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ON NONBINARY 3-CONNECTED MATROIDS 
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ABSTRACT. It is well known that a matroid is binary if and only if it has 
no minor isomorphic to U2,4, the 4-point line. Extending this result, Bixby 
proved that every element in a nonbinary connected matroid is in a U2,4-
minor. The result was further extended by Seymour who showed that every 
pair of elements in a nonbinary 3-connected matroid is in a U2,4-minor. This 
paper extends Seymour's theorem by proving that if {x,y,z} is contained in 
a nonbinary 3-connected matroid M, then either M has a U2,4-minor using 
{x,y,z}, or M has a minor isomorphic to the rank-3 whirl that uses {x,y,z} 
as its rim or its spokes. 

1. Introduction. This paper proves a number of results on the structure of 
nonbinary 3-connected matroids. In [8], Seymour showed that if M is such a 
matroid and {x,y} ~ E(M), then M has a U2,4-minor that uses {x,y}, that is, 
M has a minor isomorphic to U2,4 whose ground set contains {x, y}. Seymour 
also conjectured [8, 10] that if M is nonbinary and 4-connected and {x, y, z} ~ 
E(M), then M has a U2,4-minor using {x,y,z}. In addition, he noted that this 
conjecture fails for certain 3-connected matroids such as the non-Fano matroid. 
This paper does not attack Seymour's conjecture directly but instead concentrates 
on characterizing precisely when the conjecture fails for nonbinary 3-connected 
matroids. The author has learned, since the original submission of this paper, that 
Seymour's conjecture has now been disproved by Kahn [4]. 

Most of the matroid terminology used here will follow Welsh [12]. The ground 
set, rank, and corank of the matroid M will be denoted by E(M), rk M, and cork M 
respectively. For an arbitrary subset T of E(M), rkT and corkT will denote the 
rank and corank of T. The deletion of T from M will be denoted by M \ T or 
MI(E(M) - T), and the contraction of T from M by MIT or M· (E(M) - T). 
Flats of M of ranks one and two will be called points and lines. A 3-element circuit 
of M will be called a triangle and a 3-element co circuit a triad. 

If N and M are matroids on Sand SUe respectively and e tt. S, then M is an 
extension of N if M \ e = N, and M is a lift of N if M* is an extension of N*. We 
call M a nontrivial extension of N if e is neither a loop nor a coloop of M and e 
is not in a 2-element circuit of M. Likewise, M is a nontrivial lift of N if M* is a 
nontrivial extension of N*. 
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If k is a positive integer, the matroid M is k-separated if there is a subset T of 
E(M) such that ITI 2 k, IE(M) - TI 2 k, and 

rkT + rk(E(M) - T) - rkM = k - 1. 

When this occurs, (T, E(M) - T) is an exact k-separation of M. We say that M is 
n-connected if M is not k-separated for any k < n. Thus a matroid is 2-connected 
precisely when it is connected [12, p. 69]. Moreover, 

(1.1) M is n-connected if and only if M* is n-connected. 
We shall assume familiarity with the operations of series and parallel connection 

of matroids; a detailed discussion of these operations and their properties may 
be found in [3]. For matroids Ml and M2 on disjoint sets, if Pi E E(Ml ) and 
P2 E E(M2), then we shall denote the parallel connection of Ml and M2 with 
respect to the basepoints Pi and P2 by P((Mll pt}, (M2' P2)) or just P(M!, M2)' If, 
for i = 1,2, Mi has at least 3 elements and Pi is neither a loop nor a coloop of M i , 
then P((Ml,pt}, (M2,P2)) \ P will be called the 2-sum of Ml and M2 [7, p. 308]. 
In that case, Ml and M2 are the parts and Pi and P2 the basepoints of the 2-sum. 
The following fundamental link between 3-connection and 2-sums was proved by 
Seymour [7, (2.6)]. 

(1.2) THEOREM. If (Xl ,X2 ) is an exact 2-separation of the matroid M, then 
there are matroids Ml and M2 on Xl U Pi and X 2 U P2 respectively, where Pi 
and P2 are new elements, such that M is the 2-sum of Ml and M2 with respect 
to the basepoints Pi and P2. Conversely, if M is the 2-sum of Ml and M 2, then 
(E(Mt} - P!' E(M2) - P2) is an exact 2-separation of M, and Ml and M2 are 
isomorphic to minors of M. 

We shall need to use the construction of a minor of M isomorphic to Mi, This 
proceeds as follows. Let C be a circuit of M meeting both E(Mt} -Pi and E(M2)-
P2. Choose an element z of C. Now delete E(M2) - P2 - C and then contract 
C - z - E(Mt} from M. The resulting minor of M is isomorphic to Mi. 

The following two properties of 2-sums are straightforward to check. 
(1.3) The sum of Ml and M2 is connected if and only if both Ml and M2 are 

connected. 
(1.4) If M is the 2-sum of matroids Ml and M2 and N is a 3-connected matroid 

which is a minor of M, then Ml or M2 has an N-minor. 
On combining Theorem 1.2 and (1.4) with the excluded-minor characterization 

of binary matroids, one easily gets that 
(1.5) The 2-sum of Ml and M2 is binary if and only if both Ml and M2 are 

binary. 
If {x, y} is a circuit of the matroid M, we say that x and yare in parallel in M. 

If, instead, {x, y} is a cocircuit, then x and yare in series. A parallel class of M is 
a maximal subset A of E(M) such that if a and b are distinct elements of A, then 
a and b are in parallel. Series classes are defined analogously. A series or parallel 
class is nontrivial if it contains more than one element. The matroid M' is a series 
extension of M if M = M'IT and every element of T is in series with some element 
of M. Parallel extensions are defined analogously. 

The following result of Bixby [2, Theorem 1] will be used repeatedly in the proof 
of the main theorem of this paper. 
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( 1.6) THEOREM. Let e be an element of the 3-connected matroid M. Then 
either M \ e is a series extension of a 3-connected matroid or M/e is a parallel 
extension of a 3-connected matroid. 

Suppose that r ~ 3. The wheel Wr of order r is a graph having r + 1 vertices, r 
of which lie on a cycle (the rim); the remaining vertex is joined by a single edge (a 
spoke) to each of the other vertices. The whirl wr of order r is a matroid on E(Wr) 
having as its circuits all cycles of Wr other than the rim, as well as all sets of edges 
formed by adding a single spoke to the set of edges of the rim. The terms "rim" 
and "spoke" will be used in the obvious way in both M(Wr) and Wr. It will also 
be convenient here to view the matroid U2,4 as the whirl W2. Indeed, if one uses 
the construction of wr from M(Wr) in the case when r = 2, it is easy to see that 
the resulting matroid is isomorphic to U2,4. 

The following result of Tutte [11, 8.3] indicates the fundamental role that whirls 
and the cycle matroids of wheels play in the class of 3-connected matroids. 

(1. 7) THEOREM. Let M be a 3-connected matroid such that for all elements 
e neither M \ e nor M / e is 3-connected. Then M has rank at least three and is a 
whirl or the cycle matroid of a wheel. 

An important tool in the proof of Theorem 1.7 and one that will also be needed 
in this paper is the following. 

(1.8) LEMMA [11, 7.3]. Let M be a 3-connected matroid having at least four 
elements. Suppose that {a, b, c} is a triad of M such that neither M / a nor M /b is 
3-connected. Then M has a triangle containing a and just one of band c. 

The next theorem, the main result of this paper, will be proved in §4. 

( 1.9) THEOREM. Let M be a 3-connected nonbinary matroid and suppose that 
{x,y,z} ~ E(M). Then either AI has a U2,4-minor using {x,y,z} or M has a 
W3- minor in which {x, y, z} is the rim or the set of spokes. 

A 3-connected matroid M is internally 4-connected if M has no exact 3-separa-
tion (Xl,X2 ) with IXll, IX2 1 ~ 4. In [10], Seymour characterized precisely when 
three elements in a 3-connected, internally 4-connected binary matroid are in a 
circuit. He also noted that the corresponding nonbinary problem is still open. As 
an immediate consequence of Theorem 1.9, we have the following result for the 
nonbinary problem. 

(1.10) COROLLARY. Let M be a 3-connected nonbinary matroid and suppose 
that {x, y, z} ~ E(M). Then M has a circuit containing {x, y, z} unless M has a 
W3 -minor in which {x, y, z} is the set of spokes. 

§§2 and 3 of this paper contain several results which are used in the proof of 
Theorem 1.9. Most of these results are also of interest in their own right. In 
particular, §3 proves the analogue of the main theorem for arbitrary 3-connected 
matroids. 

2. A whirls theorem. In this section we shall use P. D. Seymour's theory of 
splitters [7] to prove that a nonbinary 3-connected matroid can be obtained from a 
whirl by a sequence of nontrivial lifts and extensions. The author's original proof 
of this result did not use splitters and he is indebted to Dr. Seymour for informing 
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him that the results of this section were already known and could be easily derived 
using splitters. 

Let J be a class of matroids closed under minors and under isomorphism. A 
member N of J is a splitter for J if every 3-connected member of J having an 
N-minor is isomorphic to N. 

The next result is Seymour's characterization of splitters [7, (7.3)]. 
(2.1) THEOREM. Let J be a class of matroids closed under minors and under 

isomorphism. Suppose that N is a nonempty connected member of J for which the 
following conditions hold: 

(i) both Nand N* are simple; 
(ii) J contains no nontrivial extensions of N and no nontrivial lifts of N; 
(iii) if N ~ M(Wk ) for some k ~ 3, then M(Wk+l) ~ J; and 
(iv) if N ~ Wk for some k ~ 2, then Wk+ 1 ~ J. 

Then N is a splitter for J. 
An easy consequence of this is the following. 
(2.2) THEOREM. Let M and N be 3-connected matroids such that N is a 

minor of M, IE(N)I ~ 4, and if N ~ M(Wk), M has no M(Wk+d-minor, while if 
N ~ Wk, M has no WkH-minor. Then there is a sequence No, Nl, N 2 , ... , N n of3-
connected matroids such that No ~ N, N n = M, and, for all i in {O, 1, 2, ... , n-1}, 
Ni is a single-element deletion or contraction of NiH' 

PROOF. Let J be the class of matroids Ml that are isomorphic to some minor 
of M. Then J is closed under minors and under isomorphism. Let M' be a 3-
connected member of J which is maximal with the property that there is a sequence 
Mb, Mf, ... ,M:n of 3-connected matroids such that Mb ~ N, M:n = M', and, for 
all i in {O, 1, 2, ... , m - 1}, MI is a single-element deletion or contraction of MI+l' 
Then, as IE(N)I ~ 4, Theorem 3.1 implies that M' is a splitter for J. Hence 
M'~M. 

The following result for whirls, an immediate consequence of the last theorem, 
will be used in the proof of Theorem 1.9. 

(2.3) COROLLARY. Let M be a non binary 3-connected matroid. Then M can 
be obtained from a whirl by a sequence of nontrivial lifts and nontrivial extensions. 

3. Some structural results. This section contains a number of results which 
will be needed in the proof of the main theorem. The first of these is a natural 
extension of Theorem 2.5 of [6] for nonbinary matroids. Euclidean representations 
for the 6-element matroids P6 and Q6 are shown in Figure 1. 

(3.1) THEOREM. Let M be a 3-connected nonbinary matroid having rank and 
corank at least three. Then M has a minor isomorphic to one of U3,6, P6, Q6, or 
W3. 

The proof of this theorem will use the following two lemmas. 
(3.2) LEMMA. Let Nl be a 3-connected matroid having an element e such that 

Nde ~ U2 ,k for some k ~ 5. Then Nl has a minor isomorphic to one of U3 ,6, P6 , 

or Q6' 
PROOF. We argue by induction on k. If k = 5, then Nl is a nontrivial lift of U2 ,5, 

and it is not difficult to check that Nl is isomorphic to one of U3,6, P6, or Q6. Thus 
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FIGURE 1 

the proposition is true for k = 5. Now assume it true for k = n where n 2: 5 and 
let k = n+1. Suppose that I is an element of E(Nde). Then Nl \ !Ie c:::: U2,n and 
the induction assumption implies that, provided Nl \ I is 3-connected, Nl \ I and 
hence Nl has a minor isomorphic to one of U3 ,6, P6 , or Q6. Thus we may assume 
that, for all elements I of E(Nl ) - {e}, Nl \ I is not 3-connected. But, both Nl 
and Nl \ I Ie are 3-connected and so, by [5, Lemma 2.6], Nl has a triad containing 
{e, J}. Therefore Nl \ e is not 3-connected and so Nl is minimally 3-connected. 
Since rkNl = 3, it follows by [5, Theorem 4.7] that IE(Ndl ::; 6, a contradiction. 
This completes the proof of the lemma. 

( 3 .3) LEMMA. Let M be a 3-connected matroid having rank at least three and 
suppose that M has a U2,5-minor. Then M has a 3-connected minor Nl which has 
a single-element contraction that is isomorphic to U2,k lor some k 2: 5. 

PROOF. Let k be the greatest integer m for which M has a U2,m-minor. Then 
k 2: 5. Now let N be a U2,k-minor of M and apply Theorem 2.2. The choice of N 
guarantees that no 3-connected extension of it is a minor of M. It follows that M 
has as a minor a 3-connected lift N 1 of N. 

PROOF OF THEOREM 3.1. Since M is nonbinary, it has a U2,4-minor N. Now 
clearly U2,5 is the only nontrivial extension of U2,4 and, by duality, U3 ,5 is the only 
nontrivial lift. Thus, on applying Theorem 2.2 and recalling that U2 ,4 c:::: W2 , we 
obtain that M has a minor isomorphic to one of W3, U2,5, or U3,5. In the first 
case, the theorem is immediate, while in the second and third cases, it follows on 
applying the combination of Lemmas 3.2 and 3.3 to M and M* respectively. 

Theorem 3.1 can be extended by using the following result. 

(3.4) LEMMA. Let M be a 3-connected matroid and {x, y} be a subset 01 E(M). 
Suppose that M has a minor isomorphic to a member of {U3,6, P6 , Q6, W3}. Then 
M has such a minor using {x, y}. 

PROOF. We use the main result of Seymour's paper [9]. As each of U3 ,6, P6 , Q6, 
and W3 is self-dual, we need only check that if M is a 3-connected matroid such 
that M \ e is isomorphic to one of the four specified matroids and I E E(M \ e), 
then M has a deletion using {e, J} that is isomorphic to one of the four specified 
matroids. We omit the straightforward checking of cases that is needed to complete 
the proof. 

On combining this lemma with Theorem 3.1, we immediately obtain the follow-
ing. 
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(3.5) COROLLARY. Let M be a 3-connected nonbinary matroid having rank 
and corank at least three and suppose that {x, y} s-;; E(M). Then M has a minor 
isomorphic to one of U3,6, P6 , Q6, or W3 that uses {x, y}. 

The next result corresponds to the main theorem in the case that one does not 
restrict to nonbinary matroids. 

( 3.6) THEOREM. Let M be a 3-connected matroid having rank and co rank at 
least three and suppose that {x,y,z} s-;; E(M). Then M has a minor isomorphic to 
one ofU3;6, P6 , Q6, W3, or M(K4) that uses {x,y,z}. 

PROOF. As M is 3-connected having rank and corank at least three, IE(M)I 2: 6 
and, by Theorem 2.5 of [6], M has a minor isomorphic to one of the five specified 
matroids. The result therefore follows immediately if IE(M)I = 6. We shall argue 
by induction on IE(M)I so suppose that IE(M)I > 6 and that the result is true for 
all matroids with fewer elements than M. Let rk M = 3. If M has no element e such 
that M \ e is 3-connected, then, by [5, Theorem 4.7], IE(M)I ~ 6; a contradiction. 
Hence, M does have such an element e. If e rf:. {x, y, z}, then the result follows by 
the induction assumption. Thus we may suppose, without loss of generality, that 
e = x. By [6, Theorem 4.2], M \ x has a restriction isomorphic to one of U3 ,6, 

P6 , Q6, W3, or M(K4) that uses {y, z}. It is now a straightforward matter to 
check that in all five of these cases the required result holds. We note that the case 
checking required here is very similar to that required in the proof of Lemma 3.4. 
We conclude that the theorem holds if M has rank 3 and, by duality, it also holds if 
M has corank 3. We shall now assume that both the rank and corank of M exceed 
3. 

By Theorem 1.6, for all elements e of M, either M \ e is a series extension of 
a 3-connected matroid or M / e is a parallel extension of a 3-connected matroid. 
Choose e in E (M) - {x, y, z} and suppose that M \ e is a series extension of the 
3-connected matroid N and that x, y, and z are in different series classes of N. 
Then we may assume that {x, y, z} s-;; E (N). Now either 

(i) N has rank at least 3; or 
(ii) N has rank 2. 

In both cases, since cork M > 3, cork N 2: 3. The result therefore follows in the 
first case by applying the induction assumption to N. In the second case, N ~ U2,k 

for some k and, since cork N 2: 3, k 2: 5. Now as rk M 2: 4 and rk N = 2, M \ e 
has at least one nontrivial series class. Choose Xl and X2 in this class taking Xl 
equal to x, y, or z if one of these elements is in the class. Contract all the elements 
from this class except Xl and X2 and then contract all but one element from each 
of the other nontrivial series classes of M \ e ensuring that x, y, and z are kept. 
The resulting contraction of M has rank 3 and has {e,xl,x2} as a cocircuit. Now 
delete all but three elements, a, b, and c, from the line which is complementary to 
{e, Xl, X2} again ensuring that x, y, and z are kept. 

In the resulting matroid M', the closure of {Xl, X2} does not contain e otherwise e 
is in the closure in M of the series class Sl of M\e containing {Xl, X2}. In that case, 
rk(SlUe) = rkSI and if S2 = E(M\e)-SI, then rkM = rk(M\e) = rkS2+ISll-1 
and rkSl = ISll. Thus rkSl +rkS2 = rkM + 1, so rk(Sl Ue) +rk S2 = rkM + 1, a 
contradiction to the fact that M is 3-connected. We conclude that, in M', {e, Xl, X2} 
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FIGURE 2 
is a basis. It follows without difficulty that M' is 3-connected, hence the required 
result holds in case (ii). 

We may now assume that, for all elements e of E(M) - {x, y, z}, either at least 
two of x, y, and z are in series in M \ e, or at least two of x, y, and z are in parallel 
in M / e. If x and y are in series in M \ h and x and z are in parallel in M / h 
where h -f. h, then {x, y, fd is a cocircuit of M and {x, z, h} is a circuit of M. 
But I{x, y,Jd n {x, z, h}1 = 1; a contradiction. 

. Suppose next that x and yare in series in both M\h and M\h. Then {x, y, h} 
and {x, y, h} are cocircuits of M and hence, by exchange, {x, h, h} and {y, h, h} 
are cocircuits of M. It follows then that, for 13 in E(M) - {x, y, z, h, h}, no pair 
of x, y, and z can be in a parallel class in M/h, otherwise we will again get a 
circuit and a cocircuit of M having exactly one common element. 

As IE(M) - {x, y, z}1 2 5, it follows that either, for all e in E(M) - {x, y, z}, 
at least two of x, y, and z are in series in M \ e, or, for all such e, at least two of 
x, y, and z are in parallel in M/e. In the first case, {x,y,z} is spanning in M*; in 
the second case, it is spanning in M. Thus we obtain the contradiction that M has 
rank or corank at most 3, and this completes the proof of the theorem. 

The next result comes from applying the last theorem to binary matroids. 

(3.7) COROLLARY. Let M be a 3-connected binary matroid having rank and 
co rank at least three and suppose that {x,y,z} ~ E(M). Then M has a minor 
isomorphic to M(K4) that uses {x,y,z}. 

In view of this result it seems tempting to conjecture the following extension of 
Corollary 3.5: If M is a 3-connected nonbinary matroid having rank and corank at 
least three and {x,y,z} ~ E(M), then M has a minor isomorphic to one of U3,6, 
P6, Q6, or W3 using {x,y,z}. However, the matroid shown in Figure 2 satisfies 
the hypotheses of this conjecture but not its conclusion. Theorem 1.9 arises fairly 
naturally when one attempts to modify this conjecture in light of the above example. 

The next result characterizes those connected nonbinary matorids having an 
element which is used by every U2,4-minor. 

( 3.8) THEOREM. Let M be a nonbinary connected matroid such that for some 
element e of M both M \ e and M / e are binary. Then M is obtained from a 4-point 
line having ground set {e, ell e2, e3} by a sequence of at most three 2-sums where 
the basepoints of these 2-sums are el, e2, and e3, the other part of each 2-sum is 
connected and binary, and each of el, e2, and e3 is the basepoint of at most one of 
these 2-sums. 

PROOF. Evidently M has rank and corank at least two. We shall suppose first 
that M is 3-connected. If M has rank two, then M ~ U2,k for some k 2 4. If 
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k > 4, then M does not have the required property. Thus if M has rank 2, then 
the required result holds. By duality, if M has corank two, then M* ~ U2 ,4 and so 
M ~ U2,4. 

We may now assume that if Mis 3-connected, then rkM, corkM 2: 3. In that 
case, by Corollary 3.5, M has a minor N isomorphic to one of U3,6, P6, Q6, or 
W3 that uses e. It is straightforward to check that, in each case, one of N \ e and 
N / e is nonbinary. Hence we obtain the contradiction that one of M \ e and M / e is 
nonbinary. 

We may now assume that M is not 3-connected. Then 
M = P((Ml,pd, (M2,P2)) \ p 

for some matroids Ml and M 2 • If Mi is nonbinary for i = 1 and 2, then as Mi 
is connected, by [1, Theorem 3.7], it has a U2,4-minor using Pi. Thus M has a 
minor isomorphic to the 2-sum of two copies of U2,4 and so one of M \ e and M / e 
is nonbinary; a contradiction. It follows that we may assume that Ml is nonbinary 
and M2 is binary and that !E(M2 )! is maximum subject to these conditions. Clearly 
e E E(Md. If Ml is 3-connected, then Ml ~ U2,4. If Ml is not 3-connected, it 
is the 2-sum of a nonbinary and a binary matroid. Again choose the binary part 
of Ml to have cardinality as large as possible. If the nonbinary part of Ml is not 
3-connected, then decompose it. We may repeat such decompositions, in each case 
choosing the binary part to have maximum cardinality, until we obtain U2,4 as 
one of the parts of the 2-sum. The other part of this 2-sum must be a connected 
binary matroid. One of the three elements of U2,4 different from e is the basepoint 
of this 2-sum. In building back up to M, it follows, by the fact the cardinality of 
the binary part of each 2-sum was chosen to be maximum, that M can indeed be 
obtained from U2,4 as described. 

(3.9) COROLLARY. Let M be a 3-connected nonbinary matroid having an ele-
ment e such that both M \ e and M/e are binary. Then M ~ U2,4. 

4. The main theorem. In this section we shall prove Theorem 1.9, the main 
result of this paper. This theorem extends the following result of Seymour [8, (3.1)]. 

( 4. 1) THEOREM. Let M be a nonbinary 3-connected matroid and suppose that 
{x,y} ~ E(M). Then M has a U2,4-minor using {x,y}. 

The proof of Theorem 1.9 is a long induction argument and will be presented 
as a sequence of lemmas. The basic idea of the proof is to find, in a minimal 
counterexample M, elements I that are not in {x, y, z}, such that both M \ I and 
M/ I are nonbinary. Given such an element, we apply Theorem 1.6 to get that 
either M \ I is a nonbinary series extension of a 3-connected matroid or M / I is 
a nonbinary parallel extension of a 3-connected matroid. But then the induction 
assumption can be applied to one of M \ I and M* \ I unless x, y, and z do not all 
lie in different series classes. In the exceptional case, if one has sufficiently many 
such elements I, then one can deduce enough about the structure of M to get the 
theorem. In order to find elements I with the required property, we shall rely on 
the following lemma. 

( 4.2) LEMMA. Suppose that M is the 2-sum 01 Ml and M2 where M2 is non-
binary. II f is an element 01 Ml that is neither in series nor in parallel with Pl, 
then both M \ f and M / fare nonbinary. 
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PROOF. The result is immediate if f and PI are in different components of MI. 
Thus assume that f and PI are in the same component of MI· As f and PI are 
not in series, MI has a circuit containing PI and avoiding f. Thus M \ f has an 
M2-minor and so is nonbinary. On applying the same argument to M*, we get that 
M* \ f and hence M / f is nonbinary. 

The next lemma proves the theorem in the case that two of x, y, and z lie on a 
line in M having at least four points. 

(4.3) LEMMA. If M satisfies the hypotheses of Theorem 1.9 and, in addition, 
has a restriction isomorphic to U2,4 that uses two of x, y, and z, then M satisfies 
the conclusion of Theorem 1.9. 

PROOF. We shall suppose that M has a U2,4-restriction using {x, y}. If M has 
rank 2, then the lemma is immediate. Since M has U2,4 as a restriction, M cannot 
have corank 2 unless M ~ U2,4. It follows that we may assume that both the rank 
and corank of M exceed two. Then as M is 3-connected, by Theorem 3.6, M has 
a minor N isomorphic to one of M(K4)' U3,6, W3, P6 or Q6 that uses {x,y,z}. 
In the last four cases, it is routine to check that the lemma holds. We note, for 
future reference, that in these cases the existence of a U2,4-restriction of M Ilsing 
two of x, y, and z is not needed to obtain the conclusion. In the remaining case, 
N ~ M(K4). 

Let L be the line of M containing {x, y}. Then, in forming N from M, no element 
of L can be contracted. The lemma is immediate if z E L, so we assume that this 
is not so. If x and y are on one of the 3-point lines of N, then choose an element f 
of L - E(N) and let N' be the extension of N by f. Without loss of generality, we 
may assume that x, y, and z are as shown in Figure 3(i) or (ii). In the first case, 
on labelling the elements a and b as shown, we get that N'I{x, y, z, a, b, f} ~ W3 

and has {x, y, z} as its set of spokes. In the second case, it is clear that N' / e has a 
U 2,4 -restriction using {x, y, z } . 

If x and y are not on one of the 3-point lines of N, then we extend N by adding 
two elements of L - E(N). This can be done in several different ways but it is 
routine to show that, in each case, M has a U2,4-minor using {x, y, z}. 

PROOF OF THEOREM 1.9. Let M be a nonbinary 3-connected matroid which 
is a minor-minimal counterexample to the theorem. Then M* is also a minimal 
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counterexample to the theorem. If rk M = 2, then M ~ U2,k for some k 2: 4 and 
so the theorem holds for M; a contradiction. By duality, if corkM = 2, then the 
theorem also holds for M. Thus rkM, corkM 2: 3. Suppose that M has rank 3. 
Then, by Theorem 3.6, M has a restriction isomorphic to one of U3,6, W3, P6, Q6, 
or M(K4) that uses {x,y,z}. It was noted in the preceding proof that, in the first 
four cases, the theorem holds. Thus M has a restriction N isomorphic to M(K4) 
that uses {x,y,z}. Since M is nonbinary, it is not isomorphic to M(K4) or the 
Fano matroid. It therefore has an element e such that the extension N' of N by e 
is nonbinary. Evidently N' is 3-connected. Therefore, as N' \ e is binary, Corollary 
3.9 implies that N'le is nonbinary. But N'le has rank two and therefore has a 
U2,4-restriction using {x, y, z} unless e is collinear with two of x, y, and z in N'. By 
Lemma 4.3, N' has no 4-point line using two of x, y, and z. It follows that, without 
loss of generality, we may assume that x, y, and z are as shown in Figure 4, and that 
e, x, and z are collinear. Now e, a, and y must also be collinear, otherwise N'la 
has a U 2,4 -restriction using {x, y, z} and the theorem holds for M; a contradiction. 
Furthermore, b, c, and e are not collinear, otherwise N' is isomorphic to the Fano 
matroid and hence is binary. Thus N'I{x,y,z,b,c,e} ~ W3 and has {x,y,z} as its 
set of spokes. 

We conclude that if M has rank 3 and, by duality, if M has corank 3, then the 
theorem holds for M; a contradiction. Thus both the rank and corank of M exceed 
3. 

As M is nonbinary and 3-connected, by Corollary 2.3, M is obtained from a whirl 
by a sequence of nontrivial lifts and nontrivial extensions. Now M itself is not a 
whirl, otherwise, as is easily checked, it is not a counterexample to the theorem. 
Thus M has an element e such that either M \ e or M leis obtained from a whirl 
in the manner described. We may assume that the first of these occurs, otherwise 
we replace M by M* in the argument that follows. If e ~ {x,y,z}, then we get a 
contradiction by applying the induction assumption to M \ e. Thus, we can assume 
that e = x. Notice that this assumption distinguishes x from y and z. 

The rest of the proof of Theorem 1.9 will consist of a sequence of eight lemmas. 
For some of these, both the lemma and its dual will be used in the proof of the 
theorem. 

(4.4) LEMMA. Suppose that a is an element of E(M) - {x,y,z} for which 
M \ a is a nonbinary series extension of a 3-connected matroid. Then a is the 
unique such element. Moreover, y and z are in the same series class of M \ a, this 
class does not contain x, and {a, y, z} is a triad of M. 
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PROOF. Let M\a be a series extension of the 3-connected matroid N. If x, y, and 
z are in distinct series classes of M \ a, then we may assume that {x, y, z} <;;; E (N). 
Since the theorem holds for N, it follows that it also holds for M; a contradiction. 
If x, y, and z are all in the same series class of M \ a, then every 3-element subset 
of {a, x, y, z} is a triad of M. Thus M . {a, x, y, z} c::: U2,4; a contradiction. This 
leaves the possibility that two of x, y, and z are in the same series class of M \ a, 
while the third is in a different series class. As M \ x is 3-connected, x is not in a 
triad of M and therefore x is not in a 2-cocircuit of M \ a. Thus {y, z} is a cocircuit 
of M \ a and hence {a, y, z} is a cocircuit of M. To establish the uniqueness of a, 
suppose that M \ b is a nonbinary series extension of a 3-connected matroid where 
bE E(M) - {x, y, z, a}. Then, applying the above argument with b replacing a, we 
get that {b,y,z} is a co circuit of M and so M*I{a,b,y,z} c::: U2,4. It now follows 
by applying Lemma 4.3 to M* that the conclusion of the theorem holds for M* 
and hence for M; a contradiction. 

(4.5) LEMMA. Suppose that a E E(M) - {x,y,z} and M \ a is a nonbinary 
series extension of a 3-connected matroid. Then M has no element b different from 
a, x, y, and z such that both M \ band Mlb are nonbinary. 

PROOF. Assume that M has such an element b. By the preceding lemma, M \ b 
is not a series extension of a 3-connected matroid. Thus, by Theorem 1.6, Mlb is 
a parallel extension of a 3-connected matroid. By dualizing the argument given in 
the preceding lemma, it follows that we may suppose that two of x, y, and z lie 
in the same parallel class of M Ib while the third lies in a different parallel class. 
Thus {b, g, h} is a triangle of M for some subset {g, h} of {x, y, z}. As {a, y, z} is a 
triad of M, it follows that {g, h} = {y, z}, otherwise we have a triangle and a triad 
meeting in just a single element. Thus {b, y, z} is a triangle of M. 

We show next that M \ b is a series extension of a 3-connected matroid. If not, 
then by [2, Lemma 2], M \ b has an exact 2-separation (Y, Z) in which both IY I and 
IZI exceed two. Now {y, z} ct Y, otherwise (Y U b, Z) is an exact 2-separation of 
the 3-connected matroid M; a contradiction. Likewise, {y, z} ct Z. Thus we may 
assume that y E Y and z E Z. We may also suppose that a E Y. Then, as {a, y, z} 
is a triad of M, z is a coloop of MIZ. Hence rk(Z - z) = rk Z - 1. In addition, 
rk(Y U {z, b}) = rk(Y U z) and therefore 

rk(Y U {z, b}) + rk( Z - z) = rk(Y U z) + rk( Z - z) ~ rk Y + rk Z = rk M + 1. 

Since M is 3-connected, it follows that IZ - zl ~ 1, that is, IZI ~ 2; a contradiction. 
We conclude that M \ b is indeed a series extension of a 3-connected matroid. But 
M \ b is also nonbinary and so we have a contradiction to Lemma 4.4. 

(4.6) LEMMA. M does not have three distinct elements a, b, and c that are 
not in {x, y, z} such that both M \ e and M Ie are nonbinary for all e in {a, b, c}. 

PROOF. Assume that M does have three such elements, a, b, and c. Then, by 
Lemma 4.5, none of M \ a, M \ b, or M \ c is a series extension of a 3-connected 
matroid. Therefore, by Theorem 1.6, each of Mia, Mlb and Mlc is a parallel 
extension of a 3-connected matroid. We obtain the contradiction that the theorem 
holds for M unless in each of Mia, Mlb, and Mlc, two of x, y, and z lie in the same 
parallel class while the third lies in a different parallel class. If {j,k} <;;; {x,y,z} 
and {j, k} lies in a parallel class in two of Mia, M Ib, and M I c, then, by Lemma 
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4.3, the theorem holds for M. Thus, we may assume that x and yare parallel 
in Mia, that y and z are parallel in Mlb, and that x and z are parallel in Mlc. 
Then {a,x,y}, {b,y,z}, and {c,x,z} are triangles of M. The theorem follows 
unless MI{a,b,c,x,y,z} ~ M(K4) and {a,b,c} is also a triangle of M. In that 
case, as none of M \ a, M \ b, or M \ c is 3-connected, the dual of Lemma 1.8 
implies that M has a triad Ta containing a and just one of band c. If c ETa, 
then, from the intersection of Ta with the triangles {a,x,y} and {c,x,z}, we get 
the contradiction that x E Ta. Thus bETa and, from considering intersections 
with the triangles {a,x,y} and {b,y,z}, we get that Ta = {a,b,y}. By a similar 
argument, we have that M has a triad Tc containing c and just one of a and b, and 
hence that Tc = {c,b,z}. Now 

rk(Ta U Tc) + rk(E(M) - (Ta U Tc)) - rkM::; 3 + rkM - 2 - rkM = 1. 

But M is 3-connected, hence IE(M) - (Ta U Tc)1 ::; 1. It follows that IE(M)I '= 6 
and M ~ M(K4); a contradiction to the fact that Mis nonbinary. 

( 4 . 7 ) LEMMA. Suppose that M has an element e different from x, y, and z 
such that M \ e is nonbinary and is not a series extension of a 3-connected matroid. 
Then M has two distinct elements hand 12 that are not in {x, y, z} such that all 
of M \ h, MI h, M \ 12, and Mlh are nonbinary. 

The next two rather straightforward lemmas will be used in the proof of Lemma 
4.7. 

(4.8) LEMMA. Let N be a 3-connected matroid. Suppose that e E E(N) and 
N \ e is the 2-sum of Nl and N2 where N2 is nonbinary. If Nl has an element ql 
that is parallel to the basepoint Pl, then N leis nonbinary. 

PROOF. Let E(Nd - Pl = El and E(N2) - P2 = E 2. By (1.3), N2 is connected. 
Hence the closure of E2 in N contains ql. But N is 3-connected, so e is not in the 
closure of E2 U {ql} in N. Therefore, in N \ (El - {ql} ), the element e is a coloop. 
Thus 

Nle\ (El - {qd) ~ N\e\ (El - {qd) ~ N 2· 
Hence N leis nonbinary and the lemma is proved. 

(4.9) LEMMA. Let e be an element of M different from x, y, and z such that 
M\e is the 2-sum of two nonbinary matroids Ml and M 2. Then E(M)-{x,y,z,e} 
contains three distinct elements a, b, and c such that both M \ f and M If are 
nonbinary for all f in {a, b, c}. 

PROOF. For i in {1,2}, let Ai be the subset of E(Mi) - Pi consisting of those 
elements that are neither in series nor in parallel with Pi in Mi. Then, since Mi 
is nonbinary, IAil ~ 3. Thus I(Al U A 2) - {x,y,z}1 ~ 3. The lemma follows 
immediately since if f E Al U A 2, then, by Lemma 4.2, both M \ f and M If are 
nonbinary. 

PROOF OF LEMMA 4.7. As M \ e is not a series extension of a 3-connected 
matroid, 

M \ e = P((Ml,pd, (M2,P2)) \ P 
where Ml has at least four elements and is not a single circuit [7, (5.1)(ii)] and 
M2 is nonbinary. Moreover, it follows on combining Lemmas 4.6 and 4.9 that Ml 
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is binary. We shall prove Lemma 4.7 first in the case when Pl is parallel with 
another element qi of Ml . As M \ e has no 2-circuits, {Pl, qt} is a parallel class 
of Ml . Now M \ ql is nonbinary since it has M2 as a minor. Moreover, M \ e/ql 
has rank at least 3 and is not connected, so M / ql cannot be a parallel extension 
of a 3-connected matroid. Thus, by Theorem 1.6, M \ ql is a series extension of a 
3-connected matroid. As M \ ql is nonbinary, it follows by Lemma 4.4 that either 

(I) ql1. {x,y,z} and {ql,Y,Z} is a triad of M, or 
(II) ql E {x,y,z}. 
In case I, {qI, Y, z} is also a triad of M \ e, otherwise M* j{ e, ql, Y, z} ~ U2,4 and 

we obtain a contradiction by applying Lemma 4.3 to M*. As {PI, ql} is a circuit 
of M I, {qI,Y,z} is not a cocircuit of Ml . Thus {ql,pt}, {qI,Y,Pl}, or {ql,Z,pt} 
is a cocircuit of Ml . But, as Ml is connected and jE(Mdl ~ 4, it cannot have 
{Pl, ql} as both a circuit and a cocircuit. Hence, without loss of generality, we 
may assume that {ql, Y, pt} is a cocircuit of M 1 . Then {P2, z} is a cocircuit of 
M2 and so z E E(M2)' If E(Md = {X,Y,Pl,qt}, then x is in a 2-cocircuit of Ml 
avoiding Pl and we get the contradiction that x is in a triad of M. Therefore, 
E(Md - {x, Y,Pl, qt} is nonempty and, by Lemma 4.2, if J is in this set, then both 
M \ J and M / J are nonbinary. But M \ ql is a nonbinary series extension of a 
3-connected matroid. Hence, by Lemma 4.5, we obtain a contradiction. Thus case 
I cannot occur. 

Consider case II. If we can show that E(Md - {x,y,z,pt} contains at least two 
elements, then, by Lemma 4.2, we may take It and h to be two elements of this 
set. We note that we could take h = e for M \ e is certainly nonbinary and, by 
Lemma 4.8, M / e is also nonbinary. Thus to prove this lemma, we need only find 
a single element in E(Md - {x, Y, Z,Pl}' However, for use in the proof of Lemma 
4.11, we shall determine when we may need to take one of It and h equal to e. 
If E(Mt} = {x,y,Z,Pl}, then Ml and hence M has {x,y,z} as a triangle and the 
theorem follows easily by Theorem 4.1; a contradiction. If E(Mt} = {x, Y, Z,PI, j} 
for some element J, then, as noted above, {x,y,z} cannot be a triangle of M l . It 
follows, since x is not in a triad of M, that Ml is obtained from a 4-element circuit 
on {x,y,z,f} by adding Pl in parallel with x. Thus M*j{e,J,y,z} ~ U2,4 and we 
get a contradiction by applying Lemma 4.3 to M*. If E(Mt} = {Pl, J, ql, s} where 
{ql,s} ~ {x,y,z}, then MI is obtained from a triangle on {ql,J,S} by adding Pl 
in parallel with ql. Since x is not in a triad of M, s I- x. Now, by Lemma 4.2, both 
M \ J and M / J are nonbinary. In this case, we take It = J and h = e. 

This finishes the proof of the lemma in the case that Pl is parallel to some 
other element of M l . From now on, we shall assume that this does not occur. We 
complete the proof of the lemma by first establishing the existence of the element 
It. We then extend the argument to obtain h. Now It certainly exists unless 
every element of E(Mt} - {PI,X,y,Z} is in series with Pl. In the exceptional case, 
we consider Mi. It has a parallel class P containing Pl and has at least two and 
at most three other elements. Since MI has no 2-circuits, Mi has no 2-cocircuits. 
Moreover, Mi is connected. Thus Mi has rank 2 and {x,y,z} = E(Mi) - P. 
Hence {x, y, z} is a triad of Mi and so {x, y, z} is a triangle of MI and hence of M. 
It follows, by Theorem 4.1, that the theorem holds for M; a contradiction. This 
establishes the existence of an element It with the properties claimed. 
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To establish the existence of the element 12, we shall begin with the assumption 
that this element does not exist. Thus consider M \ e as before and assume that II 
is the only element of E(Mt} - {P1,X,y,Z} that is not in series with Pl' As in the 
case when P1 was parallel to one of x, y, and z, we shall try to choose 12 distinct 
from e and we shall note when this may not be possible. 

As before we consider Mi. It contains the element II, some subset of {x,y,z}, 
and a parallel class P containing Pl. We know that Mi is connected and has no 
2-cocircuits. We look first at the case when all of x, y, and z are in E(Mi) -
P. Then rkMi :::; 3. Suppose that rkMi = 3. As {x,y,z} is not a triad of 
Mi, the complement of the line of Mi containing P and II is a cocircuit of Mi 
properly contained in {x,y,z}; a contradiction. Thus rkMi = 2. As Mi has no 
2-circuit containing x and no U2,4-minor, Mi is as shown in Figure 5. But then 
M*I{e,II,y,z}::::: U2,4 and we get a contradiction by Lemma 4.3. 

We conclude that E(Mi) - P ~ {x, y, z}. If E(Mi) - P contains only one 
element of {x, y, z}, then 12 exists or else we get the contradiction that Mi has 
a 2-cocircuit. Thus E(Mi) - P contains f1 together with exactly two elements, 
say g and h, of {x, y, z}. Moreover, Mi has rank 2 and is binary. Hence Mi is a 
line having three points, P, {a,b}, and {c}, where {a,b,c} = {II,g,h}. Therefore 
{e,a,b} is a triad of M and so x t/:. {a,b}. Now look at M \ II. If it is a series 
extension of a 3-connected matroid, then, by Lemma 4.4, {II, y, z} is a triad of M. 
But {e, a, b} is one of {e, II, y}, {e, f1' z}, or {e, y, z}. Thus M*I{e, II, y, z} ::::: U2,4 

and we get a contradiction by Lemma 4.3. Hence M \ II is not a series extension of 
a 3-connected matroid. Now apply the first part of the proof of this lemma using 
M \ II in place of M \ e to obtain an element 12 not in {II, x, y, z} for which both 
M \ 12 and M /12 are nonbinary. We observe that possibly 12 = e but, in that case, 
the structure of Mi is as indicated above. This completes the proof of Lemma 4.7. 

( 4 . 10) LEMMA. M has two distinct elements II and 12 that are not in {x, y, z} 
such that all of M \ II, M/ II, M \ 12, and M/h are nonbinary. 

PROOF. By Theorem 4.1, M* has a U2,4-minor using {y,z}. Therefore, as 
rk M* ~ 4, M* has an element e not in {x, y, z} such that M* / e and hence M \ e 
is nonbinary. If M \ e is not a series extension of a 3-connected matroid, then this 
lemma is immediate from Lemma 4.7. Thus we may assume that M \ e is a series 
extension of a 3-connected matroid. In that case, by Lemma 4.4, {e, y, z} is a triad 
of M and so {e,y,z} is a triangle of M*. By Theorem 4.1, it follows that M* 
has a U2,4-minor using {e,y,z}, hence, as rkM* ~ 4, M* has an element f not in 
{e, x, y, z} such that M* / f is nonbinary. Thus M \ f is nonbinary. If M \ f is not 
a series extension of a 3-connected matroid, the lemma is immediate from Lemma 
4.7. If M \ f is a series extension of a 3-connected matroid, then {f, y, z} is a triad 
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of M and so M*I{ e, f, y, z} ~ U2,4. We now obtain a contradiction by applying 
Lemma 4.3 to M*. 

On combining the next result with the preceding lemma, Theorem 1.9 will follow. 

(4.11) LEMMA. E(M) - {x,y,z} doe8 not contain two di8tinct element8 !t 
and 12 8uch that all of.M \!t, Mj!t, M \ 12, and Mj 12 are nonbinary. 

PROOF. We assume that the elements !t and 12 do exist. By Lemma 4.5 and 
Theorem 1.6, both M j f 1 and M j 12 are parallel extensions of 3-connected matroids, 
and neither M \ !t nor M \ 12 is a series extension of a 3-connected matroid. 
Moreover, by Lemma 4.3 and the dual of the argument in Lemma 4.4, two of x, y, 
and z form a triangle with !t, and a different pair forms a triangle with h. Now x 
has been distinguished in {x, y, z} by the assumption that M \ x is nonbinary and 
3-eonnected. It follows then that, without loss of generality, we may assume that 
{!t,x,y} is a triangle of M and that either (i) {h,x,z} or (ii) {h,y,z} is also a 
triangle of M. In both cases, if M has an element h that is not in {!t, h, x, y, z} 
such that both M \ hand M j hare nonbinary, then we obtain a contradiction to 
Lemma 4.6. A contradiction is also obtained if {!t, x, y, z} contains a triangle other 
than {!t, x, y}. Now consider M \ h. It is nonbinary and is not a series extension 
of a 3-connected matroid. Thus M \ h = P((M1,pd, (M2,P2)) \ P where M2 is 
nonbinary, Ml is not a single circuit, and IE(Mdl 2 4. We choose Ml here so 
that IE(Mdl is maximum subject to these conditions. Now!t E E(Md, otherwise 
the argument of Lemma 4.7 establishes the existence of the required element h. 
From the proof of that lemma, it follows that the element h exists unless either 
Ml is as shown in Figure 6(1) where {ql,S} ~ {x,y,z} and S -=I- x; or E(Mi) - P 
contains !t and exactly two elements of {x, y, z} and Mi is as shown in Figure 
6(11) where {a,b,c} = {!t,g,h}, {g,h} ~ {x,y,z}, and x rt {a,b}. In the former 
case, {!t,ql,S} is a triangle of M contained in {!t,x,y,z}. Thus {ql,S} = {x,y}. 
But S -=I- x, so ql = x and S = y. Therefore, in case (I), {!t,h,y} is a triad of M. 
This is also true in case (II) for, in that case, {a, b, c} is a triad of Mi and hence 
is a triangle of M. Since it is contained in {!t,x,y,z}, it must be {!t,x,y}. Now 
x rt {a, b}, so {a, b} = {!t, y}. Hence we do indeed have that in both cases (I) and 
(II), {!t,y,h} is a triad of M. Therefore if {h,x,z} is a triangle of M it meets 
this triad in a single element. This contradiction eliminates case (i) above. Hence 
we need only consider case (ii). It follows that in both cases (I) and (II) we may 
assume that Ml is obtained from the cycle matroid of the graph shown in Figure 
7 by adding a (possibly empty) set of edges in series with Pl. 
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If the series class of M1 containing P1 contains elements U1 and V1 distinct from 
P1, then {h, Ul, vd is a triad of M. As z E E(M2), this triad meets the triangle 
{h, y, z} in a single element; a contradiction. Thus either 

(1) M1 is as shown in Figure 7; or 
(2) M1 has one extra element U1 in series with Pl. 
In case (2), {h,x,ud and {X,y,U1} are triads of M1 and hence of M\h. Since 

x is not in a triad of M, neither {h, x, ud nor {x, y, ud is a co circuit of M and 
therefore both {h, h, x, ud and {h, x, y, ud are cocircuits of M. Thus M\ U1 has 
{h, 12, x} and {h, x, y} as cocircuits. Therefore (M \ ut}*I{x, y, h, h} is either 
a 4-point line or a line having three points, {x}, {y,h}, {h}. In the first case, 
(M \ ut)* is nonbinary, so M \ U1 is also nonbinary. Since M/U1 has an M2-minor, 
it too is nonbinary. Thus we can take h = U1 and the required result follows. In 
the second case, {y,fd is a cocircuit of M\ U1. Thus {u1,y,fd is a triad of M 
and hence of M1. But {x, Pl, ud is a triangle of M1 meeting this triad in a single 
element; a contradiction. Thus case (2) cannot occur. 

Now consider case (1). Because x is parallel to P1 in M1, the matroid M\h, 12, y 
is obtained from M2 simply by relabelling the element P2 by x. For the rest of the 
proof we shall identify M2 with M \ h, 12, y. 

We shall show next that M2 has a U2,4-minor using {x,z}. If M2 is 3-connected 
this is immediate from Theorem 4.1. If M2 is not 3-connected, then, by Theorem 
1.2, M2 is the 2-sum of matroids M2,1 and M2,2 with respect to the basepoints 81 
and 82 where x E E(M2,2) and IE(M2,dl is maximum subject to these conditions. 
If M2,2 is not 3-connected, then it is the 2-sum of matroids M2,3 and M2,4 with 
respect to the basepoints 83 and 84 where x E E(M2,4) and IE(M2,3)1 is maximum. 
By the choice of M2,1, we must have that 82 E E(M2,4). If M2,4 is not 3-connected, 
then it is the 2-sum of matroids M 2,5 and M 2,6 with respect to the basepoints 85 
and 86 where x E E(M2,6) and IE(M2,5)1 is maximum. Again the choice of M2,1 
and M2,3 guarantees that 82 and 84 are in E(M2,6). Repeating this process, we 
eventually obtain a 3-connected matroid M2,2k containing x, 82, 84, ... ,82k such 
that M2 is formed from M2,2k by taking the 2-sum of M2,2k and M2,1 with respect 
to 82 and 81; then taking the 2-sum of the result and M 2,3 with respect to 84 and 
83 and so on. Evidently, for all j in {1, 2, ... ,k}, M2 is the 2-sum of M2,2j-1 and 
another matroid, say M~,2j-1' which contains x. As M2 is nonbinary, at least one 
of the parts of this 2-sum is nonbinary. If M2,2j-1 is nonbinary, then M \ 12 is the 
2-sum of M2,2j-1 and another matroid Mf, which is the 2-sum of M1 and M~,2j-1' 
But Mi has more elements than M 1 ; a contradiction to the choice of M 1 • It follows 
that M2,2j-1 is binary. Since this is true for all j in {1, 2, ... , k}, we must have that 
M2,2k is nonbinary. It follows, by Theorem 4.1 (or see [8, (4.2)]), that, whether it 
is 3-connected or not, M2 has a U2,4-minor using {x, z}. Suppose that this minor 
is M2/A \ B. then M \ h/A \ B is the matroid shown in Figure 8. 
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FIGURE 8 

Now, we may assume that A is independent in M2 • As An {y, 11, h} is empty 
and {y, 11, h} is a cocircuit of M, both Au h and Au yare independent in M. 
We recall that {h, Yi z} is a circuit of M. Thus either {h, y, z} is a circuit of MIA 
or {h,y,z} properly contains a circuit of MIA. In the first case, we are forced 
to get a W3-minor of M having {x, y, z} as its set of spokes; a contradiction. In 
the second case, since every circuit of M containing h must meet both E(Md and 
E(M2 ), and {y,z} is independent in MIA, we must have that {h,y} is a circuit 
of MIA. Thus AU {h, y} contains a circuit C of M. Moreover, {h, y} ~ C since 
both AU h and AU yare independent. But {h, y, z} is also a circuit of M and 
so, by exchange, M has a circuit containing z and contained in Au {h, z}. The 
element h is not in this circuit, otherwise the exact 2-separation we have of M \ h 
extends to an exact 2-separation of the 3-connected matroid M; a contradiction. 
But now in MIA, the element z is a loop; a contradiction. This completes the proof 
of the lemma, thereby finishing the proof of the theorem. 
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