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EXAMPLES OF UNORIENTED

AREA-MINIMIZING SURFACES

FRANK MORGAN

Abstract. A comprehensive study is made of constructions of area-minimizing flat

chains modulo two. Many have singularities. For instance, any bounded, area-mini-

mizing submanifold of R" occurs as the singular set of some area-minimizing flat

chain modulo two in some RN.

Introduction. Given a (k - l)-dimensional boundary in R", one can seek to

minimize area in some class of surfaces. We want to take a large class that includes

nonorientable as well as orientable surfaces, without restrictions on the singularities

or topological type. Such a class appears in geometric measure theory as the flat

chains modulo two. The existence and regularity of area-minimizing flat chains

modulo two are already well established (cf. [7, 4.2.26; 9]). Unfortunately, examples

have been rare.

This paper presents several methods for constructing area-minimizing flat chains

modulo two. The first five theorems include the following five examples:

1. a Mobius strip,

2. the graph over a convex region of any function satisfying the minimal surface

equation,

3. any minimal disc bounded by a curve C2" close to a circle,

4. any orientable hypersurface bounded by a connected submanifold of the unit

sphere and known a priori to minimize area among oriented surfaces, such as the

cone over S3 x S3 in R8,

5. the union of two area-minimizing flat chains modulo two lying in orthogonal

sub spaces of R".

Examples 4 and 5 sometimes contain singularities. Theorems 4 and 5 seem to

produce all known examples of area-minimizing flat chains modulo two with

singularities. Corollary 5.4 produces the first examples of nonlinear singular sets.

Many of the results of this paper have been known to workers in the field; others

are new.

Comparison with the case of oriented surfaces. Examples of surfaces which mini-

mize area in the smaller class of oriented surfaces (integral currents) have been much

more abundant. H. Federer [10 or 7, 5.4.19] proves that bounded portions of

complex analytic varieties are area-minimizing. R. Harvey and H. B. Lawson [15]
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give other rich "calibrated geometries" of area-minimizing surfaces. Lawson [18]

obtains area-minimizing surfaces invariant under a suitable group of isometries from

geodesies in a quotient space. (See also [19].)

Unfortunately these methods seem to break down in the class of flat chains

modulo two. In one case [22] symmetry arguments and regularity theory are used to

prove the existence of a continuum of area-minimizing flat chains modulo two with a

certain boundary, but the proof is not constructive.

Organization of this paper. The statement of each of the six theorems is usually

followed by remarks, lemmas and finally the proof.

This work was partially supported by a grant from the National Science Founda-

tion. It was completed while the author was a visiting assistant professor at Rice

University.

Preliminaries. H. Federer's treatise [7] serves as a reference for basic definitions,

notations and results.

0.1. Oriented surfaces. For the basic class of /c-dimensional oriented surfaces in R",

we take the rectifiable currents 8%k R" of geometric measure theory. These surfaces

can be built from rectifiable sets. There is no restriction on the singularities or

topological type. We also use the subspace IA R" of integral currents and the larger

space J^R" of integral flat chains:

I*R"c4*R" ci^R".

One can associate to any S e ^.R" a boundary dS ei^_1Rn, a mass or area

M(S) e [0, oo], a flat norm &(S) e [0, oo ), a support spt S c R", and a positive

measure ||5|| on R". A rectifiable current R has an oriented tangent plane R at

||7||-almost all points in R".

The integral currents are just the rectifiable currents whose boundaries are

rectifiable currents. The integral flat chains are sums of boundaries of rectifiable

currents and rectifiable currents. It turns out that the rectifiable currents are

precisely the integral flat chains of finite mass. The usual definitions in Federer refer

to a compact set A' which will be inconsequential for us, since we will always be able

to assume all our currents have supports inside some large closed ball K0.

Any compact oriented C1 manifold with boundary or any graph over a compact

domain of a Lipschitz function may be viewed as a rectifiable current.

0.2. Unoriented surfaces. For our classes of /c-dimensional unoriented surfaces in

R" we take the spaces of flat chains modulo two,

I2R"c^2R"cJ^2R",

consisting of congruence classes of integral flat chains. For example, two rectifiable

currents S, 7 e %kR" are congruent modulo two if 5 - 7=27 for some R e 3tkR".

In particular, reversing the orientation of a rectifiable current does not change its

congruence class. The congruence class of 7 e &kR" is denoted by 72 e J^2R".

One can associate to any S e J^2R" a boundary 35 e ^k.lR", a mass M2(5) e

[0, oo], a flat norm &2(S) e  [0, oo ), a support spt2 5 c R", and, if S e ^R", a
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positive measure ||5||2. It turns out that !%kRn consists precisely of the flat chains

modulo two of finite mass. An 5 e <%kR" has an unoriented tangent plane S at

||5||2-almost all points in R". Every 5 e <%kR" has a representative modulo two 7;

that is, a 7 e ®kRn of multiplicity one such that 5=72;M2(5) = M(7).

Any compact C1 manifold with boundary, orientable or nonorientable, or any

graph over a compact domain of a Lipschitz function, may be viewed as a flat chain

modulo two.

Compactness. The following compactness theorem guarantees the existence of

solutions to many variational problems. For any C > 0 and closed ball K0, the set of

all flat chains modulo two S supported in K0 with

M2(5)<C,    M2(dS) < C

is compact under the flat norm. The analogous theorem holds for integral flat chains.

The theory of flat chains modulo two was first developed by W. Ziemer [26] (in

1962) and by W. Fleming [12] (in 1966).

0.3. Area-minimizing surfaces.

Definition. A rectifiable current Se^R" is called area-minimizing if for all

re^R" with 37 = 85, M(7) > M(5). Similarly, a flat chain modulo two 5 e

®\Rn is area-minimizing if for all 7 e ®\R" with 37 = 35, M2(7) > M2(5).

Existence. Given any boundary B e ^k_lR" (resp. ^Fk_xRn) with 37 = 0, there is

an area-minimizing Se^R" (resp. ®\Rn) with 35 = B. (Such existence follows

from compactness.)

Regularity. If 5 e &tk Rn and Ief2R" are area-minimizing, then spt 5 - spt 35

and spt2 7 - spt2 37 are smooth manifolds except for a singular set of Hausdorff

dimension at most k - 2 [9, Theorem 2; 4].

The theorems. F. J. Almgren and B. Solomon both have showed me a proof of the

following theorem by methods to appear in [3].

Figure 1. A Mobius strip
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1. Theorem. Let B be the smooth curve (which winds twice around a thin torus)

parametrized by

f: [0,2tt) -» R3,

f{6) = (cos20(l + ecos6»),sin2fJ(l + ecos 6), esin8).

For e sufficiently small, any area-minimizing flat chain modulo two bounded by B is a

Mobius strip, which is an embedded manifold with boundary.

Remark. The strip can be shown to be close to the strip one would expect.

Remark. Assuming an appropriate bridge theorem, one now deduces the existence

of area-minimizing flat chains modulo two of every finite topological type.

■ i

i

Figure 2. The graph of a function satisfying the minimal surface equation

2. Theorem. Let K be a compact, convex domain in R" and let f: K -» R be a

Lipschitz weak solution to the minimal surface equation. Then the graph of f is

area-minimizing as a flat chain modulo two.

Remark. It follows from [6] that / is real-analytic on the interior of K. The

theorem is an easy consequence of a maximum principle of R. Hardt [14, 4.1 and 5].

Definitions for Theorem 3. For any positive integer q and 0 < a < 1, we use

Cq-a to indicate a-H6lder-continuous derivatives of order q. For M a compact,

(k + l)-dimensional, C-a submanifold with boundary of R",/e Cqa(M,RN), let

||/||c,.. = sup{p>'/(x)||, |x - y\-\\D<f(x) - D"f(y)\\:

x, y e M, x * y,0 </' < q}..

Let p denote a fixed real-analytic map from M into the space of (n - k - 1)-

dimensional linear subspaces of R" such that at each x e M, p(x) complements the

tangent space to M at x. Let

Cq'a(M, p) = {/e C'a(M,R"):/(x) e//(x) for all x e M).

Let iM denote the inclusion of M in R".
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Figure 3. An embedded area-minimizing manifold without Jacobi fields

3. Theorem. For positive integers n and k, 0 < a < 1, let B be a compact,

embedded, k-dimensional, C'a submanifold of R". Suppose that B bounds a unique

area-minimizing flat chain modulo two S, that M = spt2 5 is an embedded manifold

with boundary, and that M has no nontangential Jacobi fields which vanish at the

boundary. Then given e > 0, there exists 8 > 0, such that if\\y — iB\\c2-> < $ then y#B

bounds a unique area-minimizing flat chain modulo two T, spt2 7 is an embedded

manifold with boundary, and y has an extension f on M such that

T = f#S   and   \\f- i J|C2.« < e.

3.1. Remark. The above theorem, an outcome of a conversation with B. White, is

a consequence of a theorem of his. White's theorem [24, 3.1], under the same

hypotheses, concludes that y#B bounds an embedded minimal manifold A7, unique

among embedded minimal manifolds C2a close to M. Our theorem says that M'

uniquely minimizes mass among flat chains modulo two with the same boundary.

3.2. Lemma. Let q, a, M, p, i = iM be as in the introduction to Theorem 3. Given

xeM,0<«, < 82, there exist e, C > 0 such that iff G Cq-a(M, R"),

/|3M=id,   ||/-i||ci<e,

then there is a uniqueg e C2a(M, p)such that (i + g)(M) = f(M). Furthermore,

\\g\\](x,8x)\\cq, ^ C\\(f - i)\\](x,82)\\cq.a.

Remark. This lemma can be proved by changing coordinates locally to make M

an axis (k + l)-plane and p(x) the orthogonal complement to the tangent space to

M at x.

Sketch of Proof of Theorem 3. Take a sequence off's such that

||/-*,||C2--»0.

Let 7 be any area-minimizing flat chain modulo two bounded by f#B. Since 5 is the

unique area-minimizing flat chain modulo two bounded by B, one can infer that

7 -> 5 in the flat norm by applying a compactness argument. In fact, the measures

||7||2-> ||5||2 (cf. [7, 5.4.2]). Now by covering A/=spt25 by small balls and

applying Allard's regularity theorems [1, §8; 2, §4], one concludes that eventually

spt2 7 is a Cla manifold with boundary, C1 close to M.

To state that conclusion more precisely, we adopt the notation of White's paper

[24, 3]. Let

</>: C2a(7,R") -> C2'a(M,R")
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be the bounded linear operator such that for y e C2a(B,R"), <f>(y) - iM is the

unique harmonic map on M with boundary values y - iB. It is a standard result that

II<My) ~ 'wile2" ~* 0. What follows from Allard's theorem and Lemma 3.2 is that

spt2 7can be parametrized as </>(y) + g for some g e Cq'"(M, p) with

(i) iigiic' - o, \\g\y, < k0.
We claim that ||g||C2.« -» 0. Let {C} be a finite collection such that:

(2) C = D X 7 is the orthogonal product of a small (A: + l)-ball D and a small

(n - k - l)-ball E both centered at the same point a e A/,

(3) 7 is tangent to M at a,

(4) C n 7 = 0 unless a e B,

(5) C P\ M is the graph over fl c 7 of a function with gradient less than say .1 in

absolute value,

(6) if for i = 1,2,3,4, C, denotes C shrunken by a factor 2"' by a homothety about

a, then {Q} covers M.

Let fl,. = fl n C,. We can assume that (i + g)(M) C\ C is the graph of a function

h>: fl -» 7 with |vw| < .2, that </>(y)(M) and (<j>(y) + g)(M) intersect C in graphs

over domains in D of functions with gradients less than .2 in absolute value, and that

4>(M n Cx) c C. Define functions <px, <f>2 on fl such that

<j>(y) - i: M Pi Cj -» C = D X E,

^(j) ~~ l = (^i> ^2) "(projection onto D).

Then ||<f>2||C2.. -» 0,11^11^.. -» 0, ||^»i1||C2.« -> 0. Now since spt2 7 = (^>(y) + g)(^)

is minimal, on 4>xti2 c D, (<£2 + w)"^1 satisfies the minimal surface system [23,

Theorem 2.2]

;. /= 1 '      J '.7 = 1 '      ^

where

S'j~8u+ a^((*2 + ^)°<i»i1) • 9^-((<»2 + w)°<|)i1) ,

and G'J is the corresponding matrix of cofactors. Hence on fl2, w satisfies a similar

system of the form

A- + 1

£  77% + A = 0.
'.; = !

It follows from (1) that the Hij are uniformly bounded in C0a norm, that h is

uniformly bounded in C0a norm, and that the system is uniformly elliptic. Along

fl2 n 3fl, w = 0. In fl2, ||w||ci -♦ 0. Therefore by Schauder estimates [17, Chapter 3,

1.12 and 1.13], in fl3, |M|C2.« -» 0. By Lemma 3.2, ||g|M n C4||C2.0 -♦ 0. Since

finitely many Q's cover M, ||g||C2.« -» 0. Consequently, taking/ = <j>(y) + g,

T = f#S   and   ||/-(M||c2.o->0.

Finally, since M has no nontangential Jacobi field which vanishes at the boundary,

one can apply White's theorem (cf. Remark 3.1) to conclude that 7 is unique.
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3.3. Corollary. A curve in R" sufficiently C2a close to a circle bounds a unique

area-minimizing flat chain modulo two, which is an embedded disc.

3.4. Corollary. A regular point in a minimal surface has a neighborhood which is

area-minimizing as a flat chain modulo two.

Remark. Corollary 3.4 improves the older theorem that a regular point in a

minimal surface has a neighborhood which is area-minimizing as an integral current

(cf. [27]).

Results such as Theorem 4 have been known to workers in the field and are

implicit in the literature.

Figure 4. The area-minimizing cone over S3 x S3 in R8, schematic

4. Theorem. Let 5 be an (n — \)-dimensional area-minimizing integral current in R"

bounded by a compact, connected submanifold B of the unit sphere. Then S2 is

area-minimizing in the class of flat chains modulo two.

Remark. Every flat chain modulo two Y of finite mass has a representative

modulo two. The following lemma of B. White gives a simultaneous representation

for Y and 3y when Y is H-dimensional. It says that every compact hypersurface

without boundary is orientable.

4.1. Lemma [25, Corollary 2.3]. Let Y be an n-dimensional flat chain modulo two in

R", such that Y and 37 have finite mass. Then there is an intgral current 5 such that 5

is a representative modulo two for Y and 35 is a representative modulo two for dY.

Remark. The following lemma asserts that two disjoint hypersurfaces with a

common boundary are both orientable. It implies, for example, that any surface with

the same boundary as a Mobius strip in R3 must intersect the interior of the Mobius

strip.

4.2. Lemma. Let Xx, X2 be (n — \)-dimensional flat chains modulo two in R" with

8*x = 3*2. Suppose that spt2 Xx n spt2 X2 = spt2 dXx and ^"^(spt2 3^) = 0.

Then Xx has a representative modulo two R with spt 37 = spt2 3^.

Proof. Since dXx = dX2, Xx - X2 = dY, for some flat chain mod 2 of finite mass

Y. By Lemma 4.1, there is an integral current 5 such that 35 is a representative
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mod2 for dY = Xx - X2. Put R = 35l(R" - spt2 X2). Then 7 is a representative

mod 2 for Xx and spt 37 c spt2 dXx. Hence spt 37 = spt2 dXx.

Proof of Theorem 4. Let Xx be any area-minimizing flat chain mod 2 bounded

by B. We will show that M(5) < M2(A'1). Let X2 be a flat chain mod2 in the unit

sphere bounded by B. Since Xx is area-minimizing, spt2 Xx intersects the sphere only

in 7; hence,

spt2 Xx n spt2 X2 = B.

By Lemma 4.2, Xx has a representative mod 27 with spt 37 = spt2 dXx =7. Since B

is connected, it follows by [7, 4.1.31(2) and 4.2.27] that 37 = kB for some nonzero

integer k. Next it follows from [8, 5.10] that there is a rectifiable current 7 with

37 = 7 and M(7) = |1/A:|M(7) = \\/k\M2(Xx). Finally, by the minimizing prop-

erty of 5, M(5) < M(7) < M2^).

I
Figure 5. The union of two orthogonal area-minimizing surfaces

5. Theorem. For integers 2 < k ^ n let Sx, S2 be k-dimensional area-minimizing

flat chains modulo two. Suppose that their supports, spt2 Sx and spt252, lie in

subspaces Px and P2 of R" with

(1) dim(7! n P^)^ dim Px - k + 2.

Then 5 = Sx + 52 is area-minimizing. Suppose, further, that

(2) dim(Px C\P2) <k- 2

and 5' is an area-minimizing flat chain modulo two with 35' = 35. Then 5' = 5{ + 52

with spt2 5; c Px, spt2 5^ c 72, 35{ = 35:, 35^ = 352.

Remark. The theorem, proof and Corollary 5.4 hold for rectifiable currents as

well. In the special case when Px ± P2, it was proved that 5 is area-minimizing by H.

Federer and W. Fleming in 1960 ([11, 9.15], cf. also [13, §2, Example]). The general

case is new.
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Remark. The following lemma also plays a central role in the general study of

calibrations. See [21, Lemma 4; 5; 20 and 16].

5.1. Lemma. Consider R2m = C" with orthonormal basis ex, iex,... ,em, iem. Let

m

(3) <t> e <g) (A1 span{ e}, te,}) c AmR2m.
7-1

Tftew ow //ie space of unit simple m-vectors, <J> has a maximum point of the form

(4) exp(/'a1)e1'A exp(/a2)c2 A  • • • A exp(/am)<?m.

(5) Furthermore, for any j, if there is an a° such that $ has no maximum of form (4)

with a = aj, then every maximum point £ has a factor of the form exp(/ay)e,.

(6) In particular, if <p has only finitely many maxima of form (4), then all of the

maxima of $ are of form (4).

Proof. Let M = \\<j>\\ = max{</>(£): £ a unit simple m-vector}. It suffices to prove

(5), since the other statements are immediate consequences of (5). So assume that

there is a 0 < a° < 27r such that <£ has no maximum of form (4) with a, = a°. For

convenience we assume/ = 1. It is not hard to show (cf. [15, Lemma II.7.5]) that

there are orthonormal vectors fu f2, gv...,gm with span{ fx,f2] = span{ex,iex]

and angles 6X, 02 e  [0, m/2 ) such that | takes the form

£ = (cos dxfx + sin^gj A (cos 62f2 + sin02g2) A g3 A  • • • A g„.

By hypothesis (3),

<f)(|) = a cos 6X sin 82 + b sin 6X cos 62

(where a = (fx A g2 A  • • • A gm, <f>), b = (gx A f2 A  ••■Agm,$>)

< ]ja2cos2dx + b2sin2 0X < max{|a|, \b\) < M.

Hence, equality holds. Unless a = b = M, {0X, 62) = (0,7r/2} and £ has as a factor

/i or/2, as desired. If a = b = M, fx A g2 A • ■ • A gm is a maximum point of <j>, and

hence

0 = di^1 AicostS2 + sin tf2) A ••• A gm,<t>)\l=0

= </l A/2 A   ••• Ag„,,<f>).

Similarly, 0 = (g, A g2 A  • • • A gm, <J>). Therefore, for any 0,

((cos 0fx + sin 0/2) A (-sin 0g1 + cos 6g2) A g3 A •■■ A gm,4>)

= Mcos2 0 + Msin2 6 + 0 + 0 = M.

Choosing 0 so that exp(iax)ex = cos0fx + sindf2 shows that ||expO'a1')e1J<J>|| = M.

But by induction exp(/a°)e1J^ has a maximum of the form exp(/a2)e2 A • • • A

exp(/am)em. Therefore <j> has a maximum point of the form

exp(/a1°)e1 A exp(/a2)e2 A  • • • A exp(;ajem,

and the hypothesis of (5) fails to hold.
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5.2. Lemma. Let Px, P2 be subspaces ofR" with

(7) dim(7! n P2X) > dim71 - k + 2.

Let £ be a unit simple vector in AkR". Then the projections <//f satisfy \P^\ + |72f | < 1.

If furthermore, dim(Px D P2) < k - 2, then \P^\ + \P,J\ = 1 if and only iff lies in Px

or in P2.

Remark. The following converse holds. Suppose Px, 72 are subspaces of R" of

dimension at least k, such that for all unit simple f e Ak R",

(s) \pxi i + \p2s i < i.

Then dim^ C\ P2)^- dim Px - k + 2. Suppose, furthermore, that equality in (8)

holds only if J lies in Px or in 72. Then dim(7L n 72) < k - 2.

Proof of Lemma 5.2. We may assume that 7^ and 72f are nonzero, and for

convenience that n > 2k. Let ux, u2 be unit k-vectors such that PX is a positive

multiple of Uj. There are orthonormal vectors

el,...,ek,tel,... ,iek

such that

ux = ex A ■ ■ ■ A ek,   u2= ±exp(/01)e1 A  • ■ • A exp(/0A)ek

with 0 < 6X < • • • *s 0A < 77/2 (cf. [15, II.7.5]). By (7), 0k_l = 6k = -n/2. By replac-

ing iek by -iek if necessary, we may assume the ambiguous sign on u2 is positive. For

any vector x, let x* denote the dual covector, and put <j> = u* + u*. By Lemma 5.1,

on the space of unit simple A:-vectors, <j> has a maximum point £ of the form

(9) £ = exp(iax)ex A  • • • A exp(/aA.)ev

We compute that

<t>(£) = cos<xx • ■ ■ cosak + cos(0! - <xx) ■ ■ ■ cos(6k - <xk)

(10) < Icosa^jcosa^l + \cos(8k_x - ak_x)cos(8k - ak)\

= Icosa^jcosaj -I- Isina^.j sina^l

< (cos2 ak_x + sin2 ak_1')   "(cos2 ak + sin2 ak)      = 1.

Therefore,

I jtfi + |jyi «♦(*)<+(0 < i-
If, furthermore, dim(7, n 72) < A: - 2, then 0*_2 > 0. We suppose that \PX£\ +

l-P^I = <KO = ! md snow tnat f = «i or ? = M2> which will prove that f lies in Px

or in 72. By 5.1(6), it suffices to show that ux and u2 are the only maxima of <j> of the

form (4). But for any such maximum £, equality must hold in (10). Since 0k_2 > 0,

either ctx = ■ ■ ■ = <xk = 0 or (dx - ax) = ■ ■ ■ = (Bk.- ak) = 0. Hence £ = ux or

£="2-

5.3. Corollary to Lemma, Let Px, P2 be subspaces ofR" with dim^ n P2) >

dim Px - k + 2. Let T be any flat chain modulo two of finite mass. Then

(11) M2(7)>M2(71#7) + M2(72#7).
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Furthermore, //dim(71 Pi 72) < k - 2 and equality holds in (11), then for \\T\\2-almost

all x e R", 7 to in Px or in 72.

Proof of Theorem 5. Let 7 e ^2R" with 37 = 35. Then by Corollary 5.3,

M2(7) > M2(71#7) + M2(72#7) > M2(5j + M2(52) = M2(5)

because Sx and 52 are area-minimizing and dPj#T = 37,#5 = 35,. Hence 5 is

area-minimizing.

Furthermore, suppose that dim^ n 72) < k - 2 and M2(7) = M2(5). By

Corollary 5.3, 7has a decomposition 7 = 7, + 72 in ®\Rn such that for ||7}||-almost

all x e R", 7} lies in 7, and M2(7) = M2(7J + M2(72). Let X = 87x - 85: = 852

- 372 e J^R". Since 71#X = 71#(352 - 372) = 3(71#52 - 71#72) = 0, spt2 X

c 72. Similarly spt2 X c Px, so that spt2 X <z Px n P2. Now * = 87 for some

y <= 5?2R" with spt2 Yd Pxr\ P2. But since Jfk(Px n 72) = 0, y = 0 (cf. [7, p.

432]). Therefore * = 0, 37L = 35t and 872 = 352. Since

M2(7j + M2(72) = M2(7) = M2(5) = M2(SX) + M2(52),

Tx and 72 are area-minimizing. Hence spt Tx c Px and spt 72 c 72.

5.4. Corollary to Theorem. 7e/ 7l5 72 be l-dimensional area-minimizing flat

chains modulo two in R", regular on the interior; i.e., A/,- = spt2 7, - spt2 87, is a

smooth manifold. Then Mx n M2 is the interior singular set of some area-minimizing

flat chain modulo two. More precisely, with m — n - I + 2, there is an area-minimiz-

ing flat chain modulo two T e ^/+mR"+2m such that the set of points where spt2 7 -

spt2 87fails to be a smooth manifold is (M1 n Af2) X {0} c R" X R2m. In particular,

taking R2 = Rx, we see that the interior of any regular area-minimizing flat chain

modulo two is the interior singular set of some other area-minimizing flat chain modulo

two.

Remarks. From two-dimensional area-minimizing flat chains modulo two in R3,

the above corollary constructs five-dimensional area-minimizing flat chains modulo

two in R9 with interior singular sets consisting of a smooth nonlinear curve or of an

even number of nonlinear curves meeting at a point. These seem to be the first

examples of nonlinear singular sets in area-minimizing flat chains modulo two. The

corollary also holds for rectifiable currents and provides the first examples of

nonlinear curves as singular sets in area-minimizing rectifiable currents.

Proof. Let k = / + m and define flat chains mod 2, Sx,S2e ®2k(Rn xR"x Rm),

as the following Cartesian products of RX,R2 and m-cubes:

5j = Rx X[-I,l]mx{0},   52 = 72X{0} x[-l,l]m.

Let 7 = 5j + 52. 5X and 52 are area-minimizing flat chains mod 2 (cf. Remark on

Theorem 6), supported in PX = R" xRm X {0} and 72 = R" X {0} X Rm. Since

dim(7! n72±) = m = «-/+2 = m + n.-A: + 2 = dim71-A: + 2,

Theorem 5 implies that 7 = Sx + S2 is area-minimizing. It is easy to check that 7

has the desired singular set.

Remark on Theorem 6. It is well known that if 5 is an area-minimizing flat chain

modulo two, then the Cartesian product of 5 with any interval is area-minimizing.



236 frank morgan

The following theorem, under merely a stability hypothesis on 5, concludes that the

Cartesian product of 5 with a sufficiently short interval is area-minimizing.

6. Theorem. Suppose 5 is a k-dimensional flat chain modulo two in R", 85 has finite

mass, and 5 satisfies the following stability condition: there exists e > 0 such that if 7 is

aflat chain modulo two, 87 = 35, and&2(T - 5) < e, then M2(7) > M2(5).

Then there is a8> 0 such that the Cartesian product of S with an interval of length 8

is area-minimizing in R" + 1.

Proof. Take any 8 < e/N2(5) (N2(5) = M2(5) + M2(35)). Assume that 5 x

|0, S]2 is not area-minimizing. Then there is a Q e I2.+2(Rn+1) with

8(2 = 3(5x|0,6]2)    and   M2(Q) < M2(s X [0, 8]2).

We may assume spt2(Q - 5 X |0, S]2) c R" x [0, 8]. In fact, by increasing 8 slightly,

we may assume spt2(0 - 5 X [0, 8\2) c R" x (0, 8]. For r e [0, 8] let

Qr^(Q,xn+l,r+)

be the slice of Q by the hyperplane xn+x = r (cf. [7, p. 429]). Since

f  M2(Qr)dr^M2{Q)<M2{Sx\0,8]2)= fS  M2{S)dr,
Jr = 0 Jr = 0

we can choose r e (0, 8) such that M2(Qr) < M2(5). Since

Qr-Qo=> 3[2l{0 < xn+1 < /■}] -(90MO < xn+1 < r),

we have

*"2(C, - Go) < M2(C2) + M2(32)l{0 < x„+1 < 6}

<M2(5x[0,S]2) + M2((35)x|0,Sl2)

<5N2(5).

Now let// denote orthogonal projection of R" X R into R". Since

spt((? - 5 x[0,5]2) c R" X(0,8],

/z#eo=/z#((5x|0,S]2,x„+1,0)) = 5.

Put 7 = p#Qr &@lR". One computes that

87 = //#(3e,xn+1,r + ) = //#(8(5x[0,8]2),x„+1,r+)

= //#(35x8r) = 85,

F2(T - S) = F2(p#(Qr~  Q0)) <^2(Qr ~  Q0)  < 5N2(5)  < E.

But M2(7) < M2(<2r) < M2(5), a contradiction of the stability condition on 5.

6.1. Question. Is the Cartesian product of two area-minimizing flat chains modulo

two area-minimizing'}

(Although, in general, the Cartesian product of rectifiable currents need not be

rectifiable, the almost everywhere regularity of area-minimizing flat chains modulo

two insures that their product is a flat chain modulo two of finite mass.) The

question is open also for normal currents (cf. [20]) but settled negatively for integral

currents (cf. [19, 1.2]).
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