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1. Introduction. Two types of limiting processes involving linear 
operators are of frequent occurrence. One type is associated with 
ergodic limits of Cesaro averages nr1(l + T+ • • • + Tn~l)f of a linear 
operator T, for ƒ in suitable function spaces, the so-called "ergodic 
theorems." The strongest such results establish almost everywhere 
convergence for / in a suitable Lebesgue space, under suitable hypoth­
eses on T. This type of theorem is, nowadays, fairly well understood.8 

A second type of limiting theorem of frequent occurrence concerns 
the limit of products T\T2 • • • Tnf of a sequence of operators Tn. The 
two noteworthy special cases are (a) Limiting theorems of the type 
lim^oo Plf, where P ' is a semigroup of selfadjoint operators. Results 
of this type express the "tendency to equilibrium" in certain physical 
processes (typically, in diffusion theory), (b) One considers two or 
more noncommuting projections (most commonly conditional ex­
pectations in a probability space) say Pi and P2, and asks for 
lim^oo (FiF2)

nf. This is an abstract rendering of the so-called aalter-
nierende Verfahren" (see [8]) which originated in function theory 
and has recently merged with various probabilistic and other con­
siderations. 

While results relating to the mean convergence of such iterations 
are easily obtained (for (a) and (b) they were obtained independently 
by von Neumann and Wiener [10; 15] in the 1930's), the cor­
responding statements relating to almost everywhere convergence have 
been missing. A result in this direction has recently been obtained by 
Burkholder and Chow [ l ] , but their results, though more general in 
some respects, are limited to L2} 

1 I wish to thank Professors J. Feldman, P. R. Halmos and C. C. Moore for listen­
ing to expositions of the contents of this paper, and offering much helpful advice. 

2 Work supported in part by Grant No. NSF G-19684 with the National Science 
Foundation and in part by the Office of Naval Research. The contents of this paper 
were delivered in an invited address at the Symposium in Ergodic Theory held at 
Tulane University in November 1961. 

3 For the most refined results see [2; 7]. 
4 Another important set of results has been recently obtained by E. M. Stein 

(personal communication, whose methods are of an altogether different character 
from the present ones; to him are due the statement and a first proof Theorem 2b 
below. 
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I t is our present purpose to establish a single general procedure 
which yields almost everywhere convergence in Lp of certain products 
of operators. The main result stated below (Theorem 1) is general 
enough to include the case of lim^oo Pnf, as well as the limit of itera­
tion of several noncommuting conditional expectations. 

2. Doubly stochastic operators. Given a positive measure space 
(S, 2 , JJL), we consider a linear operator P whose domain and range 
are certain subspaces of the space TM(S, 2 , /x) of all real-valued 
totally measurable functions on (5, 2 , /*), as specified below. We make 
the following assumption on the operator P. 

(1) P is defined on all of Li(S, 2 , ju) and on all of L^S, 2 , fx), maps 
each of those spaces into itself. I t is a positive* operator (that is, 
Pf ^ 0 if ƒ è 0 ) , and it is a contraction (that is, is of norm at most one) 
in each of these spaces. In other words, 

sup | Pg(s) | ^ sup | g(s) | , 

and 

f \Pf(s)\n(ds) g f \f(s)\n(ds) 

for bounded and integrable g and ƒ, respectively. (It follows by the 
Riesz convexity theorem that P will be a contraction in LP(S, 2 , /*), 
l g ^ o o . ) 

(2) The adjoint operator P*, bounded by the identity JsfPgdix 
— fsP*fgdfi> is also defined in Li(S, 2 , ju) and L^S, 2 , /z). 

I t follows tha t P * is also a contraction in each of these spaces. 
Evidently the various conditions specified in (1) and (2) are far 

from independent from one another, and could in fact be reduced in 
many ways to smaller sets of conditions. The redundance of these 
specifications is more than made up for by the ease with which they 
can be verified. 

(3) Let 1 denote the function defined on 5 and with real values, 
which takes identically the value 1. We assume that P I = 1 and that 
P * l = l. 

I t follows, by an easy argument, which we omit, that in a finite 
measure space P l = l implies P * l = l for an operator satisfying (1) 
and (2). 

We shall call an operator satisfying conditions (1), (2), (3) a 
doubly stochastic operator. 

6 Positive operators should not be confused with positive-definite operators in 
Hubert space, which are also sometimes called positive operators. 
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Consider now a sequence Pn (n~ 1, 2, 3, • • • ) of doubly stochastic 
operators in a probability space (5, 2 , /*). The notion of the £#/& 
s£ace associated with this sequence6 is an easy generalization of the 
classical probabilistic construction of the sample space of a Markov 
process (which in turn is a special case of the present notion), as found 
for example in Doob [4] or Loève [9]. I t is defined as follows. 

Consider the measurable space (S', 2") consisting of the one-sided 
infinite product of replicas of the measurable space (5, 2) ; that is, 
S ' = XIn-o ^n, and Sn = S for all n. The cr-field 2 " is the ordinary 
product <r-field. 

A particular class of measurable real-valued functions on (5 ' , 2") 
consists of functions F(sot si, s% • • • ) =/o(so)/i(si)/2(s2) • • • , where 
each of the functions fn is a measurable real-valued function de­
fined on 5, and where fn—l for almost all n (that is, all integers n 
except for a finite number). We shall denote by A the algebra gener­
ated by these functions, when all the fn are assumed to be essentially 
bounded functions. 

The algebra A inherits a natural (and obvious) lattice structure 
from Loo(5, 2 , jti), which makes it into a lattice-ordered algebra. 

With the aid of the given sequence Pn of doubly stochastic oper­
ators, we can define an L-space structure7 on A, considered as a vector 
space. A positive linear functional L on functions of the form 
F(so, si, s2l • • • ) =fo(so)fi(si)f2(s2) • • • belonging to the algebra A 
is defined by the formula 

(*) L{F) = f foPi[fiPi[f*P*[f* • • • ] ] • • • ] < * / * , 

and then extended to all of A by linearity. The linear functional L 
is well-defined on A. First, note that the integral in (*) involves only 
a finite number of terms, since /n== 1 for almost all n and Pnl = 1 for 
all n\ hence the integral makes sense. Secondly, the extension to A 
is well-defined, because A is essentially a tensor product of algebras 
isometric to L^{S, 2 , /*), and L in (*) is compatible with the distribu­
tive laws defining the tensor product. Thirdly, from the definition of 
the lattice structure of A it is clear that | F\ = | /o| • | / i | • |jfa| • • • • , 

e The notion of a path space, and much of the theory to follow, can be studied 
for an arbitrary measure space, which need not even be <r-nnite. In the present 
account we have refrained from such generalizations, for the sake of clarity of ex­
position. In many cases the reader himself may easily supply the necessary steps to 
achieve the needed generalization. 

11n the sense of Kakutani, cf. Day [3, p. 107 ff.]. Day calls these (-4L)-spaces. 
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where | ƒ| denotes the function equal to \f(s) | at the point 5. Further­
more, the formula 

H = p ( M ) = f l/.|*i[|A|i».[|/.|i>.[|/.| • • • ] ] • • • ] * . 
J s 

defines a seminorm, and this seminorm is of "L-type" in the sense of 
Kakutani, (in other words, | |,F+G|| = |MI +| |G| | whenever both F 
and G are positive elements of A). Factoring off the subspace of ele­
ments F such that ||.F|| = 0 , and completing, we obtain an abstract 
L-space X. By Kakutani 's theorem,8 the space X is isometric to (and 
will thereafter be identified with) X = Li(S", 2 ' , v) for some (struc­
turally unique) measure space (S", 2 ' , v). 

The measure space (S", 2 ' , v) is the path space of the sequence of 
operators Pn. The definition of the path space does not use the full 
strength of the assumption that the Pn are doubly stochastic oper­
ators. All tha t is needed, for the definition to make sense, is that 
Pn\ — 1 for all n, and that Pn is a positive operator. 

I t is clear that we can identify the set S" with S', and the cr-field 
2 with a (r-subfield of 2 " . We shall regard this identification (whose 
purpose is purely heuristic) as made, and "picture" the space (S', 2 ' , v) 
as a space of sequences of points of S, with a certain measure. From 
L( l ) = 1 it follows that (S', 2 ' , v) is a probability space. 

We next note that there is a natural imbedding of (5, 2 , v) obtained 
by identifying fÇEiLi(S, 2 , IJL) with the function F(SQ, SI, s2, • • • ) 
—f(so) of A ; the definition of L shows that this identification is faith­
ful. Accordingly, we shall consider this imbedding as accomplished, 
and set 5 = S', and 2 C 2 ' , writing sometimes the path space as (S, 2 ' , 
v). We shall also set dfjL = dv> when convenient. Thus, the path space 
is obtained essentially by refining the given c-field 2 to a large enough 
cr-field. 

3. Main theorem. Our main result is the following: 

THEOREM 1. Let Pn (n~l> 2, 3, • • • ) be a sequence of doubly sto­
chastic operators in a probability space (S, 2 , ju). Then for every p>\ and 
for every fÇzLp(S, 2 , /x), the sequence PiP2 • • • PnP*Pn-\ • • • Pff 
converges almost everywhere as n—* oo. 

PROOF. We consider the subspace Ln of Li{S'', 2 ' , v) generated by 
all functions F(s0, si, s2y - • • , sn, • • * ) =fo(so)fi(si) • • • fn(sn) • • • , 
where all fn are essentially bounded, and where / o = / i = • • • ==/n~i 

8 Cf. Day, loc. cit. 
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= 1. Evidently the Li-closure of Ln is also an L-space; it is therefore 
representable in the form LiOS", 2 n , v), where 2W is a cr-subfield of 2 ' , 
uniquely determined by Ln. If n>m, then 2 w C 2 m . Let Ew be the 
conditional expectation9 operator of Li(S', 2 ' , p) onto Li(S", 2 n , *>), 
and let E be the conditional expectation projecting onto Li(S, 2 , /A). 
If ƒ is any function of class LP(S', 2 ' , *>), then the sequence of functions 
fn~Enf forms a martingale reversed sequence, (cf. Loève loc. cit. 
p. 306 ff.) which is uniformly integrable. By the martingale con­
vergence theorem, we infer that /00 = lim Enƒ exists almost everywhere 
for p>l. Furthermore, by the maximal ergodic theorem for martin­
gales there is a function ƒ* in LP(S', 2 ' , v) such that supn^o |jfn(s)| 
Sf*(s). In other words, the sequence fn converges boundedly in Lp 

to /e*. Since conditional expectation preserves bounded almost every­
where convergence, we conclude that the sequence EEnf—Efn con­
verges almost everywhere to £ƒ«,. 

We have therefore proved that for every function f in Lv{Sy 2 , /A), 
p > 1, the sequence EEnf converges almost everywhere to some function g 
in LP(S, 2 , /z). 

The proof of the theorem will be complete, if we can show that 
EEnE = Px - • • Pn^PnP*P*„x • • • Pi*. This can actually be done by 
a simple direct computation. 

To calculate Enf, for ƒ in LP(S, 2 , /x), we make use of the fact that 
Enf is the unique function such that 

(**) f gEnfdv = ( gfdv, g E Lq(S', 2», v), 
J g, J S, 

where q is the index conjugate to p. 
To verify tha t (**) holds, it suffices to show that it holds when g 

ranges over a dense subset of Lq(S', 2W, v). Such a dense subset will 
be taken to be the subspace Ln defined above. We therefore need only 
verify (**) when g = F, where F is in Lny and F is of the "product" 
form 

F(s0, si, s2, - • • ) = fo(s0)fl(s1)f2(s2) 

We shall in fact find that Enf=G, where 

G(So, SU S2, • • • ) = Pn*Pn*~l • • • P?f(sn) = *(*») . 

Now, 

9 The reader unfamiliar with this notion may consult Loève [9, Chapter VIl],or, 
for an "operatorial" treatment, [ l l ] . The particular properties that single out condi­
tional expectations among all projections are essential in what follows. 



100 G.-C. ROTA [March 

f FGdv = f / o P l [ / l P 2 [ • • « P n [ W n + l ) P n + l | / n + 2 ' • • ]]-]dfi. 
J 8, J 8 

Since/o=/i= • • • = / n - i = l , the right side simplifies to 

f P iP 2 • • -Pn[hfnP»+i[ • • -]]dp. 
J s 

Using the assumption that P&*1 = 1 for all k the last expression in 
turn simplifies to 

{ FGdv « f hfnPn+l[fn+2Pn+2[ • • • ]]<*/* 

= f (P«*Pn*-l ' « • P l * / ) ( / n i > n + l [ / n + l i > n + 2 [ • ' « ] ] ) * * • 
• ' S 

Passing from the operator P** to their adjoints P*, this last integral 
becomes identical with 

f / (P !P 2 • • • Pn\fnPn+1[fn+1Pn+ 2 • - . ] ] ) 4u = f ƒ F <fr. 
• ' S J 8' 

We have therefore shown that 

f GFdv~ f f F 
J at J at 

dv 

for all F of the type indicated. But, as mentioned above, this amounts 
to saying that G = Enf. 

Next, we shall compute the conditional expectation EH, where 
H£:LP(S', S», v) is of the form H(sç>, si, s2, • • • )=zh(sn) for some 
hGLp(S, 2, M). We shall in fact find that EH=PXP2 • • • Pnft = g. 
Again, this amounts to verifying that 

f «ƒ** = f fHdv 

for all f<G.LP(S, 2, JU). Now, by definition of dv, we have 

f / H * « f /PiP2 • • • Pnhdfx= f g/Jju, 

which is exactly what we want. 
Combining the results of the two computations obtained in the 
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two above paragraphs, we obtain for f^Lp(St 2 , ju), that EEnf 
= P iP 2 • • • PnP*Pn-i ' • • P*Pi*/, and the proof of convergence is 
therefore complete. 

4. Applications. The two main applications of the above theorem 
are (a) the "alternierende Verfahren" for sequences of noncommuting 
conditional expectations, and (b) the "tendency to equilibrium" 
theorems for powers of a positive doubly stochastic operator. We 
begin with the second result. 

THEOREM 2. Let P be a doubly stochastic operator which is self adjoint 
in L2(S, 2, /x). Then: 

(a) There is a dilation of the sequence of operators P 2 n into a martin­
gale En. 

(b) For f in L p (5 , S, /*), p> 1, l ining P2nf exists almost everywhere. 

PROOF. I t suffices to choose all the Pn — P in Theorem 1. 
The "alternierende Verfahren" is actually an application of Theo­

rem 2 when only two conditional expectations, say Pi and P2 are 
involved. Setting P = PiP2Pi one obtains a doubly stochastic self-
adjoint operator, and hence the convergence of (PiP2Pi)w/ follows 
under the same conditions as in Theorem 2. 

More generally, an infinite sequence Fn (n = l, 2, • • • ) of non-
commuting conditional expectation operators is a special case of a 
sequence of operators satisfying the conditions of the Main Theorem; 
we therefore obtain that lim^oo PiP2 • • • Pn_iPnPn-i • • • P i / exists 
almost everywhere. Actually, in this result the Fn can be arbitrary 
doubly stochastic self adjoint operators. 

If only a finite sequence Pi, P2, • • • , Fm of noncommuting condi­
tional expectations (or again, more generally, arbitrary doubly sto­
chastic self ad joint operators) are involved, we may obtain from the 
Main Theorem various convergent sequences of operators yielding 
almost everywhere convergence. For example, we may take 
(Pi • • - Pw)"(PmPw„i • • • Pi)-, or else (PiP2PiP3P2 • • • Fm)n 

•(PM • • • P2P3PiP2Pi)», etc., etc. 

S. Generalizations and extensions. The method outlined above is 
capable of numerous generalizations, among which we mention: a 
"weak type L\v theorem, a convergence theorem with reversed indices 
(that is, for l ining PnPw_i • • • P i P * • • • Pn*/)> more general semi­
groups, (for example the continuous P e , t real). Such developments 
will be given in a forthcoming publication, which will exploit a gen-
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eral theory of "dilation" in measure spaces by conditional expecta­
tion.10 
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