positive rationals, but notice that they are not in fact 'integral' in the sense of being non-units since every element of \mathbb{Q}^{+}is a unit.

Section 4.1, Postulational analysis

${ }^{5}$ The work of C. S. Peirce may also have had some influence: see Ewald 1996, vol. 1, Chapter 15).
${ }^{6}$ See MacDuffee (1936), Hildebrandt (1940), and Siegmund-Schultze (1998) for further details on Moore and Barnard (1935).

Section 4.2, E. T. Bell and the arithmetisation of algebra

${ }^{7}$ See note 4

Section 4.3. Morgan Ward and the foundations of general arithmetic

${ }^{8}$ For biographical details on Ward, see Bohnenblust et al. (1963); for a discussion of his work, see Lehmer (1993).
${ }^{9}$ This condition is given as: " $[\mathrm{t}]$ here exists an element i of Σ such that $i \circ i=i$ ". However, Ward proved almost immediately that such an i is in fact an identity.

Section 4.4, Alfred H. Clifford

${ }^{10}$ This section has been compiled with the particular help of three biographical articles on Clifford: Miller 1974, 1996) and Rhodes (1996). A list of Clifford's publications may be found in Anon (1996a); see Preston (1974) for a survey of Clifford's work up to 1974, and see Preston (1996) for a discussion of his work on semigroups which are unions of groups (to be dealt with
in Section 6.6). An obituary of Clifford may be found in Anon (1993a). Note that 'Hoblitzelle' was Clifford's mother's maiden name and is of Swiss German origin. It should be pronounced to rhyme with 'gazelle'.
${ }^{11}$ On the Institute for Advanced Study around this time, see Asprav (1989).

Section 4.5. Arithmetic of ova

${ }^{12}$ The theorem first appeared in Noether (1927), but the formulation given here is a blend of that of Ore 1933b, p. 741), and Clifford (1938, p. 595).
${ }^{13}$ For biographical details on König, see J. C. Poggendorffs biographisch-literarisches Handwörterbuch zur Geschichte der exacten Wissenschaften, volume IV (1885-1900), p. 777, and volume V (1904-1922), p. 651.
14 "der Geist der Kroneckerschen Methoden" König, 1903, p. IV).
15 "eine systematische Darstellung der Theorie - oder genauer ausgedrückt ihrer Fundamentalsätze" (König, 1903, p. III).
${ }^{16}$ This is not to be confused with the way in which this notation is sometimes used in number theory, where, for p a prime, $p^{h} \| a$ means that $p^{h} \mid a$ but $p^{h+1}+a$.
${ }^{17}$ Klein-Barmen was born in Barmen, North Rhine-Westphalia, Germany, and studied in Marburg, Munich, and Kiel, before obtaining his PhD (Über die Anzahl der Lösungen von gewissen Kongruenzensystemen) from the Friedrich-Schiller-Universität Jena in 1925. He then moved to Wuppertal (close to his native Barmen, which was in fact incorporated into Wuppertal around 1930), where he became a high school teacher but continued to conduct research. Much of his work was in the early theory of lattices, with an emphasis on axiomatics (Schlimm, 2011). Up to 1933, his name and affiliation appeared on his papers as 'Fritz Klein in Wuppertal-Barmen' (see Klein 1932, for instance) but then changed to 'Fritz Klein-Barmen in Wuppertal' in Klein-Barmen (1933), which is how it appeared thereafter, apart from one reversion to 'Fritz Klein in Wuppertal' in Klein (1935). Klein-Barmen's entry in volume VI (p. 1330) of J. C. Poggendorffs biographischliterarisches Handwörterbuch zur Geschichte der exacten Wissenschaften lists him simply as 'Klein, Friedrich (Fritz) Wilhelm'; the entry in volume VIIa (p. 769) lists him as 'Klein, Friedrich Wilhelm' but notes 'Klein-Barmen, Fritz' as a nom de plume. Klein's reason for adding 'Barmen' to his name is not clear, though it may have been in memory of his hometown, which, by 1933, no longer existed as an independent entity. In the bibliography, I have listed Klein-Barmen under the specific name used in each of his papers, but in the text, I refer to him consistently as 'Klein-Barmen'.

18 "Der Begriff der Verknüpfung ist von grundlegender Bedeutung für den Aufbau der gesamten Mathematik und Logik. ... Unter einer abstrakten Verknüpfung insbesondere verstehe ich eine Verknüpfung, bei der von der Eigenart der verknüpften Elemente abgesehen wird." Klein, 1931, p. 308).
${ }^{19}$ For an account of the connections between the work of Klein-Barmen and Clifford, see Hintzen (1957).
${ }^{20}$ Both in Clifford's thesis and in his 1934 summary thereof, a typo appears in the 'completely prime' condition: it is stated that an element p is completely prime if, for any $n \in \mathbb{N}, p^{n} \mid a b$ implies that either $p^{n} \mid a$ or $p^{n} \mid b$. However, if we examine the proofs in the thesis, we see that the correct version of the condition is used throughout. The fact that Clifford (1934) contained statements of results but no proofs led the paper's Jahrbuch über die Fortschritte der Mathematik reviewer, B. H. Neumann, to observe that Clifford must have made a mistake somewhere since (\mathbb{N}, \times) does not satisfy condition (III). The typo does not appear in Clifford (1938).
${ }^{21}$ This paper seems to be (part of) a thesis of the same title, defended at Moscow State University in 1929 Andronov, 1967). What type of thesis it was is not clear: as we saw in Section 3.1 it would not have been possible for Arnold to have gained a formal degree at this time. Note that the paper is one of those appearing within the figures in Table 2.3 on page 35
22 "Die Zerlegungssätze der Idealtheorie in Ringbereichen beziehen sich auf die multiplikative Struktur der Elemente. Es liegt deshalb nahe, von der Addition gänzlich abzusehen und den Sachverhalt in rein multiplikativen Bereichen zu untersuchen." (Arnold, 1929, p. 401).
23 "ihr liebenswürdiges Entgegenkommen" (Arnold, 1929, p. 401).
${ }^{24}$ Incidentally, the first publications of Preston (1953, 1954a b) concerned the notion of ideals for universal algebras and featured a universal algebra version of one of Noether's decomposition theorems.

Section 4.6. Subsequent developments

${ }^{25}$ See Bogart (1995) and Bogart et al. (1990) for biographical details on Dilworth.
${ }^{26}$ See Fenstad (1996), Liunggren (1963), and Nagell (1963) for biographies of Skolem.
${ }^{27}$ See Lehmer (1974) and Greenwood et al. (1974) for biographies of Vandiver.
${ }^{28}$ See Weaver (1956b) and Morgan (2008) for biographies of Weaver.
${ }^{29}$ See Schein (1992) for a comparison of various notions of coset for semigroups, including that of Weaver.
${ }^{30}$ In a joint paper, Vandiver and Weaver (1956, p. 136) made the comment: "we begin a detailed examination of the structure of [correspondences], we think, for the first time". They cited a paper by Suschkewitsch (1928) as being the first appearance of correspondences in the literature but noted that "he did not treat them with much detail".
${ }^{31}$ Besides those items already cited, some further references for Vandiver's research programme are Vandiver (1934a b, 1940a b).

Chapter 5. Embedding Semigroups in Groups

${ }^{1}$ Among the authors to be considered here, there was no great consistency in the use of the term for a 'non-commutative field': some authors used 'skew field', while others used 'division ring' (which is also used as a catch-all term to cover both fields and skew fields: see, for example, Gouvêa 2012, Definition 5.1.3); yet others opted simply for 'non-commutative field'. I use the term 'skew field' since it appears in results that are adapted from theorems concerning fields.
${ }^{2}$ For some comments on this paper and its place within Ore's wider work, see Corrv 1996, 2nd ed., p. 264).
${ }^{3}$ In fact, as Clifford and Preston 1961, §1.10) noted, this result may be stated in a slightly stronger manner: a commutative semigroup can be embedded in a group if and only if it is cancellative.
${ }^{4}$ See Clifford and Preston 1961, Theorem 1.23). Clifford and Preston phrased their statement of the result in terms of the property of 'right reversibility', which is equivalent to Ore's common right multiples condition and is due to Paul Dubreil (see Section 5.3 and also Section 7.3). Ore's proof of this theorem (that is, by means of ordered pairs) carries over easily to the semigroup case, but Clifford and Preston presented a later proof due to Rees (1947), which employs partial bijections - see Section 10.6
${ }^{5}$ Indeed, Thoralf Skolem (1951b) made much the same mistake some years later; he subsequently realised his mistake and produced (apparently independently of the other authors mentioned in this chapter) the semigroup version of Ore's Theorem (Skolem, 1952).

Section 5.1. The theorems of Steinitz and Ore

6 "Welche kommutativen Ringe besitzen einen Quotientenkörper? Oder, was auf dasselbe hinauskommt, welche lassen sich überhaupt in einen Körper einbetten?" van der Waerden, 1930, p. 47).

7 "Die Möglichkeit der Einbettung nichtkommutativer Ringe ohne Nullteiler in einen sie umfassenden Körper bildet ein ungelöstes Problem, außer in ganz speziellen Fällen." van der Waerden, 1930, p. 49). By 'full' ('umfassend' = 'comprehensive', 'extensive'), van der Waerden presumably meant a ring with multiplicative inverses: as noted on page 108 a noncommutative ring must necessarily be embedded in a non-commutative object.

8 "distingue par sa simplicité et son élégance" (Dubreil, 1946, 3rd ed., p. 267).
${ }^{9}$ Biographical references for Ore are Anon (1970a) and Aubert (1970).
${ }^{10}$ The condition is labelled M_{V} because it is the fifth condition in Ore's list to relate to multiplication.
${ }^{11}$ As with Clifford's 'regular ova' in Section 4.5 this use of 'regular' should not be confused with its modern usage (on which, see Section 8.6). What Ore called a regular ring (with identity) is now termed a right Ore domain (Coutinho, 2004, p. 258). In a subsequent paper, Ore gave examples of such regular rings in terms of non-commutative polynomials (Ore, 1933a).
${ }^{12}$ Coutinho (2004, §2) observes that Ore was not the only person to arrive at the notion of a skew field of quotients around this time: similar ideas appeared in the work of D. E. Littlewood and J. H. M. Wedderburn. Inspired by considerations from quantum mechanics, Littlewood (1933) obtained a (non-commutative) ring of quotients (the 'algebra of rational expressions') for the Weyl algebra, using a version of the condition M_{V} (Coutinho, 2004, §2.2.3). Wedderburn (1932)
obtained a ring of quotients for a (non-commutative) Euclidean domain, again using a version of condition M_{V} (Coutinho, 2004, §2.3.1). I have focused upon Ore's version of these results since this seems to have been the best known (at least among the authors we are considering) and therefore had the greatest influence.

Section 5.2. Embedding according to Sushkevich

${ }^{13}$ As noted in Section 1.2 the modern German term for 'semigroup' is 'Halbgruppe'; besides Sushkevich, the only author I can find who used the term 'Semigruppe', at least in German, is Fritz Klein-Barmen (1943) (see Section 8.1). We note however that 'semigruppe' is used in both Norwegian and Danish to correspond to the modern English sense of 'semigroup', while Swedish uses 'semigrupp', with 'halvgrupp' as an alternative. While the paper Suschkewitsch (1934b) is in German, Sushkevich (1935a) is in Ukrainian, although it has a German summary appended. Sushkevich continued to use the term 'Semigruppe' in this summary, which carries a German version of the paper's title, 'Über die Erweiterung der Semigruppe bis zur ganzen Gruppe', by which the paper is sometimes cited. In the Ukrainian text, on the other hand, Sushkevich used the term 'півгрупа', in contrast to the modern Ukrainian 'напівгрупа' ('пів-' and 'напів-' both being Ukrainian prefixes denoting 'half-' or 'semi-'). Incidentally, a later (Czech) author on the embedding problem used similarly unusual terminology: in the Russian version of his work (Pták, 1952), Vlastimil Pták employed the term 'семигруппа' ('semigruppa') for semigroup, rather than the usual Russian term 'полугруппа' ('polugruppa'). For a few brief comments on Pták's work, see Section 5.5
${ }^{14}$ Sushkevich presented Steinitz's proof himself in his short Ukrainian book Elements of new algebra (Елементи нової алгебри) (Sushkevich, 1937a, §14), as well as in the third Russian edition of his Foundations of higher algebra (Основъ высшей алгебры) (Sushkevich, 1931a, 3rd ed., §236). No mention was made in either instance of the semigroup case.

15 "gewiß nicht trivial".
16 "Verf. gibt zwei vermeintliche Beweise für die Behauptung, dass jede Semigruppe sich in eine Gruppe einbetten lässt. Doch ist diese Behauptung inzwischen von Malcev ... durch ein Gegenbeispiel widerlegt worden."(JFM 61.1014.02).
${ }^{17}$ Ф.P-2782, оп. 20, спр. 572 , арк. 10-12. In fact, this file contains two lists of Sushkevich's publications, neither of which features Sushkevich (1935a). Both lists are handwritten, in what appears to be Sushkevich's own writing (by comparison with other documents), and each was certainly signed and dated by him: the first is dated 1 June 1946, while the second is an updated version of 20 November 1952. The only other true omission is a one-paragraph abstract (which were customarily included in Soviet publications lists) of his talk at the 1927 All-Russian Congress of Mathematicians (see note 12 of Chapter 3). Strictly speaking, there is also one further omission, but this is the journal version of the paper 'Investigations on infinite substitutions' (see page 71), so this was probably a deliberate omission on Sushkevich's part.

18 Holvoet (1959) later provided a counterexample to demonstrate that Condition Z is not sufficient in general.

Section 5.3. Further sufficient conditions

19 "A cause de la guerre, je ne les connus que plus tard." Dubreil, 1981, p. 61).
20 "Ce Mémoire et sa traduction m'ont été aimablement communiqués par MM. B. L. van der Waerden et H. Richter, auxquels j'exprime mes sincères remerciements." Dubreil, 1943, p. 626, footnote 2).

21 "Mais un autre résultat, d'un degré de généralité intermédiaire, et particulièrement intéressant par sa maniabilité et ses possibilités d'application, a été donné dès 1931 par O. Ore . . " Dubreil, 1943, p. 626).
${ }^{22}$ Dubreil (1946, p.137, footnote 1) also acknowledged the work of Wedderburn mentioned in note 12

Section 5.4. Maltsev's immersibility conditions

${ }^{23}$ A non-exhaustive list of biographical articles on Maltsev is Aleksandrov et al. (1968), Anon (1989), Bokut (1989, 2003), Cheremisin (1984), Dimitrić (1992), Gainov et al. (1989), Glushkov (1964), Gorvaeva (1986), Khalezov (1984), Kolmogorov (1972), Kurosh (1959b), Lavrov (2009), Malcev (2010), Marchuk et al. (1973), Nikolskii (1972, 2005), Pontrvagin (1946), Rosenfeld (1974,
2007). Maltsev also features in Sinai (2003, pp. 559-560). Regarding the transliteration of Maltsev's name, see the comments on page ix
${ }^{24}$ I choose to translate 'включение' аs 'immersion' here, rather than 'inclusion' or 'insertion', in deference to Maltsev's own English terminology in Malcev (1937). Note that another often-used Russian word for 'embedding'/'imbedding' is 'вмещение' ('containment') but that this word only seems to have come into use in this context with later papers (see Schein 1961, for example). Other terms are 'погружение' ('immersion'), as used in Lvapin (1960a), and 'вложение' ('enclosure'), which is used in the Russian translation of Clifford and Preston (1961, 1967).

25 "Множество элементов алгебраического кольца относительно умножения образует ассоциативную систему. Этим объясняется значение теории ассоциативных систем для изучения алгебраических колец." (Maltsev, 1939, p. 331).

26 "Некоторые проблемы теории групп также связаны со свойствами ассоциативных систем. Однако, для решение этих проблем необходимо более тщательное изучение условий, при которых данная ассоциативная система может быть рассматриваема как часть некоторой группы. В настоящей заметке указываются необходимые и достаточные условия для возможности включения ассоциативных систем в группы." (Maltsev, 1939, p. 331).
${ }^{27}$ Maltsev (1939, p. 335); see also Bush (1963, Theorem 2) and Clifford and Preston 1967, Theorem 12.17).

28 ". . . мы видим, что для возможности включения [ассоциативной] системы в группу должно выполняться бесконенчное множество условий." (Maltsev, 1939, p. 336).

29 "Если потребовать, чтобы выполнялась только часть этих условий, то получится ассоциативная система, более или менее приближающаяся к группе." (Maltsev, 1939, p.336).

30 "ассоциативная система, более близкая к группе, но все еще не вкючаемая в нее" Maltsev, 1939, p. 336).
31 "Для строгого проведения намеченной здесь классификации необходимо исследовать независимость указанных условий. Такая независимость легко изучается для простейших цепочек, например, содержащих только один идеальный элемент 1-го рода. Однако, в общем виде вопрос остается открытым." (Maltsev, 1939, p. 336).

32 "Для удобства ссылок" Maltsev, 1939, II, p. 251).
33 Maltsev (1939, II, Theorem 4); see also Bush 1961, Theorem 6.2) and Clifford and Preston (1967, §12.8).

Section 5.5. Other embedding problems

34 "в определенном родстве с задачей о погружении полугруппы в группу" Lyapin, 1956, p. 373).
${ }^{35}$ See Schein (1982) for biographical details. Shutov's main publications on potential properties comprise Shutov (1963a, 1964, 1965, 1966, 1968, 1980, 1981). Note that Shutov's name is transliterated as 'Šutov' in some of the English translations of his papers.
${ }^{36}$ As stated, for example, in Bokut 1969b, English trans., p. 706). Bokut noted that the problem was also formulated in Cohn (1965).

Chapter 6. The Rees Theorem

${ }^{1}$ A comparison of various generalisations of this theorem, including that of Rees, may be found in Steinfeld and Wiegandt (1967).

2 "Dieser Satz von Rees ist ein klassisches Ergebnis der Halbgruppentheorie." Steinfeld and Wiegandt, 1967, p. 153).
${ }^{3}$ Much of the material of this chapter is drawn from Hollings (2009b).

Section 6.1. Completely (0-)simple semigroups

${ }^{4}$ See Gouvêa 2012, pp. 127-128, 198, 206) for comments on different uses of the word 'simple' in connection with rings.
${ }^{5}$ Private communication, 3 July 2008.

Section 6.2, Brandt groupoids

${ }^{6}$ An overview of Brandt's work in general and of groupoids in particular may be found in Fritzsche and Hoehnke (1986). See also Anon (1955).

7 "Der Verf. hält für derartige Systeme einen besonderen Terminus für notwendig, verfällt dabei aber unglücklicherweise auf den vom Ref. in ganz anderem Sinne eingeführten und so in Gebrauch
gekommenen Ausdruck Gruppoid (groupoid). Er vermehrt dadurch die schon bestehende Verwirrung im Gebrauch dieser Bezeichnung." (Zbl 0025.24501).

8 "Verf. benützt für die multiplikativen Systeme nach dem Vorbild von B. A. Hausmann und Oystein Ore den Ausdruck Gruppoid, der vor 15 Jahre von dem Ref. für einen ganz andern Begriff eingeführt worden ist. Da dieser Begriff für die Zahlentheorie der hyperkomplexen Systeme unentbehrlich und auch sonst nützlich ist, hat sich die vorgeschlagene Bezeichnung im In- und Ausland eingebürgert und unter anderm auch Eingang in die Neuausgabe des ersten Teils der mathematischen Enzyklopädie gefunden. Falls der Verf. für die multiplikativen Systeme einen besondere Ausdruck für notwendig hält, muß daher zur Vermeidung von Begriffsverwirrungen von ihm erwartet werden, dass er die Benennung ändert, unabhängig davon, wie sich der ohnehin in manchen Punkten abweichende anglikanische Sprachgebrauch entwickelt." (Zbl 0024.29901).

9 "Hier wäre die Einführung eines neuen Elementes Null als Symbol für bisher nicht existierende Produkte möglich, aber im allgemeinen doch von geringem Vorteil, weshalb wir davon absehen." (Brandt, 1926b, p. 360).
10 "eine naturgemäße und sogar notwendige Ergänzung zur gewöhnlichen Gruppentheorie" (Brandt, 1926b, p. 360).

Section 6.3. Sushkevich's 'Kerngruppen'

11 "In der vorliegenden Abhandlung habe ich den Versuch gemacht eine abstrakte Theorie der endlichen Gruppen, deren Operation nicht eindeutig umkehrbar ist, zu konstruieren. Freilich sind in der mathematischen Literatur solche Gruppen in konkreter Form schon betrachtet worden. Als Beispiel solcher konkreten Gruppen kann man die Theorie der nicht-kommutativen Ringe, speziell auch die Theorie der hyperkomplexen Zahlen anführen Dabei werden aber zugleich zwei Operationen betrachtet: die „Addition" und die „Multiplikation". Es entsteht nun die Frage nach der Verallgemeinerung, die man erhält, wenn man die eine Operation - nämlich die Addition — wegläßt und bloß die andere - die Multiplikation - beibehält, die als eindeutig, assoziativ, aber nicht eindeutig umkehrbar vorausgesetzt wird." (Suschkewitsch, 1928, p. 30).

12 "Ich bin auf diese Arbeit erst nach Fertigstellung der meinigen durch einen freundlichen Hinweis von Frl. E. Noether aufmerksam geworden." (Suschkewitsch, 1928, p. 30, footnote 1).
${ }^{13}$ In the Russian of Sushkevich (1937b), these were referred to in the modern way, as uдемпотентые элементи (idempotent elements).
14 "... zu der dieses Element „gehört" ..." (Suschkewitsch, 1928, p. 34).
${ }^{15}$ Namely, (\#) in note 36 of Chapter (3) with $k=1$.
${ }^{16}$ Besides Sushkevich and Clifford (Section 6.4), several other authors have obtained the 'direct product' characterisation of left/right groups independently; these include Schwarz (1943), Mann (1944), Ballieu (1950), Skolem (1951b), and Thierrin (1954a).

Section 6.4. Clifford's 'multiple groups'

${ }^{17}$ In the original German van der Waerden, 1930, p. 15):
(3) Es existiert (mindestens) ein (linksseitiges) Einselement e in \mathfrak{G} mit der Eigenschaft: $e a=a$ für alle a von \mathfrak{G}.
(4) Zu jedem a von \mathfrak{G} existiert (mindestens) ein (linksseitiges) Inverses a^{-1} in \mathfrak{G}, mit der Eigenschaft: $a^{-1} a=e$.

Section 6.5. The Rees Theorem

${ }^{18}$ For obituaries of Rees, see Sharp 2013a b C . For a longer biography, see Lawson et al. to appear).
${ }^{19}$ With regard to Preston's comment that Hall's lectures did not find their way into print, we note that at least some of Hall's material eventually appeared in Cohn's Universal algebra of 1965, in the preface of which we find:

As with other fields, there is now a large and still growing annual output of papers on universal algebra, but a curiously large portion of the subject is still only passed on by oral tradition. The author was fortunate to make
acquaintance with this tradition in a series of most lucid and stimulating lectures by Professor Philip Hall in Cambridge 1947-1951, which have exercised a much greater influence on this book than the occasional reference may suggest. Cohn, 1965, p. xv)
${ }^{20}$ See note 36 of Chapter 3 and also note 22 below.

Section 6.6. Unions of groups and semigroups

${ }^{21}$ For surveys of this topic, see Clifford (1972) and Preston (1996).
${ }^{22}$ Poole (1937, Theorem 14). Recall from Section 4.2 that Poole was another student of Bell. Poole's PhD thesis (Poole, 1935) and a subsequent paper based thereupon (Poole, 1937) concerned the detailed study and classification of elements of a finite commutative semigroup (or finite ovum, as Poole termed it) according to the properties of their powers; this is very much akin to the theory sketched in note 36 of Chapter 3 Using (and, indeed, probably coining) the terminology of that note, Poole identified four possibilities for the index and period of an element of a finite ovum: (1) index $=$ period $=1$; (2) index >1, period $=1 ;(3)$ index $=1$, period $>1 ;(4)$ index >1, period >1. The elements of case (1) are evidently idempotents; in cases (2), (3), and (4), Poole referred to elements of types A, B, and C, respectively. He then studied various semigroups containing different combinations of elements of types A, B, and C. Among other things, Poole noted the now well-known fact that any element of a finite semigroup has an idempotent power; in particular, he proved that there is precisely one idempotent in the list of powers of an element of type B he termed this its period element. Near the end of the paper, Poole defined an ovum of type 2 to be finite ovum with at least one element of type B , but no elements of types A or C . The theorem generalised by Clifford in his 1941 paper is the following:

Theorem. Every ovum of type 2 is either a group or consists of sub-ova which have no element in common and each of which is a group. Each of these groups consists of an idempotent element and all the type B elements which have this idempotent element for period element.

Chapter 7. The French School of 'Demi-groupes'

${ }^{1}$ Some comments on the figures in the table are in order. As noted in the caption, the figures given are those recorded on 'MathSciNet' (http://www.ams.org/mathscinet/index.html) as of January 2013. The citations tool, however, only seems to count citations from the early 1950s onwards. Thus, for example, Clifford (1941) does not appear on the list of papers that cite Rees (1940), although it does do so. The citation figures are therefore skewed very slightly towards citations that appeared in the longer term; if, say, Dubreil's paper provoked a flurry of interest in the few years after its publication, then the consequent citations are not recorded here. Nevertheless, I think that the figures give an indication of the relative impacts of these three papers. The numbers in the second part of the table are much more dramatic. In each instance, I searched for the exact strings given, rather than the individual words. In the case of Rees (1940), I felt that the term 'completely simple semigroup' was sufficiently representative of the content of the paper that I did not also need to search for 'completely 0 -simple semigroup'. In connection with Clifford (1941), I searched for the modern term 'completely regular semigroup' (p.156); Clifford's term 'semigroup admitting relative inverses' returned just three results.

Section 7.1. Paul Dubreil and Marie-Louise Dubreil-Jacotin

${ }^{2}$ For biographies of Dubreil, see Lesieur (1994) and Lallement (1995). See also Dubreil's own article on the early development of semigroup theory in France (Dubreil, 1981), in which he described his entry into the theory.
${ }^{3}$ For details of the French education system, see Lewis (1985).
${ }^{4}$ It seems to have been very common at this time for young French mathematicians to travel widely in Europe - see Mashaal (2002, English trans., p.46). Dubreil later wrote about his Rockefeller travels in Dubreil (1983).
${ }^{5}$ From the conclusion to the article: "Ayant apprécié, tout au long de ma vie scientifique (y compris en Théorie des Demi-groupes ... qui n'existait pas à l'époque!), l'énorme bénéfice que j'ai retiré de mes contacts de jeunesse avec les algébristes allemands, surtout avec le trio Emmy Noether, Artin, Krull, je suis très reconnaissant à P. Dugac de m'avoir proposé de rendre aujourd'hui cet hommage à la mémoire d'Emmy Noether et j'adresse mes plus chaleureux remerciements à tous ceux qui sont venus s'y associer." (Dubreil, 1986, p. 27).
${ }^{6}$ This seminar bore Dubreil's name from 1945 to 1979. The proceedings were published under the title Séminaire Dubreil: Algèbre et théorie des nombres until 1971, at which time it became simply Séminaire Dubreil: Algèbre. Details of the seminar, under its various different names, may be found in Anderson 1989, pp. 34, 44-47).
${ }^{7}$ For biographies of Dubreil-Jacotin, see Leray (1974) and Lesieur (1973).
${ }^{8}$ Translation of Leray (1974) by Jean O'Connor.
${ }^{9}$ Ibid.

Section 7.2, Equivalence relations

10 "... \bar{E} est homomorphe à $E \ldots$. Dubreil and Dubreil-Jacotin, 1937a, p. 705).
11 "Ces propositions peuvent être regardeés comme des généralisations du théorème du homomorphie et du premier théorème d'isomorphie." Dubreil and Dubreil-Jacotin, 1937a, p. 706).
12 "une théorie systématique des relations d'équivalence" (Dubreil and Dubreil-Jacotin, 1939, p. 63).
${ }^{13}$ See, for example, Dubreil (1950ab), Dubreil-Jacotin (1950a b), Dubreil-Jacotin and Croisot (1952).

Section 7.3. Principal equivalences and related concepts

14 "... la double empreinte laissée dans mon esprit par les leçons d'Artin (théorie d'ArtinPrüfer) et par celles d'Emmy Noether (utilisation systématique des homomorphismes) m'a suggéré qu'un autre procédé pour obtenir un groupe à partir d'un deami-groupe [sic] (quelconque cette fois) était la recherche de ce groupe comme image homomorphe." (Dubreil, 1981, p. 61).
15 "Le problème est facile quand D est abélien, classique et élémentaire quand D est lui-même un groupe, et, dans tous les cas, il admet la solution triviale dans laquelle l'image est d'ordre 1: la question paraissait abordable." (Dubreil, 1981, p. 62).
16 "Mes réflexions en étaient là le premier septembre $1939 \ldots$. (Dubreil, 1981, p. 62).
${ }^{17} \mathrm{An}$ account of much of the material of this paper may be found in Clifford and Preston (1967, §§10.2-10.3).

18 "L'objet du présent travail est de montrer que certaines propriétés fondamentales des groupes s'étendent, avec les modifications convenables, aux demi-groupes ou à certaines catégories de demigroupes. Ce sont essentiellement les propriétés qui concernent les sous-groupes et les sous-groupes invariantes, et surtout les décompositions en classes, ainsi que les équivalences correspondantes." (Dubreil, 1941, p. 1).
19 "... fournit une propriété caractéristique des sous-groupes invariantes qui est susceptible de généralisation." Dubreil, 1941, pp. 2-3).
20 "... cette notion de quotients ne différant pas, au fond, de celle des quotients d'idéaux." Dubreil, 1941, pp. 3-4).
21 "Avec le théorème 7.8 , le théorème précédent caractérise complètement les équivalences régulières à droite et simplifiable à droite dans un demi-groupe strict à droite: ce sont les équivalences principales à droite définies par des complexes forts. En outre, d'après le théorème 7.9, toutes les classes définies par une telle équivalence jouent des rôles symétriques. Comme nous allons le voir, ces propriétés ne diffèrent pas essentiellement de celles qui ont lieu dans les groupes." Dubreil, 1941, p. 20).

22 "On voit que la théorie des équivalences principales contient les théorèmes fondamentaux de la Théorie des Groupes ..." (Dubreil, 1941, p. 22).
${ }^{23}$ In the statement of this result in Dubreil's paper, F is assumed merely to be an arbitrary semigroup, but, as Clifford and Miller 1948, p. 123) pointed out, the surrounding considerations indicate that F should in fact be cancellative.

Section 7.4, Subsequent work

${ }^{24}$ See the references in note 13
${ }^{25}$ The 1966 volume (fasc. 1) of Annales scientifiques de l'Université de Besançon (3${ }^{e}$ Série Mathématiques) consists entirely of a tribute to Croisot in two parts: the first features transcripts of speeches delivered (by Dubreil, for example) at Croisot's funeral and at the inauguration of the 'Robert Croisot amphitheatre' in Besançon, while the second part is a survey of Croisot's mathematical work, authored by Lesieur.
26 "Les équivalences principales de P. Dubreil (à droite ou à gauche) sont parfaitement adaptées à l'ètude des équivalences régulières à droite ou à gauche; elles le sont un peu moins à celle
des équivalences régulières des deux côtés; les équivalences principales bilatères sont exactement adaptées à cette étude." Croisot, 1957, p. 374).

27 "le maniement des équivalences principales bilatères est plus compliqué que celui des équivalences principales" (Croisot, 1957, p. 375).

28 "... alors qu'il est très facile de voir sur la table d'opération d'un demi-groupe D si un complexe de D est fort ou non, il est beaucoup plus malaisé de déterminer s'il est bilatèrement fort ou non." (Croisot, 1957, p. 375).

29 "Le problème de la recherche des groupes homomorphes à un demi-groupe a été complètement résolu en utilisant les équivalences principales. Les équivalences principales bilatères n'apportent donc rien de plus que les équivalences principales sur ce problème; elles permettent simplement d'en donner une solution un peu différente" (Croisot, 1957, p. 375).
${ }^{30}$ Note that Croisot's 'bilaterally neat' is not the same as Dubreil's neat (that is, both left and right neat): the latter is defined in terms of \mathcal{R}_{H} and ${ }_{H} \mathcal{R}$, while the former relates to \mathcal{R}_{H}^{\prime}.
${ }^{31}$ For an obituary of Lallement, see Almeida and Perrin (2009).
${ }^{32}$ For biographies of Schützenberger, see Lallement and Perrin (1997) and Wilf (1996). For a list of his publications, see Lallement and Simon (1998). For an interview with him concerning his controversial views on Darwinism, see Anon (1996b). Finally, for a short account of his semigroup-theoretic work, see Pin (1999).
${ }^{33}$ For further details on the theories of formal languages and automata, see Howie (1991).

Chapter 8. The Expansion of the Theory in the 1940s and 1950s

Section 8.1. The growth of national schools

${ }^{1}$ For biographies of Hoehnke, see Márki et al. (1996) and Denecke (2008a b).
${ }^{2}$ In connection with radicals in semigroups, see also the comment on Munn's work on page 292 and the references in note 10 of Chapter 11
${ }^{3}$ See, for example, Čupona (1958). It is difficult to see where Čupona's 'semigroup influence' came from, as the papers by him that I have seen contain no references.

Section 8.2. The Slovak school

${ }^{4}$ There is a very large number of biographies of Schwarz, among them Kolibiar (1964), Jakubík and Kolibiar (1974, 1984, 1994), Znám and Katriňák (1979), Mišík (1981), Jakubík et al. (1984), Grošek et al. (1994), Dvurečenskii (1996), and Riečan (1997).
${ }^{5}$ A short introduction to the activities of the Society for the Protection of Science and Learning can be found in the Bodleian Library's introductory booklet on the society's archive (which is housed in Oxford): Baldwin (1988).
${ }^{6}$ On which, see Anon (1953b). The same issue of the journal also features an article by Schwarz on the need for a separate Slovak Academy of Sciences and its importance for the teaching of mathematics (Schwarz, 1953c).
${ }^{7}$ See Gerretsen and de Groot (1957, vol. 1, p. 82), James (1975, vol. 1, p. xliii), and Lehto (1980, vol. 1, p. 38), respectively.
${ }^{8}$ For an abstract of the Amsterdam talk, 'Characters of commutative semi-groups', see Schwarz 1957); in the case of the Vancouver talk, we have only a title: 'Ideal structure of C-semigroups' (James, 1975, vol. 2, p. 596).
${ }^{9}$ The Czechoslovak Mathematical Journal that was launched in 1951 was the mathematical continuation of the mathematics and physics journal Časopis pro pěstování matematiky a fysiky (Journal for the Cultivation of Mathematics and Physics), which had been published in Prague by the Union of Czech Mathematicians and Physicists (on which organisation, see Bečvářová 2013) since 1872 but whose "publication was interrupted for several years owing to the criminal interference of Hitler's fascists" Anon, 1951, p. 1). Following five post-war volumes (1946-1950), the journal was taken over by the Czechoslovak Academy of Sciences, which split it into two separate journals: one for mathematics (the Czechoslovak Mathematical Journal, though it was also published in two other versions, each under a different name - see note 10) and one for physics (Československý časopis pro fyziku). Publication of the mathematical journal was taken over by Springer in 1997. The fact that the Czechoslovak Mathematical Journal is the continuation of an older journal means that references to papers in the journal sometimes feature two volume
numbers: one for the refounded journal, the other for the original. Thus, for example, the volume number for Jakubík and Kolibiar (1984) is given as $\mathbf{3 4 (1 0 9)}$, where, strictly speaking, $\mathbf{3 4}$ is the volume number for the Czechoslovak Mathematical Journal and 109 is that for Časopis pro pěstování matematiky a fysiky. The reason for giving both numbers is presumably to lend an extra respectability to the journal by reminding readers that it is older than it would at first appear to be. See also notes 10 and 15
${ }^{10}$ Following on from the comments in note 9 we observe that the English/French/German version of the journal was published under the name Czechoslovak Mathematical Journal, while the Russian version was published under the direct Russian translation Чехословаикий математический журнал. The papers from this journal that are cited here are in fact a mixture of the Russian and non-Russian versions since my source for the full text of the journal has been the Czech Digital Mathematics Library (http://dml.cz/), which seems to consist of an amalgam of the Russian and non-Russian versions, though all presented under the English name. In addition, a Czech and Slovak version of the journal was also published, under a modified version of the original title: Časopis pro pěstování matematiky. The aim of this further edition was "to improve the professional and ideological knowledge of those interested in mathematics at home and to serve the propagation of mathematics in Czechoslovakia" Anon, 1951, p. 2). However, it is not clear in what sense this latter journal is an 'edition' of the Czechoslovak Mathematical Journal (as is claimed in Anon 1951) since its contents appear to be different. Časopis pro pěstování matematiky changed its name to Mathematica Bohemica in 1991. These comments on the tangle of Czechoslovak mathematical journals should go some way towards explaining why many of the articles cited in note 4 have more than one version listed in their entry in the bibliography. Indeed, some of the articles cited in note 4 were also reprinted in the entirely separate journal Mathematica Slovaca. See also note 15
11 "Potreby algebry, čiselnej teórie a topologie si vynútily v posledných rokoch nutnost' štúdia systémov všeobecnejších ako sú grupy. ... Štúdium takýchto systémov je v poslednom čase predmetom viacerých prác. V predloženej práci som si vzal za úlohu odvodit' vlastnosti a vyšetrit' štruktúru takzvaných pologrúp." Schwarz, 1943, p. 3).

12 "Platí táto základná veta ..." (Schwarz, 1943, p. 8).
${ }^{13}$ In the terminology of note 36 of Chapter 3 an element has preperiod if its index is strictly greater than 1 .
${ }^{14}$ See instead the articles cited in note 4
${ }^{15}$ Following on from notes 9 and 10 on the subject of Czechoslovak mathematical journals and their myriad incarnations, I mention that the journal Matematicko-fyzikálny časopis (or, more fully, Matematicko-fyzikálny časopis, Slovenská akadémia vied = Mathematico-Physical Journal, Slovak Academy of Sciences), in which the Slovak version of these papers appeared, was founded by Schwarz in 1951 as Matematicko-fyzikálny sbornik. The name Matematicko-fyzikálny časopis was used from 1953 until 1966, at which point, as with Časopis pro pěstování matematiky a fysiky before it, the mathematics and physics strands of the journal were split into two separate publications: Matematický časopis and Fyzikálny časopis, respectively. Each of these eventually underwent a further name change, the mathematics journal becoming Mathematica Slovaca in 1976, and the physics journal Acta Physica Slovaca in 1974. The volume numbering remained constant throughout these name changes, so that, for example, Matematicko-fyzikálny časopis, volume 16, was followed by Matematický časopis and Fyzikálny časopis, volumes 17. The full text of the pre-split journal, together with that of the subsequent physics strand, may be found on the current Acta Physica Slovaca website (http://www.physics.sk/aps/), where, rather perversely, the latest name change has been applied retrospectively. Thus, for example, although the bibliographical information printed on the Slovak version of the paper cited here identifies it as having been published in volume 3 of Matematicko-fyzikálny časopis, it is filed on the website under volume 3 of Acta Physica Slovaca, even though, strictly speaking, the latter journal never had such a volume. Similarly, the Czech Digital Mathematics Library (see note 10) features the full text of the pre-split journal, together with the subsequent mathematical strand, all listed under the name Mathematica Slovaca.
${ }^{16}$ For biographies, see Grošek and Satko (1998) and Jakubík and Šmarda (1992), respectively.
${ }^{17}$ For a biography, see Horák (1985).
${ }^{18}$ For biographies, see Černák (2003) and Katriňák (1996), respectively.

Section 8.3. The American school

${ }^{19}$ Although such a categorisation is by no means impossible: see Preston (1974).
${ }^{20}$ Clifford and Miller used the term universally minimal to denote a right ideal that is contained in every other right ideal, and locally minimal for a right ideal that contains no proper right ideals. That the two notions are distinct was demonstrated by an example of a semigroup with two disjoint locally minimal right ideals (Clifford and Miller, 1948, p. 118). The result quoted here concerns universally minimal ideals.
${ }^{21}$ Rich completed a PhD dissertation, entitled Factorization of partially ordered groups, at Johns Hopkins University in 1950. The 1949 paper cited here appears to be his only mathematical publication. Rich's completion of a thesis on partially ordered groups was probably connected with Clifford's interest in this topic: see, for example, Clifford 1952b). Clifford's interests extended also to linearly ordered groups (Clifford, 1952a).
${ }^{22}$ See instead the comment on Munn's work on page 292 and the references in note 10 of Chapter 11
${ }^{23}$ This was in fact a specialisation of a result of David McLean (1954). Inspired by Clifford's 1941 paper, McLean showed (his Theorem 1) that any band is a semilattice of anticommutative bands, where an anticommutative band is a band in which $a b=b a$ implies that $a=b$. McLean used this to prove that any finitely generated free idempotent semigroup has finite order (his Theorem 2). This is something that also follows from the results of one of Rees's few forays into semigroups. In a paper co-authored with Green Green and Rees, 1952), $S_{n r}$ was defined to be the semigroup generated by n elements, subject to the single relation $x^{r}=x$, for every element x. The semigroup $S_{n r}$ was defined by analogy with the group $B_{n, r-1}$, generated by n elements and subject to the relation $x^{r-1}=1$, for every element x. Green and Rees showed that the statement ' $S_{n r}$ is finite for all n ' is equivalent to an appropriate version of the Burnside conjecture (see Green and Rees 1952, p. 35). The connection with McLean's work arises from the fact that Green and Rees found a formula for the (finite) order of $S_{n r}$ for the case $r=2$.
${ }^{24}$ See, for example, Fountain (1977), where certain semigroups (those alluded to in note 40 of Chapter (10) are characterised as semilattices of left cancellative monoids.
${ }^{25}$ For comprehensive surveys of the study of semigroups of transformations, see Sullivan (1978, 2000). For specific details on the representation of semigroups by transformations, see Clifford and Preston (1967, Chapter 11). For a survey article with a much broader viewpoint (namely semigroups of binary relations), see Schein (1969). See also the books Lipscomb (1996) and Ganyushkin and Mazorchuk (2009).
${ }^{26}$ For a brief obituary of Stoll, see Anon (1991).
${ }^{27}$ See Hollcroft (1944, p. 21); an abstract may be found in Anon (1943, p. 850).
${ }^{28}$ Sometimes called an S-act, S-system, S-operand Howie, 1995b, §8.1), or S-polygon, the latter term being found more often in the work of Eastern European authors. On the general theory of S-sets, see Kilp et al. (2000).
${ }^{29}$ See the references in note 25
${ }^{30}$ In connection with Wallace and Tulane, the exclusion of topological semigroups from the present book may in fact be to its detriment. To quote Karl H. Hofmann (private communication, 18 January 2013):

In one sense your rigorous exclusion of, say topological semigroups, understandable as a strict discipline of drawing boundaries, is regrettable as in this way your book will never capture the vibrant and vital semigroup life at Tulane which really flourished through the interaction of the Wallace people and the Clifford people.
${ }^{31}$ See Clifford and Preston 1961, §1.3, Ex. 7a and §1.8, Ex. 4). The former result cited by Clifford and Preston was also proved by Takayuki Tamura 1955a).
${ }^{32}$ See Clifford and Preston (1961, §1.11, Exx. 7-9 and §2.5, Ex. 9).
${ }^{33}$ See Clifford and Preston (1961, $\S 1.9$, Ex. 1 and $\S 2.2$ - Theorem 2.9 in particular).

Section 8.4. The Japanese school

[^0]${ }^{36}$ See Stedall 2008, §13.1.4). Cayley determined all groups of orders 4 and 6, presenting the former in what we now term 'Cayley tables'.
${ }^{37}$ Note that although the number of distinct (up to isomorphism and anti-isomorphism) semigroups of order 10 is unknown, it is known that there are $52,991,253,973,742$ monoids of order 10 (Distler and Kelsey, 2009).
${ }^{38}$ In addition to those sources cited so far, I give a (non-exhaustive) list of further references concerning the enumeration of finite semigroups:

- Plemmons (1970) (general comments on algorithms for the computation of finite semigroups);
- Kleitman et al. (1976) (estimates for the number of distinct semigroups of order n);
- Jürgensen (1977) (survey of computer applications in the study of finite semigroups);
- Jürgensen (1989) (annotated tables of semigroups of orders 2-7);
- Grillet 1995b) (upper bound for the number of commutative semigroups of order n);
- Grillet (1996) (on improvements to existing algorithms);
- Distler and Kelsev (2009) (calculation of monoids of orders 8, 9, and 10);
- Distler (2010) (among other things, new results on semigroups of order 9 and monoids of order 10);
- Distler and Kelsev (2014) (semigroups of order 9 and their automorphism groups).
${ }^{39}$ An example of another topic treated by Tamura but not dealt with here is his study of finite semigroups in which the order of every subsemigroup divides the order of the semigroup (Tamura and Sasaki, 1959). These were later dubbed Lagrange semigroups by Mertes (1966) and were the subject of the paper by the Chinese authors that was mentioned at the end of Section 8.1
${ }^{40}$ Kimura's time at Tulane coincided with Preston's visit there (see Section 12.1.3). Indeed, Preston served as chair of examiners for Kimura's viva; the other examiners were P. F. Conrad and P. S. Mostert.
${ }^{41}$ Prior to this, particularly, in the 1930s, Japanese mathematicians (and scientists more generally) appear to have been heavily influenced by their German counterparts, even going so far as to publish a great deal of work in German. On the 'Prussianisation' of Japanese science, see Parshall (2009, p. 98).
${ }^{42}$ There is some overlap between these papers and some work by both Cohn (1956a, 1958) and Gluskin 1955a) (for Gluskin's work, see Section 9.4).

Section 8.5. The Hungarian school

${ }^{43}$ For English biographies of Rédei, see Márki (1985) and Anon (1981); an English survey of his mathematical work can be found in Márki et al. (1981). For Hungarian biographies, see Anon (1972a), Steinfeld and Szép (1970), and Wiegandt (1998); Pálfy and Szép (1982) gives a survey of his group-theoretic work.
${ }^{44}$ Such semigroups are now the objects of study of an active Spanish group of researchers on numerical semigroups.
${ }^{45}$ For a biography, see Márki (1991).
46 "Es ist eine wichtige Frage, wie weit R durch die eine der Strukturen R^{+}, R^{\times}bestimmt ist." (Rédei and Steinfeld, 1952, p. 146).
${ }^{47}$ For biographies, see Csákány et al. (2002) and Fried (2004).
${ }^{48}$ See also the comments in note 13 of Chapter 12
${ }^{49}$ See note 33 of Chapter 9
${ }^{50}$ On rings, see Pollák (1961); on semigroups, see Megyesi and Pollák (1968).
${ }^{51}$ For a biography, see Forgó (2005).

Section 8.6, British authors

${ }^{52}$ See note 23
${ }^{53}$ See also note 33 of Chapter 9 on some other types of 'normal subsemigroup'.
${ }^{54}$ For greater detail, see Clifford and Preston (1961, §2.1) and Howie 1995b, §2.1).
${ }^{55}$ For very brief biographies of Green, see Anon (1984, 1998, 2002). For an obituary, see Erdmann 2014).
${ }^{56}$ Generalisations of Green's relations may be found in Wallace (1963), Anscombre (1973), Márki and Steinfeld (1974), Pastin (1975), McAlister (1976), Carruth and Clark (1980), Cripps (1982), Lawson (1991), Yang and Barker (1992), Shum et al. (2002), and Guo et al. (2011), some
of which are surveyed in Hollings (2009a). Generalised Green's relations are a major tool of the active Chinese school of semigroup theory; for surveys of Chinese work in this direction, see Guo et al. (2010) and Shum et al. (2010). In contrast to early semigroup theory, where, as we have seen, ideas from rings were applied to semigroups, Green's relations have also been applied to rings Petro, 2002).
${ }^{57}$ For biographies of Howie, see Munn (2006), Robertson (2012), and Shaw (2012).

Chapter 9 , The Post-Sushkevich Soviet School

${ }^{1}$ A comment on the use of the label 'Soviet' in such phrases as 'Soviet semigroup theory', 'Soviet mathematics', etc.: it is used in this chapter, as throughout the rest of this book, merely as a convenient single term by which we may refer to the work of (mainly) Russian and Ukrainian authors; it should not be taken to have any political connotations. Moreover, the term 'postSushkevich' is used simply in a chronological sense and does not imply any kind of continuity.
${ }^{2}$ For example, the article Gluskin (1968) in volume 3 of Shtokalo and Bogolvubov (1966) and the article Slipenko (1983) in the volume Shtokalo et al. (1983).

3 "В 1984 г. исполняется 70 лет выдающемуся советскому алгебраисту профессору Ленинградского государственного педагогического института Евгению Сергеевичу Ляпину. Е. С. Ляпин является одним из создателей важного направления общей алгебры - теории полугрупп. Его первая работа, посвящённая этой теории, вышла в 1947 году. К этому времени понятие полугруппы уже сформировалось в математике, однако оно рассматривалось просто как один из возможных вариантов обобщения понятия группы и самостоятельного значения не имело. Главным образом благодаря трудам Е. С. Ляпина из разрозненных работ, посвящённых полугруппам, выросло новое направление в общей алгебре - теория полугрупп. Появление в 1960 г. первой в мировой литературе монографии Е. С. Ляпина по теории полугрупп оказало решающее влияние на формирование этой теории и выдвинуло советскую полугрупповую школу на передовые позиции." Gluskin et al., 1984).

Section 9.1. Evgenii Sergeevich Lyapin

${ }^{4}$ Soviet-era biographies are Budyko et al. (1975), Gluskin et al. (1985), and Wagner et al. (1965), written for Lyapin's 50th, 60th, and 70th birthdays, respectively. A slightly more candid (post-Soviet) biography was written for Lyapin's 80th birthday by his student J. S. Ponizovskii (1994). Since Lyapin's death, several further articles have appeared: a brief 'official' Russian obituary (Gordeev et al., 2005), a memorial article by his student A. Ya. Aizenshtat and his sometime-collaborator B. M. Schein (2007), and an article by former students V. A. Makaridina and E. M. Mogilyanskaya (2008). Another source that has proved particularly useful in the compilation of this section has been Khait (2005), which was apparently written with the input of Lyapin's family; it discusses his family background and has a great deal to say about his life in the 1940s; it is the only one of the cited biographies to deal with Lyapin's wartime activities and ideological persecution in any detail, though it is also the only Russian article cited in this note that is not available in English translation. However, I drew heavily upon Khait while writing my own article on Lyapin (Hollings, 2012), parts of which have been reused here.
${ }^{5}$ These Soviet-era biographies are very impersonal affairs, which could almost have been written in the form of bullet points. Although I have yet to conduct a full survey of Soviet mathematical biographies, it is my impression that they (particularly those published in Uspekhi matematicheskikh nauk) usually have the following structure:

- An introductory paragraph consisting of a single sentence, giving the name and status of the person about whom the article has been written; we are also told the reason for the article (e.g., death or significant birthday, for which a date is given). Thus, for example, the English translation of Wagner et al. (1965) begins: "The eminent Soviet algebraist and Professor at the Leningrad Pedagogical Institute E.S. Lyapin had his 50th birthday on September 19th, 1964."
- A list of facts about the subject's life: place of birth, social background, university education, dissertations submitted, institutions at which the subject has worked. If the subject is of an appropriate age, we might also find one or two sentences here about their activities during the 'Great Patriotic War' (i.e., the Second World War).
- A sketch of the subject's mathematical work. Depending on the length of the article, this could be anything from a couple of lines (often the case for obituaries) to several pages.
- The 'usefulness to the state' paragraph. Typical statements might be that the subject has authored m textbooks and that they have supervised n research students. We might also be told that the subject has been instrumental in the training of generations of mathematics teachers and that their students teach at schools throughout the USSR. The committees upon which the subject has sat will be listed here.
- Awards and honours (not always present). The Order of Lenin and the title of 'Honoured Scientist of the RSFSR (Russian Soviet Federative Socialist Republic)' are the honours most often found here.
${ }^{6}$ The names Saint Petersburg (1703-1914 and 1991-), Petrograd (1914-1924), and Leningrad (1924-1991) are used interchangeably and without further comment.
${ }^{7}$ I choose to transliterate 'Герцен' as 'Herzen' since this appears to be the generally accepted Latin spelling.
${ }^{8}$ At that time, the full name of this institution was Ленинградский государственный педагогический институт имени А. И. Герцена ('Leningrad State Pedagogical Institute, named for A. I. Herzen'). It is now the 'Russian State Pedagogical University, named for A. I. Herzen' (Российский государственный педагогический университет имени А. И. Герцена).
${ }^{9}$ Also known as the Leningrad Blockade, following the Russian: блокада Ленинграда.
${ }^{10}$ In Russian, we have, for example, Karasev (1959) and Sirota (1960), while some books in English are Goure (1962), Jones (2008), Pavlov (1965), and Salisbury (2000). Nikitin (2002) is a book of photographs from the siege which is not for the squeamish.
${ }^{11}$ Adamovich and Granin (1982, English trans., p. 60). Further references to Lyapin may be found on pages 43, 167, and 373 of that book. For an account of the siege from another mathematician, see Lorentz (2002, §7).

12 "расчет прочности ледовой трассы по Ледожскому озеру" (Khait, 2005, p.15). Perhaps Lyapin had a hand in the compilation of Table 23 on p. 136 of Pavlov (1965), which expresses the expected rate of the thickening of the ice in different temperatures?
${ }^{13}$ Not all publications lists for Lyapin include the meteorological papers, but they may be found, for example, in that given by Budyko et al. (1975).
${ }^{14}$ For some background to these objections, see Gerovitch (2002, pp. 34-35). See also the comments of Lorentz (2002, p. 218).
${ }^{15}$ For biographies of Shanin, see Artemov et al. (2010), Maslov et al. (1980), Matiyasevich et al. (1990) and Vsemirnov et al. (2001). None of these articles, however, mention the ideological attack.
${ }^{16}$ See Veksler et al. (1979) for a biography of Vulikh.
${ }^{17}$ See Borovkov et al. (1969) for a biography of Sanov. Sanov's claim to mathematical fame was his solution, at the age of 21, of Burnside's problem for exponent 4 (Sanov, 1940).

18 "для разоблачения идеологически чуждых и неверных явлений" (Khait, 2005, p.16).
19 "оторвавшихся от жизни и не приносящих никакой пользы социалистическому обществу" Khait, 2005, p. 16).

20 "... очень эмоционально возражал тем, кто мешал науке двигаться вперед путем выдвижения новых идей и направлений" (Khait, 2005, р. 16).

21 "... успех науки требует выдвижения новых идей ..." Khait, 2005, p. 16).
${ }^{22}$ Soloveichik had in fact worked there since 1933; his research interests seem to have been in fluid mechanics and attendant areas of mathematics: see, for example, Kurosh et al. (1959, vol. 2, p. 655). For a biography of Soloveichik, see Prudinskii (2011).

23 "... далеких от нужд народного хозяйства" (Khait, 2005, p. 16).
24 "математика служит производственным целям!" (Khait, 2005, p. 16).
25 "и прочие <измы»" (Khait, 2005, р. 16).
26 "... сделало вид, что не знает о произошедшем в Университете" Khait, 2005, p. 17).

Section 9.2, Lyapin's mathematical work

Section 9.2.1, Normal subsystems and related concepts

27 "Основами современной теории групп бесспорно являются теория гомоморфизмов (включающая теорию нормальных делителей) ..." (Lyapin, 1945, p. 3).

28 "За последние годы в математической литературе не раз делались попытки обобщить современную теорию групп, перенести те или иные групповые результаты на различные виды «полугрупп», т.е. на системы с одним действием, более общие, чем группы. Были получены

также некоторые результаты, специфическе для «обобщенных групп», не имеющие аналогии или тривиальные для обычных групп." (Lyapin, 1947, p. 497).

29 ". . теория групп есть не что иное, как абстрактное учение об обратимых преобразованиях ..." Lyapin, 1947, p. 497).

30 "[л]юбая физическая теория, любая отрасль математики дают бесчисленные примеры чрезвчайно важных необратимых преобразований." (Lyapin, 1947, p. 498).

31 "Изучение преобразований необратимых требует теории более широкой, нежели теория групп." (Lyapin, 1947, p. 498).
32 "... [в] настоящее время общая теория ассоциативных систем только начинает развиваться и еще находиця в зачаточном состоянии. ... Поэтому естественно начинать построение общей теории ассоциативных систем с разбора, тех вопросов, решение которых послужило основой успешного развития теории групп." (Lvapin, 1947, p. 498).
${ }^{33}$ Besides Lyapin's, and that of Rees that we saw in Section 8.6 another notion of 'normal subsemigroup' had in fact already been introduced by F. W. Levi in the paper in which he obtained a characterisation of the free semigroup Levi 1944: see Section5.3). Given an arbitrary semigroup S, Levi termed a subsemigroup N of S normal if it satisfies 'condition \mathbf{N} ': for $\alpha, \beta, \gamma \in S$, if any two of the three elements $\alpha \beta \gamma, \alpha \gamma, \beta$ belong to N, then all three belong to N. Levi focused his attention on so-called \boldsymbol{R}-semigroups; these are semigroups that satisfy what he called 'condition \mathbf{R} ', or the 'condition of refinement': if a, c and a^{\prime}, c^{\prime} are any two distinct pairs of elements of S such that $a c=a^{\prime} c^{\prime}$, then there exists $b \in S$ for which at least one of the following two sets of conditions holds:

$$
\left\{a^{\prime}=a b, c=b c^{\prime}\right\}, \quad\left\{a=a^{\prime} b, c^{\prime}=b c\right\}
$$

In an R-semigroup R with normal subsemigroup N, Levi defined two elements a, b to be equivalent if there exists an element

$$
\omega=\alpha_{0} a_{1} \alpha_{1} \cdots a_{n} \alpha_{n}=\beta_{0} b_{1} \beta_{1} \cdots b_{m} \beta_{m}
$$

in R, such that $a_{1} \cdots a_{n}=a$ and $b_{1} \cdots b_{m}=b$, where the α_{i} and β_{j} are either elements of N or else 'empty symbols' which may be omitted from the factorisation in \dagger. This equivalence is in fact a congruence, so we may factor by it to obtain a new semigroup, which Levi denoted by R / N; he termed the elements of R / N cosets of N in R, the 'coset' of $a \in R$ being denoted by (a). With this set-up, Levi was able to prove the following theorem (Levi, 1944, I, Theorems 1 and 2):

ThEOREM. The semigroup R / N is an \boldsymbol{R}-semigroup with N as its identity element, and the mapping $a \mapsto(a)$ is a homomorphism.

Yet another type of 'normal subsemigroup' was studied by István Peák (1960). In this instance, a subsemigroup N of a semigroup H is left normal if H may be written in the form $H=N \cup \alpha N \cup$ $\beta N \cup \cdots$, for $\alpha, \beta, \ldots \in H$, and $(\alpha H)(\beta H)=\gamma H$, for some $\gamma \in H$. Peák compared his notion of normality with that of Lyapin.
${ }^{34}$ A better literal translation would perhaps be 'moving' or 'shifting' (from the verb 'передвигать' = to move/shift), but the term 'removing' is used in the English summary that appears at the end of Lyapin's paper.

35 "[c]овокупность неособенных квадратных матриц n-я порядка над произвольным полем образует группу относительно умножения. Эта группа подвергалась многочисленным исследованиям и в настоящее время хорошо изучена. Естественно, возникает вопрос об исследовании совокупности всех (особенных и неособенных) квадратных матриц n-я порядка. Относительная трудность такого исследования объясняется тем, что эта совокупность уже, очевидно, не образует группы относительно умножения; она является лишь ассоциативной системой. Между тем, теория ассоциативных систем разита еще очень мало." (Sivertseva, 1949, р. 101).
${ }^{36}$ In connection with the notation used here, it is interesting to observe that Lyapin made use of some very limited logical symbolism in all three of his 1950 papers (' \rightarrow ' for implication and ' \leftrightarrow ' for equivalence), yet, as far as can be ascertained, he did not have the same difficulties as those experienced by Wagner when trying to use logical notation in the same journal a couple of years later: see page 262 and also note 28 of Chapter 10

37 "Хорошо известна большая роль простых групп и значение вопроса о простоте в теории групп. Поэтому естественно поставить аналогическые вопросы и в теории ассоциативных систем . . " Lvapin, 1950b, p. 275).
${ }^{38}$ The term that Lyapin used for an element with a power equal to zero was 'нульстеппеный' (Lvapin, 1950b, p. 276), which we might translate literally as 'null-powered'. There is a strong temptation to translate Lyapin's 'нульстеппеный' as 'nilpotent', particularly in light of the fact that this is precisely how the term 'nilpotent' is used in modern semigroup theory (Howie, 1995b, p. 70). However, this would not give an accurate rendering of Lyapin's terminology. The Russian for 'nilpotent' is 'нильпотентный', and this term was already in use at the time that Lyapin was writing: it was a term that had only recently been used in connection with nilpotent groups (Kurosh and Chernikov, 1947) - Lyapin may thus have been avoiding this term in his own work since he would have been using 'нильпотентный' in a different sense.
${ }^{39}$ The restriction to surjective homomorphisms does not appear to be stated explicitly but is necessary: an associative system S has infinitely many non-surjective homomorphisms, namely, to pick some silly examples, the injections into $S^{1},\left(S^{1}\right)^{0},\left(\left(S^{1}\right)^{0}\right)^{1}, \ldots$, where ${ }^{\text {‘ }}$, and ${ }^{\circ}$, denote the adjunction of an identity and a zero, respectively (see the appendix).
${ }^{40}$ Contrast the fact that a simple commutative ring is necessarily a field.
41 " $[0]$ казалось, что за исключением нескольких особо просто устроенных систем, все системы являются непростыми ..." (Lyapin, 1950d, p. 367).

Section 9.2.2, Semigroups of transformations

${ }^{42}$ Indeed, Medvedev 1971, p. 127) noted that there were restrictions on the size of each issue of every Soviet scientific journal, although he did not state the reasons for this. It may have been connected with what appears to have been a chronic shortage of paper in the USSR.
43 "объясняет важность изучения полугруппы S_{Ω} " Lyapin, 1955, p. 8).
${ }^{44}$ In contrast to the situation discussed in note 38 Lyapin was by this stage employing the term 'nilpotent' ('нильпотентный') in its modern semigroup-theoretic sense.
${ }^{45}$ Lyapin went on to study arbitrary partial transformations in a later paper (Lvapin, 1960b), where he determined the general form of a homomorphic representation of a semigroup by means of partial transformations. An isomorphic representation followed in Lyapin (1961), but it is rather more involved than the other similar characterisations given in this section, so I do not reproduce it here.

Section 9.3, Lazar Matveevich Gluskin

${ }^{46}$ There are rather fewer biographical sources for Gluskin than for Lyapin: one 'official' obituary (Belousov et al., 1987), published in the USSR and written in the impersonal Soviet style (see note (5), another Soviet-era biography (Lvapin et al., 1983), and two further articles by Gluskin's long-term friend and colleague, Boris M. Schein (1985, 1986a).
${ }^{47}$ On anti-Semitism in Soviet academia, see note 51 of Chapter 2 and also note 35 of Chapter 10
${ }^{48}$ Recall from note 54 of Chapter 3 that a wider claim that Sushkevich was not officially permitted to supervise any students does not hold water.
${ }^{49}$ See also note 35 of Chapter 10
${ }^{50}$ Six name changes later, this institution is now Kharkiv National University of Radioelectronics.

Section 9.4. Gluskin's mathematical work

${ }^{51}$ For an indication of Gluskin's wider semigroup-theoretic work, the reader is directed to the biographical articles cited in note 46 and also to Gluskin's own survey articles, cited in the introduction to this chapter.
${ }^{52}$ 'Avtoreferaty' ('авторефераты') are formal documents that must be submitted in advance of candidate and doctor of science dissertations. The avtoreferat of Gluskin's candidate dissertation is undated but must have been submitted prior to the eventual approval of the dissertation in 1952; the doctoral avtoreferat, on the other hand, is dated 1960 - the corresponding dissertation was defended on 28 April 1961. Parts of the second avtoreferat were published as Gluskin (1962).

Section 9.4.1. Homomorphisms

53 "[н]ачало общей теории ассоциативных систем было положено работами А. К. Сушкевича ... Изучению гомоморфизмов ассоциативных систем посвящен ряд работ Е. С. Ляпина, который ввел понятия нормального комплекса... и нормальной подсистемы ... ассоциативной системы. Настоящая работа является развитием некоторых исследований A. К. Сушкевича и Е. С. Ляпина." Gluskin, 1952, avtoreferat, p.3).

Section 9.4.2, Semigroups of matrices

54 "внутренняя характеристика" Gluskin, 1954, p. 17).
55 "более естественное" Gluskin, 1958, p. 441).
${ }^{56}$ In fact, such conditions had already been obtained by Khalezov 1954ab), but Gluskin provided a new proof, using the theory of completely simple semigroups.

Section 9.4.3. Semigroups of transformations

${ }^{57}$ On Bourbaki and his 'structures', see Corry 1992, 2001) and also Corry 1996, Chapter 7).
${ }^{58}$ Early instances of Gluskin's study of transformations of sets with extra structure may be found in Gluskin (1959d, 1961b), where he gave, for instance, an abstract characterisation of the semigroup of isotone transformations of a partially ordered set. A detailed account of Gluskin's work on semigroups of topological transformations may be found in Chapter III of his doctoral dissertation (Gluskin, 1961c).

Section 9.5. Other authors

${ }^{59}$ In Cyrillic: Л. Рыбаков; this is transliterated as 'Rybakoff' in the French summary at the end of the paper.
${ }^{60}$ For a biography of Lesokhin, see Kublanovsky 1999). For further comments on characters for semigroups, see page 297 and also note 12 of Chapter 11
${ }^{61}$ For a biography of Vorobev, see Korbut and Yanovskava (1996).
${ }^{62}$ Other early Soviet papers on the word problem in semigroups are those of Adyan (1960) (see Lallement 1988). Furthermore, I take this opportunity to note V. M. Glushkov's work on automata; see, for example, the survey Glushkov (1961). Unlike cybernetics, the study of formal languages and automata does not seem to have flourished in the USSR to the same extent that it did in the West; this may have been for ideological reasons - see Gerovitch (2001, 2002). Nevertheless, Glushkov's work may have had an international influence, given that the survey cited above was not only translated into English, but also into German and Hungarian.
${ }^{63}$ For a biography of Liber, see Ermakov et al. (1985).
${ }^{64}$ For a biography of Shevrin, see Volkov (2008).

Chapter 10, The Development of Inverse Semigroups

Section 10.1. A little theory

${ }^{1}$ For a discussion of various notions of generalised inverses, see Ben-Israel and Greville (2003). These authors deal, in particular, with so-called Moore-Penrose (pseudo-)inverses for matrices. These are somewhat akin to the generalised inverses used here in the inverse semigroup context: the Moore-Penrose inverse of a (possibly rectangular) complex matrix A is the unique solution A^{\dagger} of the equations $A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{*}=A A^{\dagger},\left(A^{\dagger} A\right)^{*}=A^{\dagger} A$, where * denotes conjugate transpose. This notion was explored by Roger Penrose in a paper of 1955, where it was used, for example, to provide a necessary and sufficient condition for the solubility of the matrix equation $A X B=C$. Initially unknown to Penrose, such generalised inverses had earlier been introduced by E. H. Moore (1920), though with a rather differently phrased definition: see Ben-Israel (2002). On the subject of generalised inverses, see also Rao (2002).
${ }^{2}$ Besides its appearance in the work of Wagner (Section 10.4) and Preston (Section 10.6), this notion of generalised invertibility also appeared briefly in a paper by Thierrin (1952) (see Section 7.4), who referred to inverse elements as reciprocals (réciproques).

Section 10.2 Pseudogroups and conceptual difficulties

${ }^{3}$ See Klein (1893), or Haskell (1892) for an English translation. For further comments on the place of the Erlanger Programm within mathematics and on its influence, see Birkhoff and Bennett (1988), Hawkins (1984), and Rowe (1983). See also Wussing (1969, §III.2).
${ }^{4}$ Veblen and Whitehead (1932, p. 38). Veblen and Whitehead hyphenated 'pseudo-group' but I omit the hyphen in deference to later usage. Lawson (1998, p. 7) notes that there was subsequently "little consensus in the literature" as to the definition of a pseudogroup. He comments that the notion given in Definition 10.2 is "about the most generous".
${ }^{5}$ On Schouten, see Gołab (1972), Nijenhuis (1972), and Struik (1989). On Haantjes, see Schouten (1956).
${ }^{6}$ At the time of writing this paper, Gołąb was an associate professor at the Kraków Mining Academy. By the time that it had appeared in print, however, Kraków had been occupied by German troops and Gołąb had been arrested, along with several other Kraków professors. He was imprisoned in Breslau (now Wrocław), before being moved first to the concentration camp at Dachau and then to that at Sachsenhausen. He was released in December 1940 and spent the rest of the war working as a bookkeeper in the forestry administration (Kucharzewski, 1982, p.3).

7 "nicht befriedigen ... vom theoretischen Standpunkte" Gołab, 1939, p. 768).
8 "Das Ziel dieser Untersuchung ist es nun, in axiomatischer Form eine Präzisierung des Begriffes der Pseudogruppe von Transformationen zu geben." (Gołab, 1939, p. 768).

9 "Pseudogruppen im weiteren Sinne" Gołab, 1939, p. 773).
10 " $[\mathrm{f}]$ ür die Zwecke der Theorie der geometrischen Objekte" (Gołab, 1939, p. 768).
11 "Pseudogruppen im engeren Sinne" Gołab, 1939, p. 775).
${ }^{12}$ These axioms may be found on pp. $774-775$ of Gołab (1939), but it takes some effort to 'unpack' the conditions in Gołąb's highly formalised presentation. A much more transparent presentation can be found in Haantjes's Zentralblatt review of Goła̧b's paper (Zbl 0021.04903). Since Gołạb's symbolism differs considerably from familiar notation, I have translated it into something a little more modern.

Section 10.3. Viktor Vladimirovich Wagner

${ }^{13}$ As noted on page ix I choose to transliterate 'Вагнер' as 'Wagner', not least because this seems to have been his own preference (Schein, 2002, p. 152).
${ }^{14}$ 'Bullet-point biographies' (see note 5 of Chapter 9) were published to commemorate Wagner's 50th birthday (Liber et al., 1958) and his 70th (Efimov et al., 1979). There is also a Sovietpublished obituary (Vasilev et al., 1982) and an article of memories of Wagner (Ermakov et al., 1981). Some very brief reminiscences concerning Wagner may be found in Rosenfeld (2007, pp. 8889). Schein (1981) is a rather more candid Western-published obituary of Wagner; although ostensibly a review of a book on inverse semigroups, Schein (2002) features some biographical anecdotes on Wagner. A much more recent publication about Wagner is the booklet Losik and Rozen (2008) published by Saratov State University in connection with a conference held to commemorate the 100th anniversary of his birth Rozen, 2009); this booklet contains a short biography of Wagner, as well as reminiscences by several of his students and a comprehensive publications list.
${ }^{15}$ On the Soviet passport system, see Medvedev 1971, pp. 183-194).
${ }^{16}$ For details on the general algebraic work carried out in Saratov, see Gluskin (1970). A brief description of the wider mathematical work can be found in Liber and Chudakov (1963).
${ }^{17}$ For a biography of Schein, see Breen et al. (2011). See also note 35

Section 10.4, Wagner and generalised groups

${ }^{18}$ The reason for the translation is probably the same as that for the translation around the same time of Hilbert's The foundations of geometry, Hilbert and Ackermann's The foundations of theoretical logic, and Tarski's Introduction to logic: a concerted effort was being made to promote the study of the foundations of mathematics in the USSR - see Vucinich (2000, p. 71).

19 "известному советскому геометру" Veblen and Whitehead, 1932, Russian trans., p. 6).
20 "Проявлением порочных философских и методологических установок авторов является и их мнение о невозможности научного, объективого обсуждення самого вопроса о предмете и задачах геометрии." (Veblen and Whitehead, 1932, Russian trans., pp. 6-7).

21 "идеалистической точки зрения" (Veblen and Whitehead, 1932, Russian trans., p. 7).
22 "Вопрос заключается, конечно, в том, как понимать объективное определение геометрии (вообще, всякой математической науки). Если, следуя авторам, рассматривать геометрию только как сложившуюся формально-логическую систему - оторваино и от ее исторической реальной базы и от ее современных реальных конкретизации, - мы, действительно, не в состоянии будем такого определения дать." (Veblen and Whitehead, 1932, Russian trans., p. 31).

23 "они явяютси $[s i c]$ лишь продуктом длинной цепи абстракций, восходящей к эвкидовой геометрии и дальше" (Veblen and Whitehead, 1932, Russian trans., pp. 31-32).
${ }^{24} \mathrm{~A}$ passing gibe about Veblen and Whitehead's "false, metaphysical, idealistic conception" ("ложное, метафизическое, идеалистическое представление") of geometry is also made in Aleksandrov et al. (1956, vol. 1, p. 69). All such attacks on Western mathematicians were removed in the English translation (see Gerovitch 2001, p. 280). By contrast, Soviet ideologues
seem to have been rather keen on the Erlanger Programm. Ernst Colman [Kolman] (p. 16) certainly regarded it as a success; he described geometry as "a science that is more material than mathematics", which had therefore "detached itself less from reality than the latter". He went on to make the colourful and rather moralistic comment that " $[\mathrm{g}]$ eometrical methods and problems have had a wholesome effect upon mathematics by drawing it back to "sinful mother earth"..." (Colman, 1931, p. 12).

25 "Поэтому мы сочли целесообразным дополнить книгу Веблена и Уайтхеда систематическим изложением общей теории объектов, в частности геометрических объектов" (Veblen and Whitehead, 1932, Russian trans., p. 135).

26 "Il n'est pas de chapitre de mathématiques où la notion de relation d'équivalence ne joue un rôle." (Riguet, 1948, p. 114).

27 "Важность этой теоремы состоит в том, что из нее следует, что абстрактная теория симметричных полугрупп взаимно-однозначных частичных преобразований, рассматриваемых как множества, в которых кроме алгебраической операции заданы отношение порядка и симметричное преобразование, сводится к изучению некоторого специального класса абстрактных полугрупп." (Wagner, 1952a, p. 654).

28 Wagner's notation was in fact rather harmless and consisted of familiar symbols like p^{\prime} for the negation of a statement $p, p \wedge q$ for the conjunction of statements, and $p \vee q$ for the disjunction. Implication and equivalence were denoted by arrows \rightarrow and \leftrightarrow, respectively. Wagner (1953, p. 549) indicated that his notation was "nonessentially distinct" ("несущественно отличаются") from that of Lorenzen (1951) and was chosen for its symmetry (\wedge vs. \vee, etc.) and the fact that it accorded with the corresponding notation in set theory. In contrast, Lyapin does not appear to have had any trouble with the use of logical symbolism in his 1950 papers for Izvestiya Akademii nauk $S S S R$ (note 36 of Chapter 9), although his logical notation was rather more limited. For further comments on the use of logical symbolism by Soviet mathematicians, see Vucinich (1999).

29 "В последнее время все большее значение начинает приобретать изучение алгебраическими методами формальных свойств определяемых в теории ... операций над множествами и бинарными отношениями между элементами множеств. При этом применение алгебраических методов при изучении теоретико-множественных опепаций естественным образом приводит построению соответствующих абстрактных алгебраических теорий. Получаемые таким образом абстрактные алгебраические теории, очевидно, имеют более важное значение, чем те, которые получаются в результате чисто формальных обобщений уже существующих абстрактных алгебраических теорий путем соответствующих изменений положенных в их основу систем аксиом. Действительно, дла абстрактной алгебраической теории, в которой изучаются алгебраические операции, допускающие представление при помощи теоретико-множественных операций, очевидна возможность ее приложений в теории множеств, а следовательно, и в других областях математики." Wagner, 1953, p. 545).

30 "Как известно, весьма существенное значение имеет теоретико-множественная операция умножения бинарных отношений между элементами двух различных или совпадающих множеств. Отсюда вытекает важность тех абстрактных алгебраических теорий, которые возникают в связи с изучением формальных свойств этой операции." (Wagner, 1953, p. 545).
${ }^{31}$ Wagner adopted the notation $\stackrel{-1}{\rho}$ for the inverse binary relation in order to draw a distinction with ρ^{-1}, which he used later to denote the inverse of ρ in the case where ρ is a partial bijection.
${ }^{32}$ The term heap has a somewhat tortuous etymology in this context. The study of ternary operations of this form seems to have originated with Prüfer (1924) and been continued by Baer (1929), who defined the ternary operation $\left[\begin{array}{lll}x & y & z\end{array}\right]=x y^{-1} z$ in a group, effectively giving an 'affine' concept of group, in which the role of the identity is diminished (Bertram and Kinyon, 2010). Baer's name for a system with a ternary operation satisfying (10.8 and 10.9 was Schar (German: band, company, crowd, flock; the term 'Schar' had earlier been used by Sophus Lie to mean simply a set/class/collection of elements - see Wussing 1969, pp. 218, 220). When the study of such objects was taken up by Sushkevich (1937b), he elected to translate this into Russian as gruda ($2 p y \partial a)$, meaning 'heap' or 'pile'. Sushkevich was evidently exploiting the phonetic similarity between 'gruda' and the Russian word for group, 'gruppa' ('группа'). Wagner adopted Sushkevich's terminology and expanded it by inventing the terms polugruda (noлyгpyда) and obobshchenпауа gruda (обобщенная груда), which have been translated accordingly as semiheap and generalised heap, respectively. Schein (1979), however, coined a new English term, groud, and therefore referred also to semigrouds and generalised grouds. He commented:

The advantages of the new term are that it is not overloaded semantically, it is phonetically similar to "group", and it is more euphonious than "heap". (Schein, 1979, pp. 101-102)
Nevertheless, he did acknowledge that 'groud' is "not as appealing to the mathematical imagination" as 'heap' (Schein, 1992, p. 207). He noted further that, unlike 'heap', 'groud' "has no connotations" Schein, 1981, pp. 194-195), these connotations presumably being the implication of lack of structure. However, apart from the possible 'political' issue of not wanting to put people off one's research through use of unattractive terminology, I do not feel that these connotations are of any significance: in mathematics, a word is simply taken to mean what we define it to mean. Why should the word 'group' imply any kind of structure? Why should it imply any more structure than the word 'set'? It only does so because we define it so. For this reason, I choose to retain the term 'heap' for Sushkevich's 'gruda'. Moreover, I eschew the word 'groud' on aesthetic grounds. Despite its intended phonetic similarity to 'group', whenever I see 'groud', I want to pronounce it 'growd' (gravd). In French, Behanzin (1958) used the terms amas, demi-amas and amas généralisé ('amas' = heap, pile). Bruck (1958, p. 40) noted that other English names that have been used for a heap are 'flock', 'imperfect brigade' (see page 307), and 'abstract coset'. This last name is explained by the observation that if we take a group G and define in it the ternary operation $[x y z]=x y^{-1} z$ in order to obtain a heap, then $H \subseteq G$ forms a subheap of G if and only if H is a coset of some subgroup of G. Finally, as if the above plethora of names were not enough, Bertram and Kinyon (2010) also record the terms 'torsor', 'herd', 'principal homogeneous space', and 'pregroup'. Brzeziński and Vercruvsse (2009) favour 'herd', which gives them an excuse to introduce the terms 'shepherd' and 'pen' for related concepts.

33 "Задачей настоящей работы является построение абстрактной теории обобщенных груд и обобщенных групп в их взаимной связи." Wagner, 1953, p. 549).

34 ". .. понятие обобщенной груды и обобщенной группы, тесно связанные между собой, возникают не в результате чисто формальных обобщений каких-либо известных алгебраических теорий, а в результате применения алгебраических методов к изучению важных теоретико-множественных операций, связанных с рассмотрением ... частичных преобразований множеств. При этом построение абстрактной теории обобщенных груд и обобщенных групп так же целесообразно, как и построение абстрактной теории групп, которая возникла аналогичным образом из теории групп преобразований." (Wagner, 1953, p. 549).
${ }^{35}$ Schein's candidate dissertation was Абстрактная теория полугрупп взаимно однозначных преобразований (Abstract theory of semigroups of one-one transformations) (Schein, 1962a). He also submitted a doctoral dissertation, Relation algebras (Алгебрь отношений), some years later. However, the degree was never awarded, although the results eventually found their way into print in other ways. Being from a Jewish background, Schein suffered from Soviet institutional antiSemitism (see the references in note 51 of Chapter 2 and also the comments on page 239): his doctoral dissertation was unfairly rejected as containing "a large number of uninteresting theorems and extremely cumbersome formulations" (Freiman, 1980, p. 76). This was in direct contradiction to the glowing appraisals provided by Wagner, Gluskin, and Kurosh. Indeed, Wagner described the dissertation in the following terms:

The dissertation is a fundamental piece of research, of an unusual richness of content, which contains a large quantity of major results. This important scientific work is a valuable contribution to modern algebra and establishes its author as a talented scientist. (Freiman, 1980, p. 75)
For more information on anti-Semitism in Soviet mathematics, see Freiman (1980). Like the work of Zhores A. Medvedev that was used in Section 2.1 the Freiman book cited here is an example of 'tamizdat' - see note 18 of Chapter 2

Section 10.5 Gordon B. Preston

${ }^{36}$ For biographies of Preston, see Howie (1995a) and Hall (1991); see also the autobiographical article Preston (1991).

Section 10.6. Preston and inverse semigroups

${ }^{37}$ 'OP-20-G representatives at GC\&CS', The US National Archives and Records Administration (NARA), College Park, RG 457, Historic Cryptographic Collection, Box 808, NR 2336, CBLL51 entitled: "BRITISH COMMUNICATIONS INTELLIGENCE".
${ }^{38}$ In an interview about his time at Bletchey Park, another American mathematician and cryptologist, Howard Campaigne, commented: "... we had a liaison officer who was Al Clifford at the time, but I was over there, not as liaison but as a working member ..." (Farley, 1983, p. 17). The contrast that is being drawn here suggests that Clifford was not active as a cryptologist while at Bletchley and therefore may not have come into contact with the people mentioned above, such as Preston. However, Clifford is mentioned in passing in the reminiscences of Peter Hilton, who recalled the "happy and relaxed cooperation" that the British code-breakers enjoyed with "several American cryptanalysts" Hilton, 1988, p. 298). Furthermore, Jack Good (1993, p. 160) recalled receiving a book as a gift while at Bletchley Park and that this book was signed by a number of people, including Clifford, which would seem to suggest that Clifford was part of the social life at Bletchley and, moreover, that he came into contact with people (namely Good) from the Newmanry. I end this note with an intriguing comment from Shaun Wvlie (2011, p. 603):

Several analysts were seconded to us from the US Army and one from the US Navy; we also had highly professional advice at our tea parties [discussion sessions] from a US liaison officer.
However, Wylie did not name the officer.
${ }^{39}$ For other notions of 'normal subsemigroup', see Sections 8.6 and 9.2 as well as note 33 of Chapter 9
${ }^{40}$ The fact that (M1) and (M2) are independent has given rise to two different approaches to the generalisation of inverse semigroups. The first, in which (M1) is retained but (M2) is dropped, is the study of regular semigroups, on which, see Section 8.6. The second approach deals with semigroups in which idempotents commute; for a discussion of some of the classes of semigroups which come under this study, see Hollings (2009a). See also Ren and Shum (2012).
${ }^{41}$ Representations of this type went on to be studied by Munn: see Howie (1995b, §5.4) and Fountain (2010, §2).

Chapter 11, Matrix Representations of Semigroups

${ }^{1}$ A forthcoming article by Stanislav Kublanovskii and Eugenia Mogilyanskaya will provide more details on Ponizovskii's life.

Section 11.1. Sushkevich on matrix semigroups

${ }^{2}$ See note 5 of Chapter 3
${ }^{3}$ The main Ukrainian text reads Sushkevich, 1937d, p. 83): "As our elements we take pairs of vectors a and a^{\prime} together with ascalarfactor α from P." ("За наші елементи ми вважатимемо пари векторів a і a^{\prime} разом із скалярним множником α із P.") The French summary at the end of the paper, however, is a little more specific about α : "... "the scalar factors" α are elements of P or square roots of its elements." ("... "les facteurs scalaires" α sont des éléments de P ou des racines carrées de ces éléments.")

Section 11.2. Clifford on matrix semigroups

4 "Verf. betrachtet die Darstellung der Gruppen ohne Gesetz der eindeutigen Umkehrbarkeit, insbesondere der Kerngruppen, die Verf. schon in einer früheren Note [reference] behandelt hat. Zur Darstellung kommen Matrizen in Frage, deren Rng [sic] kleiner ist als Ihre Ordnung." (JFM 59.0145.03).
${ }^{5}$ Evidence for this may be found in surviving letters from Munn to Preston of the mid-1950s (as cited in Sections 1.211 .3 and 12.1.3), in which correspondence with Clifford is mentioned.

Section 11.3, W. Douglas Munn

${ }^{6}$ The details of this section are drawn from Howie (1999) and Reilly (2009), as well as from private correspondence with Professor Munn. For several short obituaries, see Churchhouse (2009), Duncan (2008a b), Hickey (2008, 2009), and Howie (2008).
${ }^{7}$ Private communication, 17 June 2008.
${ }^{8}$ Private communication, 2 July 2008.
${ }^{9}$ Ibid.

Section 11.4, The work of W. D. Munn
${ }^{10}$ Concerning radicals in semigroups, see also the comments on pages 186192196 and 211 in connection with the work of Hoehnke, Šulka, Schwarz, and Green, respectively. For a survey on radicals in semigroups, see Clifford (1970) or Roı̆z and Schein (1978); see also Clifford and Preston (1967, §11.6).
${ }^{11}$ Munn also reported in this letter that he had, in addition, received a preprint of the paper Thrall (1955), which concerns a particular class of matrix algebras - this is presumably the paper that Munn was referring to in the introduction to his thesis when he stated, in connection with certain matters arising from the study of semigroup algebras, that
[t]he author has learned from a private communication that a similar situation, arising in a different context, has recently been investigated by Professor R. M. Thrall; this work is to be published shortly. (Munn, 1955a, p. ii)

Thrall's work was rooted in that of W. P. Brown (1955) on matrix algebras which arise in connection with orthogonal groups; a short account of these may be found in the proceedings of the 1954 Amsterdam ICM (Brown, 1957). Although the algebra studied by Brown was, in Munn's words, "pretty nearly a semigroup algebra" (letter to Preston, 30 January 1955), the work of Brown and Thrall has been omitted from the account of semigroup algebras given here since, for the most part, both authors studied their algebras qua algebras, without indicating whether, or how, they might be obtained as the algebras of semigroups.
${ }^{12}$ Recall from Section 9.5 that Lyapin's student Lesokhin (1958) also developed some character theory for semigroups, as did Schwarz (1954a b d), who spoke about this work at the 1954 Amsterdam ICM (Schwarz, 1957), at which congress both Hewitt and Munn were present.
${ }^{13}$ This is stated explicitly in a letter from Munn to Preston, dated 12 March 1955.

Section 11.5, The work of J. S. Ponizovskii

${ }^{14}$ I have deviated here from the transliteration conventions set down in the preface by writing 'Иосиф' as 'Josif' - this is to reflect the fact that in his papers in English, Ponizovskii usually, though by no means always, styled himself 'J. S. Ponizovskii'.

15 "После того как рукопись настоящей статьи была отослана в редакцию «Математического сборника», автору стала известна статья Мунна, опубликованная в Proc. of Cambr. Phil. Soc. ... Статья Мунна содержит наиболее существенные предложения . . . а также некоторые другие утверждения . . . нашей статьи. Следует отметить, однако, что все результаты нашей статьи ... получены автором в 1952 г. и в июне 1953 г., за полтора года до опубликования статьи Мунна; по этим результатам автором была защищена кандидатская диссертация" (Ponizovskii, 1956, p. 241).

16 "Автор выражает глубокую благодарность Е. С. Ляпину за предложенную задачу и ценные советы в процессе ее решения." (Ponizovskii, 1956, p. 241).
${ }^{17}$ For an account of Ponizovskii's work that has been rephrased in terms of semisimplicity of semigroup algebras, see Hewitt's summary for Mathematical Reviews (MR0081292).

Chapter 12, Books, Seminars, Conferences, and Journals

Section 12.1. Monographs

Section 12.1.1. Sushkevich's Theory of generalised groups (1937)
1 "Настоящая монография представляет собой, быть может, первое по времени, связное изложение теории всех типов обобщенных групп. Сюда вошли как мои собственные исследования ... так и исследования других математиков, посвященные обобщенным группам." Sushkevich, 1937b, p. 3).
${ }^{2}$ It has been stated (see, for example, Schein 1994, p. 397) that very few copies of this book remain, the majority having been destroyed in the fighting over Kharkov during the Second World War. Indeed, I have played a role in perpetuating this idea (see Hollings 2009d). However, in the years since writing the article cited here, I have become much less convinced that this is the case: the libraries that I used on a visit to Kharkov appeared to retain many books from the relevant
period. Moreover, there are many copies of Sushkevich's book circulating within the thriving online trade in Russian second-hand books. At any rate, the tools of our electronic age obviate the problems of accessibility: a scanned version of the book is freely available online.

3 "Это объясняется тем, что группы без закона однозначной и неограниченной обратимости разработаны в математической литературе подробнее всех других типов обобщенных групп, и теория их приведена в некоторых своих частях к известной законченности." (Sushkevich, 1937b, p. 3).

4 "кроме общей математической культуры" (Sushkevich, 1937b, p. 3).
5 "знакомство с классической теорией обычных групп" (Sushkevich, 1937b, p.3).
6 "Настоящий труд предназначается для всех любителей групп, начиная от студентов старших курсов физматов и кончая квалифицированными математиками." (Sushkevich, 1937b, p. 3).

7 'анализ общих законов действия' (Sushkevich, 1937b, p. 39).
8 ‘главнейшие законы действия и их обобщения' (Sushkevich, 1937b, p. 42).
9 "K обобщенным грудам Бера можно причислить и "бригады", рассматриваемые Corral'ем, „бригадою" Corral называет совокупность подстановок n символов, имеющую то свойство, что, если A, B, C три любые (не непременно различные) подстановки этой совокупности, то к ней же принадлежит и подстановка $A B C$ (в случае так называемой „совершенной" бригады) или подстановка $A B^{-1} C$ (в случае „несовершенной" бригады)." (Sushkevich, 1937b, p. 171).
${ }^{10}$ If such was indeed the case: see note 2

Section 12.1.2, Lyapin's Semigroups (1960)

11 "В конце 50-х годов стало очевидным, что теория полугрупп выросла в самостоятельную область общей алгебры, имеющую свои задачи и методы. Появились монографик, посященные этой теории. Среди них первая в мировой литературе книга Е. С. Ляпина «Полугруппы», сыгравшая значительную роль в развитии теории полугрупп. В опубликованных к этому времени работах о полугруппах был заметный разнобой в подходах к изучению, методах, системах построений и терминологии. В книге Ляпина впервые в связной форме излагались основные направления алгебраической теории полугрупп, выдвигались общие точки зрения и намечались некоторые перспективы развития." (Gluskin, 1968, p. 324).

12 "важные результаты" (Lyapin, 1953b, p. 302).
${ }^{13}$ Varieties of algebras were introduced by Garrett Birkhoff (1935), while the study of group varieties was initiated by B. H. Neumann in his 1935 Cambridge PhD thesis Identical relations in groups (published as Neumann 1937). On varieties of groups, see the article Neumann (1967a) or the monograph Neumann (1967b). In connection with semigroup varieties, see also the work of Pollák, cited on page 208
${ }^{14}$ This may have been connected with the paper shortages mentioned in note 42 of Chapter 9
15 "Die Behandlungsweise ist bis zum Ende ganz einfach, leicht lesbar, manchmal vielleicht ein wenig ausführlich." (Zbl 0100.02301).

16 "Schade, daß Verf. die mit den behandelten Stoffteilen zusammenhängenden wichtigsten, noch offenen Probleme nicht darlegt, die zugleich die Richtung für die weiteren Forschungen zeigen könnten." (Zbl 0100.02301).

17 "тогда только зарождавшейся" Gluskin, 1961a, p. 248).
18 "не охватывающие даже содержания упомянутой выше книги А. K. Сушкевича" Gluskin, 1961a, p. 248).

19 "где впервые в мировой литературе дана систематизация большого материала по теории полугрупп" (Gluskin, 1961a, p. 248).

20 "назрела необходимость" Gluskin, 1961a, p. 248).
21 "Автор монографии - один из ведущих математиков в области теории полугрупп, и, понятно, серьезное место в книге занимает изложение его собственных результатов и результатов его учеников." Gluskin, 1961a, p. 249).

22 "книга богато иллюстрирована примерами полугрупп преобразовании" Gluskin, 1961a, p. 249).

23 "В целом книга окажется весьма полезной как для алгебраистов, так и для других математиков, которым в их исследованиях приходится встречаться с полугруппами." Gluskin, 1961a, p. 250).

Section 12.1.3. Clifford and Preston's The algebraic theory of semigroups (1961, 1967)
${ }^{24}$ Indeed, the first paragraph of Clifford and Preston's volume 1 might be regarded as the origin of the present book: the references there to de Séguier, Dickson, and Sushkevich were the starting point for my investigation of the development of semigroup theory.

25 "Авторы монографии - известные специалисты по теории полугрупп, обогатившие ее рядом первоклассных достижений. Профессор А. Клиффорд - американский алгебраист, являющийся одним из пионеров теории полугрупп Представитель более молодого поколения английский алгебраист профессор Г. Престон, ныне живущий в Австралии, известен своими важными работами по инверсным полугруппам." (Clifford and Preston, 1961, Russian trans., p.5).

26 "В развитие теории полугрупп немалый вклад внесли советские алгебраисты. Некоторые результаты советских математиков вошли в книгу Но в общем знакомство авторов с советскими работами по теории полугрупп было недостаточным и исследования, проведенные в СССР, отражены в книге Клиффорда и Престона непропорционально мало." (Clifford and Preston, 1961, Russian trans., p. 6).
27 "Мы надеемся, что этот перевод будет так же хорошо встречен советскими математиками, как английский перевод книги Е. С. Ляпина «Полугруппы» - в западных странах. Эти две работы скорее дополняют, нежели дублируют одна другую; книга профессора Е. С. Ляпина охватывает более широкий материал, в нашей книге более детально изложены некоторые темы." Clifford and Preston, 1961, Russian trans., p. 9).

Section 12.1.4, Other books

${ }^{28}$ The list of semigroup-related textbooks and monographs given in this subsection is, of course, far from exhaustive. Aside from those already mentioned (both here and in earlier chapters), we also have Petrich (1974, 1977), Lallement (1979), Higgins (1992), Grillet (1995a), and Rhodes and Steinberg (2009). Further references may be found in the preface to Howie (1995b).
${ }^{29}$ In their preface, Petrich and Reilly (1999, p. ix) describe their text as "one of the proud grandchildren of Sushkevich's book".

Section 12.2, Seminars on semigroups

${ }^{30}$ Karl H. Hofmann, private communication, 24th November 2012. Indeed, some NSF funding also seems to have been available in the late 1950s, for this funded (at least part of) Preston's visit to Tulane in 1956-1958 (Section 12.1.3) - see, for example, the acknowledgement in Preston (1959).

Section 12.3. Czechoslovakia, 1968, and Semigroup Forum

${ }^{31}$ The following is a decidedly non-exhaustive list of conferences on (algebraic) semigroups and related topics, up to 2013. More general algebraic conferences are omitted, as are general conferences with semigroup splinter sessions, such as the British Mathematical Colloquium, or the International Congress of Mathematicians (thus, for instance, the 1970 Nice semigroup conference mentioned in Section 12.2 is omitted from this list); a loose criterion for inclusion in the list is that the conference contain the word 'semigroup' in its title. However, some conferences of a more computational or automata- and formal language-related nature have been omitted. Details of each conference are given in as abbreviated a form as possible: location, month, year, reference ('reference' is an appropriate published source on the conference: announcement, report, or proceedings). The title of a conference and fuller details are given only in those cases where no reference is available.
(1) Smolenice, Czechoslovakia, June 1968 Bosák 1968; Lyapin and Shevrin 1969; Hofmann 1995).
(2) Detroit, Michigan, USA, June 1968 (Folley, 1969).
(3) Sverdlovsk, USSR, February 1969 (Shevrin, 1969b).
(4) Szeged, Hungary, August/September 1972 (Anon, 1972b).
(5) DeKalb, Illinois, USA, February 1973 (Anon, 1973).
(6) Szeged, Hungary, August 1976 (Pollák, 1979).
(7) Sverdlovsk, USSR, June 1978 (Shevrin, 1979).
(8) New Orleans, Louisiana, USA, September 1978 (Nico, 1979).
(9) Oberwolfach, FRG, December 1978 (Jürgensen et al., 1981).
(10) Melbourne, Australia, October 1979 (Hall et al., 1980).
(11) Oberwolfach, FRG, May 1981 (Hofmann et al., 1983).
(12) Szeged, Hungary, August 1981 (Anon, 1982; Pollák et al., 1985).
(13) Siena, Italy, October 1982 (Migliorini, 1983).
(14) Milwaukee, Wisconsin, USA, September 1984 (Byleen et al., 1985).
(15) Greifswald, GDR, November 1984 (Hoehnke, 1985).
(16) Oberwolfach, FRG, February/March 1986 (Jürgensen et al., 1988).
(17) Baton Rouge, Louisiana, USA, March 1986 (Koch and Hildebrandt, 1986).
(18) Chico, California, USA, April 1986 Goberstein and Higgins, 1987).
(19) Kariavattom, Trivandrum, India, July 1986 (Nambooripad et al., 1985).
(20) Lisbon, Portugal, June 1988 (Almeida et al., 1990).
(21) Berkeley, California, USA, July/August 1989 (Rhodes, 1991).
(22) Melbourne, Australia, July 1990 (Hall et al., 1991).
(23) Oberwolfach, FRG, July 1991 (Howie, 1992; Howie et al., 1992).
(24) Luino, Italy, June 1992 (Lallement 1993; Bonzini et al. 1993).
(25) Qingdao, China, May 1993 (Shum and Zhou, 1992).
(26) York, UK, August 1993 (Fountain, 1995).
(27) Colchester, UK, August 1993 (Higgins, 1993).
(28) Hobart, Australia, January 1994 (Trotter, 1993).
(29) New Orleans, Louisiana, USA, March 1994 (Hofmann and Mislove, 1996).
(30) Kočovce, Slovakia, May 1994 (Grošek and Satko, 1995).
(31) Amarante, Portugal, June 1994 (Almeida, 1994).
(32) Saint Petersburg, Russia, June 1995 (Ponizovskii, 1994a).
(33) Kunming, China, August 1995 (Shum et al., 1998).
(34) Prague, Czech Republic, July 1996 (Demlova, 1995).
(35) Tartu, Estonia, August 1996 (Kilp, 1996).
(36) St Andrews, UK, July 1997 (Ruškuc and Howie, 1996).
(37) Lincoln, Nebraska, USA, May 1998 (Birget et al., 1998).
(38) Braga, Portugal, June 1999 (Smith et al., 2000).
(39) Lisbon, Portugal, November 2002 (Araújo et al., 2004).
(40) Lisbon, Portugal, July 2005 (André et al., 2007).
(41) Fountainfest: "Semigroups, categories and automata" - A conference celebrating John Fountain's 65th birthday and his mathematical achievements, University of York, UK, 12-14 October 2006.
(42) Tartu, Estonia, June 2007 (Laan et al., 2008).
(43) Workshop on Groups, Semigroups and Applications (A day to remember W. Douglas Munn on the occasion of his 80th birthday), Centro de Álgebra da Universidade de Lisboa, Portugal, 24 April 2009.
(44) International Conference on Geometrical and Combinatorial Methods in Group Theory and Semigroup Theory, Department of Mathematics, University of Nebraska, Lincoln, USA, 17-21 May 2009.
(45) Porto, Portugal, July 2009 (Costa et al., 2011).
(46) Groups and Semigroups: Interactions and Computations, Faculdade de Ciências, Universidade de Lisboa, Portugal, 25-29 July 2011.
(47) Workshop on Semigroups (To remember John M. Howie on the occasion of his 76th birthday), Centro de Álgebra da Universidade de Lisboa, Portugal, 23-25 May 2012.
(48) Semigroups and Applications, Department of Mathematics, Uppsala University, 30 August - 1 September 2012.
(49) Workshop on Semigroup Representations, International Centre for Mathematical Sciences, Edinburgh, UK, 10-12 April 2013.
(50) The 4th Novi Sad Algebraic Conference in conjunction with a Workshop on Semigroups and Applications, Novi Sad, Serbia, 5-9 June 2013.
(51) International Conference on Geometric, Combinatorial and Dynamics aspects of Semigroup and Group Theory on the occasion of the 60th birthday of Stuart Margolis, Bar Ilan, Israel, 11-14 June 2013.

Section 12.3.1, The first international conference

${ }^{32}$ See items (9), (11), (16), and (23) in the list in note 31
${ }^{33}$ The expository lectures from the conference were published in the book Arbib (1968); many of the remaining lectures were published in other places - see the appendix of Arbib (1968) for details.
${ }^{34}$ Private communication, 15 September 2010.
${ }^{35}$ The brief account of the conference that is given here is drawn principally from the report published by Lvapin and Shevrin (1969) in Uspekhi matematicheskikh nauk the following year, together with some details kindly supplied by Paul Mostert. See Bosák (1968) for another report of the conference. It should be noted, however, that the reports Lvapin and Shevrin (1969) and Bosák (1968) differ on some details. For a definitive account of the conference, we must await that being prepared by Mostert to mark its 45th anniversary.
${ }^{36}$ Paul S. Mostert, private communication, 16 January 2013
${ }^{37}$ Lyapin and Shevrin (1969) indicated that the lengths of lectures were 60 and 30 minutes, although the conference programme gives the timings as 45 and 30 minutes. Paul S. Mostert recalls that the "talks nearly always went over the allotted time" (Paul S. Mostert, private communication, 16 January 2013).
${ }^{38}$ Paul S. Mostert, private communication, 17 January 2013.

Section 12.3.2, A dedicated journal

${ }^{39}$ Paul S. Mostert, private communication, 15 September 2010.
${ }^{40}$ Ibid.

Bibliography

In order to save space, the titles of certain frequently cited journals are given in a highly abbreviated form: a key to these abbreviations appears below.
An (R) in a bibliographic reference indicates that a source is in Russian.

List of abbreviations of journal titles

AHES	Archive for History of Exact Sciences
AJM	American Journal of Mathematics
AM	Annals of Mathematics
$A M M$	The American Mathematical Monthly
AMST	American Mathematical Society Translations
ASM	Acta Scientiarum Mathematicarum (Szeged)
$B A M S$	Bulletin of the American Mathematical Society
$B L M S$	Bulletin of the London Mathematical Society
BSMF	Bulletin de la Société mathématique de France
CJM	Canadian Journal of Mathematics
CMJ	Czechoslovak Mathematical Journal
$C M Z$	Chekhoslovatskii matematicheskii zhurnal
$C R$	Comptes rendus hebdomadaires des séances de l'Académie des sciences de Paris
$D A N$	Doklady Akademii nauk SSSR
HM	Historia Mathematica
$I A N$	Izvestiya Akademii nauk SSSR. Seriya matematicheskaya
IVUZM	Izvestiya vysshikh uchebnykh zavedenii. Matematika
$J A$	Journal of Algebra
$J G T U$	Journal of Sciences of the Gakugei Faculty, Tokushima University
$J L M S$	Journal of the London Mathematical Society
JRAM	Journal für die reine und angewandte Mathematik
KMSR	Kōdai Mathematical Seminar Reports
MA	Mathematische Annalen
MFC	Matematicko-fyzikálny časopis. Slovenská akadémia vied
MM	Mathematics Magazine
$M N$	Mathematische Nachrichten
MS	Matematicheskii sbornik
MSl	Mathematica Slovaca
MZ	Mathematische Zeitschrift
$O M J$	Osaka Mathematical Journal
PAMS	Proceedings of the American Mathematical Society
$P C P S$	Proceedings of the Cambridge Philosophical Society
PJA	Proceedings of the Japan Academy
PLMS	Proceedings of the London Mathematical Society
PNAS	Proceedings of the National Academy of Sciences of the USA
QJM	Quarterly Journal of Mathematics, Oxford
$R M S$	Russian Mathematical Surveys
$S C D$	Séminaire Châtelet-Dubreil; partie complémentaire: demi-groupes
$S F$	Semigroup Forum
$S D$	Séminaire Dubreil. Algèbre et théorie des nombres
$S M D$	Soviet Mathematics: Doklady
$S M J$	Siberian Mathematical Journal
$S M Z$	Sibirskii matematicheskii zhurnal
SKMO	Soobshcheniya Kharkovskogo matematicheskogo obshchestva
TAMS	Transactions of the American Mathematical Society
UMN	Uspekhi matematicheskikh nauk
$U Z L G P I$	Uchenye zapiski Leningradskogo gosudarstvennogo pedagogicheskogo instituta
ZKMO	Zapiski Kharkovskogo matematicheskogo obshchestva

Ales Adamovich and Daniil Granin (1982). Blockade book, Izdat. Sovietskii pisatel (R); English trans.: A book of the blockade, Raduga, Moscow, 1983.

Robert Adelstein (1976). Keeping the flame alight, Nature 263, 30 Sept., 363-364.
S. I. Adyan (1960). The problem of identity in associative systems of a special form, DAN 135, 1297-1300 (R); English trans.: SMD 1, 1360-1363.
A. Ya. Aizenshtat (1962a). On semisimple semigroups of endomorphisms of ordered sets, DAN 142(1), 9-11 (R).
_ (1962b). Defining relations of the endomorphism semigroup of a finite linearly ordered set, SMZ 3, 161-169 (R).
A. Ya. Aizenshtat and B. M. Schein (2007). Evgeniy Sergeyevich Lyapin - in memoriam, Aequationes Math. 73, 1-9.
N. I. Akhiezer (1956). Kharkov Mathematical Society, ZKMO 24, 31-39 (R).
A. A. Albert (1939). Structure of algebras, Amer. Math. Soc. Colloq. Publ., vol. XXVI, Amer. Math. Soc.
A. D. Aleksandrov, A. N. Kolmogorov, and M. A. Lavrentiev (1956). Mathematics: its content, methods and meaning, 3 vols., Izdat. Akad. nauk SSSR, Moscow (R); English trans. in one vol.: Dover, Mineola, NY, 1999.
D. A. Aleksandrov (1996). Why Soviet scientists stopped publishing abroad: the establishment of the self-sufficiency and isolation of Soviet science 1914-1940, Voprosy istor. estest. tekhn. 3, 4-24 (R).
P. S. Aleksandrov (1979). Pages from an autobiography, UMN 34(6), 219-249; ibid. 35(3), 241-278 (R); English trans.: RMS 34(6) (1979), 267-302; ibid. 35(3), 315-358.
P. S. Aleksandrov, Yu. L. Ershov, M. I. Kargapolov, E. N. Kuzmin, D. M. Smirnov, A. D. Taimanov, and A. I. Shirshov (1968). Anatolii Ivanovich Maltsev: obituary, UMN 23(3), 159-170 (R); English trans.: RMS 23(3), 157-168.
P. S. Aleksandrov and A. G. Kurosh (1959). International Congress of Mathematicians in Edinburgh, UMN 14(1), 249-253 (R).
P. S. Aleksandrov, M. Ya. Vygodskii, and V. I. Glivenko (eds.) (1932). Mathematics in the USSR after fifteen years, GTTI, Moscow-Leningrad (R).
J. Almeida (1994). Conference on semigroups, automata and languages, Amarante, Portugal, June 20-25, 1994, SF 48, 130.
Jorge Almeida, Gabriella Bordalo, and Philip Dwinger (eds.) (1990). Lattices, semigroups, and universal algebra, Plenum Press.
Jorge Almeida, Stuart Margolis, Benjamin Steinberg, and Mikhail Volkov (2009). Representation theory of finite semigroups, semigroup radicals and formal language theory, TAMS 361(3), 1429-1461.
J. Almeida and D. Perrin (2009). Obituary: Gérard Lallement (1935-2006), SF 78, 379-383.
Shimshon Amitsur (1951). Semi-group rings, Riveon Lematematika 5, 5-9 (in Hebrew).
D. D. Anderson and E. W. Johnson (1984). Ideal theory in commutative semigroups, SF 30, 127-158.
(2001). Abstract ideal theory from Krull to the present, in D. D. Anderson and I. J. Papick (eds.), Ideal theoretic methods in commutative algebra: in honor of James A. Huckaba's retirement, Lecture Notes in Pure and Applied Mathematics, vol. 220, Dekker, NY, pp. 27-47.

Nancy D. Anderson (1989). French mathematical seminars: a union list, Amer. Math. Soc., 2nd ed.
J. M. André, M. J. J. Branco, V. H. Fernandes, J. Fountain, G. M. S. Gomes, and J. C. Meakin (eds.) (2007). Proceedings of the International Conference"Semigroups and formal languages" in honour of the 65th birthday of Donald B. McAlister, World Sci. Publ., Hackensack, NJ.
Giulio Andreoli (1915). Sui gruppi di sostituzioni che operano su infiniti elementi, Rend. circ. mat. Palermo 40, 299-335; Atti Reale Accad. Lincei. Rend. Classe Sci. Fis. Mat. Nat. 24, fasc. 10, 441-445.
\qquad (1940). Sulla teoria delle sostituzioni generalizzate e dei loro gruppi generalizzati, Rend. Accad. Sci. Fis. Mat. Napoli (4) 10, 115-127.
I. K. Andronov (1967). Arnold, Igor Vladimirovich, 06.03.1900 - 20.10.1948, in Half a century of development of school mathematical education in the USSR, Prosveshchenie, Moscow, pp. 128-132 (R).
O. Anisimov (1950). The Soviet system of education, Russian Review 9(2), 87-97.

Anon (1921). Scientific publications for Russia, Nature 107(2697), 7 Jul., 594-594.
Anon (1925). The Russian Academy of Sciences, Nature 116(2916), 19 Sept., 448449.

Anon (1931). Soviet mathematicians, support your journal!, MS 38(3-4), 1 (R).
Anon (1940). All-Union conference on algebra, 13-17 November 1939, IAN 4(1), 127-136 (R).
Anon (1941a). American mathematicians and the U.S.S.R., Nature 148(3758), 8 Nov., 560.
Anon (1941b). American mathematicians and the U.S.S.R., Nature 148(3761), 29 Nov., 657.
Anon (1943). Abstracts of papers: algebra and theory of numbers, BAMS 49(11), 849-851.
Anon (1948). Meetings of the Moscow Mathematical Society, UMN 3(4), 152-155 (R).

Anon (1951). To the readers, CMJ 1(1), 1-2.
Anon (1952). Meetings of the Moscow Mathematical Society, UMN 7(2), 145-148 (R).

Anon (1953a). Notes, BAMS 59(5), 486-492.
Anon (1953b). Opening of the Slovak Academy of Sciences, MFC 3(1-2), 5 (in Slovak).
Anon (1955). Heinrich Brandt, Jahresber. Deutsch. Math.-Verein. 57, 8.
Anon (1956). National Science Foundation Russian translation programme, Nature 178, 14 Jul., 70.
Anon (1958a). Foreign Technical Information Center, Science 127(3294), 14 Feb., 332-333.
Anon (1958b). Translations of Russian scientific literature, Nature 181(4616), 19 Apr., 1109.
Anon (1958c). Russian scientific journals available in English, Nature 182, 6 Sept., 632.

Anon (1958d). 30 mathematicians from Russia in Edinburgh, The Times (London), 15 Aug., 10.
Anon (1959). Survey of Soviet science literature, Science 130(3371), 7 Aug., 324.

Anon (1960). Foreign science information: a report on translation activity in the United States, Notices Amer. Math. Soc. 7(1), 38-46.
Anon (1961). Third All-Union Colloquium on General Algebra, 21-28 September 1960, UMN 16(2), 197-239 (R).
Anon (1962a). Anton Kazimirovich Sushkevich: obituary, UMN $\mathbf{1 7}(2), 165$ (R).
Anon (1962b). Part I: A general appraisal of mathematics in the USSR, in LaSalle and Lefschetz (1962), pp. 3-13.
Anon (1963). Pure mathematics at Monash: Prof. G. B. Preston, Nature 197, 30 Mar., 1252.
Anon (1966). Inter-university Scientific Symposium on General Algebra, Tartu, 1966, Tartu. Gos. Univ. (R).
Anon (1970a). Oystein Ore (1899-1968), J. Combinatorial Theory 8, i-iii.
Anon (1970b). On the occasion of the centenary of the birth of Vladimir Ilich Lenin, UMN 25(2), 3-4 (R); English trans.: RMS 25(2) (1970), 1-2.
Anon (1972a). Academician László Rédei is 70 years old, Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Közl. 20(3-4), 197-201 (in Hungarian).
Anon (ed.) (1972b). Mini-conference on semigroup theory: held in Szeged, August 29-September 1, 1972, József Attila Univ. and János Bolyai Math. Soc.
Anon (ed.) (1973). Proceedings of a symposium on inverse semigroups and their generalisations (Northern Illinois University, DeKalb, Illinois, 1973), Northern Illinois Univ., DeKalb, IL.
Anon (1981). László Rédei, $A S M$ 43, 3-4.
Anon (1982). Report on the conference Semigroups, structure theory and universal algebraic problems, SF 24, 93.
Anon (1984). Citation for James Alexander Green (Senior Berwick Prize 1984), BLMS 16, 654-656.
Anon (1986). Ohio inquiry ordered on plagiarism charge, The New York Times, 31 Dec.
Anon (1987). Follow-up on the news; Plagiarism charge against professor, The New York Times, 26 Apr.
Anon (1989). Academician Anatolii Ivanovich Maltsev (on the 80th anniversary of his birth), SMZ 30(6), 3-6 (R).
Anon (1991). In memoriam: Robert R. Stoll, Modern Logic 1(4), 359.
Anon (1993a). Obituary: Alfred Hoblitzelle Clifford, SF 46, 137.
Anon (1994). Citation for David Rees, FRS (Pólya prize, 1993), BLMS 26, 413.
Anon (1996a). Articles by A. H. Clifford including those in the bibliography published in Semigroup Forum 7 (1974) 52-54, SF 52, 3-6; erratum by Michael Mislove: SF 87(2) (2013), 494.
Anon (1996b). Interview: Marcel-Paul Schützenberger: the miracles of Darwinism, Origins \mathcal{G} Design, 17(2).
Anon (1998). An interview with J. A. Green, Bull. Intern. Center Math. 4, 5-7.
Anon (2002). Prizewinners. James Alexander Green: De Morgan Medal 2001, BLMS 34, 633-634.
Anon (2009). Obituary: Takayuki Tamura (1919-2009), SF 79, 1.
J. C. Anscombre (1973). Sur un extension du lemme de Green, Atti Accad. Naz. Lincei. Rend. Classe Sci. Fis. Mat. Natur. 55, 650-656.
I. M. Araújo, M. J. J. Branco, V. H. Fernandes, and G. M. S. Gomes (eds.) (2004). Proceedings of the workshop "Semigroups and languages" (Lisbon, Portugal, 2729 November 2002), World Sci., River Edge, NJ.
Michael A. Arbib (ed.) (1968). Algebraic theory of machines, languages, and semigroups, Academic Press, NY and London.
Raymond Clare Archibald (ed.) (1938). Semicentennial addresses of the American Mathematical Society, 2 vols., Amer. Math. Soc.
E. P. Armendariz (1980). Book review: 'Von Neumann regular rings' by K. R. Goodearl, BAMS 3(1), 752-757.
I. V. Arnold (1929). Ideale in kommutativen Halbgruppen, MS 36, 401-408.
(1938). Theoretical arithmetic, GUPI, Moscow (R).
(1947). Negative numbers in a course of algebra, Izdat. Akad. ped. nauk RSFSR (R).
Sergei Artemov, Yuri Matiyasevich, Grigori Mints, and Anatol Slissenko (2010). Preface to special issue dedicated to Nikolai Alexandrovich Shanin on the occasion of his 90th birthday, Ann. Pure Appl. Logic 162(3), 173-174.
E. Artin (1950). The influence of J. H. M. Wedderburn on the development of modern algebra, BAMS 56, 65-72.
Keizo Asano (1939). Arithmetische Idealtheorie in nichtkommutativen Ringen, Japanese J. Math. 16, 1-36.
(1949). Zur Arithmetik in Schiefringen I, OMJ 1, 98-134.

Keizo Asano and Kentaro Murata (1953). Arithmetical ideal theory in semigroups, J. Inst. Polytech. Osaka City Univ. Ser. A Math. 4, 9-33.

William Aspray (1989). The emergence of Princeton as a world center for mathematical research, 1896-1939, in Duren (1989a), vol. 2, pp. 195-215.
M. F. Atiyah and I. G. Macdonald (1969). Introduction to commutative algebra, Addison-Wesley.
F. V. Atkinson (1951). The normal solubility of linear equations in normed spaces, MS 28, 3-14 (R).
K. E. Aubert (1962). Theory of x-ideals, Acta Math. 107, 1-52.
\qquad (1970). Øystein Ore and his mathematical work, Nord. Mat. Tidsskr. 18, 121-126 (in Norwegian).
Michèle Audin (2009). Fatou, Julia, Montel, le grand prix des sciences mathématiques de 1918, et après..., Springer, 2009; English trans.: Lecture Notes in Mathematics, vol. 2014 (History of Mathematics Subseries), Springer, 2011.
Francisco J. Ayala (1985). Theodosius Dobzhansky (1900-1975), Biogr. Mem. Nat. Acad. Sci. USA, pp. 163-213.
R. Baer (1929). Zur Einführung des Scharbegriffs, JRAM 160, 199-207.
R. Baer and F. Levi (1932). Vollständige irreduzibele Systeme von Gruppenaxiomen, Sitzungsber. Heidelberg. Akad. Wiss. 2, 1-12.
Nicholas Baldwin (1988). The Society for the Protection of Science and Learning Archive, Bodleian Library, Oxford.
Robert Ballieu (1950). Une relation d'équivalence dans les groupoïdes et son application à une classe de demi-groupes, in $I I I^{e}$ congrès national des sciences, Bruxelles 1950, vol. 2, Féd. belge Soc. sci., Bruxelles, pp. 46-50.
D. L. Banks (1996). A conversation with I. J. Good, Statistical Science 11, 1-19.
N. K. Bari and D. E. Menshov (1959). On the International Congress of Mathematicians in Edinburgh, UMN 14(2), 235-238 (R).
W. Bateson (1925). Science in Russia, Nature 116(2923), 7 Nov., 681-683.

Raymond Bauer (1954). The Bolshevik attitude toward science, in Friedrich (1954), pp. 141-156; reprinted by Harvard Univ. Press, 1954.
Martina Bečvářová (2013). The Union of Czech Mathematicians and Physicists: the first 150 years, Math. Intelligencer 35(1), 28-35.
Heinrich Begehr (ed.) (1998). Mathematik in Berlin: Geschichte und Dokumentation, Shaker, Aachen.
L. Behanzin (1958). Quelques considérations sur la théorie des demi-amas, $S D$ 12(1) (1958-1959), exp. no. 3, 1-18.
E. T. Bell (1915). An arithmetical theory of certain numerical functions, Univ. Washington Publ. Math. Phys. Sci. 1 (Aug), 1-44.
_ (1921). Arithmetical paraphrases, TAMS 22, 1-30; II, ibid., 198-219. (1923). Euler algebra, TAMS 25, 135-154.
-_ (1927a). Arithmetic of logic, TAMS 29(3), 597-611. 55-75; separate bibliography: ibid. 34(4), 195-196.
__ (1927c). Algebraic arithmetic, Amer. Math. Soc. Colloq. Publ., vol. VII, Amer. Math. Soc.
(1930). Unique decomposition, $A M M$ 37, 400-418.
(1931a). Arithmetical composition and inversion of functions over classes, TAMS 33(4), 897-933. (1931b). Rings of ideals, AM 32(1), 121-130.
_- (1933a). Finite ova, PNAS 19, 577-579.
(1933b). A suggestion regarding foreign languages in mathematics, AMM 40(5), 287.

- (1937). Men of mathematics, 2 vols., Simon and Schuster, New York.
(1938). Fifty years of algebra in America, 1888-1938, in Archibald (1938), vol. 2, pp. 1-34.
(1945). The development of mathematics, 2nd ed., McGraw-Hill.
(1952). Mathematics: queen and servant of science, G. Bell and Sons, Ltd., London.
V. D. Belousov, S. D. Berman, E. S. Lyapin, A. V. Mikhalev, B. V. Novikov, B. I. Plotkin, L. N. Shevrin, and L. A. Skornyakov (1987). Lazar Matveevich Gluskin (obituary), UMN 42(4), 113-114 (R); English trans.: RMS 42(4), 139140.

Adi Ben-Israel (2002). The Moore of the Moore-Penrose inverse, Electronic J. Linear Algebra 9, 150-157.
Adi Ben-Israel and Thomas Nall Eden Greville (2003). Generalized inverses: theory and applications, Canadian Math. Soc. Books in Mathematics, no. 15, 2nd ed., Springer.
A. F. Bermant (1937). On the Soviet mathematical press, UMN, no. 3, 254-262 (R).

Mikhail Bernstein (1948). Higher education in the USSR during and after the war, The Educational Forum 12(2), 209-212.
Michael J. Berry (ed.) (1988). Science and technology in the USSR, Longman Guide to World Science and Technology, Longman.
W. Bertram and M. Kinyon (2010). Associative geometries I: torsors, linear relations and Grassmannians, J. Lie Theory 20(2), 215-252.

Alain Bigard (1964). Sur quelques équivalences remarquables dans un groupoïde quasi-résidué, $C R$ 258, 3414-3416.
Štěpánka Bilová (2004). Lattice theory in Czech and Slovak mathematics until 1963, in Eduard Fuchs (ed.), Mathematics throughout the ages II, Výzkumné centrum pro dějiny vědy, Prague, pp. 185-346.
Jean-Camille Birget, Stuart W. Margolis, John C. Meakin, and Mark V. Sapir (1998). International conference on algorithmic problems in groups and semigroups, University of Nebraska-Lincoln, May 11-15, 1998, SF 56, 150.
Garrett Birkhoff (1934). Hausdorff groupoids, AM 35(2), 351-360.

- (1935). On the structure of abstract algebras, PCPS 31(4), 433-454.
(1948). Lattice theory, Amer. Math. Soc. Colloq. Publ., vol. XXV, Amer. Math. Soc.
Garrett Birkhoff and M. K. Bennett (1988). Felix Klein and his "Erlanger Programm", in W. Aspray and P. Kitcher (eds.), History and philosophy of modern mathematics, Minnesota Studies in the Philosophy of Science, vol. XI, Univ. Minnesota Press, Minneapolis, pp. 145-176.
George D. Birkhoff (1938). Fifty years of American mathematics, in Archibald (1938), vol. 2, pp. 270-315.

Vadim J. Birstein (2001). The perversion of knowledge: the true story of Soviet science, Westview Press, Boulder, CO.
J. O'M. Bockris (1958). A scientist's impressions of Russian research, The Reporter 18(14), 20 Feb., 15-17.
Kenneth P. Bogart (1995). Obituary: R. P. Dilworth, Order 12, 1-4.
Kenneth P. Bogart, Ralph Freese, and Joseph P. S. Kung (eds.) (1990). The Dilworth theorems: selected papers of Robert P. Dilworth, Birkhäuser.
Stojan M. Bogdanovič and Miroslav D. Čirič (1993). Semigroups, Prosveta, Niš (in Serbian).
Frederic Bohnenblust, Richard Badger, and Lee A. DuBridge (1963). Morgan Ward, 1901-1963, California Institute of Technology, Pasadena, CA.
Albert Boiter (1972). Samizdat: primary source material in the study of current Soviet affairs, Russian Review 31(3), 282-285.
L. A. Bokut (1967). On the embedding of rings in a skew field, DAN $\mathbf{1 7 5}(4)$, 755-758 (R); English trans.: SMD 175(4), 901-904.
_ (1968). Groups with a relative standard basis, SMZ 9, 499-521 (R); English trans.: SMJ 9, 377-393.
\qquad (1969a). Groups of fractions of multiplicative semigroups of certain rings I, SMZ 10, 246-286; II, ibid., 744-799; III, ibid., 800-819 (R); English trans.: SMJ 10, 172-203; II, ibid., 541-582; III, ibid., 583-600.
(1969b). On a problem of Maltsev, SMZ 10, 965-1005 (R); English trans.: SMJ 10, 706-739.
(1987). Embedding of rings, $U M N$ 42(4), 87-111 (R); English trans.: $R M S$ 42(4), 105-138.
(1989). Memories of Anatolii Ivanovich Maltsev, Byull. Sib. Mat. Ob. Novosibirsk, 22-25 (R).
_ (2003). Anatolii Illarionovich Shirshov (1921-1981) and Anatolii Ivanovich Maltsev (1909-1967) in my life, in Anatolii Illarionovich Shirshov - from a cohort of great scientists, Istoriko-kraevedcheskii muzei MU "Kulturno-dosugovii tsentr" administratsii g. Aleiska, pp. 27-37 (R).

Bologna (1929). Atti del congresso internazionale dei matematici, Bologna, 3-10 Set. 1928, Nicola Zanichelli, Bologna.
C. Bonzini, A. Cherubini, and C. Tibiletti (eds.) (1993). Semigroups. Algebraic theory and applications to formal languages and codes. Papers from the International Conference held in Luino, June 22-27, 1992, World Sci. Publ., River Edge, NJ.
George Boole (1854). An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities, Macmillan, Cambridge.
A. A. Borovkov, V. Ya. Kozlov, Yu. V. Linnik, D. K. Faddeev, P. N. Golovanov, A. I. Kostrikin, P. S. Novikov, and N. N. Chentsov (1969). Ivan Nikolaevich Sanov: obituary, UMN 24(4), 177-179 (R); English trans.: RMS 24(4), 159161.
K. A. Borovkov (1994). Russian-English, English-Russian dictionary on probability, statistics, and combinatorics, Society for Industrial and Applied Mathematics, Philadelphia; TVP Science Publisher, Moscow.
Otakar Borůvka (1941). Über Ketten von Faktoroiden, MA 118, 41-64.
\qquad (1960a). Grundlagen der Gruppoid- und Gruppentheorie, Hochschulbücher für Mathematik, vol. 46, VEB Deutscher Verlag der Wissenschaften, Berlin; Czech trans.: Nakladatelství Česk. akad. věd, Prague, 1962; English trans.: Birkhäuser, Basel, 1976. (1960b). Décompositions dans les ensembles et théorie des groupoïdes, $S D$ 14 (1960-1961), exp. no. 22 bis, 19-35.
Juraj Bosák (1968). First international symposium on the theory of semigroups, Mat. časopis. Slovensk. Akad. Vied 18(4), 244-246 (in Slovak).
N. Bourbaki (1943). Éléments de mathématique: algèbre, Hermann, Paris.
A. J. Bowtell (1967). On a question of Mal'cev, JA 7, 126-139.

Carl B. Boyer (1968). A history of mathematics, Wiley.
H. Brandt (1913). Zur Komposition der quaternären quadratischen Formen, JRAM 143, 106-129.
(1919). Komposition der binären quadratischen Formen relativ einer Grundform, JRAM 150, 1-46.
(1924). Der Kompositionsbegriff bei den quaternären quadratischen Formen, $M A$ 91, 300-315.
_ (1925). Über die Komponierbarkeit quaternärer quadratischer Formen, MA 94, 179-197.
(1926a). Über das assoziative Gesetz bei der Komposition der quaternären quadratischen Formen, MA 96, 353-359.
__ (1926b). Über eine Verallgemeinerung des Gruppenbegriffes, MA 96, 360366.
(1928a). Idealtheorie in Quaternionenalgebren, MA 99, 1-29.
(1928b). Idealtheorie in einer Dedekindsche Algebra, Jahresber. Deutsch. Math.-Verein. 37, 5-7.
(1940). Über die Axiome des Gruppoids, Vierteljahrschr. Naturforsch. Ges. Zürich 85, 95-104.
M. Breen, V. A. Molchanov, and V. S. Trokhimenko (2011). Boris M. Schein's 70th birthday, Aequationes Math. 82, 1-30.
M. G. Brin (2005). On the Zappa-Szép product, Comm. Algebra 33(2), 393-424.
R. Brown (1987). From groups to groupoids: a brief survey, BLMS 19, 113-134.

- (1999). Groupoids and crossed objects in algebraic topology, Homology, Homotopy Appl. 1(1), 1-78.
W. P. Brown (1955). Generalized matrix algebras, CJM 7, 188-190.
(1957). An algebra related to the orthogonal group, in Gerretsen and de Groot (1957), vol. 2, pp. 9-10.
R. H. Bruck (1958). A survey of binary systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 20, Springer; 2nd ed., 1966; 3rd ed., 1971.
M. I. Budyko, V. V. Wagner, B. Z. Vulikh, L. M. Gluskin, A. E. Evseev, D. K. Faddeev, and L. N. Shevrin (1975). Evgenii Sergeevich Lyapin (on his sixtieth birthday), UMN 30(3), 187-194 (R); English trans.: RMS 30(3), 139-147.
John P. Burgess (1995). Frege and arbitrary functions, in William Demopoulos (ed.), Frege's philosophy of mathematics, Harvard Univ. Press, pp. 89-107.
J. Burlak and K. Brooke (1963). Russian-English mathematical vocabulary, Oliver \& Boyd, Edinburgh.
W. Burnside (1905). On the condition of reducibility of any group of linear substitutions, PLMS 3, 430-434.
(1911). Theory of groups of finite order, 2nd ed., Cambridge Univ. Press.
C. Burstin and W. Mayer (1929). Distributive Gruppen von endlicher Ordnung, JRAM 160, 111-130.
George C. Bush (1961). On embedding a semigroup in a group, PhD thesis, Queen's University, Kingston, Ontario.
_ (1963). The embedding theorems of Malcev and Lambek, CJM 15, 49-58.
(1971). The embeddability of a semigroup - conditions common to Mal'cev and Lambek, TAMS 157, 437-448.
H. S. Butts and G. Pall (1968). Modules and binary quadratic forms, Acta Arith. 15, 23-44.
Karl E. Byleen, Peter Rodney Jones, and Francis J. Pastijn (eds.) (1985). Proceedings of the 1984 Marquette Conference on Semigroups, Department of Mathematics, Statistics and Computer Science, Marquette University.
Robert F. Byrnes (1962). Academic exchange with the Soviet Union, Russian Review 21(3), 213-225.
(1976). Soviet-American academic exchanges, 1958-1975, Indiana Univ. Press.
T. Brzeziński and J. Vercruysse (2009). Bimodule herds, JA 321(9), 2670-2704.
M. Cantor (1880). Vorlesungen über Geschichte der Mathematik, 4 vols., Teubner, Leipzig, 1880-1908.
William D. Carey (1983). Censorship, Soviet style, Science 219(4587), 25 Feb., 911.
Kenneth Scott Carman (1949). Semigroup ideals, master's thesis, University of Tennessee, Knoxville.
J. H. Carruth and C. E. Clark (1980). Generalized Green's theories, SF 20, 95-127.
G. Castelnuovo (ed.) (1909). Atti del IV Congresso Internazionale dei Matematici (Roma, 6-11 Aprile 1908), 3 vols., Tipografia della R. Accademia dei Lincei, Roma.
G. Cauchon (2002). Léonce Lesieur (1914-2002), Gaz. Math., no. 93, 119-120.
A. Cayley (1854). On the theory of groups as depending on the symbolic equation $\theta^{n}=1$, Phil. Mag. 7, 40-47; Collected papers, vol. II, pp. 123-130.
Štefan Černák (2003). Eighty years of Professor Ján Jakubík, MSl 53(5), 543-550.
J. Certaine (1943). The ternary operation $(a b c)=a b^{-1} c$ of a group, $B A M S$ 49, 869-877.
Jacob Chaitkin (1945). The challenge of scientific Russian, The Scientific Monthly 60(4), 301-306.
N. G. Chebotarev (1932). Algebra, in Aleksandrov et al. (1932), pp. 5-36 (R). (ed.) (1936). Évariste Galois: works, ONTI, Moscow-Leningrad (R).
A. Cheremisin (1984). Scientist and man, Rabochii Krai, no. 27 (18969), 27 Nov. (R).
C. Chevalley (1943). On the theory of local rings, $A M$ 44, 690-708.

Man Duen Choi and Peter Rosenthal (1994). A survey of Chandler Davis, Linear Algebra Appl. 208/209, 3-18.
Ruth C. Christman (ed.) (1952). Soviet science: a symposium presented on December 27, 1951, at the Philadelphia meeting of the American Association for the Advancement of Science, Amer. Assoc. Adv. Sci.
B. Churchhouse (2009). Douglas Munn, London Math. Soc. Newsletter, no. 381 (May), 5.
Ján Čižmár (2001). The origins of modern algebra in Slovakia (Š. Schwarz, M. Kolibiar, J. Jakubík), in Jindřich Bečvář and Eduard Fuchs (eds.), Mathematics throughout the ages II, Dějiny Matematiky/History of Mathematics, vol. 16, Prometheus, Prague, pp. 251-262 (in Slovak).
- (2009). Mathematics in Slovakia 1945-1965, in J. Bečvář and M. Bečvářová (eds.), Proceedings of the 30th international conference on the history of mathematics, Jevičko, 21.8-25.8.2009, Prometheus, Prague, pp. 98-103 (in Slovak).
A. H. Clifford (1933a). A system arising from a weakened set of group postulates, AM 34, 865-871.
\qquad (1933b). Arithmetic of ova, PhD thesis, California Institute of Technology.
\qquad (1934). Arithmetic and ideal theory of abstract multiplication, BAMS 40, 326-330.
(1937). Representations induced in an invariant subgroup, PNAS 23, 89-90; AM 38, 533-550.

- (1938). Arithmetic and ideal theory of commutative semigroups, AM 39, 594-610.
_ (1940). Partially ordered abelian groups, $A M$ 41, 465-473.
(1941). Semigroups admitting relative inverses, $A M$ 42, 1037-1049.
(1942). Matrix representations of completely simple semigroups, AJM 64, 327-342.
(1948). Semigroups containing minimal ideals, AJM 70, 521-526.
(1949). Semigroups without nilpotent ideals, AJM 71, 834-844.
(1950). Extensions of semigroups, TAMS 68, 165-173.
(1952a). A noncommutative ordinally simple linearly ordered group, PAMS 2, 902-903.
_ (1952b). A class of partially ordered abelian groups related to Ky Fan's characterizing subgroups, AJM 74, 347-356.
(1953). A class of d-simple semigroups, $A J M$ 75, 547-556.
(1954). Bands of semigroups, PAMS 5, 499-504.
(1960). Basic representations of completely simple semigroups, AJM $8 \mathbf{8}$ 430-434.
_ (1961a). La décomposition d'un demi-groupe commutatif en ses composantes archimédiennes, $S D \mathbf{1 5 (2) ~ (1 9 6 1 - 1 9 6 2) , ~ e x p . ~ n o . ~ 2 0 , ~ 1 - 3 . ~}$
(1961b). Caractères d'un demigroupe commutatif, $S D$ 15(2) (1961-1962), exp. no. 21, 1-5.
(1963). Note on a double coset decomposition of semigroups due to Štefan Schwarz, MFC 13, 55-57.
- (1970). Radicals in semigroups, SF 1(2), 103-127.
(1971a). Demi-groupes bisimples unipotents à gauche, Sém. Dubreil. Alg. 25(2) (1971-1972), exp. no. J4, 9 pp.
(1971b). Extensions of ordered semigroups, Sém. Dubreil. Alg. 25(2) (19711972), exp. no. J14, 2 pp.
_- (1972). The structure of orthodox unions of groups, SF 3, 283-337.
-_ (1991). A voice from the past, in Hall et al. (1991), p.1.
A. H. Clifford and D. D. Miller (1948). Semigroups having zeroid elements, AJM 70, 117-125.
A. H. Clifford and G. B. Preston (1961). The algebraic theory of semigroups, Mathematical Surveys, no. 7, vol. 1, Amer. Math. Soc.; 2nd ed., 1964; Russian trans. of 2 nd ed.: Izdat. Mir, Moscow, 1972.
- (1967). The algebraic theory of semigroups, Mathematical Surveys, no. 7, vol. 2, Amer. Math. Soc.; 2nd ed., 1968; Russian trans. of 1st ed.: Izdat. Mir, Moscow, 1972.
A. C. Climescu (1946). Sur les quasicycles, Bull. École polytech. Jassy 1, 5-14.
P. M. Cohn (1956a). Embeddings in sesquilateral division semigroups, JLMS 31, 181-191.
_ (1956b). Embeddings in semigroups with one-sided division, JLMS 31, 169-181. (1958). On the structure of sesquilateral division semigroups, PLMS 8, 466-480.
_- (1962). On subsemigroups of free semigroups, PAMS 13, 347-351.
_- (1965). Universal algebra, Harper \& Row, NY.
__ (1971). Free rings and their relations, Academic Press, London-NY.
Mary Joan Collison (1980). The unique factorization theorem: from Euclid to Gauss, MM 53(2), 96-100.
E. Colman (1931). The present crisis in mathematical sciences and general outlines for their reconstruction, in Science at the cross roads (Papers presented to the International Congress of the History of Science and Technology held in London from June 29th to July 3rd 1931 by the delegates of the USSR), Kniga (England).
Comité d'Organisation du Congrès (1971). Actes du Congrès International des Mathématiciens, Nice, 1-10 Septembre 1970, 3 vols., Gauthier-Villars, Paris.
Robert Conquest (1986). The harvest of sorrow: Soviet collectivization and the terror-famine, Oxford Univ. Press, NY; 2nd ed., Pimlico, London, 2002.
José Isaac Corral (1932). Brigadas de sustituciones, parte primera: propriedades de las brigadas, Papelería de Rambla, Bouza y Ca, Habana; Parte segunda: brigadas imperfectas, Establecimento Tipográfico de A. Medina, Toledo, 1935.
Leo Corry (1992). Nicolas Bourbaki and the concept of mathematical structure, Synthese 92, 315-348.
_ (1996). Modern algebra and the rise of mathematical structures, Birkhäuser; 2nd revised ed., 2004.
\qquad (2000). The origins of the definition of abstract rings, Modern Logic 8, 5-27; Gaz. Math., no. 83, 29-47.
(2001). Mathematical structures from Hilbert to Bourbaki: the evolution of an image of mathematics, in A. Dahan and U. Bottazzini (eds.), Changing images of mathematics in history. From the French revolution to the new millenium, Harwood Academic Publishers, London, 2001, pp. 167-186.
Alfredo Costa, Manuel Delgado, and Vítor H. Fernandes (2011). Preface, Intern. J. Algebra Comput. 21(7), v-vi.
S. C. Coutinho (2004). Quotient rings of noncommutative rings in the first half of the 20th century, AHES 58, 255-281.
Ion Creangă and Dan Simovici (1977). The algebraic theory of semigroups and applications, Editura Tehnică, Bucureşti (in Romanian).
A. B. Cripps (1982). A comparison of some generalizations of Green's relations, $S F$ 24, 1-10.
Robert Croisot (1948a). Une interprétation des relations d'équivalence dans un ensemble, $C R$ 226, 616-617.
_ (1948b). Condition suffisante pour l'égalité des longueurs de deux chaînes de mêmes extrémités dans une structure. Application aux relations d'équivalence et aux sous-groupes, $C R$ 226, 767-768.
_- (1949). Hypergroupes partiels, $C R$ 228, 1090-1092. (1950a). Axiomatique des treillis semi-modulaires, $C R$ 231, 12-14. (1950b). Axiomatique des treillis modulaires, $C R$ 231, 95-97.
(1950c). Diverses caractérisations des treillis semi-modulaires, modulaires et distributifs, $C R$ 231, 1399-1401.
_ (1951a). Axiomatique des lattices distributives, CJM 3, 24-27.
(1951b). Contribution à l'étude des treillis semimodulaires de longeur infinie, Ann. sci. École norm. sup. 68, 203-265.
(1952a). Propriétés des complexes forts et symétriques des demi-groups, BSMF 80, 217-223.
_ (1952b). Quelques applications et propriétés des treillis semi-modulaires de longueur infinie, Ann. fac. sci. Toulouse 16, 11-74.
- (1953a). Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, Ann. sci. École norm. sup. 70, 361-379.
(1953b). Demi-groupes et axiomatique des groupes, CR 237, 778-780.
(1953c). Demi-groupes II: demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, $S C D 7$ (1953-1954), exp. no. 15, 9 pp. (1954). Automorphismes intérieurs d'un semi-groupe, BSMF 82, 161-194. (1957). Equivalences principales bilatères définies dans un demi-groupe, J. math. pures appl. 36, 373-417.
Clive A. Croxton (1984). Russian for the scientist and mathematician, Wiley.
Béla Csákány, László Megyesi, and Mária B. Szendrei (2002). György Pollák: 19292001, ASM 68(1-2), 3-8.
G. Čupona (1958). On reducible semigroups, Godishen zb. filoz. fak. Univ. Skopje. Prirod.-mat. od. 11(2), 19-27 (in Macedonian).
Guillermo P. Curbera (2010). The International Congress of Mathematicians: a human endeavour, Current Science 99(3), 287-292.
C. W. Curtis (1999). Pioneers of representation theory: Frobenius, Burnside, Schur and Brauer, History of Mathematics, vol. 15, Amer. Math. Soc./London Math. Soc.
Charles W. Curtis and Irving Reiner (1962). Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, vol. XI, Wiley Interscience.
Peter Danckwerts (1983). To Russia with science, New Scientist 100(1389-1390), 22-29 Dec., 943; ibid. 101(1391), 5 Jan. 1984, 39.
Michael David-Fox (2012). Showcasing the great experiment: cultural diplomacy and western visitors to Soviet Union, 1921-1941, Oxford Univ. Press.
Chandler Davis (1989). The purge, in Duren (1989a), vol. 1, 413-428.
Claude Debru (2013). Postwar science in divided Europe: a continuing cooperation, Centaurus 55, 62-69.
Richard Dedekind (1897). Über Zerlegungen von Zahlen durch ihre größte gemeinsamen Teiler, in Festschrift der Technischen Hochschule zu Braunschweig bei Gelegenheit der 69. Versammlung Deutscher Naturforscher und Ärtze, pp. 1-40; Gesammelte Werke XXVIII, Band 2, 103-147.
S. S. Demidov (1996). Matematicheskii Sbornik 1866-1935, Istor.-mat. issled., no. 1, 127-145 (R).
___ (2002). Russia and the U.S.S.R, Chapter 8 in J. W. Dauben and C. J. Scriba (eds.), Writing the history of mathematics: its historical development, Science Networks Historical Studies, vol. 27, Birkhäuser, Basel, pp. 179-197.
(2006). 70 years of the journal "Uspekhi matematicheskikh nauk", UMN 61(4), 203-207 (R); English trans.: RMS 61(4) (2006), 793-797.
- (2007). A brief survey of literature on the development of mathematics in the USSR, in Zdravkovska and Duren (2007), pp. 245-262.
Sergei S. Demidov and Charles E. Ford (1996). N. N. Luzin and the affair of the "national fascist center", in Eberhard Knobloch, Joseph W. Dauben, Menso Folkerts, and Hans Wussing (eds.), History of mathematics: states of the art. Flores quadrivii - Studies in honor of Christoph J. Scriba, Academic Press, pp. 137148.
S. S. Demidov and B. V. Levshin (eds.) (1999). The case of Academician Nikolai Nikolaevich Luzin, Russian Christian Humanitarian Institute, Saint Petersburg (R).

Marie Demlova (1995). First announcement: conference on semigroups and their applications, Czech Technical University, Prague, Czech Republic, July 1-5, 1996, SF 51, 397.
A. De Morgan (1860). On the syllogism, no. IV, and on the logic of relations, Trans. Cambridge Phil. Soc. 10, 331-358.
K. Denecke (2008a). To the memory of Hans-Jürgen Hoehnke (1925-2007), Discuss. Math. Gen. Algebra Appl. 28(1), 5-9.
_ (2008b). Hans-Jürgen Hoehnke, Sci. Math. Japon. 68(2), 177-181.
J.-A. de Séguier (1904). Théorie des groupes finis: Éléments de la théorie des groupes abstraits, Gauthier-Villars, Paris.
Roger Desq (1963). Relations d'équivalence principales en théorie des demi-groupes, Ann. fac. sci. Toulouse 27, 149 pp.
Nicholas de Witt (1961). Education and professional employment in the USSR, National Science Foundation, Washington.
L. E. Dickson (1903). Definition of a linear associative algebra by independent postulates, TAMS 4, 21-27.

- (1904). De Séguier's theory of abstract groups, BAMS 11, 159-162.
(1905a). Definitions of a group and a field by independent postulates, TAMS 6, 198-204.
(1905b). On semi-groups and the general isomorphism between infinite groups, TAMS 6, 205-208.
_ (1928). Book review: "Algebraic Arithmetic" by E. T. Bell, BAMS 34(4), 511-512.
R. P. Dilworth (1939a). Non-commutative arithmetic, Duke Math. J. 5(2), 270-280.
\qquad (1939b). The structure and arithmetical theory of non-commutative residuated lattices, PhD thesis, California Institute of Technology.
R. Dimitrić (1992). Anatoly Ivanovich Maltsev, Math. Intelligencer 14(2), 26-30.

Andreas Distler (2010). Classification and enumeration of finite semigroups, PhD thesis, University of St Andrews.
Andreas Distler and Tom Kelsey (2009). The monoids of orders eight, nine \& ten, Ann. Math. Artif. Intell. 56(1), 3-21.
_(2014). The semigroups of order 9 and their automorphism groups, $S F$ 88(1), 93-112.
Ronald E. Doel and Allan A. Needell (1997). Science, scientists, and the CIA: balancing international ideals, national needs, and professional opportunities, Intelligence and National Security 12(1), 59-81.
J. L. Dorroh (1932). Concerning adjunctions to algebras, BAMS 38(2), 85-88.

Carol G. Doss (1955). Certain equivalence relations in transformation semigroups, master's thesis, University of Tennessee, Knoxville.
R. Doss (1948). Sur l'immersion d'un semi-groupe dans un groupe, Bull. Sci. Math. (2) 72, 139-150.
F. I. Dubovitskiy (2007). And a lot lived through..., Chernovolovskaya Gazeta, no. 6(810), 15 Feb. (R).
Paul Dubreil (1930). Recherches sur la valeur des exposants des composants primaires des idéaux de polynomes, J. math. pures appl. 9, 231-309.
__ (1941). Contribution à la théorie des demi-groupes, Mém. Acad. sci. Inst. France (2) 63, 52 pp .
___ (1942). Remarques sur les théorèmes d'isomorphisme, CR 215, 239-241.
(1943). Sur les problèmes d'immersion et la théorie des modules, $C R$ 216, 625-627.
(1946). Algèbre, tome I: Équivalences, opérations. Groupes, anneaux, corps, Cahiers scientifiques, fascicule XX, Gauthier-Villars, Paris; 2nd ed., 1954; 3rd ed., 1963.

- (1950a). Relations binaires et applications, $C R$ 230, 1028-1030.
(1950b). Comportement des relations binaires dans une application multiforme, $C R$ 230, 1242-1243.
(1951). Contribution à la théorie des demi-groupes II, Univ. Roma. Inst. Naz. Alt. Mat. Rend. Mat. e Appl. (5) 10, 183-200.
(1953). Contribution à la théorie des demi-groupes III, $B S M F$ 81, 289-306.
(1954). Les relations d'équivalence et leurs principales applications, in Les conférences du Palais de la Découverte, série A, no. 194, Université de Paris, 22 pp .
\qquad (1957a). Introduction à la théorie des demigroupes ordonnés, in Convegno italo-francese di algebra astratta, Padova, aprile, 1956, Edizioni Cremonese, Rome, pp. 1-33.
(1957b). Quelques problèmes d'algèbre liés à la théorie des demi-groupes, in Colloque d'algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris, pp. 29-44.
__ (1960). Propriétés des homomorphismes appliquant un demigroupe D sur un autre, \bar{D}, ou sur un groupe, $\bar{G}, J R A M$ 204, 183-187.
(1981). Apparition et premiers développements de la théorie des demigroupes en France, Cahiers sém. hist. math. 2, 59-65.
(1983). Souvenirs d'un boursier Rockefeller 1929-1931, Cahiers sém. hist. math. 4, 61-73.
(1986). Emmy Noether, Cahiers sém. hist. math. 7, 15-27; errata, ibid. 8 (1987), 229.

Paul Dubreil and Marie-Louise Dubreil-Jacotin (1937a). Propriétés algébriques des relations d'équivalence, $C R$ 205, 704-706.
_ (1937b). Propriétés algébriques des relations d'équivalence; théorèmes de Schreier et de Jordan-Hölder, CR 205, 1349-1351.
(1939). Théorie algébrique des relations d'équivalence, J. math. pures appl. 18, 63-95.
(1940). Équivalences et opérations, Ann. Univ. Lyon. Sect. A (3) 3, 63-95.

Marie-Louise Dubreil-Jacotin (1934). Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, PhD thesis, Faculté des Sciences de Paris.
(1947). Sur l'immersion d'un semi-groupe dans un groupe, $C R$ 225, 787788.
(1950a). Quelques propriétés des applications multiformes, $C R$ 230, 806808.
(1950b). Applications multiformes et relations d'équivalences [sic], CR 230, 906-908.
_ (1951a). Quelques propriétés des équivalences régulières par rapport à la multiplication et à l'union, dans un treillis à multiplication commutative avec élément unitée, $C R$ 232, 287-289.
(1951b). Quelques propriétés arithmétiques dans un demi-groupe demiréticulé entier, $C R$ 232, 1174-1176.
__ (1962). Figures de mathématiciennes, in F. Le Lionnais (ed.), Les grands courants de la pensée mathématique, Librarie scientifique et technique, Albert Blanchard, Paris, nouvelle éd. augmentée, pp. 258-269; English trans.: Women mathematicians, in F. Le Lionnais (ed.), Great currents of mathematical thought, vol. I, Dover, Mineola, NY, 1971, pp. 268-280.
(1964). Sur les images homomorphes d'un demi-groupe ordonné, BSMF 92, 101-115.
(1966). Quelques propriétés des 0-demi-groupes, Atti Accad. Naz. Lincei. Rend. Classe Sci. Fis. Mat. Natur. 41, 279-289.
M.-L. Dubreil-Jacotin and R. Croisot (1952). Equivalences régulières dans un ensemble ordonné, BSMF 80, 11-35.
M.-L. Dubreil-Jacotin, L. Lesieur, and R. Croisot (1953). Leçons sur la théorie des treillis des structures algébriques ordonnées et des treillis géométriques, GauthierVillars, Paris.
L. Duncan (2008a). Obituary: Professor Douglas Munn, Stirling Observer, 12 Nov.
\qquad (2008b). Professor Walter Douglas Munn: an appreciation, The Herald (Glasgow), 12 Nov.
E. Duporcq (ed.) (1902). Compte rendu du Deuxième Congrès International des Mathématiciens, tenu à Paris du 6 au 12 août 1900. Procès-verbaux et communications, Gauthier-Villars, Paris.
Peter Duren (ed.) (1989a). A century of mathematics in America, History of Mathematics, vols. $1-3$, Amer. Math. Soc.
William L. Duren Jr. (1989b). Mathematics in American society 1888-1988: a historical commentary, in Duren (1989a), vol. 2, pp. 399-447.
G. DuS. (1956). Scientific information in the U.S.S.R., Science 124(3223), 5 Oct., 609.
(1961a). "Neither snow nor rain nor...", Science 133(3452), 24 Feb., 549. (1961b). The reluctant dragon, Science 133(3465), 26 May, 1677. (1962). Postal censorship, Science 135(3507), 16 Mar., 877.
A. Dvurečenskij (1996). Academic Štefan Schwarz (1914-1996), MSl 46(4), 433434.

Harold M. Edwards (1980). The genesis of ideal theory, AHES 23, 321-378.
_- (1983). Dedekind's invention of ideals, BLMS 15, 8-17.
__ (1992). Mathematical ideas, ideals, and ideology, Math. Intelligencer 14(2), 6-19.

- (2007). Composition of binary quadratic forms and the foundations of mathematics, in Catherine Goldstein, Norbert Schappacher, and Joachim Schwermer (eds.), The shaping of arithmetic after C. F. Gauss's Disquisitiones Arithmeticae, Springer, pp. 129-144.
N. V. Efimov, A. E. Liber, E. S. Lyapin, and P. K. Rashevskii (1979). Viktor Vladimirovich Wagner (on his seventieth birthday), UMN 34(4), 227-229 (R); English trans.: RMS 34(4), 209-212.
Michel Égo (1961). Structure des demi-groupes dont le treillis des sous-demi-groupes est distributif, CR 252, 2490-2492.
S. Eilenberg and S. Mac Lane (1945). The general theory of natural equivalences, TAMS 58, 231-294.
Günther Eisenreich and Ralf Sube (1982). Dictionary of mathematics in four languages: English, German, French, Russian, Elsevier, Oxford.
W. A. Engelhardt (1968). Letter to an imaginary Soviet scientist, Nature 218, 27 Apr., 404.
Karin Erdmann (2014). Obituary: James Alexander (Sandy) Green, London Math. Soc. Newsletter, no. 437 (Jun.), 29.
J. A. Erdos (1967). On products of idempotent matrices, Glasgow Math. J. 8, 118122.

Yu. I. Ermakov, B. L. Laptev, A. E. Liber, A. P. Norden, and A. P. Shirokov (1981). In memory of Viktor Vladimirovich Wagner, IVUZM, no. 10, 85-88 (R).
Yu. I Ermakov, B. L. Laptev, E. S. Lyapin, A. P. Norden, N. M. Ostianu, and A. P. Shirokov (1985). Aleksandr Evgenevich Liber (on his 70th birthday), in I. Yu. Buchko (ed.), Differential geometry: structures in manifolds and their applications, no. 8, Saratov. State Univ., pp. 3-9 (R).

Xenia Joukoff Eudin (1941). The German occupation of the Ukraine in 1918, Russian Review 1(1), 90-105.
William B. Ewald (1996). From Kant to Hilbert: a source book in the foundations of mathematics, Oxford Sci. Publ., Clarendon Press, Oxford.
Faculty of Science of Marx House (1942). Science and technology in the Soviet Union. Papers read at the Symposium at Easter, 1942, held under the auspices of The Faculty of Science of Marx House, Science Services Ltd.
Alain Faisant (1971). Immersion d'un demi-groupe dans un groupe I, Séminaire P. Lefebvre (année 1970/1971), Structures algébriques, vol. II, exp. no. 17, pp. 210-217; II, ibid., exp. no. 18, pp. 218-231; III, ibid., exp. no. 19, pp. 232-240. (1972). Demi-groupes de fractions et plongement d'un demi-groupe dans un groupe, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin, L. Lesieur et C. Pisot (24e année: 1970/71), Algèbre et théorie des nombres, fasc. 2, exp. no. 12, 14 pp .
Robert D. Farley (1983). Oral history interview NSA-OH-14-83: Campaigne, Howard, Dr., Annapolis, MD, 29 June. http://www.nsa.gov/public_info/ _files/oral_history_interviews/nsa_oh_14_83_campaigne.pdf (last accessed 3 Feb. 2014).
M. V. Fedoseev (1940). On a type of system with two operations, SKMO 18, 39-55 (R).

Roger Fenn and Colin Rourke (1992). Racks and links in codimension two, J. Knot Theory Ramifications 1, 343-406.
Jens Erik Fenstad (1996). Thoralf Albert Skolem 1887-1963: a biographical sketch, Nordic J. Philos. Logic 1(2), 99-106.
Della Dumbaugh Fenster (1998). Leonard Eugene Dickson and his work in the arithmetics of algebras, AHES 52, 119-159.
Lewis S. Feuer (1949). Dialectical materialism and Soviet science, Philos. Sci. 16(2), 105-124.
J. C. Fields (ed.) (1928). Proceedings of the International Mathematical Congress held in Toronto, August 11-16, 1924, 2 vols., Univ. Toronto Press.
Isidore Fleischer (1995). Abstract ideal theory, Normat 43(3), 120-135, 144.
K. W. Folley (ed.) (1969). Semigroups. Proceedings of a symposium on semigroups held at Wayne State University, Detroit, Michigan, June 27-29, 1968, Academic Press.
S. V. Fomin and G. E. Shilov (eds.) (1969). Mathematics in the USSR 1958-1967: bibliography, Izdat. Nauka. Glav. Red. Fiz.-Mat. Lit., Moscow (R).
E. B. Ford (1977). Theodosius Grigorievich Dobzhansky. 25 January 1900 - 18 December 1975, Biogr. Mem. Fellows Roy. Soc. 23, 58-89.
F. Forgó (2005). Professor Jenő Szép as an educator and a game theorist, Pure Math. Appl. 16(1-2), 31-35.
G. E. Forsythe (1955). SWAC computes 126 distinct semigroups of order 4, PAMS 6(3), 443-447.
_ (1960). Review of: John L. Selfridge, On finite semigroups, dissertation, University of California, Los Angeles, Math. Comput. 14(70), 204-207.
J. Fountain (1977). Right PP monoids with central idempotents, SF 13, 229-237.

- (ed.) (1995). Semigroups, formal languages and groups (Proceedings of the NATO Advanced Study Institute, University of York, England, 7-21 August 1993), NATO ASI Series, Series C: Mathematics and Physical Science, vol. 446, Kluwer Academic, Dordrecht.
- (2010). The work of Douglas Munn and its legacy, SF 81(1), 2-25; erratum: ibid. 82(1) (2011), 197.
G. Frege (1884). Die Grundlagen der Arithmetik: eine logisch-mathematische Untersuchung über den Begriff der Zahl, Breslau.
Grigori Freiman (1980). It seems I am a Jew, Southern Illinois Univ. Press.
Ervin Fried (2004). In memoriam György Pollák, Mat. lapok 12(1), 1-3 (in Hungarian).
Morris D. Friedman (1967). On procuring Russian literature, Science 155(3761), 27 Jan., 400.
Carl J. Friedrich (ed.) (1954). Totalitarianism: proceedings of a conference held at the American Academy of Arts and Sciences, March 1953, Harvard Univ. Press.
H. G. Friese (1957). Student life in a Soviet university, in George L. Kline (ed.), Soviet education, Routledge \& Kegan Paul, London, pp. 53-78.
R. Fritzsche and H.-J. Hoehnke (1986). Heinrich Brandt: 1886-1986, Wissenschaftliche Beiträge 47, Martin-Luther-Universität, Halle-Wittenberg, Halle.
F. G. Frobenius (1895). Über endliche Gruppen, Sitzungsber. Preuss. Akad. Wiss. Berlin, 81-112; Gesammelte Abhandlungen (J.-P. Serre, ed.), Band II, Springer, 1968, pp. 632-663.
F. G. Frobenius and I. Schur (1906). Über die Äquivalenz der Gruppen linearer Substitutionen, Sitzungsber. Preuss. Akad. Wiss. Berlin, 209-217.
L. Fuchs (1950). On semigroups admitting relative inverses and having minimal ideals, Publ. Math. Debrecen 1, 227-231.
L. Fuchs and O. Steinfeld (1963). Principal components and prime factorization in partially ordered semigroups, Ann. Univ. Sci. Budapest. Eötvös Nomin. Sect. Math. 6, 103-111.
V. K. Furaev (1974). Soviet-American scientific and cultural relations (1924-1933), Voprosy istorii, no. 3, 41-57 (R); English trans.: Soviet Studies in History 14(3) (1975-1976), 46-75.
Yu. M. Gaiduk (1962). Anton Kazimirovich Sushkevich, Istor.-mat. zb. 3, 3-6 (in Ukrainian).
A. T. Gainov, S. S. Goncharov, Yu. L. Ershov, D. A. Zakharov, E. N. Kuzmin, L. L. Maksimova, Yu. I. Merzlyakov, D. M. Smirnov, A. D. Taimanov, V. K. Kharchenko, and E. I. Khukhro (1989). On the eightieth birthday of outstanding Soviet mathematician Academician A. I. Maltsev, Algebra i logika 28(6), 615-618 (R).
Olexandr Ganyushkin and Volodymyr Mazorchuk (2009). Classical finite transformation semigroups: an introduction, Springer.
M. F. Gardashnikov (1940). On a type of finite groups without the associative law, SKMO 17, 29-33 (R).
C. F. Gauss (1801). Disquisitiones arithmeticae, Leipzig; English trans.: Yale Univ. Press, 1965.
Alfred Geroldinger and Günter Lettl (1990). Factorization problems in semigroups, SF 40, 23-38.
Slava Gerovitch (2001). 'Mathematical machines' in the Cold War: Soviet computing, American cybernetics and ideological disputes in the early 1950s, Social Studies in Science 31(2), 253-287.
_ (2002). From Newpeak to Cyberspeak: a history of Soviet cybernetics, MIT Press, Cambridge, MA.
\qquad (2013). Parallel worlds: formal structures and informal mechanisms of postwar Soviet mathematics, Hist. Sci. 22, 181-200.
Johan C. H. Gerretsen and Johannes de Groot (eds.) (1957). Proceedings of the International Congress of Mathematicians, Amsterdam, September 2-9, 1954, 3 vols., Erven P. Noordhoff N. V., Groningen, North-Holland, Amsterdam.
Masha Gessen (2011). Perfect rigour: a genius and the mathematical breakthrough of the century, Icon Books.
Robert Gilmer (1972). Multiplicative ideal theory, Dekker, NY.
\qquad (1981). Commutative ring theory, in James W. Brewer and Martha K. Smith (eds.), Emmy Noether: a tribute to her life and work, Pure and Applied Mathematics, no. 69, Marcel Dekker, Inc., NY and Basel, pp. 131-143.
V. M. Glushkov (1961). Abstract theory of automata, UMN 16(5), 3-62 (R); English trans.: $R M S$ 16(5), 1-53; German trans.: VEB Deutscher Verlag der Wissenschaften, Berlin, 1963, 103 pp.; Hungarian trans. in two parts: I, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 13 (1963), 287-309; II, ibid. 14, 71-110.
\qquad (1964). Charting a new path, Izvestiya, 22 Jan. (R).
V. M. Glushkov and A. G. Kurosh (1959). General algebra, in Kurosh et al. (1959), pp. 151-200 (R).
L. M. Gluskin (1952). On homomorphisms of associative systems, candidate dissertation, Kharkov State University (R).
\qquad (1954). An associative system of square matrices, DAN 97, 17-20 (R).
(1955a). Homomorphisms of one-sided simple semigroups onto groups, DAN 102, 673-676 (R).
-_ (1955b). Simple semigroups with zero, DAN 103, 5-8 (R).
(1956). Completely simple semigroups, Uchen. zap. Kharkov. gos. ped. inst. 1, 41-55 (R).
-_ (1958). On matrix semigroups, IAN 22, 439-448 (R).
- (1959a). Ideals of semigroups of transformations, $M S \mathbf{4 7 (8 9) (1) , ~ 1 1 1 - 1 3 0 ~}$ (R).
(1959b). Semigroups and rings of linear transformations, DAN 127(6), 1151-1154 (R).
- (1959c). Semigroups and rings of endomorphisms of linear spaces, IAN 23(6); II, ibid. 25(6) (1961), 809-814 (R).
(1959d). Transitive semigroups of transformations, DAN 129(1), 16-18
(R).
(1960a). Densely embedded ideals of semigroups, DAN 131, 1004-1006
(R); English trans.: SMD 1, 361-364.
(1960b). Ideals of rings and their multiplicative semigroups, UMN 15(4), 141-148 (R); English trans.: AMST 27 (1963), 297-304.
_(1961a). Book review: E. S. Lyapin, 'Semigroups', UMN 16(4), 248-250 (R).
(1961b). Semigroups of isotone transformations, UMN 16(5), 157-162 (R). (1961c). Semigroups of transformations, doctoral dissertation, Moscow State University (R).
-_ (1962). Semigroups of transformations, UMN 17(4), 233-240 (R).
(1963). Semigroups, Itogi nauki. (algebra. topol. 1962) 1, 33-58 (R).
\qquad (1966). Semigroups, Itogi nauki. ser. mat. (algebra. 1964) 3, 161-202 (R). (1968). Theory of semigroups, in Shtokalo and Bogolyubov (1966), vol. 3, pp. 321-332 (R).
(1970). Research on general algebra in Saratov, IVUZM, no. 4(95), 3-16 (R).
L. M. Gluskin, A. Ya. Aizenshtat, A. E. Evseev, G. I. Zhitomirskii, M. M. Lesokhin, J. S. Ponizovskii, T. B. Shvarts, and B. M. Schein (1972). Semigroups, in Modern algebra and geometry, Leningrad State Ped. Inst., pp. 3-40 (R).
L. M. Gluskin, A. E. Evseev, T. L. Kolesnikova, V. M. Krivenko, D. K. Faddeev, and L. N. Shevrin (1985). Evgenii Sergeevich Lyapin (on his seventieth birthday), UMN 40(2), 211-212 (R); English trans.: RMS 40(2), 251-253.
L. M. Gluskin and E. S. Lyapin (1959). Anton Kazimirovich Sushkevich (on his seventieth birthday), UMN 14, 255-260 (R).
L. M. Gluskin and B. M. Schein (1972). The theory of operations as the general theory of groups (Anton Suškevič, dissertation, Voronezh, 1922): an historical review, SF 4, 367-371.
L. M. Gluskin, B. M. Schein, and L. N. Shevrin (1968). Semigroups, Itogi nauki. ser. mat. (algebra. topol. geom. 1966) 5, 9-56 (R).
L. M. Gluskin, G. I. Zhitomirskii, M. A. Spivak, and V. A. Fortunatov (1984). Evgenii Sergeevich Lyapin, on his 70th birthday, in L. M. Gluskin, G. I. Zhitomirskii, E. S. Lyapin, M. A. Spivak, and V. A. Fortunatov (eds.), Theory of semigroups and its applications, Saratov State Univ., 1984, p. 3 (R).
L. M. Gluskin, E. M. Zhmud, and M. V. Fedoseev (1972). In memory of a scholar and a teacher (on the 10th anniversary of the death of Anton Kazimirovich Sushkevich), Mat. v shkole, no. 1, 82 (R).
B. V. Gnedenko (1957). Mathematical education in the U.S.S.R., AMM 64(6), 389-408.
(1970). V. I. Lenin and methodological questions of mathematics, $U M N$ 25(2), 5-14 (R); English trans.: RMS 25(2) (1970), 3-12.
Simon M. Goberstein and Peter M. Higgins (eds.) (1987). Semigroups and their applications. Proceedings of the international conference "Algebraic theory of semigroups and its applications" held at the California State University, Chico, April 10-12, 1986, Reidel, Dordrecht.
S. Goła̧b (1939). Über den Begriff der 'Pseudogruppe von Transformationen', MA 116, 768-780.
(1972). The scientific work of Professor J. A. Schouten (28.8.188320.1.1971), Demonstratio Math. 4, 63-85.
A. W. Goldie (1950). The Jordan-Hölder Theorem for general abstract algebras, PLMS 52, 107-131.
Jack Good (1993). Enigma and fish, Chapter 19 in F. H. Hinsley and Alan Stripp (eds.), Codebreakers: the inside story of Bletchley Park, Oxford Univ. Press, pp. 149-166.
R. A. Good (1962). Part II: Algebra, in LaSalle and Lefschetz (1962), pp. 17-28.
K. R. Goodearl (1979). Von Neumann regular rings, Monographs and Studies in Mathematics 4, Pitman.
(1981). Von Neumann regular rings: connections with functional analysis, BAMS 4(2), 125-134.
N. L. Gordeev, A. L. Verner, A. E. Evseev, S. I. Kublanovskii, J. S. Ponizovskii, and A. V. Yakovlev (2005). Evgenii Sergeevich Lyapin: obituary, UMN 60(2), 143-144 (R); English trans.: RMS 60(2), 335-336.
E. Goryaeva (ed.) (1986). Academician Maltsev: man, scientist, pedagogue, Universitetskaya zhizn (Novosibirsk), no. 32 (175), 21 Oct. (R).
S. H. Gould (1966). A manual for translators of mathematical Russian, Amer. Math. Soc.; revised ed., 1991.
___ (1972). Russian for the mathematician, Springer.
S. H. Gould and P. E. Obreanu (1967). Romanian-English dictionary and grammar for the mathematical sciences, Amer. Math. Soc.
Leon Goure (1962). The siege of Leningrad, Stanford Univ. Press.
Fernando Q. Gouvêa (2012). A guide to groups, rings, and fields, Dolciani Mathematical Expositions no. 48/MAA guides no. 8, MAA.
Loren R. Graham (1972). Science and philosophy in the Soviet Union, Alfred A. Knopf, NY.
(1993). Science in Russia and the Soviet Union: a short history, Cambridge Univ. Press.
(1998). What have we learned about science and technology from the Russian experience?, Stanford Univ. Press.
Loren Graham and Jean-Michel Kantor (2009). Naming infinity: a true story of religious mysticism and mathematical creativity, Belknap Press of Harvard Univ. Press.
I. Grattan-Guinness (2000). The search for mathematical roots, 1870-1940: logics, set theories and the foundations of mathematics from Cantor through Russell to Gödel, Princeton Univ. Press.
Jeremy Gray (1997). König, Hadamard and Kürschák, and abstract algebra, Math. Intelligencer 19(2), 61-64.
J. A. Green (1951a). Abstract algebra and semigroups, PhD thesis, University of Cambridge.
(1951b). On the structure of semigroups, $A M$ 54, 163-172.
$-$ (1955). The characters of the finite general linear group, TAMS 80, 402447.
J. A. Green and D. Rees (1952). On semi-groups in which $x^{r}=x, P C P S$ 48, 35-40.
R. E. Greenwood, Anne Barnes, Roger Osborn, and Milo Weaver (1974). In memoriam Harry Schultz Vandiver 1882-1973, University of Texas, http://www.utexas.edu/faculty/council/2000-2001/memorials/SCANNED/ vandiver.pdf (last accessed 3 Feb. 2014).
R. A. Gregory and C. Hagberg Wright (1922). Scientific literature for Russia, Nature 109(2729), 16 Feb., 208.
P. A. Grillet (1995a). Semigroups: an introduction to the structure theory, Dekker, NY.
(1995b). The number of commutative semigroups of order $n, S F \mathbf{5 0}, 317-$ 326.
__ (1996). Computing finite commutative semigroups, $S F$ 53, 140-154.
Helen Bradley Grimble (1950). Prime ideas in semigroups, master's thesis, University of Tennessee, Knoxville.
O. Grošek and L. Satko (1995). International conference in Kočovce, May 29-31, 1994, $S F$ 50, 121-122.
\qquad (1998). Professor Robert Šulka is 70, MSl 48(1), 101-104.
O. Grošek, L. Satko, and B. Schein (1994). Eightieth birthday of Professor Štefan Schwarz, SF 49, 1-5.
Y. Q. Guo, K. P. Shum, and C. M. Gong (2011). On ($*, \sim$)-Green's relations and ortho-lc-monoids, Comm. Algebra 39(1), 5-31.
Yu-qi Guo, Chun-mei Gong, and Xue-ming Ren (2010). A survey on the origin and developments of Green's relations on semigroups, J. Shandong Univ. Nat. Sci. 45(8), 1-18.
Alfred Haar (1931). Über unendliche kommutative Gruppen, MZ 33(1), 129-159.
Marshall Hall Jr. (1959). The theory of groups, Macmillan, NY; reprinted by AMS Chelsea Publ., Amer. Math. Soc., 1976.
T. E. Hall (1991). G. B. Preston: his work so far, in Hall et al. (1991), pp. 2-15.
T. E. Hall, P. R. Jones, and J. C. Meakin (eds.) (1991). Monash conference on semigroup theory, Melbourne 1990, World Sci., River Edge, NJ.
T. E. Hall, P. R. Jones, and G. B. Preston (eds.) (1980). Semigroups (Monash University Conference on Semigroups, 1979), Academic Press, NY.
Franz Halter-Koch (1990). Halbgruppen mit Divisorentheorie, Expo. Math. 8, 2766.
H. B. Hamilton and T. E. Nordahl (2009). Tribute for Takayuki Tamura on his 90th birthday, SF 79(1), 2-14.
John Charles Harden Jr. (1949). Direct and semidirect products of semigroups, master's thesis, University of Tennessee, Knoxville.
H. Hashimoto (1955a). On the kernel of semigroups, J. Math. Soc. Japan 7, 59-66.
\qquad (1955b). On the structure of semigroups containing minimal left ideals and minimal right ideals, PJA 31, 264-266.
M. Haskell (1892). A comparative review of recent researches in geometry, Bull. New York Math. Soc. 2 (1892-1893), 215-249.
H. Hasse (1926). Höhere Algebra, vol. 1, Walter de Gruyter, Berlin and Leipzig.
B. A. Hausmann and O. Ore (1937). Theory of quasi-groups, AJM 59(4), 983-1004.

Thomas Hawkins (1984). The Erlanger Programm of Felix Klein: reflections on its place in the history of mathematics, $H M$ 11(4), 442-470.
Karl Henke (1935). Zur arithmetischen Idealtheorie hyperkomplexer Zahlen, Abh. Math. Sem. Univ. Hamburg 11, 311-332.
K. Hensel (1913). Zahlentheorie, Göschensche Verlag, Berlin/Leipzig.

Edwin Hewitt and Herbert S. Zuckerman (1955). Finite dimensional convolution algebras, Acta Math. 93, 67-119.
(1957). The irreducible representations of a semi-group related to the symmetric group, Illinois J. Math. 1, 188-213.
A. Heyting (1927). Die Theorie der linearen Gleichungen in einer Zahlenspezies mit nicht-kommutativer Multiplikation, MA 98, 465-490.
J. Hickey (2008). Professor Douglas Munn, The Scotsman (Edinburgh), 12 Nov.
-_ (2009). Douglas Munn, London Math. Soc. Newsletter, no. 380 (Apr.), 10.
P. J. Higgins (1971). Notes on categories and groupoids, Van Nostrand Reinhold Co., London.
Peter M. Higgins (1992). Techniques of semigroup theory, Oxford Univ. Press. (ed.) (1993). Transformation semigroups: proceedings of the international conference held at the University of Essex, Colchester, England, August 3rd-6th, 1993, Department of Mathematics, University of Essex, England.
G. Higman (1961). Subgroups of finitely presented groups, Proc. Roy. Soc. Ser. A 262, 455-475.
D. Hilbert (1899). Grundlagen der Geometrie, Teubner, Leipzig.
T. H. Hildebrandt (1940). Review: Eliakim Hastings Moore, General analysis. Part 2. The fundamental notions of general analysis, BAMS 46, 9-13.
E. Hille (1948). Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. XXXI, Amer. Math. Soc.; revised ed., co-authored with R. S. Phillips, 1957.
H. Hilton (1908). An introduction to the theory of groups of finite order, Clarendon Press, Oxford.
Peter Hilton (1988). Reminiscences of Bletchley Park, 1942-1945, in Duren (1989a), vol. 1, pp. 291-301.
J. Hintzen (1957). Ein System von unabhängigen Axiomen für Halbgruppen mit eindeutigen Halbprimfaktorzerlegungen, Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln.
E. W. Hobson and A. E. H. Love (eds.) (1913). Proceedings of the Fifth International Congress of Mathematicians (Cambridge, 22-28 August 1912), 2 vols., Cambridge Univ. Press.
A. Hodges (1992). Alan Turing: the enigma, Vintage, London.
H.-J. Hoehnke (1962). Zur Theorie der Gruppoide I, MN 24 (1962), 137-168; II, ibid., 169-179; III, Acta Math. Acad. Sci. Hungar. 13(1-2) (1962), 91-100; IV, Monatsber. Deutsch. Akad. Wiss. Berlin 4(6) (1962), 337-342; V, ibid. 4(9) (1962), 539-544; VI, MN 25(4) (1963), 191-198; VII, ibid. 27(5-6) (1964), 289-301; VIII, Spisy vyd. přírod. fak. Masaryk. univ., 1963, no. 5, 195-222; IX, Monatsber. Deutsch. Akad. Wiss. Berlin 5 (1963), 405-411.

- (1963). Zur Strukturtheorie der Halbgruppen, MN 26(1-4), 1-13.
(1966). Structure of semigroups, CJM 18, 449-491.
(ed.) (1985). Theory of semigroups - Theorie der Halbgruppen. Proceedings of the international conference held in Greifswald, November 12-16, 1984, Mathematische Gesellschaft der DDR, Berlin.
Paul Hoffman (1998). The man who loved only numbers: the story of Paul Erdős and the search for mathematical truth, Hyperion, NY.
K. H. Hofmann (1976). Topological semigroups: history, theory, applications, Jahresber. Deutsch. Math.- Verein. 78, 9-59.
(1985). Semigroups in the 19th century? A historical note, in Hoehnke (1985), pp.44-55.
(1992). Zur Geschichte des Halbgruppenbegriffs, HM 19, 40-59.
_ (1994). Semigroups and Hilbert's fifth problem, MSl 44(3), 365-377.
(1995). From a topological theory of semigroups to a geometric one, $S F \mathbf{5 0}$, 123-134.
(2000). A history of topological and analytical semigroups: a personal view, SF 61, 1-25.
K. H. Hofmann, H. Jürgensen, and H. J. Weinert (eds.) (1983). Recent developments in the algebraic, analytical, and topological theory of semigroups (Proceedings, Oberwolfach, Germany 1981), Lecture Notes in Mathematics, vol. 998, Springer.
K. H. Hofmann, R. J. Koch, and P. S. Mostert (1974). Alexander Doniphan Wallace on his 68th birthday, $S F$ 7, 10-31.
\qquad (1986). Alexander Doniphan Wallace in memoriam, SF 34, 1-4.

Karl H. Hofmann and Michael W. Mislove (eds.) (1996). Semigroup theory and its applications: proceedings of the 1994 conference commemorating the work of Alfred H. Clifford, LMS Lecture Note Series, no. 231, Cambridge Univ. Press.
K. H. Hofmann and P. S. Mostert (1966). Elements of compact semigroups, Merrill Research and Lecture Series, C. E. Merrill Books.
T. R. Hollcroft (1944). The October meeting in New York, BAMS 50(1), 20-22.

Christopher Hollings (2009a). From right PP monoids to restriction semigroups: a survey, Europ. J. Pure Appl. Math. 2(1), 21-37.

- (2009b). The early development of the algebraic theory of semigroups, AHES 63(5), 497-536.
_ (2009c). Anton Kazimirovich Suschkewitsch (1889-1961), BSHM Bulletin 24(3), 172-179.
(2012). The case of Evgenii Sergeevich Lyapin, Mathematics Today 48(4) (Aug.), 184-186.
(2013). The struggle against idealism: Soviet ideology and mathematics, Notices Amer. Math. Soc. 60(11), 1448-1458.
David Holloway (1994). Stalin and the bomb: the Soviet Union and atomic energy, 1939-1956, Yale Univ. Press.
- (1999). Physics, the state, and civil society in the Soviet Union, Hist. Stud. Phys. Biol. Sci. 30(1), 173-192.
Roger Holvoet (1959). Sur l'immersion d'un semi-groupe dans un groupe, Bull. Soc. math. Belg. 11, 134-136.
Peter Horák (1985). The 60th birthday of Professor Kolibiarová, Pokroky mat. fyz. astron. 30(2), 111-112.
Mordecai Hoseh (1961). Scientific and technical literature of the USSR, Chapter 17 in Robert F. Gould (ed.), Searching the chemical literature, Advances in Chemistry Series, vol. 30, American Chemical Society, Washington, DC, pp. 144-171.
J. M. Howie (1962). Some problems in the theory of semi-groups, DPhil thesis, University of Oxford.
(1966). The subsemigroup generated by the idempotents of a full transformation semigroup, JLMS 41, 707-716.
-_ (1976). An introduction to semigroup theory, Academic Press, London; updated edition: Howie (1995b).
_ (1978). Idempotent generators in finite full transformation semigroups, Proc. Roy. Soc. Edinb. Sect. A 81(3-4), 317-323.
(1980). Products of idempotents in finite full transformation semigroups, Proc. Roy. Soc. Edinb. Sect. A 86(3-4), 243-254. (1991). Automata and languages, Clarendon Press, Oxford.
(1992). Report on the conference on semigroups held at Oberwolfach in 1991, SF 44, 133-135.
- (1993). Amalgamations: a survey, in Bonzini et al. (1993), pp. 125-132.
(1995a). Gordon Bamford Preston, SF 51, 269-271.
(1995b). Fundamentals of semigroup theory, LMS Monographs, New Series, no. 12, Clarendon Press, Oxford; updated edition of Howie (1976).
_ (1999). Tribute: Walter Douglas Munn, SF 59, 1-7.
\qquad (2002). Semigroups, past, present and future, in Wanida Hemakul (ed.), Proceedings of the international conference on algebra and its applications, Department of Mathematics, Chulalongkorn University, Bangkok, Thailand, pp. 620.
(2008). Professor Walter Douglas Munn, The Herald (Glasgow), 12 Nov.
J. M. Howie, W. D. Munn, and H. J. Weinert (eds.) (1992). Semigroups with applications. Proceedings of the conference, Oberwolfach, 21-28 July 1991, World Sci., River Edge, NJ.
Renáta Hrmová (1959). On the equivalence of some forms of the cancellation law in a semigroup, MFC 9, 177-182 (in Slovak).
\qquad (1963). Generalized ideals in semigroups, MFC 13, 41-54 (R).

Karl Hufbauer (2009). George Gamow (1904-1968), Biogr. Mem. Nat. Acad. Sci. USA, pp. 3-39.
E. V. Huntington (1901a). Simplified definition of a group, BAMS 8(7) (1901-1902), 296-300.
_- (1901b). A second definition of a group, BAMS 8(9) (1901-1902), 388-391. (1903). Two definitions of an abelian group by sets of independent postulates, TAMS 4, 27-30.

- (1905). Note on the definition of abstract groups and fields by sets of independent postulates, TAMS 6, 181-197.
Wallie Abraham Hurwitz (1928). On Bell's arithmetic of Boolean algebra, TAMS 30, 420-424.
Kh. N. Inasaridze (1959). On certain questions of the theory of semigroups, Trudy Tbiliss. gos. univ. Ser. fiz.-mat. nauk 76(1), 247-260 (R).
Institute [for the Study of the History and Culture of the USSR] (1954). Academic freedom under the Soviet regime: a symposium of refugee scholars and scientists who have escaped from the USSR, on the subject "Academic freedom in the Soviet Union as a threat to the theory and practice of Bolshevik doctrine" (Conference at Carnegie Endowment of International Peace Building, United Nations Plaza, NY, April 3-4, 1954), The Institute for the Study of the History and Culture of the USSR, Munich, 1954.
Kiyoshi Iséki (1953). Sur les demi-groupes, $C R$ 236, 1524-1525.
- (1954). On compact abelian semi-groups, Michigan Math. J. 2, 59-60.
(1955). Sur un théorème de M. G. Thierrin concernant demi-groupe limitatif [sic], PJA 31, 54-55.
(1956a). Contribution to the theory of semi-groups I, PJA 32, 174-175; II, ibid., 225-227; III, ibid., 323-324; IV, ibid., 430-435; V, ibid., 560-561; VI, ibid. 33(1957), 29-30.
-_ (1956b). On compact semi-groups, PJA 32, 221-224.
(1962). On quasiideals in regular semigroup [sic]. A remark on S. Lajos' note, PJA 38, 212.
Ján Ivan (1953). On the direct product of semigroups, MFC 3, 57-66 (in Slovak).
\qquad (1954). On the decomposition of simple semigroups into a direct product, MFC 4, 181-202 (in Slovak).
(1958). On the matrix representations of simple semigroups, MFC 8, 27-39 (in Slovak).
Allyn Jackson (2000). Oberwolfach, yesterday and today, Notices Amer. Math. Soc. 47(7), 758-765.

Howard L. Jackson (1956). The embedding of a semigroup in a group, MA thesis, Queen's University, Kingston, Ontario.
T. H. Jackson (1975). Number theory, Library of Mathematics, Routledge \& Kegan Paul, London and Boston.
Nathan Jacobson (1951). Lectures in abstract algebra, volume 1: basic concepts, D. Van Nostrand Co. Inc., Princeton, NJ.

Ján Jakubík and Milan Kolibiar (1974). Sixtieth anniversary of the birthday of Academician Štefan Schwarz, CMJ 24(99)(2), 331-340; Slovak versions: Časopis pěst. mat. 99, 200-213; Mat. časopis. Slovensk. Akad. Vied 24(2), 99-111.
_ (1984). Seventieth anniversary of birthday of Academician Štefan Schwarz, CMJ 34(109), 490-498; Slovak version: MSl 34(2), 239-246.
__ (1994). Eighty years of Professor Štefan Schwarz, MSl 44(2), i-x.
Ján Jakubík, Blanka Kolibiarová, and Milan Kolibiar (1984). On the seventieth anniversary of Academician Štefan Schwarz, Časopis pěst. mat. 109(3), 329-334 (in Slovak).
Ján Jakubík and Bohumil Šmarda (1992). Seventy years of Professor František Šik, CMJ 429(117)(1), 181-185.
Ralph D. James (ed.) (1975). Proceedings of the International Congress of Mathematicians (Vancouver, 1974), 2 vols., Canadian Mathematical Congress.
E. W. Johnson (1990). Abstract ideal theory: principals and particulars, in Bogart et al. (1990), pp. 391-396.
Gordon Johnston (1999). What is the history of samizdat? Social History 24(2), 115-133.
Michael Jones (2008). Leningrad: state of siege, John Murray, London.
David Joravsky (1961). Soviet Marxism and natural science, 1917-1932, Routledge \& Kegan Paul, London.
(1970). The Lysenko affair, Univ. Chicago Press.
(1983). The Stalinist mentality and the higher learning, Slavic Review 42(4), 575-600.
Paul R. Josephson (1992). Soviet scientists and the State: politics, ideology, and fundamental research from Stalin to Gorbachev, Social Research 59(3), 589-614. H. Jürgensen (1977). Computers in semigroups, $S F$ 15, 1-20.
(1989). Annotated tables of linearly ordered semigroups of orders 2 to 7, Technical Report TR-230; Annotated tables of semigroups of orders 2 to 7, Technical Report TR-231, Department of Computer Science, University of Western Ontario, London, Ontario.
H. Jürgensen, G. Lallement, and H. J. Weinert (eds.) (1988). Semigroups: theory and applications, proceedings of a conference held in Oberwolfach, FRG, Feb. 23Mar. 1, 1986, Lecture Notes in Mathematics, vol. 1320, Springer.
H. Jürgensen, M. Petrich, and H. J. Weinert (eds.) (1981). Semigroups: proceedings of a conference, held at Oberwolfach, Germany, December 16-21, 1978, Lecture Notes in Mathematics, vol. 855, Springer.
H. Jürgensen and P. Wick (1977). Die Halbgruppen der Ordnung $\leq 7, S F$ 14, 69-79.

Irving Kaplansky (1966). Commutative rings, Queen Mary College Mathematical Notes.
(1973). Commutative rings, in James W. Brewer and Edgar A. Rutter (eds.), Conference on commutative algebra (Lawrence, Arkansas, 1972), Lecture Notes in Mathematics, vol. 311, Springer, pp. 153-166.
V. Ya. Karachun, O. A. Karachun, and G. G. Gulchuk (1995). Russian-Ukrainian mathematical dictionary, Vidav. Vishcha shkola, Kiev (in Russian/Ukrainian).
A. V. Karasev (1959). Leningrad in the years of the blockade 1941-1943, Izdat. Akad. nauk SSSR, Moscow (R).
Alexander Karp (2006). The Cold War in the Soviet school: a case study of mathematics education, European Education 38(4) (2006-2007), 23-43.
(2012). Soviet mathematics education between 1918 and 1931: a time of radical reforms, $Z D M$ Mathematics Education 44, 551-561.
Alexander Karp and Bruce R. Vogeli (eds.) (2010). Russian mathematics education: history and world significance, World Sci. Publ., Hackensack, NJ.
Gregory Karpilovsky (2001). Block, in Encyclopaedia of mathematics, Kluwer Academic Publishers.
Tibor Katriňák (1996). Milan Kolibiar (1922-1994), MSl 46(4), 297-304.
Victor J. Katz (2009). A history of mathematics: an introduction, 3rd ed., AddisonWesley.
A. M. Kaufman (1953). Associative systems with an ideally solvable series of length two, UZLGPI 89, 67-93 (R).
_ (1963). Homomorphisms of monogenic semigroups, Uchen. zap. Ryazan. gos. ped. inst. 35, 90-93 (R).
(1967). Some remarks on normal complexes of semigroups, Uchen. zap. Ryazan. gos. ped. inst. 42, 40-43 (R).
Y. Kawada and K. Kondô (1939). Idealtheorie in nicht kommutativen Halbgruppen, Japanese J. Math. 16, 37-45.
N. M. Khait (2005). Pride of our city, Istoriya Peterburga, no. 1(23), 11-17 (R).
E. A. Khalezov (1954a). Automorphisms of matrix semigroups, DAN 96(2), 245248 (R).
(1954b). Isomorphisms of matrix semigroups, Uchen. zap. Ivanov. gos. ped. inst. Fiz.-mat. nauki 5, 42-56 (R).
__ (1984). On the 75 th year of Academician A. I. Maltsev, SMZ 25, 1-2 (R).
M. Kilp (1996). First announcement: an international conference on transformation semigroups and acts over monoids, University of Tartu, Estonia, August 16-19, 1996, SF 52, 251.
M. Kilp, U. Knauer, and A. V. Mikhalev (2000). Monoids, acts and categories, with applications to wreath products and graphs, de Gruyter Expositions in Mathematics, no. 29, Walter de Gruyter, Berlin.
C. H. Kimberling (1972). Emmy Noether, AMM 79(2), 136-149.

Naoki Kimura (1954). Maximal subgroups of a semigroup, KMSR 6, 85-88.
__ (1957). On semigroups, PhD thesis, Tulane University, Louisiana.
V. L. Klee Jr. (1956). The November meeting in Los Angeles, BAMS 62(1), 13-23.

Abraham A. Klein (1967). Rings nonembeddable in fields with multiplicative semigroups embeddable in groups, JA 7, 100-125.
(1969). Necessary conditions for embedding rings into fields, TAMS 137, 141-151.
Felix Klein (1893). Vergleichende Betrachtungen über neuere geometrische Forschungen, MA 43, 63-100; Gesammelte Abhandlungen, Band 1, Springer, 1921, pp. 460-497.
(1926). Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, Teil I, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellung, vol. XXIV, Springer.
Fritz Klein (1929). Einige distributive Systeme in Mathematik und Logik, Jahresber. Deutsch. Math.-Verein. 38, 35-40.

- (1931). Zur Theorie der abstrakten Verknüpfungen, MA 105, 308-323.
(1932). Über einen Zerlegungssatz in der Theorie der abstrakten Verknüpfungen, $M A$ 106, 114-130.
__ (1935). Beiträge zur Theorie der Verbände, MZ 39(1), 227-239.
Fritz Klein-Barmen (1933). Über gekoppelte Axiomensysteme in der Theorie der abstrakten Verknüpfungen, MZ 37, 39-60.
(1943). Über gewisse Halbverbände und kommutative Semigruppen, Erster Teil, MZ 48, 275-288; Zweiter Teil, ibid., 715-734.
__ (1953). Zur Theorie der Operative und Assoziative, MA 126, 23-30.
(1956). Zur Axiomatik der Semigruppen, Sitzungsber. Bayer. Akad. Wiss. Math., Naturwiss. Klasse, pp. 287-294.
(1958). Ordoid, Halbverband und ordoide Semigruppe, MA 135, 142-159.

Daniel J. Kleitman, Bruce R. Rothschild, and Joel H. Spencer (1976). The number of semigroups of order n, PAMS 55, 227-232.
J. R. Kline (1952). Soviet mathematics, in Christman (1952), pp. 80-84.
U. Knauer (1980). Zur Entwicklung der algebraischen Theorie der Halbgruppen, Simon Stevin 54, 165-177.
M. Kneser (1982). Composition of binary quadratic forms, J. Number Theory 15, 406-413.
M. Kneser, M.-A. Knus, M. Ojanguren, R. Parimala, and R. Sridharan (1986). Composition of quaternary quadratic forms, Compos. Math. 60(2), 133-150.
Robert J. Koch and John A. Hildebrandt (eds.) (1986). Proceedings of the 1986 LSU semigroup conference: Kochfest 60, Louisiana State Univ., Baton Rouge, LA.
Alexei B. Kojevnikov (2004). Stalin's great science: the times and adventures of Soviet physicists, History of Modern Physical Sciences, vol. 2, Imperial College Press.
Gina Bari Kolata (1978). Anti-Semitism alleged in Soviet mathematics, Science 202, 15 Dec., 1167-1170.
Milan Kolibiar (1964). On the fiftieth anniversary of Academician Štefan Schwarz, MFC 14(2), 150-157 (in Slovak).
Blanka Kolibiarová (1957). On the semigroups, every subsemigroup of which has a left unit element, MFC 7, 177-182 (in Slovak).
E. Kolman (1936). Subject matter and method of contemporary mathematics, Gos. Sots.-Ekon. Izdat., Moscow (R).
A. N. Kolmogorov (1934). Modern mathematics, Front nauki i tekhniki, nos. 5-6, 25-28 (R).

- (1972). His career in science, Nauka i zhizn, no. 5, 112-115 (R).
J. König (1903). Einleitung in die allgemeine Theorie der algebraischen Gröszen, Teubner, Leipzig.
A. A. Korbut and E. B. Yanovskaya (1996). In memoriam: N. N. Vorob'ev (19251995), Games and Economic Behavior 12, 283-285.
V. N. Kotov, G. N. Kotova, and A. N. Korol (1992). Russian-Ukrainian-English mathematical dictionary of phrases, Proizvodstvenno-kommercheskaya firma Ilven, Kiev (in Russian/Ukrainian).
L. G. Kovács and B. H. Neumann (eds.) (1967). Proceedings of the international conference on the theory of groups: held at the Australian National University Canberra, 10-20 August, 1965, Gordon and Breach Science, NY/London.
A. Krazer (ed.) (1905). Verhandlungen des dritten Internationalen MathematikerKongresses in Heidelberg vom 8. bis 13. August 1904, Teubner, Leipzig.
Nikolai Krementsov (1997). Stalinist science, Princeton Univ. Press.
Wolfgang Krull (1923). Ein neuer Beweis für die Hauptsätze der allgemeinen Idealtheorie, MA 90(1-2), 55-64.
_- (1928). Zur Theorie der allgemeinen Zahlringe, MA 99, 51-70.
(1929). Idealtheorie in Ringen ohne Endlichkeitsbedingung, MA 101(1), 729-744.
(1935). Idealtheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4, Springer, Berlin; 2nd expanded ed., 1968.
S. I. Kublanovsky (1999). M. M. Lesokhin (1933-1998), SF 59, 159-166.
M. Kucharzewski (1982). Stanisław Gołạb - life and work, Aequationes Math. 24(1), 1-18.
A. G. Kurosh (1948). Algebra II: groups, rings and lattices, in Kurosh et al. (1948), pp. 106-133 (R).
_ (1959a). Algebra at the Edinburgh Congress, UMN 14(2), 239-242 (R).
_ (1959b). Anatolii Ivanovich Maltsev (on his fiftieth birthday), UMN 14(6), 203-211 (R).
(1960). Lectures on general algebra, Nauka, Moscow (R); English trans.: Chelsea, NY, 1963; 2nd Russian ed., 1973.
A. G. Kurosh, V. I. Bityutskov, V. G. Boltyanskii, E. B. Dynkin, G. E. Shilov, and A. P. Yushkevich (eds.) (1959). Mathematics in the USSR after forty years, 1917-1957, 2 vols., Gos. Izdat. Fiz.-Mat. Lit., Moscow (R).
A. G. Kurosh and S. N. Chernikov (1947). Solvable and nilpotent groups, UMN 2(3), 18-59 (R).
A. G. Kurosh, A. I. Markushevich, and P. K. Rashevskii (eds.) (1948). Mathematics in the USSR after thirty years, 1917-1947, OGIZ, GTTI, Moscow-Leningrad (R).
A. G. Kurosh, B. I. Plotkin, H. K. Sesekin, and L. N. Shevrin (1968). Petr Grigorevich Kontorovich (obituary), UMN 23(4), 239-240; English trans.: RMS 23(4), 179-180.
S. S. Kutateladze (2007). Roots of Luzin's case, J. Appl. Ind. Math. 1(3), 261-267.
\qquad (2013). An epilog to the Luzin case, Siberian Electronic Math. Rep. 10, A1-A6.
Valdis Laan, Sydney Bulman-Fleming, and Roland Kaschek (eds.) (2008). Proceedings of the international conference on semigroups, acts and categories with applications to graphs, to celebrate the 65th birthdays of Mati Kilp and Ulrich Knauer (University of Tartu, June 27-30, 2007), Mathematical Studies, vol. 3, Estonian Math. Soc., Tartu.
Gérard Lallement (1979). Semigroups and combinatorial applications, Wiley; Russian trans.: Izdat. Mir, Moscow, 1985.
_- (1988). Some algorithms for semigroups and monoids presented by a single relation, in Jürgensen et al. (1988), pp. 176-182.
\qquad (1993). Conference report, $S F$ 46, 401-402.
(1995). Paul Dubreil (1904-1994) in memoriam, $S F$ 50, 1-7.
G. Lallement and D. Perrin (1997). Marcel-Paul Schützenberger (1920-1996), $S F$ 55, 135-151.
Gérard Lallement and Mario Petrich (1969). Irreducible matrix representations of finite semigroups, TAMS 139, 393-412.
G. Lallement and I. Simon (1998). List of publications of Marcel-Paul Schützenberger, Theoret. Comput. Sci. 204, 3-9.
J. Lambek (1950). The immersibility of a semigroup into a group, PhD thesis, McGill University, Montreal.
-_ (1951). The immersibility of a semigroup into a group, CJM 3, 34-43.
A. F. Lapko (1972). The development of higher education in the USSR during the first three five-year plans, UMN 27(6), 5-23 (R); English trans.: RMS 27(6) (1972), 3-23.
A. F. Lapko and L. A. Lyusternik (1967). From the history of Soviet mathematics, UMN 22(6), 13-140 (R); English trans.: RMS 22(6), 11-138.
P. LaSalle and S. Lefschetz (eds.) (1962). Recent Soviet contributions to mathematics, Macmillan.
I. A. Lavrov (2009). On the 100th birthday of Academician A. I. Maltsev, Vestnik Ivanov. gos. univ., no. 2, pp. 139-147 (R).
J. D. Lawson (1992). Historical links to a Lie theory of semigroups, Seminar Sophus Lie 2, 263-278.
(1996). The earliest semigroup paper?, $S F$ 52, 55-60.
\qquad (2002). An interview with Karl H. Hofmann on the occasion of his seventieth birthday, SF 65, 317-328.
Mark V. Lawson (1991). Semigroups and ordered categories I: the reduced case, JA 141, 422-462.
___ (1998). Inverse semigroups: the theory of partial symmetries, World Sci.
Mark V. Lawson, Liam O'Carroll, and Sarah Rees (to appear). David Rees (19182013), $S F$.

Walter Ledermann (1949). Introduction to the theory of finite groups, Oliver \& Boyd, Edinburgh; 2nd revised ed., 1953; 3rd revised ed., 1957; 4th revised ed., 1961; 5th ed., 1964.
- (1983). Issai Schur and his school in Berlin, BLMS 15, 97-106.
Pierre Lefebvre (1960a). Sur la plus fine équivalence simplifiable d'un demi-groupe, CR 251, 1205-1207.
(1960b). Sur la plus fine équivalence régulière et simplifiable d'un demigroupe, CR 251, 1265-1267.
Solomon Lefschetz (1949). Mathematics, Ann. Amer. Acad. Political Social Sci. 263, 139-140.
D. H. Lehmer (1974). Harry Schultz Vandiver, 1882-1973, BAMS 80(5), 817-818.
-_ (1989). A half century of reviewing, in Duren (1989a), vol. 1, pp. 265-266. (1993). The mathematical work of Morgan Ward, Math. Comput. 61(203) (Special issue dedicated to Derrick Henry Lehmer), 307-311.
Olli Lehto (ed.) (1980). Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 2 vols., Academia Scientiarum Fennica.
_ (1998). Mathematics without borders: a history of the International Mathematical Union, Springer.
J. Leray (1974). Marie-Louise Dubreil: 7 juillet 1905 - 19 octobre 1972, Ann. anciens élèves École norm. sup.; English trans.: http://www-history.mcs.st-andrews.ac.uk/Extras/Dubreil-Jacotin.html (last accessed 5 Feb. 2014).
Léonce Lesieur (1945). Tangentes principales d'une variété à p dimensions dans l'espace à n dimensions, $C R$ 220, 724-726.
(1955). Sur les demi-groupes réticulés satisfaisants à une condition de chaine, BSMF 83, 161-193.
(1973). Marie-Louise Dubreil-Jacotin, 1905-1972, SF 6, 1-2; English trans. at URL given for Leray (1974).
(1994). Paul Dubreil (1904-1994), Gaz. Math., no. 60, 74-75.
M. M. Lesokhin (1958). Some properties of generalised characters of semigroups, UZLGPI 83, 277-286 (R).
F. W. Levi (1944). On semigroups, Bull. Calcutta Math. Soc. 36 (1943), 141-146; II, ibid., 38 (1946), 123-124.
Yevgeny Levich (1976). Trying to keep in touch, Nature 263, 30 Sept., 366.
Aleksey E. Levin (1990). Anatomy of a public campaign: "Academician Luzin's Case" in Soviet political history, Slavic Review 49(1), 90-108.
H. D. Lewis (1985). The French education system, Routledge, London.

Robert A. Lewis (1972). Some aspects of the research and development effort of the Soviet Union, 1924-35, Social Studies of Science 2, 153-179.
A. E. Liber (1953). On symmetric generalised groups, MS 33(75), 531-544 (R).

- (1954). On the theory of generalised groups, DAN 97, 25-28 (R).
A. E. Liber and N. G. Chudakov (1963). Mathematical life in Saratov, UMN 18, 235-238 (R).
A. E. Liber, Yu. E. Penzov, and P. K. Rashevskii (1958). Viktor Vladimirovich Wagner (on his fiftieth birthday), UMN 13, 221-227 (R).
S. Lie (1891). Die Grundlagen für die Theorie der unendlichen kontinuierlichen Transformationsgruppen I, Leipzig, Berichte 3, 316-352; II, ibid., 353-393.
Elliot R. Lieberman (1987). Where to look for Soviet MS/OR articles: a guide to English language sources and abstracts, Interfaces 17(4), 85-89.
Stephen Lipscomb (1996). Symmetric inverse semigroups, Mathematical Surveys and Monographs, vol. 46, Amer. Math. Soc.
Edward H. Litchfield, H. Philip Mettger, Harry D. Gideonse, T. Keith Glennan, Gaylord P. Harnwell, Deane W. Malott, Franklin D. Murphy, Alan M. Scaife, Frank H. Sparks, and Herman B. Wells (1958). Report on higher education in the Soviet Union, Univ. Pittsburgh Press.
D. E. Littlewood (1933). On the classification of algebras, PLMS 35, 200-240.
_- (1940). The theory of group characters and matrix representations of groups, Clarendon Press, Oxford.
W. Ljunggren (1963). Thoralf Albert Skolem in memoriam, Math. Scand. 13, 5-8.

Li-po Lo and Shih-chiang Wang (1957). Finite associative systems and finite groups I, Adv. Math. 3, 268-270 (in Chinese).
Alfred Loewy (1903). Über die Reducibilität der Gruppen linearer homogener Substitutionen, TAMS 4, 44-64.
_- (1910). Algebraische Gruppentheorie, in E. Pascal (ed.), Repertorium der höheren Mathematik, vol. 1, Teubner, Leipzig, pp. 138-153.
__ (1915). Lehrbuch der Algebra, Leipzig.
(1927). Über abstrakt definierte Transmutationssysteme oder Mischgruppen, JRAM 157, 239-254.
A. J. Lohwater (1957). Mathematics in the Soviet Union, Science 125(3255), 17 May, 974-978.
(1961). Russian-English dictionary of the mathematical sciences, Amer. Math. Soc.
Ivan D. London (1957). A note on Soviet science, Russian Review 16(1), 37-41.
Lee Lorch (1967). Mathematics: International Congress, Science 155(3765), 24 Feb., 1038-1039.
G. G. Lorentz (2002). Mathematics and politics in the Soviet Union from 1928 to 1953, J. Approx. Theory 116, 169-223.
P. Lorenzen (1939). Abstrakte Begründung der multiplikativen Idealtheorie, MZ 45, 533-553.
(1951). Die Widerspruchsfreiheit der klassischen Analysis, MZ 51, 1-24.
M. V. Losik and V. V. Rozen (eds.) (2008). Viktor Vladimirovich Wagner, on the 100th anniversary of his birth, Proceedings of Saratov University, Series Mathematics, Mechanics and Informatics, vol. 8, Saratov State Univ. (R).
Linda L. Lubrano and Susan Gross Solomon (eds.) (1980). The social context of Soviet science, Westview Press, Boulder, CO.
E. S. Lyapin (1945). Elements of an abstract theory of systems with one operation, doctoral dissertation, Leningrad State University (R).
(1947). Kernels of homomorphisms of associative systems, MS 20(3), 497515 (R).
(1950a). Normal complexes of associative systems, IAN 14(2), 179-192 (R).
(1950b). Simple commutative associative systems, IAN 14(3), 275-282 (R). (1950c). Semisimple commutative associative systems, IAN 14(4), 367-380 (R).
(1953a). Associative systems of all partial transformations, DAN 88, 13-15; errata: 92 (1953), 692 (R).
__ (1953b). Course of higher algebra, Uchpedgiz, Moscow (R); 2nd ed., 1955; reprinted by Izdat. Lan, Saint Petersburg, 2009.
(1955). Abstract characterisation of some semigroups of transformations, UZLGPI 103, 5-29 (R).
(1956). Potential invertibility of elements in semigroups, $M S \mathbf{3 8 (8 0) (3) ,}$ 373-388 (R).
(1960a). Semigroups, Gos. Izdat. Fiz.-Mat. Lit., Moscow (R); English trans.: Translations of Mathematical Monographs, vol. 3, Amer. Math. Soc., 1963; 2nd English ed., 1968; 3rd English ed., 1974.

- (1960b). On representations of semigroups by partial mappings, MS 52(94), 589-596 (R); English trans.: AMST 27, 289-296.
- (1961). Abstract characterisation of the semigroup of all partial transformations of a set, connected with properties of its minimal ideals, UZLGPI 218, 13-22 (R).
_ (2007). Dynamics of civilisation, Izdat. Nestor-Istoriya, Saint Petersburg (R).
E. S. Lyapin and L. N. Shevrin (1969). International symposium on the theory of semigroups, UMN 24, 237-239 (R).
E. S. Lyapin, G. I. Zhitomirskii, and O. V. Kolesnikova (1983). Lazar Matveevich Gluskin (on his 60th birthday), in V. V. Wagner, L. M. Gluskin, G. I. Zhitomirskii, E. S. Lyapin, and V. A. Fortunatov (eds.), Theory of semigroups and its applications: polyadic semigroups, semigroups of transformations, Saratov State Univ., pp. 3-10 (R).
E. S. Lyapin and L. D. Zybina (1971). The study of semigroups in the algebra cathedra of the A. I. Herzen Leningrad State Pedagogical Institute from 1946 to 1967, UZLGPI 404, 16-58 (R).
Yu. I. Lyubich and E. M. Zhmud (1989). Anton Kazimirovich Sushkevich, Kharkov State Univ. Newspaper, Apr. (R).
L. A. Lyusternik (1946). "Matematicheskii sbornik", UMN 1(1), 242-247 (R).
C. C. MacDuffee (1936). Moore on general analysis - I, BAMS 42, 465-468.

Sheila Macintyre and Edith Witte (1956). German-English mathematical vocabulary, Oliver \& Boyd, Edinburgh; 2nd ed., 1966.
V. M. Maiorov (1997). Leonid Mikhailovich Rybakov (on his 90th birthday, 19071964), Vestnik Yaroslav. ped. inst., no. 3 (R).
V. A. Makaridina and E. M. Mogilyanskaya (2008). Evgeniy Sergeevich Lyapin, 1914-2005: reflections by two pupils on their teacher, SF 77, 143-151.
A. I. Malcev (1937). On the immersion of an algebraic ring into a field, MA 113, 686-691.
I. A. Malcev (2010). Anatolii Ivanovich Malcev (on the centenary of his birth), UMN 65(5), 197-203 (R); English trans.: RMS 65(5), 991-997.
A. I. Maltsev (1939). On the immersion of associative systems in groups, MS 6, 331-336; II, ibid. 8 (1940), 251-264 (R).
-_ (1952). Symmetric groupoids, MS 31, 136-151 (R). (1953). Multiplicative congruences of matrices, DAN 90(3), 333-335 (R). (1971). On the history of algebra in the USSR during her first twenty-five years, Algebra i logika 10(1), 103-118 (R); English trans.: Algebra and Logic 10(1), 68-75.
H. B. Mann (1944). On certain systems which are almost groups, BAMS 50, 879881.
M. N. Marchevskii (1956a). History of the mathematics divisions in Kharkov University during the 150 years of its existence, ZKMO 24, 7-29 (R).
_ (1956b). Kharkov Mathematical Society during the first 75 years of its existence, Istor.-mat. issled. 9, 611-666 (R).
G. I. Marchuk, L. Ya. Kulikov, M. I. Kargapolov, A. D. Taimanov, B. I. Plotkin, Sh. S. Kemkhadze, V. A. Andrunakievich, Yu. L. Ershov, R. G. Yanovskii, A. I. Shirshov, V. V. Morozov, and S. V. Smirnov (1973). Memories of A. I. Maltsev (from the opening ceremony of the Tenth All-Union Algebra Colloquium, dedicated to the memory of Academician A. I. Maltsev, Novosibirsk, 20-26 September 1967), in Collection dedicated to the memory of A. I. Maltsev, Izdat. Nauka, Sibirskoe otdelenie, Novosibirsk (R).
L. Márki (1985). A tribute to L. Rédei, $S F$ 32, 1-21.

- (1991). Ottó Steinfeld 1924-1990, SF 43, 127-134.
L. Márki, R. Pöschel, and H.-J. Vogel (1996). Hans-Jürgen Hoehnke, SF 52, 112118.
L. Márki and O. Steinfeld (1974). A generalization of Green's relations in semigroups, $S F$ 7, 74-85.
L. Márki, O. Steinfeld, and J. Szép (1981). Short review of the work of László Rédei, Studia Sci. Math. Hungar. 16(1-2), 3-14.
A. A. Markov (1947). Impossibility of certain algorithms in the theory of associative systems, DAN 55, 583-586; ibid. 58, 353-356; ibid. 77 (1951) 19-20 (R).
Maurice Mashaal (2002). Bourbaki: une société secrète de mathématiciens, Éditions Pour la Science, Paris; English trans.: Amer. Math. Soc., 2006.
S. Yu. Maslov, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, and A. O. Slisenko (1980). Nikolai Aleksandrovich Shanin (on his sixtieth birthday), UMN 35(2), 241-245 (R); English trans.: RMS 35(2), 277-282.
Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, and A. O. Slisenko (1990). Nikolai Aleksandrovich Shanin (on his seventieth birthday), UMN 45(1), 205-206 (R); English trans.: RMS 45(1), 239-240.
Guy Maury (1959). Une caractérisation des demi-groupes noethériens intégralement clos, CR 248, 3260-3261.
A. Maznitsa (1998). "Abstract world" in reality, Zerkalo Nedeli, no. 33 (202), 15-21 Aug.
Donald B. McAlister (1971). Representations of semigroups by linear transformations I, SF 2(3), 189-263; II, ibid. 2(4), 283-320.
(1976). One-to-one partial right translations of a right cancellative semigroup, JA 43, 231-251.
(1977). Book review: 'An introduction to semigroup theory' by J. M. Howie, SF 15, 185-187.
David McLean (1954). Idempotent semigroups, AMM 61, 110-113.
J. Meakin (1985). The Rees construction in regular semigroups, in Pollák et al. (1985), pp. 115-155.

Zhores A. Medvedev (1969). The rise and fall of T. D. Lysenko, Columbia Univ. Press, NY.
_ (1971). The Medvedev papers: the plight of Soviet science today, Macmillan, London.
(1973). Dr Zhores Medvedev replies to Professor John Ziman, Nature 244, 24 Aug., 476.
(1979). Soviet science, Oxford Univ. Press.
L. Megyesi and G. Pollák (1968). Über die Struktur der Hauptidealhalbgruppen I, ASM 29, 261-270; II, ibid. 39(1-2)(1977), 103-108.
Helmut Mertes (1966). Lagrange-Halbgruppen, Arch. Math. (Basel) 17, 1-8.
Nichemea Meyers (1976). View from the promised land, Nature 263, 30 Sept., 365. Franco Migliorini (ed.) (1983). Atti del convegno di teoria dei semigruppi (Siena, 14-15 ottobre, 1982), Università degli Studi di Siena, Istituto di Matematica, Siena.
D. D. Miller (1974). A. H. Clifford: the first sixty-five years, SF 7, 4-9.
\qquad (1996). Reminiscences of a friendship, in Hofmann and Mislove (1996), pp. 1-2.
D. D. Miller and A. H. Clifford (1956). Regular \mathcal{D}-classes in semigroups, TAMS 82, 270-280.
G. H. Miller (1961). Algebra in the U.S.S.R.: a comparative study on the junior high level, School Science and Mathematics 61(2), 119-127.
Angelo B. Mingarelli (2005). A glimpse into the life and times of F. V. Atkinson, MN 278(12-13), 1364-1387.
L. Mišík (1981). Academician Štefan Schwarz awarded the 1980 National Prize of the Slovak Socialist Republic, CMJ 31(106), 338-339.
Montagu of Beaulieu, Ernest Barker, E. P. Cathcart, A. S. Eddington, I. Gollancz, R. A. Gregory, P. Chalmers Mitchell, Bernard Pares, Arthur Schuster, C. S. Sherrington, A. E. Shipley, H. G. Wells, A. Smith Woodward, and C. Hagberg Wright (1921). The British Committee for Aiding Men of Letters and Science in Russia, Nature 106, 6 Jan., 598-599.
E. H. Moore (1896). A doubly infinite system of simple groups, in O. Bolza, H. Maschke, E. H. Moore and H. S. White (eds.), Mathematical papers read at the International Mathematical Congress held in connection with the World's Columbian Exposition, Chicago 1893, Papers Published by the American Mathematical Society, vol. 1, NY, Macmillan and Co. for the Amer. Math. Soc.
_ (1902). A definition of abstract groups, TAMS 3, 485-492.
(1905). On a definition of abstract groups, TAMS 6(2), 179-180.
(1920). On the reciprocal of the general algebraic matrix, BAMS 26, 394395.
E. H. Moore and R. W. Barnard (1935). General analysis, part I, The American Philosophical Society, Philadelphia; part II, 1939.
J. Morgan (2008). In memoriam Milo Wesley Weaver, University of Texas, http: // www.utexas.edu/faculty/council/2007-2008/memorials/weaver.html (last accessed 5 Feb. 2014).
H. J. Muller (1954). Science under Soviet totalitarianism, in Friedrich (1954), pp. 233-244.
W. D. Munn (1955a). Semigroups and their algebras, PhD thesis, University of Cambridge.
(1955b). On semigroup algebras, $P C P S$ 51, 1-15.
(1957a). Matrix representations of semigroups, $P C P S$ 53, 5-12.
(1957b). The characters of the symmetric inverse semigroup, $P C P S$ 53, 13-18.
(1957c). Semigroups satisfying minimal conditions, Proc. Glasgow Math. Assoc. 3, 145-152.
(1960). Irreducible matrix representations of semigroups, QJM 11, 295309.
(1961). A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5, 41-48. (1964a). Brandt congruences on inverse semigroups, PLMS 14, 154-164. (1964b). Matrix representations of inverse semigroups, PLMS 14, 165-181. (1964c). Review:"The algebraic theory of semigroups", vol. I by A. H. Clifford and G. B. Preston, Math. Gaz. 48(363), 122.
(1971). Free inverse semigroups, Sém. Dubreil. Alg. 25(2) (1971-1972), exp. no. J6, 1p.
(1972). Embedding semigroups in congruence-free semigroups, SF 4, 46-60. (1986). Inverse semigroup algebras, in Gregory Karpilovsky (ed.), Proceedings of the international conference on group and semigroup rings, University of Witwatersrand, Johannesburg, South Africa, 7-13 July 1985, North-Holland, Amsterdam, pp. 197-223.
___ (2006). John Mackintosh Howie: an appreciation, SF 73, 1-9.
W. D. Munn and R. Penrose (1955). A note on inverse semigroups, PCPS 51, 396-399.
Hi $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Murof (1989). On an application of the work of D. E. Knuth to semigroups, SF 39, 117-124.
Hirosi Nagao (1978). Kenjiro Shoda 1902-1977, OMJ 15(1), i-v.
T. Nagell (1963). Thoralf Skolem in memoriam, Acta Math. 110(1), i-xi.
K. S. S. Nambooripad, R. Veeramony, and A. R. Rajan (1985). International conference on theory of regular semigroups and its applications at Department of Mathematics, University of Kerala, Kariavattom, Trivandrum, India, SF 32, 220.
Melvyn B. Nathanson (1986). Math flows poorly from East to West, The New York Times, 20 Sept.
František Neuman (1978). Otakar Borůvka, his life and work, Arch. Math. (Brno) 33(1-2), 1-7.
B. H. Neumann (1937). Identical relations in groups I, MA 114, 506-525. (1967a). Varieties of groups, BAMS 73, 603-613.
Hanna Neumann (1967b). Varieties of groups, Springer, NY.
O. Neumann (2007). Divisibility theories in the early history of commutative algebra and the foundations of algebraic geometry, Chapter 4 in J. Gray and K. H. Parshall (eds.), Episodes in the history of modern algebra (1800-1950), History of Mathematics, vol. 32, Amer. Math. Soc./London Math. Soc., pp. 73-105.
Peter M. Neumann (1999). What groups were: a study of the development of the axiomatics of group theory, Bull. Austral. Math. Soc. 60, 285-301.
(2011). The mathematical writings of Évariste Galois, Heritage of European Mathematics, Europ. Math. Soc.
William R. Nico (ed.) (1979). Proceedings of the conference on semigroups in honor of Alfred H. Clifford held at Tulane University, New Orleans, La., September 1-3, 1978, Reprints and Lecture Notes in Mathematics, Tulane Univ., New Orleans, LA.
A. Nijenhuis (1972). J. A. Schouten: a master at tensors (28 August 1883 - 20 January 1971), Nieuw Arch. Wisk. (3) 20, 1-19.
Vladimir Nikitin (2002). Disguised blockade Leningrad 1941-1944: photo album, Izdat. Limbus Press.
S. M. Nikolskii (1972). Excerpts from a memoir on A. I. Maltsev, UMN 27(4), 223-230 (R); English trans.: RMS 27(4), 179-187.
- (1983). Aleksandrov and Kolmogorov in Dnepropetrovsk, UMN 38(4), 3749 (R); English trans.: RMS 38(4), 41-55.
_ (2005). My century, FAZIS, Moscow (R).
E. Noether (1921). Idealtheorie in Ringbereichen, MA 83, 24-66.
(1927). Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörper, MA 96, 26-61.
Rolf Nossum (2012). Emigration of mathematicians from outside German-speaking academia 1933-1963, supported by the Society for the Protection of Science and Learning, HM 39, 84-104.
K. Numakura (1952). On bicompact semigroups, Math. J. Okayama Univ. 1, 99108.

Ralph E. O'Dette (1957). Russian translation, Science 125(3248), 29 Mar., 579585.
V. A. Oganesyan (1955a). Invariant and normal subsystems of a symmetric system of partial substitutions, Dokl. Akad. nauk Armyan. SSR 21, 49-56 (R).
(1955b). On the semisimplicity of a system algebra, Dokl. Akad. nauk Armyan. SSR 21, 145-147 (R).
Jan Okniński (1998). Semigroups of matrices, Series in Algebra, vol. 6, World Sci., Singapore.
O. Ore (1931). Linear equations in non-commutative fields, $A M$ 32(3), 463-477.
_- (1933a). Theory of non-commutative polynomials, $A M \mathbf{3 4 (3) , ~ 4 8 0 - 5 0 8 . ~}$
(1933b). Abstract ideal theory, BAMS 39(10), 728-745.
(1935). On the foundation of abstract algebra I, AM 36(2), 406-437; II, ibid. 37(2) (1936), 265-292.
(1937). Structures and group theory I, Duke Math. J. 3(2), 149-174.

Gerald Oster (1949). Scientific research in the U.S.S.R: organization and planning, Ann. Amer. Acad. Political Social Sci. 263, 134-139.
I. V. Ostrovskii (1999). Kharkov Mathematical Society, Europ. Math. Soc. Newsletter 34, Dec., 26-27.
Péter Pál Pálfy and Jenő Szép (1982). The work of László Rédei in group theory, Mat. lapok 33(4), 243-254 (in Hungarian).
K. H. Parshall (1984). Eliakim Hastings Moore and the founding of a mathematical community in America, 1892-1902, Ann. Sci. 41, 313-333.
(1985). Joseph H. M. Wedderburn and the structure theory of algebras, AHES 32, 223-349.
(1988). America's first school of mathematical research: James Joseph Sylvester at the Johns Hopkins University 1876-1883, AHES 38, 153-196.
(1995). Mathematics in national contexts (1875-1900): an international overview, in S. D. Chatterji (ed.), Proceedings of the International Congress of Mathematicians, Zürich, August 3-11, 1994, vol. 2, Birkhäuser, Basel, pp. 15811591.
(1996). How we got where we are: an international overview of mathematics in national contexts 1875-1900, Notices Amer. Math. Soc. 43, 287-296.
(2009). The internationalization of mathematics in a world of nations: 18001960, in Eleanor Robson and Jacqueline Stedall (eds.), The Oxford Handbook of the History of Mathematics, Oxford Univ. Press, pp. 85-104.
(2011). Victorian algebra: the freedom to create new mathematical entities, Chapter 15 in Raymond Flood, Adrian Rice, and Robin Wilson (eds.), Mathematics in Victorian Britain, Oxford Univ. Press, pp. 339-356.
Karen Hunger Parshall and Adrian C. Rice (eds.) (2002). Mathematics unbound: the evolution of an international mathematical research community, 1800-1945. Papers from the International Symposium held at the University of Virginia, Charlottesville, VA, May 27-29, 1999, History of Mathematics, vol. 23, Amer. Math. Soc./London Math. Soc.
Karen H. Parshall and David E. Rowe (1989). American mathematics comes of age: 1875-1900, in Duren (1989a), vol. 3, pp. 1-24.

- (1994). The emergence of the American mathematical research community, 1876-1900: J. J. Sylvester, Felix Klein, and E. H. Moore, History of Mathematics, vol. 8, Amer. Math. Soc./London Math. Soc.
Francis Pastijn (1975). A representation of a semigroup by a semigroup of matrices over a group with zero, $S F$ 10, 238-249.
\qquad (1977). Embedding semigroups in semibands, SF 14(3), 247-263.

Dmiti V. Pavlov (1965). Leningrad 1941: the blockade, Univ. Chicago Press.
István Peák (1960). Über gewisse spezielle kompatible Klasseneinteilungen von Halbgruppen, ASM 21, 346-349.
(1963). Bibliographie: A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, ASM 24, 271-272.
_ (1964). Automata and semigroups I, ASM 25, 193-201 (R); II, ibid. 26(1965), 49-54 (R).
I. Peák and G. Pollák (1960). Bemerkungen über die Halbgruppen mit Minimalbedingungen, Ann. Univ. Sci. Budapest. Eötvös Nomin. Sect. Math. (1960/1961), nos. 3-4, 223-225.
R. Penrose (1955). A generalized inverse for matrices, PCPS 51, 406-413.
M. Petrich (1970). Bibliographical comment, SF 1, 184.
__ (1973). Introduction to semigroups, Merrill, Columbus, OH.
(1974). Rings and semigroups, Lecture Notes in Mathematics, vol. 380, Springer, Berlin-NY.
(1977). Lectures in semigroups, Wiley, London.
(1984). Inverse semigroups, Wiley, NY.
M. Petrich and N. R. Reilly (1999). Completely regular semigroups, Wiley, NY.

Petraq Petro (2002). Green's relations and minimal quasi-ideals in rings, Comm. Algebra 30(10), 4677-4686.
R. V. Petropavlovskaya (1951a). Lattice isomorphisms of free associative systems, MS 28(70), 589-602 (R).

- (1951b). On decomposibility into a direct sum of the lattice of subsystems of an associative system, DAN 81, 999-1002 (R).
(1956). Associative systems lattice isomorphic to a group I, Vestnik Leningrad. univ. 11(13), 5-26; II, ibid. 11(19), 80-99; III, ibid. 12(19) (1957), 5-19 (R).
I. G. Petrovsky (ed.) (1968). Proceedings of the International Congress of Mathematicians, Moscow, 16-26 August 1966, 3 vols., Izdat. Mir, Moscow.
H. O. Pflugfelder (2000). Historical notes on loop theory, Comment. Math. Univ. Carol. 41(2), 359-370.
A. Philipov (1954). Bolshevik philosophy and academic freedom, in Institute (1954), pp. 1-9.
R. S. Pierce (1954). Homomorphisms of semigroups, AM 59, 287-281.
J. Pierpont (1900). Galois theory of algebraic equations, Ann. Math. 2 (1900-1901), 22-56.
Jean-Éric Pin (1997). Syntactic semigroups, Chapter 10 in G. Rozenberg and A. Salomaa (eds.), Handbook of formal language theory, Springer, vol. 1, pp. 679-746.
_ (1999). Marcel-Paul Schützenberger (1920-1996), Intern. J. Algebra Comput. 9(3-4), 227-239.
Everett Pitcher (1988). A history of the second fifty years. American Mathematical Society, 1939-1988, Amer. Math. Soc. Centennial Publications, vol. I, Amer. Math. Soc.
R. J. Plemmons (1966). Cayley tables for all semigroups of order $N \leq 6$, Auburn University, Auburn, AL.
\qquad (1970). Construction and analysis of non-equivalent finite semigroups, in Computational Problems in Abstract Algebra (conference proceedings, Oxford, 1967), Pergamon, Oxford, pp. 223-228.
G. Pollák (1961). Über die Struktur kommutativer Hauptidealringe, ASM 22, 6274.
(ed.) (1979). Algebraic theory of semigroups. Proceedings of the sixth algebraic conference held in Szeged, August 23-26, 1976, Colloq. Math. Soc. János Bolyai, vol. 20, North-Holland, Amsterdam.
Georg Pollák and Ladislaus Rédei (1959). Die Halbgruppen, deren alle echten Teilhalbgruppen Gruppen sind, Publ. Math. Debrecen 6, 126-130.
G. Pollák, Št. Schwarz, and O. Steinfeld (eds.) (1985). Semigroups. Structure and universal algebraic problems. Papers from the eleventh conference held in Szeged, August 24-28, 1981, Colloq. Math. Soc. János Bolyai, vol. 39, North-Holland, Amsterdam.
Ethan Pollock (2006). Stalin and the Soviet science wars, Princeton Univ. Press.
J. S. Ponizovskii (1956). On matrix representations of semigroups, MS 38, 241-260 (R).
(1958). On irreducible matrix representations of finite semigroups, $U M N$ 13, 139-144 (R).
(1960a). On homomorphisms of commutative semigroups, DAN 135(5), 1058-1060 (R); English trans.: SMD 1(6), 1354-1355.
_- (1960b). A remark on simple semigroups, IVUZM, no. 6(19), 203-206 (R). (1961a). On homomorphisms of semigroups into commutative semigroups, SMZ 2(5), 719-733 (R).
(1961b). On ideal systems of semigroups, $M S \mathbf{5 5 (4) , ~ 4 0 1 - 4 0 6 (R) .}$
(1962). Inverse semigroups with a finite number of idempotents, $D A N$ 143(6), 1282-1285 (R).
(1963). On homomorphisms of finite inverse semigroups, UMN 18(2), 151153 (R).
(1964a). On representations of inverse semigroups by partial one-to-one transformations, IAN 28, 989-1002 (R).
__ (1964b). Transitive representations by transformations of semigroups of a certain class, SMZ 5, 896-903 (R); English trans.: AMST 139 (1988), 85-92.
- (1965). A remark on inverse semigroups, $U M N$ 20(6), 147-148 (R).
(1970). The matrix representations of finite commutative semigroups, $S M Z$ 11, 1098-1106, 1197-1198 (R); English trans.: SMJ 11, 816-822. (1982). On irreducible matrix semigroups, $S F$ 24(2-3), 117-148.
(1987). Semigroup rings, SF 36(1), 1-46.
(1994a). Conference on semigroups, St. Petersburg, Russia, June 1995, SF 48, 389.
__ (1994b). Evgeniĭ Sergejevich Lyapin on his 80th birthday, SF 49, 271-274.
L. S. Pontryagin (1946). Outstanding Soviet mathematician, Izvestiya, 7 Jun. (R).
-_ (1978). A short autobiography of L. S. Pontryagin, UMN 33(6), 7-21 (R); English trans.: RMS 33(6) (1978), 7-24.
(1979). Soviet anti-Semitism: reply by Pontryagin, Science 205, 14 Sept., 1083-1084.
A. R. Poole (1935). Finite ova, PhD thesis, California Institute of Technology.
\qquad (1937). Finite ova, AJM 59, 23-32.

Eldon E. Posey (1949). Endomorphisms and translations of semigroups, master's thesis, University of Tennessee, Knoxville.
Vaughan Pratt (1992). Origins of the calculus of binary relations, in Proceedings of the seventh annual symposium on logic in computer science (LICS '92), Santa Cruz, California, USA, June 22-25, 1992, IEEE Computer Society, pp. 248-254.
Presidium of the Academy of Sciences of the USSR (1936). On Academician N. N. Luzin, Pravda, no. 215, 6 Aug., 3 (R).
G. B. Preston (1953). Some problems in the theory of ideals, DPhil thesis, University of Oxford.
(1954a). The arithmetic of a lattice of sub-algebras of a general algebra, JLMS 29, 1-15.
_- (1954b). Factorization of ideals in general algebras, JLMS 29, 363-368. (1954c). Inverse semi-groups, JLMS 29, 396-403.
(1954d). Inverse semi-groups with minimal right ideals, JLMS 29, 404-411. (1954e). Representations of inverse semi-groups, JLMS 29, 411-419.
(1956). The structure of normal inverse semigroups, Proc. Glasgow Math. Assoc. 3, 1-9.

- (1957). Inverse semigroups, in Gerretsen and de Groot (1957), vol. 2, p. 54.
(1958). Matrix representations of semigroups, QJM 9, 169-1976.
(1959). Embedding any semigroup in a \mathcal{D}-simple semigroup, TAMS 93(2), 351-355.
(1961). Les congruences dans les demi-groupes abéliens et libres, $S D \mathbf{1 5}(2)$ (1961-1962), exp. no. 17, 6 pp.
(1974). A. H. Clifford: an appreciation of his work on the occasion of his sixty-fifth birthday, $S F$ 7, 32-57.
(1991). Personal reminiscences of the early history of semigroups, in Hall et al. (1991), pp. 16-30.
(1996). A. H. Clifford's work on unions of groups, in Hofmann and Mislove (1996), pp. 5-14.
I. I. Privalov (ed.) (1927). Proceedings of the all-Russian congress of mathematicians (Moscow, 27th April - 4th May 1927), Glavnauka; Gos. Izdat., LeningradMoscow (R).
G. A. Prudinskii (2011). On the 100th anniversary of the birth of R. E. Soloveichik, Trudy Peterburg. gorn. inst. 193, 304-306 (R).
H. Prüfer (1924). Theorie der Abelschen Gruppen I: Grundeigenschaften, MZ 20, 165-187.
(1932). Untersuchungen über Teilbarkeitseigenschaften in Körpern, JRAM 168, 1-36.
V. Pták (1949). Immersibility of semigroups, Acta Fac. Rer. Nat. Univ. Carol. 192, 16 pp .
(1952). On immersibility of semigroups, CMJ 2(77), 247-271 (R).
(1953). Immersibility of semigroups, Časopis pěst. mat. 78, 259-261 (in Czech).
J. Querré (1963). Systèmes d'idéaux d'un demi-groupe, $C R$ 256, 5265-5267.

Eugene Rabinowitch (1958). Soviet science - a survey, Problems of Communism 7(2), 1-9.
K. P. S. Bhaskara Rao (2002). The theory of generalized inverses over commutative rings, Taylor and Francis, London.
H. Rauter (1928). Abstrakte Kompositionssysteme oder Übergruppen, JRAM 159, 239-254.
Gregory S. Razran (1942). Offprints for the scientific men of Soviet Russia, Science 96(2488), 4 Sept., 231.
László Rédei (1952). Die Verallgemeinerung der Schreierschen Erweiterungstheorie, ASM 14, 252-273.
_ (1963). Theorie der endlich erzeugbaren kommutativen Halbgruppen, Hamburger Mathematische Einzelschriften, Heft 41, Physica-Verlag, Würzburg; English trans.: Pergamon Press, Oxford-Edinburgh-NY, 1965.
L. Rédei and O. Steinfeld (1952). Über Ringe mit gemeinsamer multiplikativer Halbgruppe, Comment. Math. Helv. 26, 146-151.
D. Rees (1940). On semi-groups, PCPS 36, 387-400.
-_ (1941). Note on semi-groups, $P C P S$ 37, 434-435.
_- (1947). On the group of a set of partial transformations, JLMS 22, 281-284.

- (1948). On the ideal structure of a semi-group satisfying a cancellation law, QJM 19, 101-108.
Constance Reid (1993). The search for E. T. Bell, also known as John Taine, MAA.
Miles Reid (1977). Keeping in touch with soviet colleagues, Nature 265, 10 Feb., 484-485.
N. R. Reilly (1965a). Contributions to the theory of inverse semigroups, PhD thesis, University of Glasgow.
(1965b). Embedding inverse semigroups in bisimple inverse semigroups, QJM 16(62), 183-187.
(1966). Bisimple ω-semigroups, Proc. Glasgow Math. Assoc. 7, 160-167.
(2009). Obituary: Walter Douglas Munn 1929-2008, SF 78, 1-6.
N. R. Reilly and A. H. Clifford (1968). Bisimple inverse semigroups as semigroups of ordered triples, CJM 20, 25-39.
X. M. Ren and K. P. Shum (2012). Inverse semigroups and their generalizations, in Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, pp. 566-596.
M. A. Reynolds and R. P. Sullivan (1985). Products of idempotent linear transformations, Proc. Roy. Soc. Edinb. Sect. A 100(1-2), 123-138.
J. Rhodes (1969a). Algebraic theory of finite semigroups, in Folley (1969), pp. 125162.
(1969b). Algebraic theory of finite semigroups, SD 23(2) (1969-1970), exp. no. DG 10, 9 pp.
(1970). Book reviews: 'The algebraic theory of semigroups' by A. H. Clifford and G. B. Preston, 'Semigroups' by E. S. Ljapin, 'The theory of finitely generated commutative semigroups' by L. Rédei, and 'Elements of compact semigroups' by K. H. Hofmann and P. S. Mostert, BAMS 76, 675-682.
(ed.) (1991). Monoids and semigroups with applications (Proceedings of the Berkeley workshop in monoids, Berkeley, 31 July - 5 August 1989), World Sci.
(1996). The relationship of Al Clifford's work to the current theory of semigroups, in Hofmann and Mislove (1996), pp. 43-51.
John Rhodes and Benjamin Steinberg (2009). The q-theory of finite semigroups, Springer, NY.

John Rhodes and Yechezkel Zalcstein (1991). Elementary representation and character theory of finite semigroups and its application, in Rhodes (1991), pp. 334367.
R. P. Rich (1949). Completely simple ideals of a semigroup, AJM 71, 883-885.

Vera Rich (1976). He who would dissident be, Nature 263, 30 Sept., 361.
__ (1986). Plagiarism charges levelled, Nature 324, 20 Nov., 198.
A. R. Richardson (1926). Hypercomplex determinants, Messenger Math. 55, 145152.
(1928). Simultaneous linear equations over a division algebra, PLMS 28, 395-420.
-_ (1940). Algebra of s dimensions, PLMS 47, 38-59.
B. Riečan (1997). Štefan Schwarz (1914-1996), CMJ 47(122)(2), 375-382.

Jacques Riguet (1948). Relations binaires, fermetures, correspondances de Galois, BSMF 76, 114-155.
(1950a). Sur les ensembles réguliers de relations binaires, $C R$ 231, 936-937.
(1950b). Quelques propriétés des relations difonctionnelles, $C R$ 230, 19992000.
(1953). Travaux récents de Malčev, Vagner, Liapin, SCD 7 (1953-1954), exp. no. 18, 9 pp.
(1956). Travaux soviétiques récents sur la théorie des demi-groupes: la représentation des demi-groupes ordonnés, $S D \mathbf{1 0}$ (1956-1957), exp. no. 9, 22 pp.
Edmund Robertson (2012). John Howie, London Math. Soc. Newsletter, no. 412 (Mar.), 11.
E. N. Roĭz and B. M. Schein (1978). Radicals of semigroups, SF 16(3), 299-344.

Stephen Romanoff (1954). Dialectical materialism and the exact sciences (mathematics, physics, astronomy), in Institute (1954), pp. 9-13.
B. A. Rosenfeld (1974). Maltsev (or Malcev), Anatoly Ivanovich, in Charles Coulston Gould (ed.), Dictionary of scientific biography, vol. IX, Scribner, NY.
(2007). Reminiscences of Soviet mathematicians, in Zdravkovska and Duren (2007), pp. 75-100.

David E. Rowe (1983). A forgotten chapter in the history of Felix Klein's Erlanger Programm, HM 10, 448-457.
(1998). Mathematics in Berlin, 1810-1933, in H. G. W. Begehr, H. Koch, J. Kramer, N. Schappacher, and E.-J. Thiele (eds.), Mathematics in Berlin, Birkhäuser, pp. 9-26.
V. V. Rozen (2009). International conference "Contemporary problems of differential geometry and general algebra" dedicated to the 100th anniversary of Professor V. V. Wagner, Izv. Saratov. Univ. Mat. Mekh. Inform. 9(3), 90 (R).
Ferdinand Rudio (ed.) (1898). Verhandlungen des ersten Internationalen Math-ematiker-Kongresses in Zürich vom 9. bis 11. August 1897, Teubner, Leipzig, 1898.

Nikola Ruškuc and John M. Howie (1996). First announcement: conference on semigroups and applications, University of St Andrews, Scotland, July 2-9, 1997, SF 53, 399.
L. Rybakov (1939). On a class of commutative semigroups, MS 5(47), 521-536 (R).
V. S. Ryzhii (2000). The first dean of MekhMat (on the 100th anniversary of the birth of Dimitry Zakhorovich Gordevskii - first dean of the MechanicalMathematical Faculty), Universitates: nauka i prosveshchenie, no. 2 (R).

Tôru Saitô (1958). Homomorphisms of a left simple semigroup onto a group, PJA 34, 664-667; supplement, ibid. 35(1959), 114.
_- (1959). Note on left simple semigroups, PJA 35, 427-430.
(1965). Proper ordered inverse semigroups, Pacific J. Math. 15, 649-666.

Tôru Saitô and Shigeo Hori (1958). On semigroups with minimal left ideals and without minimal right ideals, J. Math. Soc. Japan 10, 64-70.
Harrison E. Salisbury (2000). The 900 days: the siege of Leningrad, Pan Grand Strategy Series, Pan.
I. N. Sanov (1940). Solution of Burnside's problem for exponent 4, Uchen. zap. Leningrad. gos. univ. Mat. ser. 10 (1940), 166-170 (R).
S. Satoh, K. Yama, and M. Tokizawa (1994). Semigroups of order 8, SF 49, 7-29.
M. Scanlan (1991). Who were the American postulate theorists?, J. Symbolic Logic 56(3), 981-1002.
B. M. Schein (1961). Embedding semigroups in generalised groups, MS 55(97), 379-400 (R); English trans.: AMST 139 (1988), 93-116.
_ (1962a). Abstract theory of semigroups of one-one transformations, candidate dissertation, Saratov State Univ. (R).
(1962b). Representations of generalised groups, IVUZM, no. 3(28), 164-176 (R).
(1963). On the theory of generalised groups, DAN 153, 296-299 (R); English trans.: A contribution to the theory of generalized groups, SMD 4, 16801683.
(1965). On the theory of generalised heaps and generalised groups, in V. V. Wagner (ed.), Theory of semigroups and its applications, vol. 1, Saratov. State Univ., pp. 286-324 (R); expanded English trans.: Schein (1979).
\qquad (1969). An idempotent semigroup is determined by the pseudogroup of its local automorphisms, Ural. gos. univ. Ural. mat. obshch. Mat. zap. 7(3)(19691970), 222-233 (R).
-_ (1970). Relation algebras and function semigroups, SF 1, 1-62.
_- (1973). Completions, translational hulls and ideal extensions of inverse semigroups, Czechoslovak Math. J. 23(4), 575-610.
(1979). On the theory of inverse semigroups and generalised grouds, $A M S T$

113, 89-122; expanded trans. of Schein (1965).
___ (1981). Obituary: Victor Vladimirovich Vagner (1908-1981), SF 23, 189200.
_ (1982). Obituary: Eduard Grigorievich Shutov, SF 25, 387-394.
(1985). Obituary: L. M. Gluskin (1922-1985), SF 32, 221-231.
(1986a). L. M. Gluskin in memoriam, Aequationes Math. 31, 1-6.
(1986b). Prehistory of the theory of inverse semigroups, in Koch and Hildebrandt (1986), pp. 72-76.
(1992). Cosets in groups and semigroups, in Howie et al. (1992), pp. 205221.
(1994). Book review: 'Techniques of semigroup theory' by Peter M. Higgins, SF 49, 397-402.
(2002). Book review: 'Inverse semigroups: the theory of partial symmetries'
by Mark V. Lawson, SF 65, 149-158.
_- (2008). My memories of Wagner, in Losik and Rozen (2008), pp. 41-47 (R).

Dirk Schlimm (2011). On the creative role of axiomatics. The discovery of lattices by Schröder, Dedekind, Birkhoff, and others, Synthese 183, 47-68.
K.-H. Schlote (2005). B. L. van der Waerden, Moderne Algebra, first edition (19301931), Chapter 70 in I. Grattan-Guinness (ed.), Landmark writings in Western mathematics, Elsevier, pp. 901-916.
F. K. Schmidt (1927). Bemerkungen zum Brandtschen Gruppoid, Sitzungsber. Heidelberg. Akad. Wiss. (Beiträge zur Algebra 10), 91-103.
O. Yu. Schmidt (1916). Abstract theory of groups, Kiev; 2nd ed., Gostekhizdat, Moscow, 1933; reprinted by Knizhnyi dom Librokom, Moscow, 2010 (R); annotated English trans. of 2nd ed. by Fred Holling and J. B. Roberts, Freeman, 1966.
J. A. Schouten (1956). In memoriam J. Haantjes, Nieuw Arch. Wisk. (3) 4, 61-70.
J. A. Schouten and J. Haantjes (1937). On the theory of the geometric object, PLMS 42, 356-376.
E. Schröder (1895). Vorlesungen über die Algebra der Logik III, Algebra und Logik der Relative, I, Teubner, Leipzig.
I. Schur (1902). Neuer Beweis eines Satzes über endliche Gruppen, Sitzungsber. Preuss. Akad. Wiss. Berlin, 1013-1019; Gesammelte Abhandlungen (A. Brauer and M. Rohrbach, eds.), Band I, Springer, 1973, pp. 79-85.
L. F. Schuster (1921). Literature for men of letters and science in Russia, Nature 106(2675), 3 Feb., 728.
Marcel-Paul Schützenberger (1943). Sur la théorie des structures de Dedekind, $C R$ 216, 717-718.
(1944). Sur les structures de Dedekind, $C R$ 218, 818-819.
(1955). Une théorie algébrique du codage, $S D 9$ (1955-1956), exp. no. 15, 24 pp.
(1956). Une théorie algébrique du codage, $C R$ 242, 862-864.
(1957a). $\overline{\mathcal{D}}$-représentations des demigroupes, $C R$ 244, 1994-1996.
(1957b). Sur une propriété combinatoire des demi-groupes libres, $C R \mathbf{2 4 5}$, 16-18.
- (1958). Sur la représentation monomiale des demi-groupes, $C R$ 246, 865867.
(1959). Sur certains sous-demi-groupes que interviennent dans un problème de mathématiques appliquées, Publ. Sci. Univ. Alger. Sér. A 6, 85-90.

- (1965a). On a factorisation of free monoids, PAMS 16, 21-24.
(1965b). On finite monoids having only trivial subgroups, Information and Control 8, 190-194.
_- (1965c). Sur certains sous-monoïdes libres, BSMF 93, 209-223.
Harry Schwartz (1951). A Soviet 'curtain' hung over science, The New York Times, 9 Oct.
Štefan Schwarz (1943). Theory of semigroups, Sb. prác prírod. fak. Sloven. univ. v Bratis. 6, 1-64 (in Slovak).
_- (1949). On various generalisations of the notion of a group, Časopis pěst. mat. fys. 74(2), 95-113 (in Czech).
(1951a). On the structure of simple semigroups without zero, $C M J \mathbf{1}(1)$, 41-53; Russian version: On the structure of finite semigroups without zeroes, CMZ 1, 51-65.
(1951b). On semigroups having a kernel, CMJ 1(4), 229-264; Russian version: CMZ 1, 259-301.
(1953a). On the theory of periodic semigroups, CMZ 3(78), 7-21 (R).
(1953b). On maximal ideals in the theory of semigroups I, CMZ 3(78), 139-153 (R); II, CMZ 3(78), 365-383 (R); Slovak version: Maximal ideals and the structure of semigroups, $M F C$ 3, 17-39.
(1953c). The present situation of mathematics in Slovakia, MFC 3(1-2), 6-8 (in Slovak).
- (1954a). Theory of characters of finite commutative semigroups, $C M Z$ 4(79), 219-247 (R).
_(1954b). Characters of commutative semigroups as class functions, CMZ 4(79), 291-295 (R).
(1954c). On a Galois connexion in the theory of characters of commutative semigroups, CMZ 4(79), 296-313 (R).
_- (1956). Semigroups satisfying some weakened forms of the cancellation law, MFC 6, 149-158 (in Slovak).
(1957). Characters of commutative semigroups, in Gerretsen and de Groot (1957), vol. I, p. 438.
(1960a). Semigroups in which every proper subideal is a group, ASM 21, 125-134.
(1960b). Les mesures dans les demi-groupes, $S D \mathbf{1 4 (2)}$ (1960-1961), exp. no. 23, 9 pp .
-_(1960c). Sur les caractères des demi-groupes compacts, $S D$ 14(2) (19601961), exp. no. 23, 8 pp.
_ (1966). L'application des demi-groupes à l'étude des matrices non-négatives, SD 20(1) (1966-1967), exp. no. 2, 8 pp.
_ (1969). The scientific work of K. Petr in the field of number theory, Časopis pěst. mat. 94, 358-361 (in Slovak).
- (1981). The role of semigroups in the elementary theory of numbers, MSl 31(4), 369-395.
Hugh Sebag-Montefiore (2004). Enigma: the battle for the code, Cassell Military Paperbacks.
John L. Selfridge (1958). On finite semigroups, PhD thesis, University of California, Los Angeles.
Theodore Shabad (1986). Soviet scholars say American plagiarized; he defends himself, The New York Times, 29 Dec.
I. R. Shafarevich (1959). Impressions from the International Congress of Mathematicians in Edinburgh, UMN 14(2), 243-246 (R).
Deborah Shapley (1974). Détente: travel curbs hinder U.S.-U.S.S.R. exchanges, Science 186(4165), 22 Nov., 712-715.
Rodney Sharp (2013a). David Rees (1918-2013), Mathematics Today 49(5) (Oct.), 197.
\qquad (2013b). David Rees, London Math. Soc. Newsletter, no. 429 (Oct.), 33-34.
(2013c). David Rees obituary, The Guardian (London), Thurs., 29 Aug.
Alison Shaw (2012). Obituary: Professor John Howie, academic who helped reform Scottish education, The Scotsman (Edinburgh), Mon., 23 Jan.
John Sherrod (1958). The Library of Congress, Science 127(3304), 25 Apr., 958959.
V. N. Shevchenko and N. N. Ivanov (1976). The representation of a semigroup by a semigroup generated by a finite set of vectors, Vescī Akad. navuk BSSR Ser. fīz.-mat. navuk, no. 2, 98-100, 142 (R).
L. N. Shevrin (1960). On densely embedded ideals of semigroups, DAN 131(1), 765-768; correction: ibid. 164(6) (1965), 1214 (R); English trans.: SMD 1(1), 348-351.
(1969a). Densely embedded ideals of semigroups, MS 79(121)(3), 425-432 (R).
(1969b). First all-Union symposium on the theory of semigroups, UMN 24, 243-247 (R).
(1979). Second all-Union symposium on semigroup theory, UMN 34(3), 228-233 (R).
Allen Shields (1987). Years ago: Luzin and Egorov, Math. Intelligencer 9(4), 24-27; part 2, ibid. 11(2) (1989), 5-8.
L. B. Shneperman (1962a). Semigroups of continuous transformations, DAN 144(3), 509-511 (R).
(1962b). Semigroups of continuous transformations and homeomorphisms of a simple arc, DAN 146(6), 1301-1304 (R).
(1963). Semigroups of continuous transformations of metric spaces, $M S$ 61(3), 306-318 (R).
I. Z. Shtokalo (ed.) (1960). Russian-Ukrainian mathematical dictionary, Vidav. Akad. nauk Ukrain. RSR, Kiev (in Russian/Ukrainian).
I. Z. Shtokalo and A. N. Bogolyubov (eds.) (1966). History of national mathematics, 4 vols., Akad. nauk SSSR/Akad. nauk UkrSSR, Naukova Dumka, Kiev, 19661970 (R).
I. Z. Shtokalo, A. N. Bogolyubov, and A. P. Yushkevich (eds.) (1983). Outline of the development of mathematics in the USSR, Akad. nauk SSSR/Akad. nauk UkrSSR, Naukova Dumka, Kiev (R).
Kar-Ping Shum, Lan Du, and Yuqi Guo (2010). Green's relations and their generalizations on semigroups, Discuss. Math. Gen. Algebra Appl. 30(1), 71-89.
K. P. Shum, Y. L. Guo, M. Ito, and Y. Fong (eds.) (1998). Semigroups. Proceedings of the international conference, Kunming '95, Springer, Singapore.
K. P. Shum, X. J. Guo, and X. M. Ren (2002). (l)-Green's relations and perfect rpp semigroups, in Proceedings of the Third Asian Mathematical Conference, 2000 (Diliman), World Sci. Publ., River Edge, NJ, pp. 604-613.
K. P. Shum and G. F. Zhou (1992). Announcement: international conference on semigroups and algebras of computer languages, Qingdao, China, May 25-28, 1993, SF 45, 398.
E. G. Shutov (1958). Potential divisibility of elements in semigroups, UZLGPI 166, 75-103 (R).
_ (1960). Defining relations in finite semigroups of partial transformations, DAN 132, 1280-1282 (R); English trans.: SMD 1(3), 784-786.
(1961a). Semigroups of one-one transformations, DAN 140, 1026-1028 (R); English trans.: SMD 2, 1319-1321.
(1961b). Homomorphisms of the semigroup of all partial transformations, IVUZM, no. 3(22), 177-184 (R); English trans.: AMST 139 (1988), 183-190.
(1963a). Embeddings of semigroups into simple and complete semigroups, MS 62(104), 496-511 (R).
\qquad (1963b). On a certain semigroup of one-one transformations, UMN 18(3), 231-235 (R); English trans.: AMST 139 (1988), 191-196.
(1964). Embedding of semigroups into simple semigroups with one-sided division, IVUZM, no. 5(42), 143-148; letter to the editor, ibid., 1973, no. 4(131), 120 (R).
(1965). On certain embeddings of semigroups with a cancellation law, $M S$ 67(109), 167-180 (R).
(1966). Embedding of semigroups, in Anon (1966), pp. 217-230 (R); English trans.: AMST 139(1988), 197-204.
- (1967). On certain embeddings of ordered semigroups, DAN $172(2), 302-$ 305 (R); English trans.: SMD 8(1), 107-110.
(1968). Certain embeddings of ordered semigroups, IVUZM, no. 8(75), 103112 (R).
(1980). Embedding of semigroups into groups and potential invertibility, SMZ 21(1), 168-180, 238 (R); English trans.: SMJ 21(1), 124-133.
(1981). The quasivariety of semigroups embeddable in groups, in 16th allUnion conference on algebra, vol. 2, Leningrad, pp. 151-152 (R).
Reinhard Siegmund-Schultze (1998). Eliakim Hastings Moore's "General Analysis", AHES 52, 51-89.
F. Šik (1961). Über die Kommutativität einer Klasse archimedisch geordneter Halbgruppen, Acta Fac. Nat. Univ. Comenian. 5, 459-464.
Yakov Sinai (ed.) (2003) Russian mathematicians in the 20th century, World Sci.
D. M. Sintsov (1936). Kharkov Mathematical Society after 50 years, in Proceedings of the first all-Union congress of mathematicians (Kharkov, 1930), Obed. nauch.tekhn. izdat. NKTP SSSR, Moscow-Leningrad, pp. 97-105 (R).
F. I. Sirota (1960). Leningrad: hero-city, Lenizdat.
N. Sivertseva (1949). On the simplicity of the associative system of singular square matrices, $M S$ 24(66), 101-106 (R).
Th. Skolem (1951a). Theory of divisibility in some commutative semi-groups, Norske Mat. Tidsskr. 33, 82-88.
(1951b). Some remarks on semi-groups, Norsk. Videnskab. Selskab Forhand. 24(9), 42-47.
(1951c). Theorems of divisibility in some semi-groups, Norsk. Videnskab. Selskab Forhand. 24(10), 48-53.
(1952). A theorem on some semi-groups, Norsk. Videnskab. Selskab Forhand. 25(18), 72-77.
A. K. Slipenko (1983). Theory of semigroups, in Shtokalo et al. (1983), pp. 97-100 (R).

Paula Smith, Emília Giraldes, and Paula Martins (eds.) (2000). Proceedings of the international conference on semigroups (Braga, Portugal, 18-23 June 1999), World Sci.
Timothy Snyder (2010). Bloodlands: Europe between Hitler and Stalin, The Bodley Head, London.
S. L. Sobolev (1973). Some questions of mathematical education in the USSR, in A. G. Howson (ed.), Developments in mathematical education: proceedings of the Second International Conference on Mathematical Education, Cambridge Univ. Press, pp. 181-193.

Andreas Speiser (1923). Die Theorie der Gruppen von endlicher Ordnung, Springer; 2nd ed., 1927; 3rd ed., 1937; 4th ed., 1956; 5th ed., 1980.
David Speyer and Bernd Sturmfels (2009). Tropical mathematics, MM 82, 163-173.
Jacqueline Stedall (2008). Mathematics emerging: a sourcebook 1540-1900, Oxford Univ. Press.
(2011). From Cardano's great art to Lagrange's reflections: filling a gap in the history of algebra, Heritage of European Mathematics, Europ. Math. Soc.
H. A. Steeves (1962). Part X: Russian journals of mathematics, in LaSalle and Lefschetz (1962), pp. 303-315.
Karl Georg Steffens (2006). The history of approximation theory: from Euler to Bernstein, Birkhäuser, Basel.
Ottó Steinfeld (1953). On ideal-quotients and prime ideals, Acta Math. Acad. Sci. Hungar. 4, 289-298; Hungarian trans.: Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Közl. 3 (1954), 149-153.
__ (1955). Bemerkung zu einer Arbeit von T. Szele, Acta Math. Acad. Sci. Hungar. 6, 479-484.
(1956a). Über die Quasiideale von Ringe, $A S M$ 17, 170-180.
(1956b). Über die Quasiideale von Halbgruppen, Publ. Math. Debrecen 4, 262-275.
(1964). On quasi-ideals, Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Közl. 14, 301-315 (in Hungarian).
__ (1971). Sur les groupoïdes-treillis, Sém. Dubreil. Alg. 25 (1971-1972), no. 2, exposé no. J13, 5 pp.
_ (1978). Quasi-ideals in rings and semigroups, Akadémiai Kiadó, Budapest.
Ottó Steinfeld and Jenő Szép (1970). László Rédei is 70 years old, Mat. lapok 21, 189-197 (in Hungarian).
O. Steinfeld and R. Wiegandt (1967). Über die Verallgemeinerungen und Analoga der Wedderburn-Artinschen und Noetherschen Struktursätze, MN 34, 143-156.
E. Steinitz (1910). Algebraische Theorie der Körper, JRAM 137, 167-309; 2nd ed., Walter de Gruyter, Berlin and Leipzig, 1930; reprinted by Chelsea, NY, 1950.
R. R. Stoll (1943). Representations of completely simple semigroups, PhD thesis, Yale University.
(1944), Representations of finite simple semigroups, Duke Math. J. 11, 251-265.
(1951). Homomorphisms of a semigroup onto a group, AJM 73, 475-481.
B. Stolt (1958). Zur Axiomatik des Brandtschen Gruppoids, MZ 70, 156-164.

Dirk J. Struik (1989). Schouten, Levi-Civita, and the emergence of tensor calculus, in David E. Rowe and John McCleary (eds.), The history of modern mathematics, volume II: Institutions and Applications, Proceedings of the symposium on the history of modern mathematics, Vassar College, Poughkeepie, NY, June 20-24, 1989, Academic Press, pp. 98-105.
E. Study (1918). Zur Theorie der linearen Gleichungen, Acta Math. 42, 1-61.

Nihon Sūgakkai (1968). Japanese-English mathematical dictionary, Iwanami (in Japanese).
Robert Šulka (1963a). Factor semigroups of a semigroup, MFC 13, 205-208 (in Slovak).
(1963b). On nilpotent elements, ideals and radicals of a semigroup, MFC 13, 209-222 (R).
R. P. Sullivan (1978). Ideals in transformation semigroups, Comment. Math. Univ. Carol. 19(3), 431-446.
(2000). Transformation semigroups: past, present and future, in Smith et al. (2000), pp. 191-243.
A. K. Suschkewitsch (1926). Über die Darstellung der eindeutig nicht umkehrbaren Gruppen mittels der verallgemeinerten Substitutionen, $M S$ 33, 371-374.
___ (1927). Sur quelques cas de groupes finis sans la loi de l'inversion univoque, SKMO 1, 17-24.
(1928). Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit, MA 99, 30-50.

- (1929). On a generalization of the associative law, TAMS 31, 204-214.
(1930). Untersuchungen über verallgemeinerte Substitutionen, in Bologna (1929), vol. II, pp. 147-157.
(1933). Über die Matrizendarstellung der verallgemeinerten Gruppen, SKMO 6, 27-38.
(1934a). Über den Zusammenhang der Rauterschen Übergruppe mit den gewöhnlichen Gruppen, MZ 38, 643-649.
(1934b). Über Semigruppen, SKMO 8, 25-28.
(1934c). Über ein Elementensystem mit zwei Operationen, für welche zwei Distributivgesetze gelten, SKMO 8, 29-32.
(1934d). Über einen merkwürdigen Typus der verallgemeinerten unendlichen Gruppen, SKMO 9, 39-44.
(1935). Über eine Verallgemeinerung der Semigruppen, SKMO 12, 89-98.
(1936). Sur quelques propriétés des semigroupes généralisés, SKMO 13, 29-39.
A. K. Sushkevich (1922). The theory of operations as the general theory of groups, dissertation, Voronezh (R). (1923). Higher algebra: university course, Voronezh State University (R).
(1926). On methods of teaching mathematics in secondary school, Trudy Voronezh. univ. 3, 16 pp. (R).
(1927). Mathematics in the integrated training of stage II, in S. V. Ivanov, N. N. Iordan, and I. S. Simonov (eds.), Encyclopaedia of integrated education, vol. VI, Izdat. Brokgauz-Efron, Leningrad, pp. 170-200 (R). (1928). The purpose of studying mathematics in secondary school, Sovietskoe prosveshenie, nos. 2-3, 84-88 (R).
(1931a). Foundations of higher algebra, GTTI, Moscow-Leningrad; 2nd ed., 1932; 3rd ed., ONTI, Moscow-Leningrad, 1937; 4th ed., Gostekhizdat, MoscowLeningrad, 1941; reprinted by Vuzovskaya kniga, Moscow, 2012 (R).
\qquad (1931b). Higher algebra, Radyanska Shkola, Kharkov; 2nd ed., DNTVU, Kharkov-Kiev, 1934; 3rd ed., 1936; 4th ed., Kharkov State Univ., 1964 (in Ukrainian). (1931c). Lectures on the theory of finite groups, steklograph ed., Dnepropetrovsk (R).
(1932). Theory of numbers, DNTVU, Kharkov-Kiev; 2nd ed., 1936 (in Ukrainian).
(1934). E. Galois and the theory of groups, Priroda, no. 4, 59-63 (R).
(1935a). On the extension of a semigroup to a whole group, SKMO 12, 81-87 (in Ukrainian).
__ (1935b). On some properties of a type of generalised groups, Uchen. zap. Kharkov. univ., nos. 2-3, 23-25 (in Ukrainian). (1936). Investigations in the domain of generalised groups, Uchen. zap. Kharkov. univ., nos. 6-7, 49-52 (in Ukrainian).
- (1937a). Elements of new algebra, DNTVU, Kharkov-Kiev (in Ukrainian). (1937b). Theory of generalised groups, DNTVU, Kharkov-Kiev (R). - (1937c). On integral domains in numerical algebraic fields, Trudy Voronezh. univ. 9(4), 4-8 (R).
- (1937d). On groups of matrices of rank 1, Zh. inst. mat. Akad. nauk Ukr. $R S R$, no. 3, 83-94 (in Ukrainian).
(1937e). On the method of Newton-Fourier for calculating roots of equations, Uchen. zap. Kharkov. univ., nos. 8-9, 61-66 (in Ukrainian).
(1937f). On some types of singular matrices, Uchen. zap. Kharkov. univ., no. 10, 5-16 (in Ukrainian).
_ (1937g). Theory of probability, steklograph ed.; 2nd ed., 1938 (in Ukrainian). (1937h). Organisation of the teaching of mathematics in technical and economic universities, Front nauki i tekhniki, no. 6 (R).
- (1938a). Teaching mathematics in institutes of Soviet trade, in Materialy Nauchno-Metod. Raboty Ukr. Inst. Sov. Torgovli, pp. 3-13 (R). _ (1938b). Numerical notations of different peoples, in Materialy NauchnoMetod. Raboty Kaf. Matem. Ukr. Inst. Sov. Torgovli, pp. 56-85 (R). (1939a). Generalised groups of singular matrices, SKMO 16, 3-11 (R).
_- (1939b). Generalised groups of some types of infinite matrices, SKMO 16, 115-120 (in Ukrainian).
- (1940a). Investigations on infinite substitutions, in O. Yu. Schmidt, B. N. Delone, and N. G. Chebotarev (eds.), Collection dedicated to the memory of Academician D. A. Grave, GITTL, Moscow-Leningrad, pp. 245-253; also published in SKMO 18, 27-37 (R).
(1940b). On a type of generalised semigroup, SKMO 17, 19-28 (R). (1948a). On the construction of certain types of groups of infinite matrices, ZKMO 19, 27-33 (R).
_ (1948b). Numerical notations of different peoples, Mat. v shkole, no. 4, 1-15 (R). (1949). On a type of algebra of infinite matrices, ZKMO 20, 131-144 (R). (1950a). On a linear algebra of infinite order, ZKMO 21, 119-126 (R). (1950b). On an infinite algebra of triangular matrices, ZKMO 22, 77-93 (R). (1951). Materials for the history of algebra in Russia in the 19th and the beginning of the 20th centuries, Istor.-mat. issled. 4, 237-451 (R).
_- (1952). Algebras formed from infinite direct sums of rings, ZKMO 23, 49-60 (R).
(1954). Theory of numbers: elementary course, Kharkov State Univ.; 2nd ed., 1956; reprinted by Vuzovskaya kniga, Moscow, 2007 (R).
(1956). Dissertations in mathematics at Kharkov University during the years 1805-1917, ZKMO 24, 91-115 (R).
A. K. Sushkevich and L. M. Mevzos (1937). Mathematics, Ukrainian External Industrial Institute (R).

Gábor Szász (1954). Über die Unabhängigkeit der Assoziativitätsbedingungen kommutativer multiplikativer Strukturen, $A S M$ 15, 130-142; Hungarian version: Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Közl. 3, 97-109.
J. Szép (1956). Zur Theorie der Halbgruppen, Publ. Math. Debrecen 4, 344-346.

Takayuki Tamura (1950). Characterization of groupoids and semilattices by ideals in a semigroup, JGTU 1, 37-44.
(1953). Some remarks on semigroups and all types of orders 2, 3, JGTU 3, 1-11.
(1954a). On finite one-idempotent semigroups (1), JGTU 4, 11-20.
(1954b). On compact one-idempotent semi-groups, $K M S R$ 6, 17-21; supplement: ibid., 96.
_- (1954c). Note on unipotent inversible semigroups, KMSR 6, 93-95.
(1954d). On a monoid whose submonoids form a chain, JGTU 5, 8-16.
(1954e). Notes on finite semigroups and determination of semigroups of order 4, JGTU 5, 17-27.

- (1955a). On translations of a semigroup, $K M S R$ 7, 67-70.
(1955b). One-sided bases and translations of a semigroup, Math. Japon. 3, 137-141.
_ (1956a). Indecomposable completely simple semigroups except groups, OMJ 8, 35-42; errata: ibid. 9 (1957), 241.
- (1956b). The theory of construction of finite semigroups I, OMJ 8, 243-261; errata: ibid. 9(1957), 241; II, ibid., 1-42; errata: ibid., 242; supplement: ibid., 235-237; III. Finite unipotent semigroups, ibid. 10(1958), 191-204.
_- (1958). Notes on translations of a semigroup, $K M S R$ 10, 9-26.
(1959). Note on finite simple c-indecomposable semigroups, PJA 35, 13-15.
(1960). Decompositions of a completely simple semigroup, OMJ 12, 269275.
(1972). Theory of semigroups, Kyōritsu Shuppan Kabushiki Kaisha, Tokyo (in Japanese).
Takayuki Tamura, Kimiyoshi Dehara, Tadao Iwata, Hiroyuki Saito, and Keiji Tsukumo (1960). Semigroups of order 5, 6, 7, 8 whose greatest c-homomorphic images are unipotent semigroups with groups, JGTU 11, 53-66.
Takayuki Tamura and Naoki Kimura (1954). On decompositions of a commutative semigroup, $K M S R$ 6, 109-112.
- (1955). Existence of greatest decomposition of a semigroup, $K M S R$ 7, 8384.
T. Tamura and T. Sakuragi (1952). Types of semigroups of order 3, Sûgaku Shijô Danwa, no. 5, 121-124 (in Japanese).
Takayuki Tamura and Morio Sasaki (1959). Finite semigroups in which Lagrange's theorem holds, JGTU 10, 33-38.
Takayuki Tamura, Morio Sasaki, Yasuo Minami, Toshio Noguchi, Kenji Miki, Mitsuo Shingai, Tsuguyo Nagaoka, Toshitaka Arai, Katsuyo Muramoto, Mamoru Nakao, Hiroaki Maruo, Yoshiaki Himeda, and Teruko Takami (1959). Semigroups of order $\leqq 10$ whose greatest c-homomorphic images are groups, JGTU 10, 43-64.
Alfred Tarski (1941). Introduction to logic, Oxford Univ. Press.
Marianne Teissier (1950). Application de la théorie des anneaux à l'étude de demigroupes, SD 4 (1950-1951), exp. no. 5, pp. 1-11.
- (1952a). Sur la théorie des idéaux dans les demi-groupes, $C R$ 234, 386-388.
\qquad (1952b). Sur l'algèbre d'un demi-groupe fini simple, $C R$ 234, 2413-2414; II: cas général, ibid., 2511-2513.
(1952c). Sur quelques propriétés des idéaux dans les demi-groupes, $C R 235$, 767-769.
(1953a). Sur les demi-groupes admettant l'existence du quotient d'un côté, CR 236, 1120-1122.
(1953b). Sur les demi-groupes ne contenant pas d'élément idempotent, $C R$ 237, 1375-1377.
Kazutoshi Tetsuya, Takao Hashimoto, Tadao Akazawa, Ryōichi Shibata, Tadashi Inui, and Takayuki Tamura (1955). All semigroups of order at most 5, JGTU 6, 19-39; errata: ibid. 9 (1958), 25.
R. Thibault (1953a). Groupes homomorphes à un demi-groupe: problème d'immersion d'un demi-groupe dans un groupe, $S C D 7$ (1953-1954), exp. no. 13, 10 pp .
___ (1953b). Immersion d'un demi-groupe dans un groupe (Méthode de Lambek), SCD 7 (1953-1954), exp. no. 20, 11 pp.
Gabriel Thierrin (1951a). Sur une condition nécessaire et suffisante pour qu'un semi-groupe soit un groupe, $C R$ 232, 376-378.
_ (1951b). Sur les répartitions imprimitives des i-uples et les groupes qui les engendrent, PhD thesis, Université de Fribourg; published by Jouve, Paris, 1953. - (1952). Sur les éléments inversifs et les éléments unitaires d'un demi-groupe inversif, $C R$ 234, 33-34.
- (1953a). Sur les caracterisation des équivalences régulières dans les demigroupes, Bull. Acad. roy. belg. Classe sci. 39, 942-947.
- (1953b). Sur quelques classes de demi-groupes, $C R$ 236, 33-35.
(1953c). Sur quelques équivalences dans les demi-groupes, $C R$ 236, 565567.
(1954a). Sur quelques classes de demi-groupes possédant certaines propriétés des semi-groupes, $C R$ 238, 1765-1767.
(1954b). Contribution à la théorie des équivalences dans les demi-groupes, PhD thesis, Université de Paris.
(1955). Contribution à la théorie des équivalences dans les demi-groupes, BSMF 83, 103-159.
_ (1956). Sur les automorphismes intérieurs d'un demi-groupe réductif, Comment. Math. Helv. 31, 145-151.
R. M. Thrall (1955). A class of algebras without unity element, CJM 7, 382-390.
A. O. Tonian (1965). Dictionary of mathematical terms in the English, Russian, Armenian, German and French languages, Akad. nauk Armyan. SSR, Erevan (R).
P. G. Trotter (1993). Semigroup theory conference, University of Tasmania, Hobart, January 5-7, 1994, SF 46, 270.
E. J. Tully Jr. (1960) Representation of a semigroup by transformations of a set, PhD thesis, Tulane University, Louisiana.
(1961). Representation of a semigroup by transformations acting transitively on a set, AJM 83, 533-541.
(1964). Representation of a semigroup by row-monomial matrices over a group, PJA 40, 157-160.
A. M. Turing (1950). The word problem in semi-groups with cancellation, $A M \mathbf{5 2}$, 491-505.
John Turkevich (1956). Soviet science in the post-Stalin era, Ann. Amer. Acad. Political Social Sci. 303, 139-151.
_ (1966). Soviet science appraised, Foreign Affairs, Apr., 489-500.
Anton Vakselj (1934). Eine neue Form der Gruppenpostulate und eine Erweiterung des Gruppenbegriffes, Publ. Math. Belgrade 3, 195-211.
B. L. van der Waerden (1930). Moderne Algebra, vol. 1, Springer, Berlin; vol. 2, 1931; Russian trans. of vol. 1: GTTI, 1934.
_ (1935). Nachruf auf Emmy Noether, MA 111, 469-476.
(1975). On the sources of my book Moderne Algebra, HM 2, 31-40.
H. S. Vandiver (1934a). On the foundations of a constructive theory of discrete commutative algebra, PNAS 20(11), 579-584. (1934b). Note on a simple type of algebra in which the cancellation law of addition does not hold, $B A M S$ 40, 914-920.
(1940a). On the imbedding of one semi-group in another, with application to semi-rings, $A J M$ 62, 72-78.
_ (1940b). The elements of a theory of abstract discrete semi-groups, Vierteljahrschr. Naturforsch. Ges. Zürich 85 Beiblatt (Festschrift Rudolf Fueter), 7186.
(1952). A development of associative algebra and an algebraic theory of numbers I, MM 25(1), 233-250; II, ibid. 27(1) (1953), 1-18.
H. S. Vandiver and M. W. Weaver (1956). A development of associative algebra and an algebraic theory of numbers III, MM $\mathbf{2 9}(3), 135-151$; IV, ibid., $\mathbf{3 0}(1)$ (1957), 1-8; errata to IV, ibid., 219.
_ (1958). Introduction to arithmetic factorization and congruences from the standpoint of abstract algebra, $A M M \mathbf{6 5}(8)$, part II, no. 7 of the Herbert Ellsworth Slaught Memorial Papers, 53 pp.
A. M. Vasilev, N. V. Efimov, A. I. Konstrikin, A. E. Liber, A. M. Lopshits, E. S. Lyapin, and P. K. Rashevskii (1982). Viktor Vladimirovich Wagner (obituary), UMN 37(2), 171-173 (R); English trans.: RMS 37(2), 193-195.
O. Veblen and J. H. C. Whitehead (1932). The foundations of differential geometry, Cambridge Tract No. 29, Cambridge Univ. Press; Russian trans. with appendix by V. V. Wagner, Izdat. Inost. Lit., Moscow, 1949.
A. I. Veksler, D. A. Vladimirov, M. K. Gavurin, L. V. Kantorovich, S. M. Lozinskii, A. G. Pinsker, and D. K. Faddeev (1979). Boris Zakharovich Vulikh: obituary, UMN 34(4), 133-137 (R); English trans.: RMS 34(4), 145-150.
V. P. Velmin, N. I. Shkil, A. P. Yushkevich, and N. V. Cherpinskii (eds.) (1975). History of mathematical education in the USSR, Naukova Dumka, Kiev (R).
Henri Villat (ed.) (1921). Comptes rendus du Congrès international des mathématiciens (Strasbourg, 22-30 Septembre 1920), Imprimerie et Librairie Édouard Privat, Toulouse.
I. M. Vinogradov (1956). New advances of Soviet mathematicians (on the results of the Third All-Union Mathematical Congress), Priroda, no. 12, 68-69 (R).
B. R. Vogeli (1965). Mathematical content in Soviet training programs for elementary school teachers, AMM 72(10), 1120-1127.
Lazar Volin (1952). Science and intellectual freedom in Russia, in Christman (1952), pp. 80-84.
M. V. Volkov (2002). György Pollák's work on the theory of semigroup varieties: its significance and its influence so far, $A S M$ 68(3-4), 875-894.
- (2008). Lev Naumovich Shevrin: fifty years in the service of mathematics, SF 76, 185-191.
J. von Neumann (1936). On regular rings, PNAS 22, 707-713.
N. N. Vorobev (1947). Normal subsystems of a finite symmetric associative system, DAN 58, 1877-1879 (R).
-_ (1952). On ideals of associative systems, DAN 83, 641-644 (R).
(1953a). Associative systems, every subsystem of which has an identity, DAN 88, 393-396 (R).
(1953b). On symmetric associative systems, UZLGPI 89, 161-166 (R).
(1955a). On the theory of ideals of associative systems, UZLGPI 103, 31-74 (R).
(1955b). On canonical representaion of elements of symmetric associative systems, UZLGPI 103, 75-82 (R).
M. A. Vsemirnov, E. A. Girsh, D. Yu. Grigorev, G. V. Davydov, E. Ya. Dantsin, A. A. Ivanov, B. Yu. Konev, V. A. Lifshits, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, and A. O. Slisenko (2001). Nikolai Aleksandrovich Shanin, on his eightieth birthday, UMN 56(3), 181-184 (R); English trans.: RMS 56(3), 601-605.
Alexander Vucinich (1999). Mathematics and dialectics in the Soviet Union: the pre-Stalin period, HM 26, 107-124.
-_ (2000). Soviet mathematics and dialectics in the Stalin era, HM 27, 54-76. (2002). Soviet mathematics and dialectics in the post-Stalin era: new horizons, HM 29, 13-39.
V. V. Wagner (1951). Ternary algebraic operations in the theory of coordinate structures, DAN 81, 981-984 (R).
- (1952a). On the theory of partial transformations, DAN 84, 653-656 (R). (1952b). Generalised groups, DAN 84, 1119-1122 (R).
(1953). Theory of generalised heaps and generalised groups, $M S$ 32, 545632 (R).
- (1956). Generalised heaps and generalised groups, in S. M. Nikolskii (ed.), Proceedings of the 3rd all-Union mathematical congress, Izdat. Akad. nauk SSSR, Moscow, vol. 2, pp. 111-112 (R).
V. V. Wagner, L. M. Gluskin, and A. Ya. Aizenshtat (1965). Evgenii Sergeevich Lyapin (on his fiftieth birthday), UMN 20(1), 244-245 (R); English trans.: RMS 20(1), 175-176.
A. D. Wallace (1956). The Rees-Suschkewitsch structure theorem for compact simple semigroups, PNAS 42, 430-432.
(1963). Relative ideals in semigroups II: the relations of Green, Acta Math. Acad. Sci. Hungar. 14, 137-148.
Morgan Ward (1927). General arithmetic, PNAS 13, 748-749.
\qquad (1928a). Postulates for an abstract arithmetic, PNAS 14, 907-911.
(1928b). The foundations of general arithmetic, PhD thesis, California Institute of Technology.
(1935). Conditions for factorization in a set closed under a single operation, AM 36, 36-39.

Morgan Ward and R. P. Dilworth (1939). The lattice theory of ova, AM 40(3), 600-608.
M. W. Weaver (1952). Cosets in a semi-group, MM 25, 125-136.
\qquad (1956a). On the imbedding of a finite commutative semigroup of idempotents in a uniquely factorable semigroup, PNAS 42, 772-775.
_ (1956b). The application of cosets and correspondences in the theory of semi-groups, PhD thesis, University of Texas.
_- (1960). On the commutativity of a correspondence and a permutation, Pacific J. Math. 10, 705-711.
H. Weber (1882). Beweis des Satzes, dass jede eigentlich primitive quadratische Form unendlich viele Primzahlen darzustellen fähig ist, MA 20, 301-329.
(1893). Die allgemeinen Grundlagen der Galois'schen Gleichungstheorie, MA 43, 521-549.
J. H. M. Wedderburn (1907). On hypercomplex numbers, PLMS 6, 77-118.
-_ (1932). Non-commutative domains of integrity, JRAM 167, 129-141.
Hermann Weyl (1939). The classical groups: their invariants and representations, Princeton Univ. Press; 2nd ed., 1946.
Sarah White (ed.) (1971). Guide to science and technology in the USSR: a reference guide to science and technology in the Soviet Union, Francis Hodgson, Guernsey.
A. N. Whitehead and B. Russell (1910). Principia mathematica, Cambridge Univ. Press, 1910-1913; 2nd ed., 1927.
Richárd Wiegandt (1998). Rédei-personal recollections with historical background, Mat. lapok 8/9(3-4) (1998/1999), 74-90 (in Hungarian).
H. Wilf (1996). Marcel-Paul Schützenberger (1920-1996), Electron. J. Combin. 3(1).
M. Woidisławski (1940). Ein konkreter Fall einiger Typen der verallgemeinerten Gruppen, SKMO 17, 127-144 (R).
Audra J. Wolfe (2013). Competing with the Soviets: science, technology, and the state in Cold War America, Johns Hopkins Univ. Press, Baltimore.
Hans Wussing (1969). Die Genesis des abstrakten Gruppenbegriffes: ein Beitrag zur Entstehungsgeschichte der abstrakten Gruppentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin; English trans.: MIT Press, Cambridge, MA, 1984; English trans. reissued by Dover, Mineola, NY, 2007.
Shaun Wylie (2011). Breaking Tunny and the birth of Colossus, in Ralph Erskine and Michael Smith (eds.), The Bletchley Park codebreakers, Bantam, pp. 283304.

Miyuki Yamada (1955). On the greatest semilattice decomposition of a semigroup, KMSR 7, 59-62.
__ (1962). The structure of separative bands, PhD thesis, University of Utah. _ (1967). Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21(2), 371-392.
_ (1976). Introduction to the theory of semigroups, Maki Shoten, Tokyo (in Japanese).
S. Yang and G. P. Barker (1992). Generalized Green's relations, CMJ 42(117), 211-224.
A. P. Yushkevich (1989). The case of Academician N. N. Luzin, Vremya. idei. sudby, 12 Apr. (R).
B. P. Zaitsev and B. K. Migal (2000). The university in occupied Kharkov (October 1941 - August 1943), Universitates: nauka i prosveshchenie, no. 1 (in Ukrainian). K. A. Zaretskii (1958a). Abstract characterisation of the semigroup of all binary relations, UZLGPI 183, 251-263 (R).
(1958b). Abstract characterisation of the semigroup of all reflexive binary relations, UZLGPI 183, 265-269 (R).
H. Zassenhaus (1949). The theory of groups, Chelsea, NY, 1949; 2nd ed., 1958.
S. Zdravkovska and P. L. Duren (eds.) (2007). Golden years of Moscow mathematics, History of Mathematics, vol. 6, 2nd ed., Amer. Math. Soc./London Math. Soc.
E. M. Zhmud and S. A. Dakhiya (1990). Anton Kazimirovich Sushkevich (on the centenary of his birth), in Yubilei nauki, Akad. nauk UkrSSR/G. M. Dobova Research Centre for Scientifico-Technical Potential and History of Science; Naukova Dumka, Kiev, pp. 23-29 (R).
John Ziman (1968). Letter to an imaginary Soviet scientist, Nature 217(5124), 13 Jan., 123-124.
(1973). A second letter to an imaginary Soviet scientist, Nature 243, 29 Jun., 489.
Conway Zirkle (1952). An appraisal of science in the USSR, in Christman (1952), pp. 100-108.
Štefan Znám and Tibor Katriňák (1979). Fifteen questions for Academician Štefan Schwarz, Pokroky mat. fyz. astron. 24(5), 245-253 (in Slovak).

Name Index

Abel, N. H., 2
Adyan, A. I., 363
Aizenshtat, A. Ya., 247359
Akazawa, T., 204
Albert, A. A., 135153
Aleksandrov, A. D., 223
Aleksandrov, P. S., 14 16 18338342
al-Khwārizmī, 1
Amitsur, S., 279
Andreoli, G., 346
Arnold, I. V., 7 79 80 99 101 217 246
247
Artin, E., 3, 87105113164171
Asano, K., 103
Atkinson, F. V., 38
Aubert, K. E., 105
Baer, R., 65 67 196205264307365
Baranskii, V. A., 320
Behrens, E.-A., 328
Bell, E. T., 39,79 82 88 91, 94 100 102
1031491512031353
Bernstein, S. N., 1849338
Bigard, A., 182
Birkhoff, G., $44,142,152,167,168,201$ 324
Birkhoff, G. D., 82
Bjerknes, V., 165
Bokut, L. A., 134351
Boole, G., 85337
Borůvka, O., 143177192321324
Bourbaki, N., 744164
Bowtell, A. J., 134
Brandt, H., $8,616370137,140-143$
186191307
Brown, D. R., 331
Brown, W. P., 368
Bruck, R. H., 313 316 321
Burlak, J., 32
Burnside, W., 5563
Burstin, C., 63307
Bush, G. C., 126128133
Cardano, G., 2

Carman, K. S., 200
Carruth, J. H., 330
Castelnuovo, G., 164
Cauchy, A.-L., 55
Cayley, A., 3203
Châtelet, A., 164324
Chebotarev, N. G., 74

Clifford, A. H., viii 7] 9 10, 45 73 74 76 | 79 | 87 | 88 | 91 | 104 | 109 | 124 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 | 183 | 185 | 191 | 193 | 196 | 198 | 202 | 205 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 288-291 293 298 300 301 303 304 | 311 | 312 | 314 | 316 | 318 | 324 | 328 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 349 367

Climescu, A. C., 345
Cohn, P. M., 4433205352358
Conrad, P. F., 358
Corral, J. I., 307
Croisot, R., 163166178197266293 324
Čulík, K., 328
Čupona, Ǵ., 186
Davis, C., 28
Dedekind, R., 2 7784,94100108
De Morgan, A., 166
de Séguier, J.-A., 4, 66 56, 163,247316 370
Desq, R., 182
Dickson, L. E., 4 6558284116149 247316370
Dilworth, R. P., 838788103200
Dobzhanskii, T. G., 19339
Doss, C. G., 200213
Dubreil, P., viii 9111113116122124 [136 $159161-166168172177178$

Dubreil-Jacotin, M.-L., 111, 123 124 161 | 163 | 165,166 | $168-170$ | 177,178 | 324 |
| :---: | :---: | :---: | :---: | :---: | 331

Égo, M., 182
Egorov, D. F., 34
Ehresmann, Ch., 255
Eilenberg, S., 141
Engelhardt, W. A., 25
Enriques, F., 164
Erdős, P., 28
Fedoseev, M. F., 74
Ferreo, S., 2
Forsythe, G. E., 204
Frege, G., 7985167
Freiman, G. A., 366
Frobenius, F. G., 47 54 55 , 62,75 163 281 343 345
Fuchs, L., 208
Galois, É., 2,535055
Gamov, G. A., 19339
Gardashnikov, M. F., 74
Gauss, C. F., 77784140
Glushkov, V. M., 363
Gluskin, L. M., viii $9,45,53,64173 \mid 75$
185, 217-220 $238,243,246,283,301$

308	313	314	325
328	331	358	366

Goła̧b, S., 256-257 270
Good, I. J. (Jack), 152
Goralčík, P., 328
Gould, S. H., 32341
Grave, D. A., 71
Green, J. A., 152185 209 211,214269 270 290-293 357
Grillet, P.-A., 182
Grimble, H. B., 200
Haantjes, J., 255 256, 364
Haar, A., 67
Hall, P., $152,210,211,270,289,352$
Hall, T. E., 314
Hancock, V. R., 316
Harden, J. C., 200
Hashimoto, H., 205
Hasse, H., 172346
Hauser, F., 165
Hausmann, B. A., 142143
Hedrlín, Z., 331
Henke, K., 103
Hensel, K., 346
Hewitt, E., 204, 296 312 314331368
Heyting, A., 113
Higgins, P. J., 144
Higman, G., 215
Hilbert, D., 81100254364
Hille, E., 304316
Hilton, H., 6
Hoehnke, H.-J., 142186328331
Hofmann, K. H., 109233304314323 327332
Hölder, O., 63

Hori, S., 205

Howie, J. M., 102142161162185209 | 215 | 216 | 275 | 290 | 318 | 321 | 323 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 345 371

Hrmová, R., 192
Hunter, R. P., 331
Huntington, E. V., 55, 82, 188,193
Iséki, K., 205
Ivan, J., 192,296
Jackson, H. L., 133
Jacobson, N., 4144102321342
Jacotin, M.-L., see Dubreil-Jacotin, M.-L.
Jakubík, J., 192
Julia, G., 166171
Kagan, V. F., 258
Kantorovich, L. V., 18338
Kaplansky, I., 285
Kaufman, A. M., 247
Kawada, Y., 103
Khinchin, A. Ya., 18338
Khrushchev, N. S., 122133
Kimura, N., 200202204205
Klein, A. A., 134
Klein, Felix, 249253309
Klein, Fritz, see Klein-Barmen, F.
Klein-Barmen, F., 78089596,186201

348

Kline, J. R., 30
Koch, R. J., 331
Kogalovskii, S. R., 326
Kolibiar, M., 192
Kolibiarová, B., 192
Kolman, E., 1645
Kolmogorov, A. N., 13 21 119124
Kondô, K., 103
König, J. (Kőnig G.), 40, 80 94, 96101
103186
Kontorovich, P. G., 248325
Kronecker, L., 2 79, 88 , 94
Krull, W., 63, 78 97, $105,164,171,268$
Kruming, P. D., 327
Kummer, E. E., 7784
Kurosh, A. G., 4168102118119239
(321) 366

Lallement, G., 1611621661821280328
Lambek, J., 133324
Lavrentev, M. A., 18338
Lawson, J. D., 10330
Ledermann, W., 163184
Lefebvre, P., 182
Lehmann-Filhés, R., 343
Lelong-Ferrand, J., 166
Lenin, V. I., 41
Lesieur, L., 166 178, 324
Lesokhin, M. M., 247 327 328 368

Letichevskii, A. A., 327
Levi, F. W., 65 67, $124,196,205361$
Levi-Civita, T., 165
Liber, A. E., 248 251 298
Lie, S., 252 309
Littlewood, D. E., 210 , 349
Loewy, A., 61, 63,70635307346
Lohwater, A. J., 32
Lorentz, G. G., 17
Lorenzen, P., 105
Luzin, N. N., 16-19 28 338
Lyapin, E. S., viii ix 91020 31 45 73

 (308-314 316 317 319 32132 [328 329333 341 361 365, 368
Lysenko, T. D., 21
Mac Lane, S., 141
Makaridina, V. A., 222359
Malcev, A. I., see Maltsev, A. I.
Maltsev, A. I., ix $32,73,110,112119121$

 (320) 324 [326] 350

Márki, L., 206 207
Markov, A. A.,248
Maury, G., 182
Mayer, W., 63307
McLean, D., 357
Medvedev, Zh. A., 22-27 30, 39 339 341 366
Menshov, D. E., 18 338
Miller, D. D., 193194196200203213 2953183
Mogilyanskaya, E. M., 222359
Moore, E. H., $55,81,82,254363$
Mostert, P. S., 92304314323 358 372
Motzkin, T. S., 204
Munn, W. D., 7101238139165184

314	315	318	319	328,330
331	368			

Murata, K., 103
Neumann, B. H., 275290348369
Neumann. P. M., 340
Nikolskii, S. I., 119

Noether, E., 3, 8, $14,78,87,93,94,96,99$ | 101 | 103 | 108 | 112 | 113 |
| :--- | :--- | :--- | :--- | :--- |
| 164 | 165 | 171 | | | 201347

Numakura, K., 137
Oganesyan, V. A., 248,296

Ore, \varnothing., 109111113116,122123142	143
168	
171	
200	

Peacock, G., 81
Peák, I., 208318319361
Peirce, C. S., 166
Penrose, R., 298363
Peters, K., 331
Petr, K., 186187
Petrich, M., 156, 249 267, 280 321 331
Petropavlovskaya, R. V.,247
Phillips, R. S., 304
Pierce, R. S., 179200
Pierpont, J., 55
Planck, M., 343
Pollák, G., 207208

Ponizovskii, J. S., 10 139 225247 | 279 | 281 | 285 | 296 | 298 |
| :--- | :--- | :--- | :--- | :--- | 359

Pontryagin, L. S., 1841338342
Poole, A. R., 87 154 157,203 345 353
Posey, E. E., 200
Preston, G. B., $710,38,45,74,78,92$

 293 296-298 $301303 / 314 / 316$
 368 370
Prüfer, H., 63 976105171307365
Psheborskii, A.-B. P., 55
Pták, V., 133350
Querré, J., 182
Rauter, H., 636471285307
Recorde, R., 337
Rédei, L., 206 208314321328331
Rees, D., 6 $9,3045,73,104135,151,152$

 233 $242 \boxed{243}$ 268-273 $2 7 7 \longdiv { 2 8 6 }$

Reilly, N. R., 185215290
Rhodes, J., $280,285,314318319331$
Rich, R. P., 195200205
Richardson, A. R., 113143
Richter, H., 122
Riguet, J., $38,293,324$
Russell, B., 7985167
Rybakov, L. M., 124247
Saitô, T., 205331
Salii, V. N., 326
Sanov, I. N., 223
Schein, B. M., 13 , 26 [33 38 73 75 177
 [330-332 3593623
Schmetterer, L., 328
Schmidt, O. Yu., ix 4549217
Scholz, A., 288
Schouten, J. A., 255,256 258

Schreier, O., 87 196 207
Schröder, E., 166
Schur, I., 47, $163,184,201,343$
Schützenberger, M.-P., $163,166,179,180$
182, 212,281324
Schwarz, H. A., 47343
Schwarz, Š., 1440138139183186188
 (324) 326] 328-331

Selfridge, J. L., 204
Severi, F., 164
Shanin, N. A., 223224
Shevrin, L. N., 248 319 320325328
Shibata, R., 204
Shneperman, L. B., 247327328
Shoda, K., 201
Shutov, E. G., 133-134 225, 247
Sichler, J., 328
Šik, F., 192
Sivertseva, N. I., $228,230,242$
Skolem, Th., 103-104 113, 205
Smirnov, V. I., 18338
Soloveichik, R. E., 224
Speiser, A., 188
Stalin, J. V., $11,12,1416,20,21,33,49$
Steinfeld, O., 206 208331
Steinitz, E., 2 108 109 111 114116171
Stoll, R. R., 198 200 236 242,317
Study, E., 113
Šulka, R., 192
Sullivan, R. P., 215
Suschkewitsch, A. K., see Sushkevich, A. K.
Sushkevich, A. K., vii ix $7,10,32,554$ $73-76110-111116-120124132$
135-137 $145-146[149152156180$
 (199, 201, $208,213,214,217,219,225$

 345 3493
Šutov, E. G., see Shutov, E. G.
Szász, G., 208
Szendrei, J., 312
Szép, J., 208
Taitslin, M. A., 327
Tamm, I. E., 258
Tamura, T., 201 $202,204,205$ 318, 328 330357
Tarski, A., 167
Tartaglia, N., 2
Tartakovskii, V. A., 221
Taunt, D., 289290
Teissier, M., 67 181 205 279 295 324
Thibault, R., 324
Thierrin, G., 163 181 182,205 324 363
Thompson, E. C., 268

Thrall, R. M., 368
Tikhonov, A. N., 18338
Tully, E. J., 199 200 281, 301 317
Turing, A. M., 269
Vagner, V. V., see Wagner, V. V.
Vakselj, A., 307
van der Waerden, B. L., 3 , 75, 78,87 97, 105108110113116118122149 164 188,256
Vandiver, H. S., 104105142
Veblen, O., $8 \boxed{83} 249,253 \boxed{255} \boxed{259}$
Vessiot, E., 165
Villat, H., 165171
von Neumann, J., 212
Vorobev, N. N., 215216248
Vulikh, B. Z., 223,224
Wagner, V. V., ix 9 , 33 , 218 225 233 237

 [328, 331 36136
Wall, G. E., 211
Wallace, A. D., 92 137, $200,323,331$
Ward, M., 79880828891,9387100 103
Weaver, M. W., 104 105
Weber, H., 2455140346
Wedderburn, J. H. M., $136145,148,349$ 350
Weierstrass, K., 79
Weil, A., 164
Welchman, G., 151
Weyl, H., 44,92277
Whitehead, A. N., 7985167
Whitehead, J. H. C., 8 , 43, 249 ,253,255 259268272
Wielandt, H., 119
Wiener, N., 13
Woidisławsky, M. R., 74
Yamada, M., 204205
Yamamura, M., 204
Zalcstein, Y., 280
Zaretskii, K. A., 238247326
Zassenhaus, H. J., 1721731881205
Zhitomirskii, G. I., 326
Zhitomirskii, V. G., 320
Ziman, J., 24-25 31339340
Zuckerman, H. S., 296

Subject Index

Academy of Sciences
Czechoslovak, 29 187 355
East German, 331
Hungarian, 29 206 331
Russian, 42
Slovak, 18732933135
Soviet, 12 , 14, 16, 25,27 $29,3152,125$
222
algebra, 13
Boolean, 85105167
group, 278 279 $290291293-295$
matrix, 285 294 296 368
semigroup, 210 [278,280, 291 293-300
302318368
contracted, 293,295
semisimple, 278 |280 [290 [291 [294, 297
299300302
simple, 278
universal, 8 , $168,201,211 \boxed{268} 335,348$ 352
Weyl, 349
Algebra i logika, 32 42
The algebraic theory of semigroups
(Clifford and Preston), 10444574

(301 303 304 310 314 $3 2 3 \longdiv { 3 2 7 }$
Algèbre (Dubreil), 168170313
All-Russian Mathematical Congress
(Moscow, 1927), 4953535
All-Union
Colloquium on General Algebra Third (Sverdlovsk, 1960), 327
Conference on Algebra (Moscow, 1939), 73 $121 \boxed{225} 2833$
Institute for Scientific and Technical Information (VINITI), 293
Mathematical Congress
First (Kharkov, 1930), 62
Third (Moscow, 1956), 21 134263
Symposium on the Theory of Semigroups (Sverdlovsk, 1969), 327
amalgamation theory, 215

American Association for the Advancement of Science, 33
American Mathematical Society, 284142
$84162[1991204120530931934$
arithmetic, 97
abstract, 8088
commutative, 89, 90
ideal, 99101
normal, 99,101
non-commutative, 90,91
regular, 97
arithmetical theory, 79,83
arithmetisation
of algebra, 79 $80,84,86,88$
of analysis, 79, 84
automata, viii $182,208,327,329,363$
automorphism, 177324
inner, 178
avtoreferat, 240, 299, 362
band, 197
anticommutative, 357
of groups, 197
rectangular, 197
of semigroups, 197311
binary relation, $250,257,260,262,264,267$
Bletchley Park, $92,151,152,210,268,269$
block, 207
block decomposition of ring, 155
Bodleian Library, Oxford, 30
Bourbaki structure, 244
brigade, 307
British Committee for Aiding Men of
Letters and Science in Russia, 29
British Library, 30
Burnside conjecture, 357

California Institute of Technology, [79, 87

8891103

candidate degree, see degree
category, 140 142 328
cathedra, 49344
Cauchy-Riemann equations, 253

Centre national de la recherche scientifique (CNRS), 166
centre of a semigroup, 177
characters
for groups, 211
for semigroups, 247 297 3183
Chicago Mathematical Congress (1893), 81
closure of a binary operation, 5
collapse of a transformation, 216
Communist Party
Czechoslovak, 14187329
Soviet, 23 239
completing equation (Maltsev), 129131
complex, 163345
exchangeable, left/right, 176
neat
bilaterally, 180
left/right, 173 -175
normal, 229 231247
perfect
bilaterally, 180
left/right, 180
reversible, left/right, 176
strong, 173-176
bilaterally, 179
symmetric, 175176
Comptes rendus hebdomadaires des séances de l'Académie des Sciences de Paris, 122167176181
condition(s)
ascending chain, 78 ,93, 95, 98101
\mathcal{C} (Dubreil), 123
descending chain, 101,138190195
embeddability
Dubreil's, see regularity, right
(Dubriel's)
Dubreil-Jacotin's, 124
Maltsev's, 110122124133
Ore's, 109110122
N/R (Levi), 361
Z (Maltsev), 110120124129131
Conference on the Algebraic Theory of Machines, Languages, and Semigroups (California, 1966), 327
congruence, 9 168 $170,183,202,211,317$ 318 335 336
on inverse semigroup, 266
left/right, 163169175
minimum group, 257, 270, 298
syntactic, 180182
connection, 95
coordinate
atlas, 250, 265
structure, 260
correspondence, 104
coset
in group, 169172175335
in semigroup, 104349

Czechoslovak Mathematical Journal, [26] 36]
188191
defect of a transformation, 216
degree
candidate of science, $52,125,206,240$
258299362
doctor of science, 52, $125,258,299,362$
demigroupe, see semigroup
dialectical materialism, 15,21
division ring, see skew field
divisor, 80
common, 80
greatest, 80 05 969899101103
normal, left/right, 209
proper, 80
zero, 81 101,108109112
divisor chain condition, see condition(s), ascending chain
Dnepropetrovsk
Mathematical Society, 346
State University, 71
Doklady Akademii nauk SSSR, 42232 242 260

École normale supérieure, 164165
'egg-box diagram', $148,213,214$
element
associate, 80
biunitary, 266
completely prime, 96101348
decomposable, 80 96 97
equi-acting, 244,245
of finite order, 189
ideal (Maltsev), 126-128
idempotent, $146,159,212,251 \boxed{263}, 266$ 271 2733
primitive, $138,154,155 \boxed{194} \boxed{214}, 242$ 273, 274
identity, 333
left, 252
indecomposable, 80 , 124
integral, 80, 89 9197347
decomposable into irreducibles, 80
inverse
generalised, 251 271
irreducible, 78 80 9506101
$K-/ L-, 6869282-283$
prime, 809496104
reducible, 80 96 97
regular, 208212310
unit, 80
zero, 333
right, 233
zeroid, 193195295
embedding
of integral domain in field, 8108
111112116171321
of ring in field, 134
of ring in skew field, $107,110112,116$ 120-121 1341270
of semigroup in group, viii 8,65

107,111	116
134	170
270	307

equivalence
associable, 168 169 210
cancellative, left/right, 173175176
homomorphic
(Birkhoff), 168176
(Dubreil), 5176
principal
bilateral, 179-180
left/right, 161 162171177181
reversible, left/right, 161162172
176-177
syntactic, see congruence
Erlanger Programm, 85, 249, 253,255, 365
field, 2, 4, 8
of fractions, 93 108, 111,112 171 334
Foreign Technical Information Center, US
Department of Commerce, 30
formal language, viii $144,180,182$
$327-329363$
The foundations of differential geometry (Veblen and Whitehead), $43,253,255$ 259) 260

Fundamentals of semigroup theory
(Howie), $102,142,162215321323$
Galois theory, 337
Gauthier-Villars (publisher), 171
GCHQ,290
general theory of relativity, 249
geometric object, $255 \boxed{256} \boxed{260}$
geometry
differential, $8,249,253,255,258,260$
Euclidean, 254260
Riemannian, 253
Great Patriotic War, see World War II
Green's relations, $148,184,209,214,298$
3113153173193223
groud, see heap
group, vii (3) 4 [
$0-1381391551287$
algebra, see algebra
classical (Sushkevich), 47
cyclic, 6 207
distributive, 63307
extension, 196 207
factor, 209
free, 124
generalised
(Andreoil), 346
(Sushkevich), $45,47,49505453$

(Wagner), see semigroup, inverse
\mathcal{H}-class, 212
of kernel type, see kernel (Sushkevich)
left/right, 60 61 $136-137146-151156$

190213282284

of left/right quotients, 123
mixed, 61 63,70145307
multiple, 150151193
ordinary (Sushkevich), 4760
partial, 266
quotient, 271
of quotients, 97102109123 334
Schützenberger, 212315
simple, 230
symmetric, 252334
group part of a semigroup, 64116
groupoid
Brandt, 8 61 70123137140142,144

inductive, 255
left/right,201
('non-associative semigroup'), 142163

169	192
221	

(small category), 142
symmetric, 233
Gruppoid, see groupoid, Brandt
heap, 63,307365
generalised, $250,262,264,267,3 0 7 \longdiv { 3 2 6 }$ 365
Higher Attestation Commission (VAK), 52
239
Holodomor, 49
holoid, 94186
homomorphic image, $171,172,175,177$ 202, 209
homomorphism
(mapping), see morphism
(relation), see equivalence
ideal, $91 \boxed{183} 184187 \boxed{192} 230311336$
0 -minimal left/right, 138195
chain, 301311
d - (Gluskin), 245
Dedekind, 779193
densely embedded, 218 $219,233,238$
[243-244 246 248 $3 1 0 \longdiv { 3 2 0 } 3 2 8$
extension, 159196197
left/right, 190207336
maximal, 192200
minimal, 60137181187189190194 195273297
left/right, 60 138, 147, 148, 190, 191

$193-195$	205
208	212
240	241

246 297 311325
\mathfrak{N}-potent, 196
nilpotent, left/right, 195196
ovoid, 9799
prime, 78200
principal, $157 \boxed{184} \boxed{209} 336$
left/right, 209215
proper, 137 154
structure (Rees), 209
x-, 105
zero, 154
Idealtheorie (Krull), 78
imbedding, see embedding
immersion, see embedding
index of an element, 345
Institute for Advanced Study (Princeton), 9193
integral
closure, 93 97 98
domain, 2 8 $81 \boxed{100} 108 \boxed{111} 112116$
International Conference on Semigroups
(Czechoslovakia, 1968), 101424188
291304327330370
International Congress of Mathematicians, 341
(1897, Zürich), 338
(1900, Paris), 338
(1904, Heidelberg), 338
(1908, Rome), 338
(1912, Cambridge), 338
(1920, Strasbourg), 338
(1924, Toronto), 338
(1928, Bologna), $10 \boxed{14}, 27,495057$

61 3073

(1936, Oslo), 27
(1950, Harvard), 27
(1954, Amsterdam), 27, 188, 273 326

368

(1958, Edinburgh), 272833
(1962, Stockholm), 27
(1966, Moscow), 27134327
(1970, Nice), 325
(1974, Vancouver), 14188
(1978, Helsinki), 188
(1986, Berkeley), 28
International Mathematical Union, 341342
An introduction to semigroup theory
(Howie), 215 321 322
isomorphism, 333
general, see equivalence, homomorphic, (Dubreil)
Ivanovo State Pedagogical Institute, 124
Izdatelstvo Inostrannoi Literatury, 4344
Izvestiya Akademii nauk SSSR, 42262
Jahrbuch über die Fortschritte der
Mathematik, 32 $119,288,304$
Journal
of Algebra, 330
of Combinatorial Theory, 330
of Number Theory, 330
kernel
of a morphism, 218, 226, 230
(Sushkevich), 45 59 61 64 68 70, 75

 | 282 | 288 | 295 | 306 | 307 |
| :--- | :--- | :--- | :--- | :--- | generalised, 69, 72282284

of a transformation, 213
KGB, $2 3 \longdiv { 2 6 }$
Kharkov
Geodetic Institute, 49
Mathematical Society, 3250340
Mining Institute, 239
Nazi occupation of, 52 53
Pedagogical Institute, 238239
Physico-Technical Institute, 53
semigroup seminar, 325

State University, 8 , 9,32 46, 48, 49 | 52 | 55 | 238 | 325 | 331 |
| :--- | :--- | :--- | :--- | :--- |
| 340 | 343 | 344 | | |

Komsomol, 221
Krohn-Rhodes theory, viii
l-chain (Maltsev), 127128130131
lattice, 8 96, 103 186 1921201
distributive, 95
of equivalence relations, $166-168$
modular, 168212
property of a semigroup, 247 248, 325
law
associative, 56
cancellation, 50
of unique invertibility, 47, 65, 66, 70, 75 146285288306
of unrestricted invertibility, 656670 75 146285306
Leningrad
Mathematical Society, 225
semigroup seminar, 225325
Siege of, 221,224
State Pedagogical Institute, 9 31, 219

221	224	236
248	325	360

State University, $31,221,224,299$
Library of Congress (USA), 30
London Mathematical Society, 41, 42
loop, 321
Lysenkoism, 16 21339
Magdelen College, Oxford, 268
Maltsev's problem, $121133 \boxed{134}$
mark, $85,88,95$
Massachusetts Institute of Technology, 92
Matematicheskii sbornik, 17-19 3132 [34 $37 \boxed{42} 50 \boxed{505} \boxed{228}[262 \boxed{299}$
Mathematical Association of America, 28

Mathematical Reviews, ix 293233 | 134 | 172 | 196 | 285 |
| :--- | :--- | :--- | :--- |
| 298 | 312 | 318 | 319 | (332) 337

Mathematische Annalen, 4950,73119 145146256
Mathematisches Forschungsinstitut Oberwolfach, 327
'MathSciNet', 162 332
matrix representation
of algebra, 278
completely reducible, 279
proper, 279
of Brandt semigroup, 288,298
of completely 0 -simple semigroup, 281
286, 289 300 302
of finite (0-) simple semigroup, 647073 $282 \boxed{286} 295-297$
of group, $211277-279,282,291,294,299$
completely reducible, 278, 291
irreducible, 278 295 296
proper, 287295
of inverse semigroup, 296, 298
irreducible, 296 297
of semigroup, viii $10,50144,185,193$

293 296 298 302 317
completely reducible, 279 300
irreducible, [278, 280, 294, 298, 300, 301
principal, 298
proper, 279 295
McCarthyism, 27
Menge, A-/B-, 95
'Mir' (publisher), 4344319
Moderne Algebra (van der Waerden), 351
7887109111113118149164 171188
monoid, vii 7333
Moore-Penrose inverse, 363
morphism, 3139161171176177182

idempotent-separating, 273
trivial,231
Moscow
Mathematical Society, 31, 34, 261, 262
State University, 119124125239258

348

multiple, 80
common, 80
least, 80 103
right, 109110114115124349
National Science Foundation (USA), 30 34 41323370
Nature (journal), 19242531
NKVD, 258
normal chain of transformations (Maltsev), 127129
normal system of equations (Maltsev), 129 130132

October Revolution, 11, $14 \sqrt{29}$
orbit, 199
order of an element, 61345
orthoid, 94
ovoid, see ovum
ovum, 86 94 99 203 353
admitting unique decomposition, 9598
reduced, 96 98 100101
regular, 9497101
partial order
on idempotents, 138
natural (inverse semigroup), 252 266 271 274
partial symmetry, 275
period of an element, 345
postulate A (generalised associativity), 62
postulational analysis, (3) 65698385
136149193
potential
divisibility, 133
invertibility, 133
property, 133-134 247 311
'Prague Spring', 329
Pravda, $16,20,24$
preperiod of an element (Schwarz), 189191
primitivity (Ward), 9097
principal factor, 292 $295,297,298$
principal part of a semigroup, 64116
Proceedings
of the Cambridge Philosophical Society, 30299
of the National Academy of Sciences of the USA, 30
pseudo-associativity, 264266
pseudogroup, $8,249,250,255,256,260$
quadratic form, 2
binary, 140141
quaternary, 8 140 141
quantum mechanics, 212
quasi-ideal, 205207
quasigroup, 45 56, 62, 74
quotient
bilateral (Croisot), 179
left/right (Dubreil), 172 173,175
Quotientenbildung, see field of fractions
radical
Jacobson, 279
semigroup, 192196211297
Red Army, 53 220, 222,238
Rees quotient, $153-15419612321292$
Referativnyi zhurnal, 29, 332
refuseniks, 283333
regular set of partial transformations, 270
regularity
right (Dubreil), 123
von Neumann, 212
relation
binary, 163 166 167 170 247 33433
equivalence, 335
identity, 334
universal, 334
representation
by matrices, see matrix representation
monomial, 281
right regular, 334
by transformations, $198,200,215,216$
transitive, 199301
Wagner-Preston, 13, 252, 263, 267, 273
residue
bilateral (Croisot), 180
left/right (Dubreil), 173175
reversibility, left/right, 349
ring, vii 8,201
commutative, $3,8 \boxed{78} 209$
matrix, 207, 293
Noetherian, 78
non-commutative, 103
regular (Ore), 114
semisimple, 9152 278 292
simple, 155278
von Neumann regular, 212
Royal Military College of Science, Shrivenham, 185268
Russian Civil War, 11, 14, 48, 220, 338
S-set, 199211
samizdat, 22 339
Schar, see heap
scheme (Maltsev), see l-chain
Science (journal), 30
semigroud, see semiheap
semigroup, vii 4, 7333
admitting
relative inverses, see semigroup, regular, completely
unique decomposition, 80
amalgam, 31832232332
Baer-Levi, 66 67 181 196 242
bisimple, 214 215318328
Brandt, $137143-1441571237297$
cancellative, 4, 7, 56, 64, 107, 109, 111

170	176	247	269	270

Clifford, 137 158 159
commutative, 206301
compact, 328
'concrete', 200 312
congruence simple, see semigroup, congruence-free
congruence-free, 139
cyclic, see semigroup, monogenic
of endomorphisms, 247328
F-, 207
factor, 169335
finite, viii $184,202,280,328$
enumeration of, 202,204
finitely generated, 206
free, $124,211,247,311,317,323$
Gaussian, 102
generalised, 68
homomorphism-simple, see semigroup, (0-)simple, (Lyapin)
ideal-simple, see (0-)simple semigroup
idempotent-generated, 216
integral, 90

inverse, viii $9,144,177,181,205,209$ 213 237 248 249 251,252 | 262 | 263, | 265 |
| :---: | :---: | :---: |
| 266 | 271 | 275 | 290 293 296 298301310 321 324 326 328330

primitive, 274
proper, 205
symmetric, $235,252,263,267,271$ 297300
inversive, see semigroup, regular
involutary, 265,266
Lagrange, 358
left/right, 69,70, 72, 73, 307
mapping, 271,272
matrix, 53, 64, 207, 220, $228,242,243$

$$
300321
$$

MIL- (Schwarz), 190
monogenic, 310345
multiplicative, of ring, 207 240,328
\mathfrak{n}-simple (Schwarz), 139190
normal (Maltsev), 132
numerical, 358
of operators, 199
ordered, 186, 192, 2081329
orthodox, 322
periodic, 189, 190, 192 212 310
principal ideal, 208
R-, 361
reduced, 96
Rees matrix, 135138139144148155
 287 294, 297 290 317
regular, $180,184,200,209,211,213,251$ 2933 322 324

completely, 137 156159162181 | 193 | 197 | 208 | 213 | 295 |
| :---: | :---: | :---: | :---: | :---: |
| 300 | 321 | | | | 323353

regular matrix, see semigroup, Rees matrix
semisimple
(Lyapin), 229 232 292
(Munn), 292 293297
(0-) simple, 45, 75, 135 137, 139,148

279	281	294

completely, $135137-139144$

154	156	162	194
195	198	199	

202	210	212	214
241	243	245	

324326353363
left/right, 66, 138, 146, 151, 205, 213 242
(Lyapin), $139 \boxed{218} 219 \boxed{225} \boxed{229} 231$ 240 241 300 301
strict
left/right, 174177
tea, 325
topological, viii 1046 137 200, 304 [316 323329332
torsion, see semigroup, periodic
transformation, $183198-200-215-216$
218, 220 225 $232,238,244,248$
[277 301310 317 $321,325,328,329$
full, 200, 213, 215, 216, 317, 318, 334
separative, 244
weakly transitive, 244
uniquely factorable, 104
weakly reductive, 197
with identity adjoined, 209333
with zero adjoined, 333
zero, left/right, 136147
Semigroup Forum, vii 1093164188
239259291304330332
semigroupe, see semigroup, cancellative
Semigroups (Lyapin), $10,41,102,162,200$
219 302 304308 314 31631931
semiheap, 264 266 326,365
semilattice, $96,157,186,202,317,319$
of anticommutative bands, 357
of completely simple semigroups, 158
197
decomposition, $202,203,321$
of groups, 158197293
of rectangular bands, 197
of semigroups of type \mathcal{T},197
Séminaire Dubreil, 13,38162164177

seminar
algebra
Bratislava, 187324
Paris, see Séminaire Dubreil
Sverdlovsk, 325
semigroup
Kharkov, see Kharkov
Leningrad, see Leningrad
Saratov, $325-326$
Tulane, $323 \sqrt{324}$
series
composition, 292
principal, 292,300
shift of a transformation, 216
Sibirskii matematicheskii zhurnal, 42
Sidney Sussex College, Cambridge, 151
simple consequence (Maltsev), 131
skew field, 1071091121131349
of fractions, 109114115122171
Smithsonian Institution, 29

Society for the Protection of Science and Learning, 187355
Soobshcheniya Kharkovskogo matematicheskogo obshchestva, 32 (35) 3650731288

Soviet
anti-Semitism, 41339342366
ideology of mathematics, $15,16,20,21$
 [325 341363
State Publishing House of Physical and Mathematical Literature, 309
Springer-Verlag, 42 331355
Sputnik, 38
steklograph, 52, 72, 344
Stern Conservatory, 47
St John's College, Cambridge, 289
subgroup
maximal, 189191301
normal, $169172175,218,226227230$ 335
permutable, 161168
subgroupoid, 163170
neat, left/right, 175
normal, 175
reversible, left/right, 176
strong, 170175
symmetric, 175
unitary, left/right, 170172,174
subsemigroup, 333
normal
inverse, 273
(Levi), 361
(Lyapin), 218, 220 225, 231 248
(Peák), 361
(Rees), see divisor, normal
substitution
deficient, 72
generalised
(Andreoli), 346
(Sushkevich), $45,48550545759,61$
67,68 71, 72 75 277 $3 0 6 \longdiv { 3 2 6 }$
mixed, 72
ordinary, 45 61 67,72
redundant, 72
Symposium on Semigroups (Michigan, 1968), 327
system
associative, see semigroup
distributive, 95
multiplicative, 347

Technische Hochschule
Aachen, 140
Karlsruhe, 140
Teilerkettensatz, see condition(s), ascending chain

Teoriya imovirnostei ta matematichna statistika, 42
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$, xil 331
Theorem
Artin-Wedderburn, 9135
Cayley's (for groups), 252
Fundamental, of Arithmetic, 777971 103
generalised Cayley, 8,49 57 59 199317
Green's, 212
Homomorphism, 167
Isomorphism
First, 167336
Second, 1531681292
Third, 153292
Jordan-Hölder, 167292
Lagrange's, 62
Maltsev's Immersibility, 130158
Maschke's, 279, 300
(semigroup version), 295
Ore's, $113114,122123,270$
$P-, 257$
Rees, viii $946135-137139144148$ 301 303316317322
Schreier's, 301
Steinitz's, 112118
Theory of generalised groups (Sushkevich), 43 46] $51 \boxed{119} 125,147,247,303 / 309$ [312, 313,316
Theory of semigroups and its applications (Saratov), 219239325326
The Times (newspaper), 28
Topology (journal), 330
transformation
elementary (Maltsev), 121,126
empty, 233, 250, 251, 257, 261, 271
partial, $233-238,244,251-252, \mid 254-260$ 301
identity, 252, 263
one-one, 177 233 248,249255 260 $263,265,267,270,273$
translation of a semigroup, 202 245,246 274301
translational hull, 194197301
triple multiplication of binary relations, 264 266
tropical semiring, 347
Trudy Moskovskogo matematicheskogo obshchestva, 42
'two-body problem', 166
'two-row' notation, 57334
type of an element, 61
Übergruppe (Rauter), 636461285307
Uchenye zapiski Leningradskogo pedagogicheskogo instituta, 31236
Ukrainian

Scientific Research Institute of Mathematics and Mechanics, 32,49 340
State Scientific and Technical Publishing House (DNTVU), 305
Ukrainskii matematicheskii zhurnal, 42
Union of Czech Mathematicians and Physicists, 355
Universal Copyright Convention, 30
universal ideal theory, 105
Universität
zu Berlin, 47 343
Frankfurt am Main, 164
Göttingen, 3 1081401641201
Halle-Wittenberg, 140
Hamburg, 3164
Jena, 348
Université
de Franche-Comté, Besançon, 178
Henri Poincaré, Nancy, 164178
Lille, 164
de Lyon, 166
de Paris, 92 164 178181331
de Poitiers, 166178
Rennes, 166
de Strasbourg, 140
University
of California
Berkeley, 28331
Davis, 201 204
of Cambridge, $151,152,185,210,289$ 290
Charles (Prague), 186 331
of Chicago, 82
College of North Wales, Bangor, 210
Comenius (Bratislava), 187
Cranfield, 268
Dnepropetrovsk State, see Dnepropetrovsk
of Exeter, 152
of Florida, Gainesville, 331
of Glasgow, 289290
of Groningen, 164
of Houston, Texas, 331
Johns Hopkins, 92357
Kharkov State, see Kharkov
Kiev State, 32
of Kristiania, 113
Leningrad State, see Leningrad
Louisiana State, Baton Rouge, 331
of Manchester, 152211
of Michigan, 28
Monash, 92269
Moscow State, see Moscow
New York State, Buffalo, 322
Novosibirsk State, 32,125
Osaka Imperial, 201
of Oxford, $185,215,268$

Pennsylvania State, 331
of Rome, 164
Saint Petersburg Imperial, 48
Saratov State, $9,219,239,258,331,364$
Slovak Technical (Bratislava), 187 188
of St Andrews, 210321
of Stirling, 290331
of Szeged, 206
of Tennessee, Knoxville, 203
Tokushima, 201, 204
Tokyo Gakugei, 331
Tulane, 43, 92,199200205269290

304	315	316	323	331
370				

Ural State, 248
Voronezh State, 484955
of Washington, Seattle, 331
Yale, 91113198
Uspekhi matematicheskikh nauk, 2842 (313) 327
van der Waerden's problem, 108113

119 121171

variety
of algebras, 369
of groups, 312369
of semigroups, 208311
Verband, 96
word problem, 269
World War
I, 111548140
II, vii 19,20 36 43 52 $53,92151,152$

269 286 299 359 368
Zassenhaus's Lemma, 153
Zentralblatt für Mathematik und ihre
Grenzgebiete, 3268 73 118 119 143
288312318319332

Selected Published Titles in This Series

41 Christopher Hollings, Mathematics across the Iron Curtain, 2014
39 Richard Dedekind, Heinrich Weber, and John Stillwell, Theory of Algebraic Functions of One Variable, 2012
38 Daniel S. Alexander, Felice Iavernaro, and Alessandro Rosa, Early Days in Complex Dynamics, 2011
37 Henri Poincaré and John Stillwell, Papers on Topology, 2010
36 Joshua Bowman, The Scientific Legacy of Poincaré, 2010
35 William J. Adams, The Life and Times of the Central Limit Theorem, Second Edition, 2009
34 Judy Green and Jeanne LaDuke, Pioneering Women in American Mathematics, 2009
33 Eckart Menzler-Trott, Craig Smoryński, and Edward Griffor, Logic's Lost Genius, 2007
32 Jeremy J. Gray and Karen Hunger Parshall, Editors, Episodes in the History of Modern Algebra (1800-1950), 2007
31 Judith R. Goodstein, The Volterra Chronicles, 2007
30 Michael Rosen, Editor, Exposition by Emil Artin: A Selection, 2006
29 J. L. Berggren and R. S. D. Thomas, Euclid's Phaenomena, 2006
28 Simon Altmann and Eduardo L. Ortiz, Editors, Mathematics and Social Utopias in France, 2005
27 Miklós Rédei, Editor, John von Neumann: Selected Letters, 2005
26 B. N. Delone and Robert G. Burns, The St. Petersburg School of Number Theory, 2005
25 J. M. Plotkin, Editor, Hausdorff on Ordered Sets, 2005
24 Hans Niels Jahnke, Editor, A History of Analysis, 2003
23 Karen Hunger Parshall and Adrian C. Rice, Editors, Mathematics Unbound: The Evolution of an International Mathematical Research Community, 1800-1945, 2002
22 Bruce C. Berndt and Robert A. Rankin, Editors, Ramanujan: Essays and Surveys, 2001
21 Armand Borel, Essays in the History of Lie Groups and Algebraic Groups, 2001
20 Kolmogorov in Perspective, 2000
19 Hermann Grassmann, Extension Theory, 2000
18 Joe Albree, David C. Arney, and V. Frederick Rickey, A Station Favorable to the Pursuits of Science: Primary Materials in the History of Mathematics at the United States Military Academy, 2000
17 Jacques Hadamard and Abe Shenitzer, Non-Euclidean Geometry in the Theory of Automorphic Functions, 2000
16 P. G. L. Dirichlet and R. Dedekind, Lectures on Number Theory, 1999
15 Charles W. Curtis, Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, 1999
14 Vladimir Maz'ya and Tatyana Shaposhnikova, Jacques Hadamard, A Universal Mathematician, 1998
13 Lars Gårding, Mathematics and Mathematicians, 1998
12 Walter Rudin, The Way I Remember It, 1997
11 June Barrow-Green, Poincaré and the Three Body Problem, 1997
10 John Stillwell, Sources of Hyperbolic Geometry, 1996
9 Bruce C. Berndt and Robert A. Rankin, Ramanujan: Letters and Commentary, 1995

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/hmathseries/.

The theory of semigroups is a relatively young branch of mathematics, with most of the major results having appeared after the Second World War. This book describes the evolution of (algebraic) semigroup theory from its earliest origins to the establishment of a full-fledged theory.
Semigroup theory might be termed 'Cold War mathematics' because of the time during which it developed. There were thriving schools on both sides of the Iron Curtain, although the two sides were not always able to communicate with each other, or even gain access to the other's publica-
 tions. A major theme of this book is the comparison of the approaches to the subject of mathematicians in East and West, and the study of the extent to which contact between the two sides was possible.

For additional information and updates on this book, visit www.ams.org/bookpages/hmath-4I

[^0]: ${ }^{34}$ For a biography of Tamura, see Hamilton and Nordahl (2009); for an obituary, see Anon (2009).
 ${ }^{35}$ See the comments in note 41

