Waterflow in Soils: A Generalized Steady-State, Two-Dimensional Porous Media Flow Model

Acknowledgments

The writer is indebted to Dr. Donald Greenspan, University of Wisconsin, Madison, who provided much helpful advice regarding the use of finite difference methods. A large share of the cost of computing was borne by the Small Scale Waste Management Project, University of Wisconsin, Madison, directed by Dr. Johannes Bouma and funded by the State of Wisconsin and the Upper Great Lakes Regional Commission. Marion Mazzacco of the USDA-ARS Watershed Research unit, Columbia, Mo., has been most helpful in preparing the final version of the model.

In cooperation with
Wisconsin Agricultural Experiment Station
Missouri Agricultural Experiment Station

```
Applicants for all Department programs will be given equal consideration without regard to race, color, sex, age, creed, or national origin.
```


Contents

Introduction 1
Partial differential equation- 1
Finite difference model- 2
Finite difference equation - - - - - - - - - - - - - - - 2
Overrelaxation- 3
Interation scheme 4
Nonlinearity and convergence- 5
Digital computer model 5
Model philosophy- 5
Solution mesh 6
Boundary geometry 6
Solution mesh and the Cartesian coordinate system 6
Hydraulic boundary conditions 7
Subdivision of flow cross section 8
Soil units 10
Compurer prograil 10
Model control and options- 10
Case termination 10
Inttial PHED-array 11
Pressure head--hydraulic conductivity relation- 11
Overrelaxation factor 12
Model output- 12
Sample problem- 13
Determination of acceptable convergence - - - - - - - - - 24
Changing mesh increment size- 25
Model dimensions- 26
Computer facility adjustments 26
Literature cited 27
Appendix A: STDY2--The generalized steady-state, two-dimensional porous media flow model 27
Program listing 27
Flow chart- 40
Glossary of input variables 40
Glossary of nonimput vartables- 48
Appendix B: CARRY--To facilitate changing finite difference mesh spacing 50
Glossary of input variables 50
Program listing 51
Glossary of noninput variables 56
Sample problem- 57
Appendix C: COMPAR-For comparing two-dimensional data arrays - 60
Glossary of input variables 60
Glossary of noninput variables- 60
Program 11sting 62
Appendix D: List of non-Fortran symbols 62
Appendix E: Program updating- 62

Waterflow in Soils: A Generalized Steady-State, Two-Dimensional Porous Media Flow Model

C. R. Amermen ${ }^{1}$

Introduction

Understanding water movement through soll and underlying unconsolidated material is basic to understanding important aspects of other such phenomena as the hydrologic cycle and the movement of waterborne substances through the landscape. Jnfortumately, aubsurface water movement under natural conditlons cannor be dizectly observed. Methods of indirect observation are usually difficult, redious, and expensive. Further, instrumentation for such methods may modify the syatem under observation. Although there is no real substitute for carefully made field observations to propide initial concepts and to check theoretical results, computational efforts can save large amounts of field labor and expenge. Such methods also often provide clearer, broader concepts than would be available analyzing field data alone.

This report discusses a finite difference model of the hydraulic head distribution within two-dimensional regions of porous media subject to steady flow. Soll water content, water table position and shape, pathlines of flow, and flow velocities can be estimated Erom such a distribution.

The range of applicability and limitations of the model may be sumarized as:

1. Flow sygtem boundary geometrles must be approximated with straight-1ine segments. Straight-line boundarles which do not paraliel Cartesian coordinate axes can be modeled but require considerably more effort than those that do.
2. The Cartesian coordinate sygtem may be rotated so that the major axis of the flow gystem is on a slope.
3. Boundary conditions mat be in terms of pressure head or flux, or both; at least a portion of the boundary, however, must have a known presgure head.

[^0]4. A cross section may contain several soll units. The boundaries between units may be geometrically complex.
5. Solls within each unit of a modeled system are considered to be lsotropic and homogeneous.
6. Bysteresis in the hydraulic conductivity pressure head relationship is ignored.
7. Spacing of nodes within the finite difference solution mesh may be irregular.

The usual assumptions regarding porous media flow apply to this model:

1. Inertial forces are not aigndflcant as compared with viscous forces.
2. Water is continuously connected throughout the system.
3. Flow is tsothermal.
4. Air escapes freely from all parts of the flow system.

The flow equation modeled may be described as an elliptic partial differential equation With mixed boundary conditong. The Einlte difference method is used, and the resulting system of equations is solved by the successive overrelaxation (SOR) method. The model takes the form of a digital computer program writcen in USASI Fortran.

The following pages describe the model and its application in detail. A sample cross section is modeled; the sample input and results given may be used to check the operation of the model when implementing it for the first time. Appendixes document che program and describe two useful avxillary programs.

Partial Differential Equation

A number of textbooks discuss the theory of soll warer movement. Childs (2) ${ }^{2}$ gives a detailed but quite readable mathematical description, while resumes are given by Hillel (5) and by Baver and assoclates (1). In general, porous media flow may be modeled

[^1]by a partial differential equation, called Rychards' equation, and associated laftial and boundary conaitions. Solution of a steady-state version of Richards' equation in two dimensions requires only boundary coaditions and is approximated by the model presented here.

Bicbards' equation is derived by combining equations of state and continuity with Darcy's law. For steady state, ic may be writcen

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(K \frac{\partial R}{\partial x}\right)+\frac{\partial}{\partial y}\left(K \frac{\partial R}{\partial y}\right)=0 \tag{1}
\end{equation*}
$$

in which
$A \Rightarrow$ hydraulic head $=h+z$ for porous media flow (L)
$h=$ soll water pressure head (L)
$z=$ elevation above a datum (L)
$K=K(h)$ is bydraulic conductivity ($L T T^{-1}$)
$x=$ distance parallel to the x-axis of the Cartesian coordinate system, positive to the right (L)
$y=$ distance parallel to the y-axis, positive upwatd (L)
To accommodate a sloping soll, rotating the Carcesian coordinate axes through an angle, α, is convendent. The tangent of this angle should be equal to the slope of the prototype system. Because of the dependence of K upon h, the so-called h-based form of Rlchards ${ }^{\prime}$ equation ts used. Stated for general orientation, this form of R1chards' equation is

$$
\begin{align*}
\frac{\partial}{\partial x}\left(K \frac{\partial \hbar}{\partial x}\right) & +\frac{\partial}{\partial y}\left(K \frac{\partial h}{\partial y}\right) \\
& +\sin \alpha \frac{\partial K}{\partial x}+\cos \alpha \frac{\partial K}{\partial y}=0 \tag{2}
\end{align*}
$$

Equation [2] is a nonlinear, elliptic, partial differential equation.

Boundary conditions are essentially of two sypes: (1) pressure head (h) spectfied and (2) bydrauilic gradient ($\partial h / \partial x$ or $\partial h / \partial y$) specified. Given a zero value, the latter represents lmpemeable boundaries or the coincidence of streamlines of flow with the boundarles. Given non-zero values, a hydraulic gradient boundary condition represents a flux boundary. The model to be described contains an algorithm that allows the fiux boundary condicion to be stated in terms of the flux itgelf.

There is no closed form solucion for equarion [2]. Analytical methods can be applied to the equation for cercain apecial situations but, for the general case, it must be solved by such approximate methods as flayte differences.

Finite Difference Model

Finite difference equation

Whereas equation [2] applies throughout a two-dimensional flow region, finite differ-
encing provides another equation at each of z set of discrete points, superimposed on the cross section of that region. Associated boundary conditions are applied at discrete points along the boundaries. The set of discrete points, called nodes, is arranged in a grid, termed the solution mest in this report, such as that in figure 1 .

The sizes of the mesh increments, Δx and $b y$, influence the precision with which the fiadte difference model represents the partial differential system. The smaller che mesh increment gize, the greater the precision. These concepts are covered in many textbooks; for example, see Smith (8). In many flow systems, precision requirements are not uniform over the cross section and, for economic reasons, Δx and Δy are often varled. They may be varied independently.

The finite difference equation approximating equation [2] was developed using the central difference method. By this merhod, the pressure head at each node is a function of the heads at its four nearest neighboring nodes. For example, in figure 1

$$
h_{P}=f\left(h_{A}, h_{B}, h_{C}, h_{D}\right)
$$

To simplify and organize notation, $1=1,2$, 3, . . . gives column identification to all the rodes of each row, while $j=1,2,3, \cdots$. gives row identification to all nodes in each column. Thus node P is node 7,5 , If h at point P is identified as $h_{i}, j ;$ then h at point A is $h_{i-1, j}$ and h at point E is $h_{i, j-1}$. Note that the directions in which i and j increase are independent of those in which x and y increase. Because of Fortran limitations, 1 and J can take on only posicive non-zero values. The x axis most convenientls colncides with the soil surface and, in this notational scheme, J increases downward even

though y is cons1dered to be positive upward. Using this notation and conditions at the
four neighboring nodes, a finite difference representation is expressed in equation [3].

$$
\begin{align*}
& \frac{2}{\Delta x_{-}+\Delta x_{+}}\left[\frac{K_{i-\frac{1}{2}, j} h_{i-1, j}}{\Delta x_{-}}-\frac{\left(\Delta x_{+} K_{i-\frac{1}{2}, j}+\Delta x_{-} K_{i+\frac{1}{2}, j}\right) h_{i, j}}{\Delta x_{-} \cdot \Delta x_{+}}+\frac{K_{i+\frac{1}{2}, j} h_{i+1, j}}{\Delta x_{+}}\right] \\
& +\frac{2}{\Delta y_{-}+\Delta y_{+}}\left[\frac{K_{i, j-\frac{1}{2}} h_{i, j-1}}{\Delta y_{-}}-\frac{\left(\Delta y_{+} K_{i, j-t_{2}}+\Delta y_{-} K_{i, j+\Sigma_{2}}\right) h_{i}, j}{\Delta y_{-}-\Delta y_{+}}+\frac{K_{i, j++_{2}} h_{i, j+1}}{\Delta y_{+}}\right] \\
& +\sin \alpha \frac{K_{i-1, j}-K_{i+1, j}}{\Delta x_{-}+\Delta x_{+}}+\cos \alpha \frac{K_{i, j-1}-K_{i, j+1}}{\Delta y_{-}+\Delta y_{+}}=0 \tag{3}
\end{align*}
$$

in which

$$
\begin{array}{lll}
K_{i-\frac{k_{2}, j}{}}=\frac{K_{i-1, j}+K_{i, j}}{2}, & K_{i+k_{2}, j}=\frac{K_{i, j}+K_{i+1, j}}{2} \\
K_{i, j-\frac{1}{2}}=\frac{K_{i, j-1}+K_{i, j}}{2} & K_{i, j+\frac{1}{2}}=\frac{K_{i, j}+K_{i, j+1}}{2}
\end{array}
$$

and

$$
\begin{aligned}
& \Delta x_{-}=\text {mesh increment length to left of node } 1, J \text { (L) } \\
& \Delta x_{+}=\text {mesh increment length to right of node } 1, j \text { (L) } \\
& \Delta y_{-}=\text {mesh increment length above node } 1, J \text { (L) } \\
& \Delta y_{+}=\text {mesh increment length belou node } i, J \text { (L) }
\end{aligned}
$$

Because of the appearance of $K=K(h)$ in equacion [2], equarion [3] was developed by inspection--simply transforming partial derivacives into ratios of differences. However, Forsythe and Wasow (3) on pages 187 and 188 give formal derlvations of Inear partial derivatives that support the validity of equarion [3] for the nonlinear case. They also note that, if Δx, for example, varies over the cross section, one may expect an error of $O(\Delta x)$. For a square mesh in which $\Delta y=\Delta x$, the error is $O\left[(\Delta x)^{2}\right]$.
"Imaginary" rows and columns outside the cross section provide the fourth node for calculations involving a node on gradienttype boundaries. To illustrate, if the right side of the cross section in figure 1 is impermeable, then $\partial H / \partial x=0$ and H at each node to the right of the boundary is set exactly equal to the B-value for the node horizoncally to its left immediately inside the boundary, for example, $H_{E}=H_{B}$. Because $H=h+z$, to convert H to h at the fmaginary node is a stmple operation regardless of orientation of che system.

For a given geomerry and sec of joundary conditions, the flow regime may be defined. with some error or lack of precision as noted earlier, by the distribution of pressure head (h) that satisfies equation [3] at all nodes of the solution mesh. To find this distribution, a starting array of h-values, which may be completely arbitrary, is used. Equarion [3] is then solved for
each rode of the solution mesh except those on h-specified boundaries and except for the fmaginary nodes outside the gradient (flux) boundaries. If subsectioning, discussed later, is carried out properly, solution starts with the left-most node on the top row and proceeds to the right along that row. Lower rows are processed in succession, also from left to right. A complete cycle of solving equation [3] once for all nodes constitutes an iteration, the h-array at the end of an iteration being in some way a closer approximation to the solution array than that at the beginning. Many such iterations are usually decessary before convergence to the final distribution of h-values.

Overrelaxation

Experience has shown that an overrelaxation factor (ω) may speed convergence of a finite difference model of the cype of equation [3]. If $h=f(g)$, then

$$
\begin{aligned}
\omega n+h & =\omega f(g)+h \\
h & =h(1-\omega)+\omega f(g)
\end{aligned}
$$

or
where w has a value between 1.0 and 2.0 . When full convergence is reached, of course, h on the left side, h on the right side, and $f(g)$ are all equal. Before reaching convergence, h on the right side has the value calculated during the preceding iteration, whereas h on the left is the new estimate to be calculated during the current iteration.

Solving equation [3] for $h_{i, j}$ and incroductag the overrelaxation factor give the equarion that is solved for each node during operation of the model.

$$
\begin{aligned}
& h_{i, j}=(1-\omega) h_{i, j}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{2}{\Delta y_{-}+\Delta y_{+}}\left(\frac{K_{i, j-\frac{1}{c}}}{\Delta y_{-}} h_{i, j-1}+\frac{K_{i, j+\psi_{3}}}{\Delta y_{+}} h_{i, j+1}\right) \\
& \left.+\sin \alpha \frac{K_{i-1, j}-K_{i+1, j}}{\Delta x_{-}+\Delta x_{+}}+\cos \alpha \frac{K_{i, j-1}-K_{i, j+1}}{\Delta y_{-}+\Delta y_{+}}\right] \\
& \div\left[\frac{2}{\Delta x_{-}+\Delta x_{+}}\left(\frac{\Delta x_{+} \cdot K_{i-\frac{1}{2}, j}+\Delta x_{-} \cdot K_{i+\frac{y_{2}, j}{}}}{\Delta x_{-} \cdot \Delta x_{+}}\right)\right. \\
& +\frac{2}{\Delta y_{-}+\Delta y_{+}}\left(\frac{\left.\left.\Delta y_{+} \cdot K_{i, j-\frac{1}{2}}+\Delta y_{-} \cdot K_{i, j+\frac{x_{2}}{}}^{\Delta y_{-} \cdot \Delta y_{+}}\right)\right]}{}\right. \tag{4}
\end{align*}
$$

Equation [4] is a successive overrelaxarion (SOR) model of equation [2] and, with assoclated boundary conditions, approximares two-dimensional, steady-state, saturated, unsaturated, or partially sacurated porous media flow using a finite difference mesh in which the mesh increment size may vary from
one part of the flow region to another and in which the major axes of the mesh may be rotated to conform to the glope of the prototype. Greenspan (4) discusges SOR models as does Salth (8) and Porsythe and Hasow (3).

Interation scheme

Tbe SOR model converges toward the actual h-distribution most rapidly if the new h-value at any node replaces the old value In the h-array as soon as it is calculated. Thus, when h_{i}, j is bedng calculated, $h_{i-}{ }^{1}, j$ and $h_{i, j-1}$ are new values calculated durforg the current iteration, whereas $h_{i+1, j}$ and $h_{i, j+1}$ are old values from the preceding iteration. New K-values would seem appropriate for use with new h-values, but experience has shown that this practice is less efficient then the use of old K-values. The later practice resulta in a larger maximum overrelaxation factor ($\omega_{\text {maxin }}$), hence more rapid convergence, thai is possibl with new K-values. The concept of umax will be discussed in greater detail later.

Equation [4] may be modified to show the iteration scheme used. Also introduced at chis point is simplified notacion used in the computer program for the model.

$$
\begin{equation*}
h_{i, j}^{m}=(1-\omega) h_{i, j}^{m-1}+\omega\left[-\frac{E X\left(A X^{m-1} h_{i-1, j}^{m}+C X^{m-1} h_{i+1, j}^{m-1}\right)+E Y\left(A Y^{m-1} h_{i, j-1}^{m}+C Y^{m-1} h_{i, j+1}^{m-1}\right)+D E L T A}{m-1}\right] \tag{5}
\end{equation*}
$$

where m refers to values obtained during the current fteration.

> m-1 refers to values obtained in the preceding iteration.

$$
\begin{aligned}
& A X=\frac{K_{i-\frac{1}{2}, j}^{m-1}}{\Delta x_{2}} \\
& A Y=\frac{K_{i_{, j}-k_{2}}^{m-1}}{\Delta y_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& I B=\frac{\Delta y_{+} \cdot K_{i, j-y_{2}}^{m-1}+\Delta y_{-} \cdot R_{i, j+\frac{x_{2}}{m}}^{m-1}}{\Delta y_{-} \cdot \Delta y_{+}} \\
& D E L T A=\sin \alpha \frac{K_{i-1, j}^{m-1}-K_{i+1, j}^{m-1}}{\Delta x_{-}+\Delta x_{+}}+\cos \alpha \frac{x_{i, j-1}^{m-3}-K_{i, j+1}^{m-1}}{\Delta y_{-}+\Delta y_{+}}, \\
& E X=\frac{2}{\Delta x_{-}+\Delta x_{+}} \\
& E Y=\frac{2}{\Delta y_{-}+\Delta y_{+}}
\end{aligned}
$$

Nonlinearity and convergence

As noted earlier, the Richards' equation, hence its finite difference approximation, is nonlinear. Because finite difference theory has been developed almost exclusively In the 1inear context, there are no firm guidelines on the application or operation of nonlinear models. 3

The lack of a body of theory covering nonllnear finite differencing is felt most keenly when considering questions of convergence and the rate of convergence. A model converges if it converts an initial guess regarding the discribution of the dependent variable to an approximation to the rue distribution. Fortunately, experience indicates that many finite difference schemes developed for linear systems also converge for nonlinear systems even though there is no theoretical proof that they should. However, sometimes certain modifications are necessary.

The rate of convergence is a concept of some importance to the economical use of findte difference models. The overrelaxation factor (ω) was introduced to speed convergence, Forsyche and Wasow (3) show on page 257 that, for linear systems, as ω increases in value between 1.0 and 2.0 , convergence rate increases until some maximum rate is reached. Further increases in ω result in decreasing convergence rate until at $\omega=2.0$ there is essentially no improvement over $\omega=1.0$. For innear systems, overestimating the optimum ω-value ($\omega_{o p t}$) is usually better than underestimating it.

Experience with nonlinear models of unsaturated porous media flow systems Indicates that wopt cannot be estimated using the procedures that apply to a geomerrically similar linear syatem. Further, Reisenauer and others (6) found that $\omega>1.15$ led to instability of thetr model, that 18 , the solution did not converge for larger w . The author's experience also 1ndicares that, for nonlinear systems, the concept of wopt should be modified to one of $\omega_{\text {max }}$, or the maximum ω-value with which convergence can be obtained. Apparently, increasing ω toward $\omega_{\text {max }}$ increases convergence rate. The value of $\omega_{\text {max }}$ differs between cases, that is, between different combinations of boundary geometry, boundary hydraulic conditions, $\Delta x, \Delta y$ magnitudes and $h-K$ relationships, and may vary between the first and last iterations for a given case. For the several cases investigated thus far, its value has been less than 2.0. In certain cases of complex geomerry, w max has had a value smaller than 1.0.

[^2]The ouly method for approximating $\omega_{\text {mar }}$ seems to be trial and error. This reduces the economic advantage of finding $\psi_{\text {max }}$, so that exhaustive search for its value would probably be more expeasive than simply running the model with some less exact value. Because different cases involve different convergence rates and different amounts of computational time per iteration, each user must develop from his own experience a feel for the amount of crial and error to be expended in approximating umar: He should keep in mind that ω simply influences convergence rare; it does not affect the accuracy of the approximation to the true h-distribution unless $\omega_{\text {max }}$ is exceeded.

For fully saturated flow in which K is andeperdent of h, equations [1] and [2] become linear. For such systems, the model described here also becomes Innear, and the methods for approximating wopt, given in the references previously cited, may contribute to considerable savings in the number of iterations necessary for convergence.

Digital Computer Model

Model philosophy

The only feasible way to apply equation [4] iceratively to a small mesh of few nodes is by digital compucer. The objective of the effort reported here was to develop a computer program for the application of equation [4] using the iteration scheme portrayed in equation [5] to the solution of porous media flow problems under a varlety of geometrical and hydraulic boundary conditions. Hopefully, users with listie experience in computer programing and finite differencing can use the wodel. USASI Fortran was used to reduce problems when using the model on differenc computer factlities.

To model soll-water movement in all its complexity and to provide for all the possible contingencies encountered in hydrologic systems require a complex program difficult to understand, describe, or modify. Fortunately, considerable insight into porous medda flow questions can often be galned without strict attention to emulating all decalls of the prototype flow system.

Some details cannot be measured with great enough precision nor at enough poincs In a given system to warrant trying to model them with great accuracy. For example, hyateresis effects in the hydraulic conductivity-pressure bead relationships may exert less influence on the system than the errors laherent in establishing the relation-
ships themselves, particularly if they are to apply to flow regions of large extent and exhibiting spatial veriacion.

Again, for larger systems, closely defining the exact positions and shapes of all boundaries in the prototype is not usually necessary or possible: In many cases, satisfactory results can be attained using only rough boundary approximations.

The computer program, called STDY2, is documented in appendix A. The following sections discuss concepts that are helpful or necessary to the use of the model.

Solution mesh

The solution mesh is represented in a digital computer by an array of storage locations identified with the variable PEED (I, J). The latter is the Fortran representation of the varlable h_{i}, j (pressure head ar node 1,j) in equation [4]. Each storage location corresponds to a node in the solution mesh. The effect of solving equarion [4] for a given node for a given iteration is to replace the value of PBED (I, J) calculated during the previous iteration with a new, fmproved value.

Mesh increment size is not physically reflected in the PZED atorage array but is controlled through the use of four Fortran variables representing $\Delta z_{z}, \Delta z_{+}, \Delta y_{-}$, and Δy_{+}.

Through use of the Fortran EquIVALENCE atatement, the $\operatorname{BEAD}(I, J)$-array corresponding to bydraulic head (H_{i}, j) replaces PEED (I, J) at certain stages of program execution, thus avoiding the need for an additional storage array.

A second rwo-dimensional atorage array, with a location for each node of the solution mesh, is occupled by $\operatorname{HCON}(I, J)$. The latter represents $K_{i, j}$, the hydraulic conductivity.

A fundamental concept necessary to understanding model control is that the model proceeds from an initially guessed array of $\operatorname{PHED}(I, J)$-values by means of a series of iterations ta a solution array of PHED (I, J). One may view the PHED-array at the end of any fiteration as the initial guess for all the fterations to follow. Therefore, a computer run can be interrupted and restarted withour loss of significant computer time if the PHED-array at the time of interruption can be returned as the initial guess when restartig.

Boandary geometry

Two characteristics deftne boundaries, their geomerric shape and their hydraulic condition or stacus. To avoid excessive
complexity and programing, the model was designed with the restriction that boundarles must cross rows and colums of the fintte difference mesb at the nodes. Because the mesh is rectangular, boundary shapes must be composed of stralght-line segments. Jsually, these segments will colncide with portions of rows or colums, but placing them at an angle is possible by adjusting the relative size of horizontal and vertical mesh increments in the region crossed by this boundary. In a square mesh, for example, a boundary at a 45° angle will cross rows and column only at thetr intersection nodes, as desired. Curved boundaries may be approximated ln stairstep fashion.

Solution mesh and the cartesian coordinate system

Various daca involving geometric information must be given as punchcard input for control of the model in a computer. The user will understand how to determine numerical values for these data if he thinks of the cross section of interest as beiog placed in the Cartestan coordinate system and the solution mesh superfmposed thereon.

In a computer, control of the model is accomplished using the variabies I and J, so the solution mesh must be placed on the model cross section in such a way that I and J may be calculated from x - and y-measurement This means that a column of nodes which is fixed in space and whose I-value is known, regardless of Δx, must be ldentlfied and related spatially to the y-axis of the Cartestan coordinate syatem. The same may be sald for a row of nodes in the context of the x-axis. Rows and columns coincident with boundaries of the cross section are fixed spatially, and the top and left-hand boundarles, if stralght lines, way be made to colncide with the x and y-axes of the Carteglan coordinate syotem. Even if a boundary is complex, one or more of irs arraight-line segments may be made to coincid with an axis, as in figure 1.

Because I and J can take on only nonzero, positive values, and recalling that J is positive dowaward, a cross section wust be contained entirely within quadrant IV of the Cartesian coordinate system. Thus, proper model control requires that the uppermost straight-line segment of the upper boundary of the cross section be made to coincide with the x-axis and the leftoost straight-line segment of the left boundary be made to coincide with the y-axis. The type of boundary condition to be appiled is of no consequence in these considerations. The solution mesh will be adjusted by a computational algorithm i_{0} the model without
loss of correspondence between x, y and I, J if the top row of aodes or the left-hand column of nodes, or both, must be imaginary.

Equation [1] was formulated for y positive upward, and this should be kept in mind for such purposes as assigulag positive or negative sign to a surface boundary flux. But, to require that y-measurements for geomerrical control be given a negative sign may lead to frequent errors of omission. Therefore, the model is programed co accept positive y-measurements even though they are made downard from the x-axis.

Hydraulic boundary conditions

The model stmulates hydraulic boundary conditions of the following types:

1. Hydraulle head on any boundary (may vary hydrostatically along vertical boundaries).
2. Steady flux across soil surface boundary only (infilcration or evapotranspiration races).
3. Impermeable coudition on any boundary (may also be the vertical streamline boundary between two halves of a symetrical flow region).

Type 1 is the so-called Dirichlet boundary condition. Types 2 and 3 are ach implemented in terms of the hydraulic gradient perpendicular to the boundary, called the Neumann boundary condition. Many porous media flow regions have boundaries that are combinations of the Dirichlet and Neumann types and thus belong to the general classification of mixed problems (in the context of elliptic partlal differential equations).

A unique solution is assured for Dirichlet and mixed problems but not for the Neumann. Greenspan (4) and Remson and others (7) note that nomundueness of a Neumann problem is limited to an unknown additive constant. Thus, $h^{\prime} \pm h+c$ would be calculated with c unknown so that the $h-K$ relationship could not be used. Therefore, at least part of the boundary of any porous media flow model must have a known pressure head.

Neumann-type boundaries also have the disadvantage that their implementation in finite differences can only be done by approximation. The resultant errors add to the errors inherent in the flaite differencing technique. In general, the greater the proportion of Neumann-type boundarles, the greater the model error. This can be partially overcome by using smaller mesh. increments near such boundaries. ${ }^{4}$

[^3]Later discussion will be clearer if the user underscands that the h-values at all nodes except those on fmaginary rows and column and nodes on h-specifled boundarles are calculated by means of the same version of equarion [4]. To fmplement Neumann-type boundary conditions, the proper h-values at imaginary nodes are calculared and assigned before solving for h at the boundary node.

The equation by which a flux boundary condition is applied at the soil surface is derfved from Darcy's law as

$$
\begin{equation*}
h_{i, j-1}=h_{i, j+1}-\Delta z\left(1+\frac{v}{K_{a}}\right) \tag{6}
\end{equation*}
$$

where $v=$ flux (LT^{-1})
$\Delta z=$ vertical separation between nodes 1,j-1 and $1, j+1$
$=\cos \alpha\left(\Delta y_{-}+\Delta y_{+}\right)$
$K_{a}=$ average hydraulic conductivity

$$
=\frac{k_{i, j-1}+k_{i, j}+k_{i, j+1}}{3}
$$

When $v=0$, equation [6] reduces to the equation for calculating h for an impervious surface.

Dirichlet-type boundary conditions are implemented by assigaing h-values at appropriate nodes and making certain that equation [4] is not processed for those nodes. The procedures for this are outlined in the next section.

In cases where a water table (zero 1sobar) intersects such a pervious boundary exposed to the atmosphere as the bank of a stream or ditch, a surface of seepage develops. The boundary above the surface of seepage, being a boundary to an unsaturated zone, is usually considered impermeable for modeling purposes. Water leaving the flow system across the surface of seepage is assumed to run dow that surface as a thin film. The latter ds usually considered, then, to form a saturated boundary with a pressure head of 0 cm of water.

The position of a water cable is usually not known before modellag and, thus, the limits of the surface of seepage are not known. Considerable checking and cross checking would be necessary to decermine these limits by means of the model, and part of these checks would have to be made for all boundaries under all conditions. The model was not, therefore, designed to deteraine automatically the position of a surface of seepage and, thus, will not determine automatically the correct shape of a water table which intersects a pervious surface exposed to the atmosphere.

Where a surface of seepage is expected, the following procedure wlll approximate tis
correct 11mits and, thus, the correct shape of the water table:

1. Assume the position of the zero lsobar fintercept on the boundary and asaign an fmpervious condition to the boundary nodes above and a zero pressure head condition to the boundary nodes below.
2. Run the model to obtain the solution for the given boundary conditions.
3. When the solution shows positive pressure heads at boundary nodes above the assumed incercept, wove the intercept higher and run again with boundary condttions revised accordingly.
4. When the solution shows no posicive pressure heads above the assumed intercept, it may have been placed too high. This possibility should be checked by loweriag the intercept, revising boundary conditions, and running again.
5. The best location of the intercept is the lowest aode for which the solution does not show positive pressure heads on the boundary above the intercept.

Subdivision of flow cross section

The key to making this model flexible regarding boundary geometry and boundary conditions is the concept of sabdivision of the cross section. The parameters defining subsections are used to describe the geometry and boundary conditions of the cross section to be modeled. Specifically, they

1. Direct the flow of the program so that only appropriate nodes are processed by equation [4], that is, nodes outside the boundaries or on h-specified boundaries are not processed.
2. Conerol the calculation of h for nodes on imaginary columns and rows before applying equation [4] to the neighboring Neumann-type boundary nodes.
3. Cause the program to apply known or calculated pressure heads at nodes on h-specified boundaries.

There are two sets of subsections, one for rows and one for columns. The description of one suffices to describe the other. A given row subsection, for example, contains a group of rows which are identical from the program processing standpoint. That is, processing starts on the same column and ends on the same column. Beginning and ending boundary conditions are the same. Other such considerations as variable Δx and Δy and soll unit geometry do not affect the selection of subsections.

Consider, for example, figure 2 that portrays a half cross section of a typical septic tank disposal inne. (A slmilar cross section will be modeled in the sample problem given later.)

Boundary $\overline{A B}$ represents the soll surface

Figure 2.--Half section of septic cank disposal field indicacing finite difference mesh overlay.
and may have applied to 15 any of the three types of boundary conditions mentioned.

Boundary $\overline{B C}$ may be a line of symmetry, hence a scream line, if the disposal field has several lines. When there is only one tile line, $\overline{B C}$ may be arbitrarily positioned or posizioned by trial and error at such a distance that further outward movement affects the solution 1ittle in the region of the rile line-in effect an infinite boundary. In elther case, the hydraulic gradient normal to the boundary would be given a value of zero (0).

Boundary $\overline{C D}$ may represent a water table by applying to it a zero pressure head. Boundaries $\overline{D E}$ and $\frac{a}{I A}$ are boundaries of symmetry and, therefore, have zero normal bydraulic gradyents. Boundary EFG represents a crusted fofiltration zone, point G being at the approximate level of the fluld in the gravel-packed trenct. The crust dissipates a large fraction of the head in the trench so that negative pressures are maintained on the soll side of the crust. In the absence of infiltration across the soll surface and the development of a saturated zone in proximity to it, boundary GHI acts essentlally as an impermeable boundary, so a 0 gradient may be applied to it.

Pressure heads at nodes on h-specified boundaries $\overline{C D}$ and $\overline{E F G}$ are held constant; hence, these nodes must be eliminated from processing by equation [4]. Pressure heads at imaginary nodes are calculated by special equations, and those at nodes inside the notch (parts of rows 7 and 8) are not part of the solution mesh. All these nodes must also be eliminated from processing by equation [4]. They are eliminated by failing to include them in subsections.

The first subsection consists of rows 2, 3,4 , and 5. Processing of these rows starts on column 2 and ends on column N. For each row, the beginning boundary condition is $\partial h / \partial x=0$ and the ending boundary condition is $\partial h / \partial x=0$. Although row 2 and part of row 5 are themselves boundaries of the Neumann type, equation [4] is applied at each node on them just as it is at each node of rows 3 and 4 and the nonboundary part of row 5. This group of rows, then, forms a subsection for which the following parameters may be given as input to the model:

1. First row number
2. Last row number
3. Column on which row begins
4. Column on which row ends
5. Boundary condition at begianing of row.
6. Boundary condition at end of row Note that the first four items specify the first and last nodes in each mesh direction at which equation [4] is solved. Although row and column numbers have been mentioned for illustrative purposes, actual input data, as discussed in appendix A, are in cerms of measured distances.

The beginning and ending boundary condrtions on row 6 are the same as on the preceding rows, but processing begins on column 6 instead of columa 2 So, row 6 musc start a new subsection.

The beginning boundary condition on row 7 is a specified pressure head. This is different from the boundary condiction on row 6 and also causes processing to begin on a different column. Either of these circumstances makes placing rows 6 and 7 in different subsections necessary. So, row 6 forms a subsection by itself. Row 8 has the

same characteristics as row 7. The first few nodes of row 9 are part of a boundary, as in the case of row 5. But, in this case, the boundary portion is of the h-spectfied type and so equarion [4] musc noc be applied to them. However, the portion of row 9 that is to be processed has the same characteristics as rows 7 and 8 , so these three form che third subsection.

Rows 10 through $M-1$ have common characteristics and form a fourth subsection. Row M, being a pressure head-type boundary, must not be processed, so it is not part of any subsection.

Row subsectioning is illustrated in figure 3a. Column subsectioning proceeds using che same criteria as row subsectioning; an example case is illustraced in figure 3b.

As stated earlier, under the finite difference scheme used in chis model, processing should be from left to right along rows and from the top to the bottom rows in succession. This is what happens, with no further user control, within a subsection. But the order in which sets of subsection paramecers are given in the punchcard data deck spectfies the order in which the several regions of the cross section are processed. Therefore, the user must be careful in arranging the order of these sets.

The significant concern here is that for any iteration no node should be processed before the node above it is processed. For example, if figure 2 is rotated 90° clockwise, so that the notch is vertically oriented, the colum subsections of flgure 3 b will become row subsections. The long subsection IV would underile subsections II and III so that boch of these must be processed before subsection IV.

Figure 3b.--Column subsectioning.

Column subsection data are used only in setting boundary conditions, and the order of subsectioning is arbitrary.

The model is provided with the facility for setting hydrostatic boundary conditions along vertical boundaries. The boundary condition algorithms are flagged in the program listing in appendix A. If a user wishes to distribute pressure head in some other way, he may remove the hydrostatic algorithos and substitute others. As an alternative, he may define subsections whose boundaries coincide with changes in h, but this may become quite tedious if h varies continuously so that each row (or column) must form a separate subsection.

A boundary not parallel to one of the Carteslan coordinate axes involves a number of rows and columns of differing length. Each row and column then would form a separate subsection.

Soil units

A cross section may be composed of seversil different soll units. The boundaries of these units may have complex geometry and are given in punchcard input as straight-1ine segments. Unlike the cross section boundaries, soll unit boundaries need not intersect rows and columns at node points. However, the program will convert the straight-line input data so the unit boundaries are represented in stairstep fashion during processing. Each soil unit is considered homogeneous, and a single $h-k$ table or equation must be included in the punchcard input for each.

Computer program

The program called STDY2 will be discussed in later sections as a source deck of punched cards. The program listing, a flow chart, and a glossary of variables are given in appendix A. Not shown are the job control cards which must precede and follow the program. These vary among computer facillties, and pertinenc details may be obtained from consultants at the particular facility being used.

As noted eariler, USASI Fortran was used; but certain features of the program will require modification according to the compurer facility being used. Again, facility consultants will be able to advise on the exact nature of the modifications needed. Program statements most likely to need modification are identified in the liscing given in appendix A and discussed in a later section.

Model Control and Options

Case termination

A model run consigts of execution of the program Ilsted in appendix A together wich inpur data and required job control cards. A given tun may process, in sequence, a number of different cases or problems. A given case or problem is defined by a unique combination of geomerry, boundary conditions and soll properctes.

Telling in advance how wuch computer time will be required to reach convergence for any given case is not possible. Yet, on one of the job control cards, one must usually specify a period of time which, when elapsed will cause the run to be automatically cerminated. Progress made on the case thus far would be lost if one underestimated the time required.

The input Fortran variable gSTDMB is used to prevent loss of the PBED-array, provided the user wants it saved, when the elapsed computer time is close to exceeding the Ilmit estimated for the case. KARPCE, discussed later, is used to effect saving the PHED-array in punched cards or on magretic tape in the event that ESIDME is exceeded. These data may then be used to restarc che case in another run. The time limit on the fob card should exceed ESTME by a small amount to allow for job compllation, for recording the PBED-array, and for the cime interval between ESTIME checks.

The time interval between ESTIME checks depends upon the value of INTPRT, a variable equal to the number of iterations to be processed between each rime check. Experience with the model at a particular computer facillty will give a user a basis on which to estimate ESTDE and job card rime.

In a multicase run, an ESTMME value must be given for each case, so the job card time must exceed the sum of the ESTMMR values. If one case exceeds its ESTIME value, the run will continue with the next case after recording the PHED-array, if desired, of the case stopped.

The input variable ITMAX is the primary control variable for case termination. When starting a new case, it is given the value of the number of iterations to be processed for that case during the first run. When rescarting a case, ITMAX should be equal to the number of iterations to be processed in the new run plus the iteration muber corresponding to the restart PHED-array. One cannot predict in advance how many Iterarions will be needed for convergence, so ITMAX is a guess. The user may not want to set ITMAX to reach complete convergence, because he may wish to change the overrelaxation constant occesionally.

ITMAX is checked at the same frequency as ESTIME. When TTMAX is exceeded, processing of a case stops. The final PEED-array may be obtained in punched cards or on magnetic tape if desired. Again RABPCH effects this saving. ESTITE is a backup co ITMAX and only stops the case if the user has underestimated the amount of computer time necessary to process a number of icerations equal to ITMAX.

ITMAX also controls the segmentation of a case when a prederermined set of changes in the overrelaxation factor is desired. Its function in this regard will be discussed later.

Initial PHED-array

When considering a particular case for the first time, one usually has only a rough idea of how h is distributed over the cross section. Computational savings might be more than offset by the cost of keypunching an approximate initial PHED-array. The model has two alternative routines for initializing the PHED-array in che absence of read-in data. In one roucine, PHED is given the same value ac every node except those on h-specified boundaries. This value is given by the user as che input variable PHEDS. This routtre is used for a case if the user gives the tapur varlable INISIG the value 0 . Any other value causes the alternative routine (below) to be used.

The other routine assigns QHED-values that are distributed smoorhly in a direction parallel to the y-axis of the Cartesian coordinate system. It uses the input varlable ELEV, which is defined in appendix A. This provides a starting estimate of the PBEDdistribution that may have some advantages when the flow system is essentially one of drainage toward the water cable.

The more closely the indtial PRED-array approximates the converged (solution) array, the fewer the iterations needed for convergence. If, somehow, one has an initial PHED-array from which to start, it may be given as part of the input daca via efther punch cards or megnetic eape. This, in effect, occurs when restarting following a run that has not reached convergence.

When the PBED-array is to be initiallzed using data on cards or cape, the input variable KAREAD must be given the value 1 . Any other value will cause one of the two ocher options discussed to be used.

When an input PHED-array is in punch cards, then the input variable IFHR must have the value 0 . Data on a magnetic tape are arranged in "files," one PHED-array to a file. For each restarting case of a new run, IFILE must be assigned a number representing the position on the tape of the
restart file to be read. Detemination of this position is dependent upon whether preceding files on the same tape have been used by an earlier case of the same run. IFRE is defined in detadi, and its use is illustrated in appendix A.

Pressure headhydraulic conductivity relation

The program includes a table look-up routine as one means of determining hydraulic conduceivity (K) as a function of pressure head (h). Linear interpolation is used between tabulated values. Alternatively, the user may insert into the program his own routine for solving an equation of the rype

$$
K=K(h)
$$

The position for this insertion is noted in the program listing, appendix A. READ stacements for paramerer ioput may be inserted at the same place or among the other READ statements at the beginning of the program.

The program is set up for the insertion of only one equation. When a user wishes to use equations for several soll units, he must add the logic necessary to change equation parameters of the equarion form from unit to unit.

Soil property data are given in a multiple card group of leader cards followed by one or wore subgroups. Each subgroup contains the $h-K$ data and coordinate data from which the geometry of the soil unit lower boundary may be specified. The first leader card specifies the number of soll units and contains a signal variable. The second leader card gives the number of $h-K$ entries, NUMIN(NS), in each table and the number of breakpoints in the lower boundary description, $\operatorname{NUGBRK}(N S)$, where $N S=1,2$, . . ., 5 is an index for identifying soil units. Appendix A gives a more detailed definition of these tems. When the $h-K$ relation for a soil undt is given in equation form, then NUMLIN(NS) is given the value 999.

The signal variable KHPRNT on the fxrst leader card is given a value other chan 0 when the user wants to obtain a princout of the hydraulic conductivity assigned each node before setting boundary conditions at the beginning of a run. This feature may be used to check for correct positioning of soll units in the solution mesh. Note chat, because the K-array is printed before boundary condition setcing, K-values at tmaginary nodes do not necessarily correspond to the h-values at those nodes.

Use of $K H P R N T ~ \neq 0$ during restart results in a meaningless K-array. It produces a
useful array only when the processing of a case is being initialized or if MCHNGE $\neq 0$.

If, during compucation, h becomes smaller chan the smallest h in the table, the case will be terminated after printing information helpful in locating the problem node. For some cases, however, the first few iterations produce overshoot with subsequent iterations converging smoothly toward a solucion. Terminacion of such a case may be avoided by adding to the table an $h-K$ pait for which h is smaller than the overshoot values. The value of NUMLIN(NS) must then be increased by 1. of course, if the converged solution contains in-values outside the valid range of the table, it is considered a faulty solution.

Because $h-K$ tables usually occupy a number of cards in the input and because more than one case may involve the same soil, the option of avoiding reading in a new table every time the processing of a different case begins is convenient. The input variable KTABLE, when given the value 1 , causes a case to use the $h-K$ table already in storage and used during the processing of the previous case. Any other value of KTABLE causes the case to read and store a new table. The first case of a run must, of course, have KTABLE $=0$ or gome value ocher than 1.

Overrelaxation factor

As mentioned earller, the optimum (maximum) value of the overrelaxation factor ($\mu_{\text {mosin }}$) can be determined for this nonlinear model only by trial and error. This could be accomplished by running a series of seperate cases, each with a small number of iterations and each with a different value of the overrelaxation factor (ω).

Processiag one case as a series of segments of a few iterations each (say 20 to 50) where each segment has a different u-value is more economical than processing a series of individual runs. The PHED-array ar the end of one segment serves as the initial PHED-array at the beginning of the next. Thus, when one has determined the value of $\omega_{\max }$, considerable convergence has been achieved.

Segmentation is accomplished by giving the input variable NOMEGA a value other than 0 and by adding segmentation cards. to the input deck, as outlined in appendix A. NOMECA must have the value 0 for a normal, unsegmented run.

The input variable ITMAX, the matn funccion of which was discussed previously, is used to terminate the processing of each segment and to terminate the segmented case itself. Values for segments other than the flrst are given in the same series of segmentation cards as are subsequent OMEGA-
values. ITMAX for each segment after the first must be equal to ITMAX for the preceding segment plus the mumber of iterations to be performed in the segment in question. When segments of 30 iterations each are processed, for example, then ITMAX $=30,60$, 90, . . . for segments $1,2,3, . . .$.

To terminate a segmented case, an excra segmentation card must follow that for the last segment and must contain ITMAX $=0$. The corresponding OMEGA may be blank or have any value. As in unsegmented cases, ESTDME is given only once and will terminate the segmented case (with the option of restart data in cards or tape) If its value is an underestimation of the time needed to process the total maber of iterations wanted for the case.

As noted earlier, in this nonlinear model instability may develop when $\omega>\omega_{\text {max }}$. The h-arrays at the end of segments in which ω was too large will not be useful if the fluctuations covered too great a range. To preserve any progress made coward convergence, the model stores the PHED-array at the end of each segment on punched cards or on magnetic tape, provided KARPCH $=1$, as discussed later. The most advanced PHEDarray free of excessive fluctuation can then be used to restart the case in a later run.

Model output

Model output consists of printed material and data in punched cards or on magnetic tape. Examples of printed output will be given with the sample problem discussed later. The main objective of running STDY2 is to obtain distributions of pressure head (h) and hydraulic head (B). From these two distributions, one can deduce almost anything he needs regarding water content and hydraulic status of the modeled system.

The h - and B-arrays may be quite large, and the model is provided with options to control their printing. When the input variable IPSIG 18 given the value 1 , the inicial PHED-array will be printed. Any ocher value will suppress printing. When the inpuc variable ILSIG is given the value 1 , the final pHeD-array will be printed. Any other value will suppress printing. When a case terminates because ESTIME is exceeded, the final PHED-array will not be printed. When ILSIG $=1$, PHED-artays will be princed after processing each segment of a segmented case.

Imaginary rows and colmme are printed in the PHED- and GEAD-arrays. Nodes on loaginary columns do not reflect the hydraulle condition of the neighboring boundary columns. Nodes on jaginary rows have values that are dependent on Neumann-type boundary conditions along the neighboring boundary
rows. For example, if a cop boundary row 18 impermeable, $A E A D-v a l u e s$ at maginary nodes above it will be equal to the GFAD-values at the nodes on the first row below the boundary. If a top or botcom boundary is partly Neumann and partly Dirichlet, then the fmaginary nodes next to the Dirichlet boundaries wlll have meanlogless values. One should keep in mind, then, that the real boundaries within a PRED- or HEAD-array may coinclde with row 2 and column 2 and with the next to last row and the next to last colvm.

The final PHED-array at the end of a run may optionally be obtained in punchcard or magnetic tape form. For convenience, these data are called restart data in this report. These daca may also be used as input for such other programs as convergence checking discussed later or machine plotting to produce 1sobars or to convert h to \sharp for the purpose of plottiog equipotential lines.

When the iaput variable KARPCG is given the value 1 , restart data on punched cards or magnetic tape will be obtained. Any otber value will suppress this form of output. When the input variable IFILE is given the value 0 , the output whll be in card form. Any other value will result in wricing on magnetic tape provided the proper job control cards have been inciuded so that tapes will be monnted. Computer facility personnel must be consulted for information on tape handing. The user will probably want magnetic tape for storage when the solution mesh is larger chan 1,000 cards for the $P B E D-a r r a y$.

Figure 4.--Sample problem flow region with boundary conditions.

Sample problem

A smali-scale, porous media cross section that has a geometry stmilat to that of figure 2 was modeled as an example. It, along with the boundary conditions, is shown In figure 4. The small scale was selected so that a user way, at small expense, verify the operation of the model on his computer.

Figure 5 shows the input data in a convenient assembly formar. The input variables are defined and discussed in decail in appendix A. Before going further with che exsmple, the reader should famillarize himself with chat appendix.

The sample solution was accomplished in two runs. One run inftialized the problem and was segmented to try various overrelaxation factors. The second run was an unsegmented restart of the firsc; its ω-value having been assigned on che basis of the first run's resules.

The inpur data deck for the indtialization run consisted of card groups $1-12$ and card group 14. Card groups 1 and 3 each consisted of a single card punched with the data given on their value rows in figure 5.

For che restare ran, card group 14 was replaced by card group 13. Card groups 1 and 3 were replaced by cards concaining the data of the rows marked "Restart "1" in figure 5.

The printed portion of model outpur is illuscrated in figures 6 and 7 which contain output for the sample problem. Printed output has three parts: (1) initialization data, (2) convergence monitoring data, and (3) pressure head and hydraulic head arrays. When the solution has converged acceptably, the latter arrays contain the data which portray the model's estimate of the protocype hydraulic regime.

Some data in the iniclalization part of the output are unmodified input data princed for the purpose of checking input and for recording a complete description of the conditions of the case. Other entries are derived from the input data. For example, card group 2 contains measured length and depth (in the sample, measurement was in centimeters because the units of K were $\mathrm{cm} / \mathrm{sec}$) of the cross section of figure 4. This group also contains varlables which specify whether an daginary row or column is needed at each extremity of the cross section. Card groups 9 and 10 concain specifications for Δx and Δy in various parts of the cross section. Using all these data, the model determines the cocal number of rows and columns needed in the solution mesh. These are printed and identified as MROW and MCOL, respectively.

Other noninput initialization data given In the output are of the same type as MROW and MCOL, that is, row and column equivalents

Figure 5.--Input data for STDY2 sample problem.

Card Grp 8a										
Variable	XBRE	IBRR	XRRK	YBRR	KBRK	YRRR	XBRR	TBRK		
Pormac	R10. 2	\checkmark					\rightarrow	210. 2		
Value	0.00	1.00	6.00	7.00						
Card Gtp 8 b										
Veriable	PTAB	PLAB	PTAB	PLAB	PTAB	PTA	PLAB	PTAB		
Format	E10. 3	\leftarrow					\square	B10. 3		
Velue Cd 1	. 000400	-. 300+01	-.700+01	-.800+01	-.900+01	-. 100+02	$-.120+02$	-. $230+02$		
Cd 2	-. $150+02$	-. $160+02$	-. $170+02$. $180+02$	-. 190+02	-. $210+02$	-. $230+02$	$-.240+02$		
Cd 3	-. 250+02	-. 260+02	-. $280+02$	-. $290+02$	-. $300+02$	-,310+02	-. 340+02	$-.380+02$		
Cd 4	-. $400+02$	-. $430+02$	-. $450+02$	-. $500+02$	-. $650+02$	-. $680+02$	-. $770+02$	$-.100+03$		
- Cd 5	-. 300t03	-. 500+03	-.790+03	- $100+04$	-. $100+11$					

DATA SE88I STDYZ
Date $3 / 74$
Page 4 of 7

Figure 5.--Continued.

DATA SHEET STOYZ
Date 3/74
Page 6 of 7

Cate Small-Scale Sepcic Tank

Card Grp 12										
Pariable	STARTX	STOPX	BEGX	END ${ }^{\text {P }}$	IBETA	IETA	BCOI	BCBI	FLDX	
Forpat	F10. 2	\sim	\rightarrow	P10, 2	15	15	F20.2	P10.2	810. 2	
Value cd 1	0.00	2.90	0.00	2.00	1	1	0.00	0.00	0.00403	
Cd 2	3.00	3.00	0.00	2.90	1	0	0.00	-30.00	$0.00+00$	
cd 3	0.00	3.00	4.05	6,90	0	0	-30.00	0.00	$0.00+00$	
cd 4	3.10	6.00	0.00	6.90	1	0	0.00	0.00	$0.00+00$	
							.			
Card Grp 13										
Variable	FHED	PHED	PHED	PHED	PHED	PHED				
Pormar	D13.6				\rightarrow	D13.6				
Value	This 18	usually a	restart	deck alre	ady punche	d or wes	ten on ma	graetic ct	ape.	
	on 1nit	alizacion	rua: pone							
	on reste	re rua:	se restart	deck pr	oduced by	indthall	eacion tus			

Figure 5.--Concinued.

Figure 5.-Concinued.
of messured data. These row and column equivalents are necessary because the pressure and hydraulic head arrags concain the values of those variables in row and column order but do not reflect mesh spacing and thus do not reflect x, y coordinate position. The row and column equivalents, then, aid in fixing the latter position.

In general, each derived datum in the initialization part of the output corresponds directly to an input entry in figure 5. The single exception is in the output labeled VARLABLE MESH INCREMENT DATA FOLLOW IN TRIPLETS AS XYZ. Where three pairs of values were punched in each of the card groups 9 and 10, four triplets resulted for each. In each case, the final triplet specifies that the last Δy - or Δx-value continues all the way to the lower or right-hand boundary, that is, until $\mathrm{J}=13$ or $\mathrm{I}=12$ (the values of MROW and MCOL , respectively).

The flow region was subsectioned according to an earlier part of this publication, Subdivision of Flow Cross Section. For a discussion of the measurement of some of the quantities in card groups 11 and 12, see appendix A, card group 11.

The solution mesh with row and colum subsections outlined is shown in figures 8 and 9.

Card groups 6-8 describe the soll units in the prototype. In this case, only one soil unit was used, so its bottom boundary coincided with the bottom boundary of the cross section. Nevertheless, the coordinates for two breakpoints-the two bottom corners of the cross section-were necessary.

In some previous runs, fluctuations in pressure head with the first few iterations had produced values smaller than $-10^{6} \mathrm{~cm}$ of water, so the $h-K$ table was extended by the addition of a much lower pressure head (bigher suction).

In figure 5 , input card group 4 identifies five nodes for printing pressure head values in convergence checking, a procedure explained later. INTPRT in card group 3 specifies that the PRED-values at the corresponding nodes are printed every iteration.

NOMEGA $=1$ on the value line in card group 3 specifies that the first rum is segmented. IMMAX and OMEGA, on the same value line, show that the first segment is 30 iterations long and that the first ω-value is 1.00 . Card group 14 spectfles four more segments, each consisting of 30 iterations and each with a progressively higher w-value.

The convergence-checking data for node $(2,2)$ in figure 6 were plotted as the upper curve of figure 10. Tic marks above the

Pigure 6.--STDY2 princouc for firsc run of sample problem.

gotion of unit lies along straight lic conoveityity table for soll unit connecting the forioning cooroinates
AS (X, YI MEASUREO FRER AXES

SYARTING OISTGIEUTION OF PRESSURE HEAO
$-8.80060+01-0.800000+01-0.800000 \rightarrow 01-0.800000+01=0.800000+01-0.800000+01-0.800000+01-0.800000+01-0.800000+01-0.800000 \cdot 0$
 $-0.700000401-0.700000+01$
J $=0.000000+01-0.600000+01-0.500000101-0.600000401-0.000000+01-0.600000+01-0.600000+01-0.000000+01-0.000000+01-0.000000+0$

- 0. 55coco -01-c. $-6.550000+01-0.550000+01$
$5=2.500000+01-0.500 c c 0+01-0.500000+01-0.500000+01-0.500000+01-0.500000+01-0.500000+01-0.500000+01-0.500000+01-0.500000+0$ -0.500000+01-0.300000+01
$-C .450000+01-0.450000+01-0.450000+01-0.490000+01-0.450000+01-0.450000+01-0.450000+01-0.450000+01-0.450000+01-0.450000+0$ $-0.4500 c 0+01=0.430000+01$
$7-6.000000+01-0 . * 00000+01-0.400000+01-0.400000 \rightarrow 01-0.400000+01-0.300000+02-0.400000+01-0 .+00000+01-0.400000+01-0.400000+0$ $-0.400000+01-0.400000+01$
s $-0.350000+01-0.350000+01-0.350000+01-0.350 c 0 D+01-0.350000+01-0.300000+02-0.350000+01-0.350000+01-0.350000+01-0.350000-0$ $-0.350000+01-0.350000+01$
g $-0.300000+01-0.300000+02-0.300000+02-0.30000 D+02-0.300000+02-0.300000+02-0.300000+01-0.300000+01-0.300000+01-0.30000040$ $-0.300000+01-0.300000401$
$-0.250000+01=0.250000+01-0.250000+01-0.250000+01-0.250000 * 01-0.250000+01-0.250000 \cdot 01-0.250000+01-0.250000 * 01-0.250000 * 0$ $-0.250000 \cdot 01-0.250000+01$
$1-0.200000+01-0.200000+01-0.200000+01-0.200000+01-0.200000+01-0.200000+01-0.200000+01-0.200000+01-0.200000+01-0.200000+0$ $-0.200000+01-0.200000$ 01
$2-0.100000+01-0.100000+01=0.100000+01-0.100000+01-0.100000+01-0.100000+01-0.100000+01-0.100000+01-0.100000401-0.100000+0$ $-6.100000+01-0.100000+01$

	－0．700000301	，			
1	－0．700000．01	－	－0．0．31040．01	1	
2	－0．100c00401	－0．700000＊0	－0．468730＋0	－0．2328	
3	－0．700000	－0，700000	－0．5cs360	－0．2913504a1	
	00	－0．700000	日	－0．313990401	
	－C． $760000+61$	－0．700520＋01	－0．563140401	－0．330650．01	
	－0．700000401	－0．703260．01	－0．5aserotol	－0．34204D	41440＊01
	C0000	74762	－0．022560	－0．351430	1
	C．700000401	－0．713890	－0．643430	－0	1
	－0．700520－81	－0．723860	－0．87J490．01	－0．362	1
	－0．701850＋01	－0．7312C0＋01	－0．80ed20401	－0．36548	－0．14＊100＊01
	－0．703420401	－0．748E3D＋01	－0．122130－01	－0．367040401	． $168760+01$
	－0．705810．01	－0．733310	－0．745930401	－0．3648	－0．172930＋01
	－0．7cestsed	－0．753080	－0．7t9310401	－0．371290401	－0．176700＋01
	－0．7124．40＋01	－0．770e40	－0．7424	－0．372420－81	－0．18コ
	－0．716030	－0．792	－0．a	31	－0．123530401
	121200	8002	（1）	374060	－0．105330 01
	－0．728340－01		－0．460こ10．01		
	－0．731410＊01	－0．835600＋01	－0．881130＋01	－0．375190	－0．191910．01
	－0．737670．01	－0．856730．01	－0．901330－01	－0．3756	－5．154320．01
	－0．743E90．01	－0．468100401	－0．920860＋01	－0．37	－0．146560．01
21	－6．750450，01	－0．881800401	－0．93435D＋01	－0．3T03	－0．1988
	－0．737318001	－0．897＊60 +01	－0．957940401	－0	－0．200590＋61
	－c．744530＊01	－0．013460101	－0．974840401	－0．3768 80＊01	－0．2024 $10+01$
	－．772C00401	－0．929b40＋01	－0．591170＋01	0．377110	－0．204110401
	－0．779910＋01	－0．983710．01	－0．100880＋02	－0．377320＋0	－0．
	－0．7eacadool	－0．581900＊01	－0．102100tar	－0．377310＋01	20720040
	－0．796580．01	－0．970080．01	103820402	－0．377890＋01	20061001
	－0．80s370＊01	－0．0941sstor	－4．103000402	－0．377a40－01	01
	－0．e14470＋01	－0．101010t02	－0．108320．02	－0．377940001	－0．211170001
	．025970．01	－0．102000	600t	． 37120	－0．212340＋01

RESTART DUNENEO
TOTAL CASE TIEE $=0.876000$ SECONDS．

	35.80	－0．104050＊02	D 4	． 378280	－0．213130
32	－0．f－8ço 01	－0．107110．02	－0．11124D＋02	－0．3784 $30+01$	
33	－0．161680－01	－0．109360402	－0．112s80．02	－0．378370401	
3.	－0．E16380＋01	－0．111300＋02	－0．114010．02	－0．374000401	－0．219820401
35	－a．a02210＋01	－0．113＞70＋02	－0．116190．02	－0．378010	－0．220
36	－0．8cesioto	$0.113910+02$	－0．117100＊02	．	－
37	－0．925430002	－0．1180ide．02	－0．11914D＋02	－370a20	
38	－0．9427ro－0s	－0．120080 ${ }^{\text {a }}$	－0．120510＋02	－0．33010	－0．2238
19	－C456048D＋01	－0．1220	－0．1210	－0．379210001	
	－0．47ES4D＊01	－0．1240	－0．123110	－0．379200401	
	－c．5cosp	－0．125920＋02	J4040	－0．374300：01	
12	－c．1alsa	－0．127780－02	－0．125510＊	－0．370050	
	－0．103420＋02	－0．120000－02	－0．126040＋0	－0．37932	
	－c． $168300 \cdot 02$	－0．131370＋02	－0．127740002	－0．379380＋01	
	－0．107190．02	－0．133000＊02	－0．120410＋02	－0．379640．01	－0．228
	－ $0.109080+02$	－0．1367r0＋02	$-0.159040+02$	－0．379690401	－0
	－0．110580＋02	$-0.130420+02$	－0．130040＋02	－0．379740001	－0．23013
	－C．112880＊02	－0．138030＋02	－0．131610＊02	－0．379700＋01	－0．230
	－0．114770＊02	－0．139600＋02	－0．132730 +02	－0．379e30＋01	
So	－c．1seasotor	－0．141140＋02	－0．133680 02	－0．37988040	0.23
51	－c．lles20．02	－0．142050＋02	$-0.134550+02$	－0．31908200	－
52	－6．120380＋02	－0．144130．02	－0．135420＊02	－0．379030＋0	
53	－0．122220．02	－0．145980＋02	－0．1362BD＊02	－0．37	
54	－0．124040402	－0．147000＋02	－0．137120．02	－0．380020	
55	－cal23E50＋02	－0．14e400．02	－0．137550＋02	－0．30005D＊	
56	－6．127640002	－0．149760．02	－0．138750．02	－0．38000D	
	$-0.129610+02$	－0．151100＋02	－0．13953D 02	－0．360110501	
	-C －131180 08	－0．152420＋02	－0．140300．02	－0．380140＋81	
	－C．132400 +02	－0．153710＋02	－0．111050．02	1	

EStabl PUNCTED
TOTAL CASE TMEE $1 . a D 1909$ SECONDG．

COMTI					237290＊0
02	－0．138840＋02	$-0.158060+02$	－0．144090．02	－0．300270－01	－0．237e10＋01
83	－c．1＋0es0＋ca	－0．160530 02	－0．145210＋02	－0．380300401	－0．238350．01
G4	－0．143180＋ 62	－0．162360 02	－0．14686D．02	－6．380130＋01	－0．230510＋01
	－0．143500＋c2	－0．164160．02	－0．147300．02	－0．380350．01	239400401
	－0．147550＊C2		－0．14122日D．02	－ $2.340300+01$	239880．01
67	$-0.150300 \rightarrow 02$	－0．187010＋02	－0．160220．0	－c．380420＋0	－0．8402\％
60	－0．1E2c30＋02	－0．165280＋02	$-0.150120+02$	－0．300480．01	－0．240600401
so	－0．154530402	－0．170480．02	-0.1500702	－0．360490＋01	－0．2al 050001
70	－0．157200＊02	－0．172410．02	$-0.151790+02$	－0．310330401	24143040）
71	－4．159880．02	－0．179010．02	－0．112560．02	－c．340380．01	201770001
	－0．161690＋02	－0．175370＊02	－0．153300 02	－0．310038	－0．24210D．01
13	－c． 163500 ＊02	－0．176970	－0．150010	－0．360600：01	－0．242416．01
	－0．168C70＊	－0．176430	－0	）	－0．243710＋01
	－0．168230．02	2	－0	－0．390650．01	－0．242080．01
7	－c．170350＊02	$80700+02$	－0．135070．02	－0．30067D．	－0．243280405
	－0．172410402	$0.101920+02$	－0．158588	－0．300680．01	3330＋01
	－0．114440402	0.185090 .02	－0．157160002	－0．310700＋01	－0．243790401
	$-0.176400+62$	－0．124330＋02	－0．157180．02	－0，3日0720．01	－0．244030＋01
	－0．178300．02	－0．185320402	－0．158270．02	－0．380740．01	－0．746270．01
s_{1}	－0．1e0270．02	－0．146380．02	－0．136790．02	－0．380750401	－0．24i300．01
	－0．182100．02	－0．187400．02	－0．159290＋02	－6．3E077D＊01	－0．244720401
63	－0．183e日0）02	－0．188300602	－0．155710＋02	－0．380780．01	－0．344920＋01
84	－c．145600＋02	－0．189340＋02	－0．160240＋02	－c．380790401	－0．245130401
日 5	－0．197270402	－0．1902t0．02	－ $2.166680+02$	－0．380810401	－0．235320．01
8 c	－0．188880＋02	－0．181150．02	－0．181110＋02	－0．380820．01	－0．245910．01
07	$-5.180460 .02$	－0．192c00＋02	－0．161530．02	－0．380830－01	－0．2436AD－0
в 8	－c．191970002	－0．192830＋02	930．02	－0．3e0eadiol	－0．245460 01
89	－0．193440＋02	$3020+02$	－0．182320002	－0．380860．01	－0．246020．01

Figure 6．－－Continued．

Figure 6.-ConciDued.
gestart funcmed
TCTAL GAEE TIME $=2,594000$ SECCNOS.

91	$=0.158+30+0 z$	$-0.195=30 \vee 02$	$=0.1<3390.02$	-0.360040+01	24724D+01
$\bigcirc{ }^{\text {P }}$	$-0.150100+02$	-0.100700.02	-0.164cs0.02	-0.380890.01	-0.247340.01
93	$-0.165740 \rightarrow 02$	-0.107490.02	-0.1646A0T02	-0.380905 01	$80 \cdot 01$
91	-0.251500+02	-0.100000+02	-0.185280.02	-0.38002001	7>70.0s
-5	- 0.203470 .62	-0.200100+02	-0.103830.02	-0.300930-01	247930-01
96	-0.205180+02	-0. 20	0.16633	-0.160050	-0.248570-01
67	-0.260Esoctz	-0.20210	-0.106800 +0	-0.310070.0	-
od	-0.205400-02	-0.202580*02	-0.107220	-c.300980.0	2403
94	-6.2:0010.02	-0.201790402	-0.16759D+02	-0.381czo.01	2**
0	-0.211460.02	-0.204550+22	-0.16752D+02	-0.3el cadoas	-0.240 50 D -0)
101	-0.212930+02	-0.205450+02	-0.160220.02	-C. 38104 c -01	-0.243670+01
182	-0.214120.02	-	-0.16asideve	38	-0
03	-0.2	-0.206320*02	-0.152770+02	-0.3a1 czatol	-
104	-0.2	-0.207680+02	-0.169c20*02	-0.3E105D+01	-0.248900401
105	-0.217E40+02	-0.207500 02	0.169250	-0.3810	-0.248ctotal
108	-0.218650-02	-0.201670+02	-0.169470402	-0.301060*0	-0.248110401
107	-0.215680.02	-0.20es20*02	-0.169870+02	$-8+381080+01$	-0.249180.01
189	-c-220e10.02	-0.208540.02	-0.169860402	-0.301 C7D+01	249240401
109	-0.221490-02	-4.200330-02	-0.170000002	-0.301c70.01	0.249300
110	-6.222320+a2	-0.209700.02	-0.170200*02	-0.38108D*01	-0.240140+01
11	$-6.223 C 00+02$	-0.210040.02	-0.17036D+02	-0.381 CeD 01	-0.20
112	-2.223E10.02	-0.210360.02	-0.1705a0*02	-0.301080+01	-0
113	$-0.224098+C 2$	-0.210880.03	-0.170030402	-0.3e109D-01	240310681
114	-0.228120+02	-0.210s40.02	-0.170760.02	$-0.381000+01$	-0.249350+at
115	-6.225310.02	-0.21120042	-0.170870 +02		-0.249590.01
115	-0.226260402	-0.211440.02	-0.1705800 02	.381100+01	-0.200630.01
113	-0.226780402	-0. 211070.02	-0.17scado 02	-0.381100-01	$249880 \cdot 01$
110	- 227260 *02	$211880 \cdot 02$	-	0+01	200700*OL
310	-6.227710.c2	-0.212ces.02	2	+01	2,

agsfart plincteg
TGTAL CASE TIME $=3.389999$ SEEONOS.

121	-0.228570.02	12b50.02	540.02	-0.381110001	-0.250250.01
122	-6. 129 c20.02	-0.21765D402	-0.171710+02	-0.381110.01	-0.250140-01
123	-8.229470402	-0	-	-0.381	-0.250190401
12	29\%6			-0.3A1120-01	
12	-230E20	-0.213600+02	-0.172180+02	-0-3e1120	-0.25t 150+01
128	- 6 - 2 cr80	-0.114030+02	72290*02	-0.301130001	-0.250110.01
127	-0.231410+a2	-0.214210-02	172370402	-0.3e1140+0	-0,25006 C -01
128	$-6.231820 .02$	-0.7143EB.02	-0.172430+02	-0.361140.01	-0.230000+01
20	-c.252160+	-0.214510.82	-0.112450+02	-0.	-
130	-0.2124	-0.214c20.02	-0.172450*02	-0.3E1180.01	-0.2501 $50+01$
131	-0.21215D	-a.2147	-	-0.3	-0.250170-81
132	-0.232630.02	-0.244770+02	-0.112450	-0.3A100	-0.230100481
133	-0.233200+02	-0.214410+02	-0.172480+12	-0.381070.0.	-0.2501
136	-0.233400402	-0.214日20 +02	-0.112430404	-0.3e123000:	-0.
135	-0.233570002	-0.214410+02	-0.172400+02	-0.3¢150-01	-0.250160+01
136	-6.233720.02	-0.214E10	17	-0.301130407	-0.230140+91
137	-0.23583	-0	-0.172520-02	-0.361310+01	-0.250130+01
138	-0.233¢3.	2148	-0.172 ${ }^{\text {a }}$ (${ }^{\text {a }}$	-0.	$-0.250150+01$
139	-0.23.codo 12	-0.2148ग0.	0.172520 .02	0.38	-0.250150-01
40	-c.234050*	-0.214Eab	0.11232	-0.36114	-0. 250155 -01
141	-0.234CB0402	-0.214000toz	-0.172 1 10+02	-0.181130+0	-0.250100.01
2	- $5.234100+02$	-0.214900+02	-0.172510*02	-0.381330401	-0.230160401
143	$-C .23+100+02$	-0.214900482	-0.172510-02	-0.3811-30 01	-0.250160401
10.	- $\mathrm{C}-234 \subset 90+02$	214600.02	-0.17251D402	-0.381140*01.	0.250150*01
145	-<.2346ad.02	-0.214bED 02	-0.172915402	-0.3e1]abios	0.250150.01
14	-6.234c90+02	-0.2\4270+02	-0.172510402	-0.581140+01	-0.230140.01
(4)		-0.214E70.02	0.172s10402	-0.3日) laba	-0.250140.0
14.4	-0.234c80.02	-0.514470.02	. 173510.02	.3811*D. 01	-0.250150.01
	-0.234c00*02	-0.214070+02	12츳.02	.381140.01	
	-C.2J4 600002	-0-21•870.c2	-0.172518002	-0.3E1]*D401	-0.250130.01

QEstart puncked

end of job
curve show where changes in ω-value took place. A steepening of the curve below each tic showed that each higher w-value resulted in fascer convergence. The ocher curves in Eigure 10 show convergence for unsegmented runs using various ω-values. Inspecting the convergence-checking data of figure 6 shows that with $\omega=1.80$, there was a slight tendency to fluctuate in the interval from iteration 141 to iteration 150. Further trials indicated that 1.65 was the approxiwate $u_{\text {mar }}$ for this case. Disregarding the minor fluctuation at the end of figure 6 , though, the PHED-values seemed to have reached a plateau, indlcating that convergence was essentially complete.

The notation at the end of each segment of convergence-checking data in figure 6 indi-
cated that restart data were punched on cards at the end of each segment. To facilitate separating punched PBED-arrays, the model punches a card with five asterisks and the words END OF FILE after each restart deck. This resulted from the card group 1 data, RARPCY $=1$, and IFILE $=0$. These data would have been written on magnetic tape, had IFIL! * O, but an end-of-file mark would not appear on the tape until the run was terminated See the discussion for TPILE, card group 1 , glossary of input variables, appendix A.

Because PHED fluctuation near the l50th iteration was minor, the portion of the output deck corresponding to that iteration was used as card group 13 for the second or restarc run.

Figure 7．－STDY2 prigcouc for second run of sample problem．

gecheray ano bqumbary condiyton oata
－CCL HEOM

FOR ROU Nsuay	$\begin{gathered} \text { subsecrid } \\ \text { ETARTY } \end{gathered}$	OnS	stapy	EEGX	evax	jeeta	JETA	ECLJ	ECRJ	
1	c． 0		2．00	0.0	0.00	1	1	0.0	0.0	
2	2.10		2．00	3.00	6.00	1	1	0.0	0.0	
3	3.80		4.00	3.10	6.00	0	1	－30．00	0.0	
4	4．10		6.50	0.0	0.00	1	1	0.0	0.0	
nsuay	JSTART	JSTOP	abeg	IEND						
1	2	5	2	11						
2	s	8	0	11		－				
3	7	9	7	11						
＊	10	12	2	11						
FOE COLUWN SUDSECTIONS										
nsuex	STARTX	5	sropk	BEGT	EnOY	18eta	IETA	beut	BCEI	flux
1	0.0		2.90	0.0	2.00	1	1	0.0	0.0	0.0
2	3.00		3.00	0.0	2.90	1	－	0.0	-30.00	0.0
3	0.0		3.00	4.05	8.90	0	－	－30．00	0.0	0.0
－	3．10		6.00	0.0	8.90	，	－ 0	0.0	0.0	0.0
nsubx	ISTAET	1stod	－JeEG	Jend						
1	2	5	2	5						
2	6	6	2	6						
3	2	6	10	12						
4	7	11	2	12						

VARIABLE MESM TNGREMENT EATA FOLLOM IN TRICLETS AS XVY $Y=$ FOE OR COLUMK NUMGER（JY OR IX）

0.0	2	1.000	1.00	3	0.500	5.00	11	1.080	7.00	13	1.000
hotizontal											
0.0	3	1.000	2.00	＊	0.500	5.00	10	1.000	6.00	12	1.000

BOTTOM OF LNTT LIES ALOHG
$\begin{array}{llll}0.0 & 7.00 & 7.00 & 7.00\end{array}$
as Columitano adi numaer（i．jis

『	π	－	K	P	K	\square	K
0.0	$0.926 E-03$	－0．1700402	0．110E－03	－0．300E＋02	$0.787 \mathrm{E}-04$	－0．770E＋02	0．104E－04
－0．300E 201	0．532E－03	－0．LEOE－02	$0.113 \mathrm{E}-03$	－0．310E．02	$0.752 \mathrm{E}-04$	－0．100E＊03	0．116E－05
－0．700E－01	0.232 E 03	－0．100E＊02	0．1108－03	$-0.3408+02$	$0 . \Delta T I E-\mathrm{D}$－	－6．300E＋03	0． $463 \mathrm{E}-67$
－0．000E－01	0．197E－03	－0． $210 \mathrm{OE}+02$	$0.104 E-03$	－0．3e0E＊02	$0.570 \varepsilon-0$.	－0．500E．03	$0.231 E-00$
－0．900E＊OL	0．103E－03	－0．230E＋02	O．OBAE－OA	－0．＊00E＊02	0.54 AE－04	－0．790E＋03	0．026E－09
－c．100E＊02	0．174E－03	－0．240E＊02	$0.928 E-04$	－0．430E＋02	0.498 E －04	－0．100E＊0．	0.34 7E－10
－0．120E＊02	$0.162 E-03$	－0．250E402	$0.903 \mathrm{E}-04$	－0．450E＋0Z	0．4638－04	－0．100E．11	0.34 7E－10
－0．1JOE－02	$0.150 \mathrm{E}-\mathrm{cs}$	－0．260E＊02	$0.858 \mathrm{E}-04$	－0．500e +02	$0.394 E-04$		
－0．15OE－OZ	$0.127 E-03$	－0．280E－02	O．E3je－04	－0．650E 02	0．185E－84		
－0．100E－02	0.118 E －03	－0．290E－02	O．810E－04	－0．680E402	0．182E－0．		

ITERATION NO．AMO DRESSURE MEAD AT SELECTEO NCOES AS IDEMTIFIED EELOE

15	－0．234098402	216870402	－0．172310－0	－0．301140401	－0．250150＋01
152	－C． 214 （50802	1870＊02	10.02	－0．381140001	－0．250150．0：
153	－0．234 600.02	870＋02	－0．172510002	-0.3 （1） $40+01$	－0．2S0150 0 － 1
15＊	－0．234000＋02	$0.214870+02$	－0．172510＋0	－0．382140001	－0．250150＋01
135	C．234c8002	－0．214A7040	－0．172510．00	－0．3A1140 0^{0}	－0．280150．01
13	$-\mathrm{C} .234 \mathrm{CBs+02}$	－．214ET0－02	－0．172510＊	－0．391420．	－0．250150＋01
107	－c．23＊ $160+02$	114870	－0．1725	－0．3A1540	1
1	－0．23＊680 02	0．21．e70＋	－ 172510	301140	－0．250150401
15	－0．234080＋02	－0．2148704	－0．172310	－0．381140	－0． 2
180	－0．234 60402	－0．814870＋02	－0．172510．	－0．361140	－0．250150＋01
161	－0．234080＋02	－0．214日TD＊02	－0．172510＋02	－0．38114060）	50150401
162	－0．234 $\mathrm{CaO}+02$	－0．214070＋02	－0．172510．02	－0．381140＋01	－0．250150＋01
163	－0．2J4C80402	－0．214．70．02	－0．172510＋02	－0．381140．01	－0
164	－0．234CEO40	－0．214870＋02	72 C	－0．301140 01	－0
86	－0．234C80＋0	－0．214070．02	－0．172510	－0．381140401	－0．2301
160		－0．224870＊02	2510＋0	－0．301140，	－0．250150401
187	－0．234c70－02	－0．214日70．02	－0．172510002	－0．381140＋01	－0．230
164	c．234c70＋02	－0．214a10．02	－0．172510＋02	－0．381140001	－0．250150．01
169	－0．234670402	－0．2141970＋02	－0．172510＋02	－0．381140＋01	－0．250150．01
170	－0．23＊070402	－0．214870＋02	－0．172510＋02	$-0.381140+01$	－0．250150＊01
171	－0．134CTD＊ 02	－0．214E7D ${ }^{\text {coz }}$	－0．172510＋02	－0．301140001	－0．250130＊01
172	－0．23＋C7D．02	－0．214A $70 \rightarrow 02$	$0.172510+02$	－0．381140．01	－0．250）50＊01
173	－0．234¢00402	－0．214870402	－0．172510402	－0．38114D＋01	－0．280150．01
，	－0．234 ${ }^{\text {c }}$（70＋02				－0．250150401

Figure 7.-Continued.
DRESSURE MEAD EISTRIBUTION AFTER 173 ITERATIIONS
$0.221920 .02-0$
 $-0.214 B 70+02-0.700000+01$
 $-0.201920+02-0.600000+01$
 $-6.192610+02-0.650000+01$
 $-0.180910+02-0.500000+01$
 $=0.186070+02-0.450000+01$
 -0.1977ro+Cz-6.400000.01
$-0.3500 c 0+01-c .3500 c D+01-0.350000+01-0.350600+01-0.230000+01-0.300000 \cdot 02-0.223370+02-0.178+00+02-0.151080+02-0.138480+02$ $-0.126760+52-0.350000+01$
 $-0.1<3470+02-0.300000401$
$10-0.250000+01-0.184000+02-0$
-0.706410.01-0.250000401 0.2000cot01-0.110620.02

 $-t .250150+01-0.100000+01$
0.0 $\begin{array}{lll}0.0 & 0.0 & 0\end{array}$ $0.0 \quad 0.0 \quad 0.0$ 0.0
0.0
0.0
0.0
eserfit puncreo
178-0.214(70+02-0.214E70+02-0.172610+02-0.3E1140+0) -0.230130+01

$178-\mathrm{c} .234170+c 2-0.214470+02-0.172510+02-0.301140+01-0.250150+01$
$\begin{array}{ll}100 & -0.234 c 70+02\end{array}-0.214470+02-0.172510+02-0.301140 \rightarrow 01-0.250150 * 01$
(B) $-0.234(70+02-0.214270+02=0.172510+02-0.3811140+01=0.250130+01$
$\begin{array}{ll}181 \\ 192 & -0.234070+02\end{array}-0.214470+02=0.172510+02-0.381140+01-0.250190+01$
$\begin{array}{llllll}182 & -0.234070+02-0.214670+02-0.172510 .02 & -0.381140+01 & -0.250150+01 \\ 183 & -0.234670+02 & -0.214470+02 & -0.172410+02 & -0.381140+01 & -0.250150+01\end{array}$

183	
184	$-0.234670+02-0.214 * 70+02-0.172110+02$

184	
185	-0.234

$197-c .234 c 70+02-0.214470+02=0.172510+02-0.301140+01-0.250150+01$ $198-0.234 c \pi 0+02-0.214 a r 0 * 02=0.172510+02-0.381140+01-0.250150+01$ $180-c, 214 C \pi+a 2-0.314 e 70+02-0.172510+02-0.3 \theta 1140+01-0.250150+01$ $180-0.234670+02-0.214870402-0.172510+02-0.381440+01-0.250150+01$
$1-0.800000+01-0.24+230 \rightarrow 02-0.244210+02-0.24-4 B O H R E G U T I D N$ AFTER 190 ITERATIONS
(202300402-0.239200+02-0.234720+02-0.229020+02-0.22503D+02
 $-0.214870+02-0.700000+01$
I $-0.600000401-0.224230+02-0.22421 D+02-0.224060+02-0.22 \leq 990+02-0.22230 D+02-0.218200-02-0.21472 D+02-0.209920+02-0.205030+02$ -0. $201920+02-0.600000+01$
$-6.580000 \rightarrow 01-0.218310 \rightarrow 02-0.219410402-0.219090+02-0.270320+02-0.220970 \rightarrow 02-0.217000+02-0.210460+02-0.203500+02-0.197780+02$ $-0.142610+02-0.550000+01$
 $-0.180910 \rightarrow 08-0.500000+01$
 $=0.106050+02-0.450000+01$
 $-0.14570+02-0 .+00000+01$

- $-0.350000+01-0.350000+01-$
$-0.128790+02-0.350000+01$
$-0.300000+01-0.300000+02$
$-0.10 .10340+02-0.300000401$
$-c+250000+01-0.168090 \rightarrow 02-$
$-0.786410401-0.250000+01$
- $-2.2 \mathrm{CODOD}+01-0.1106 \mathrm{ZD}+0 \mathrm{Z}$
$-0 . e 72080+01-0.200000+01$ $-0.850150+01-0.100000+01$ $\begin{array}{ll}0 . c & 0.0 \\ 0.0 & 0.0\end{array}$
0.0 .
0.0
0.0
0.0
0.0 0.0
0.0

RESTART PUNCRED

TOTAL CASE TIME $=1.235090$ geconos.


```
\(-0.141920 \rightarrow 020.0\)
```


220.0
$0.0 \quad-0.164230+02-0.104210+02-0.164080+02-0.143590+02-0.162300+02-0+180200-02-0.134720+02-0.149020+02-0.145830+02$ $-0.141010+020.0$
4 $\begin{gathered}0.0 \\ -0.137010+020.0 \\ 0.0\end{gathered}$

 7 0.0 0.0.0 0.0 0.0 0.0 0.0.200000+02-0.193470402-0.130020-02-0.132510+02-0.117830+02
$\begin{array}{cccccc}-0.107170+0 \times 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.265000+02-0.183370+02-0.143400+02-0.115600 .02-0.101400402\end{array}$

- $\begin{array}{cc}-0.917870 .610 .0 \\ 0.0 & -0.270000+02-0.270000+02-0.270000+02-0.270000+02-0.270000402-0.163980+02-0.118530402-0.940420+01-0.819450 .01 ~\end{array}$ $-0.7346500010 .0$
- 0.0 -0.
0.0 0.0

 13 0.0 $\begin{array}{ll}0.0 & 0.0 \\ 0.0 & 0.0\end{array}$ 0.0 0.0 0.0 0.0
0.0
$0: 0$
0.0
0.0

END Of JCg

Legend：Calculation Node
－Imaginary Node
－h－Specified Boundary Node
Figure 8．－Sample problem solution mesh and row subsectlans．

13 ■ ロ ロ日回日回日
Scole：

Legend：－Colculation Node
－Imoginary Node
■ h－Specifled Boundary Node
Figure 9．－Sample problem solution mesh and column gubzections．

Figure 10．－Convergence as a function of overrelaxation factor．

Figure Ll．- Sample problem golution mesh showing equipotencial dibtribution（imaginary nodes not ghown）．

Besause $\omega=1.80$ created some fluctuation and because $\omega=1.60$ did not, the latter was used for the restart run. Complete convergence seemed nearly achieved, so the restart run was allowed only 25 iterations followed by an additional 15 for detailed convergence comparison. The need for 15 additional iterations and a second restart deck was signaled by DBLE $=1$ in card group 3.

Figure 7 concains initialization data, mosc of which are identical to those of figure 6. The exceptions reflect the changes made in card groups 1 and 3 before restarting. The convergence-checking data show that, on the basis of the five selected nodes, more than acceptable convergence was reached before the 175 th iteration.

Node by node comparison of the two PHEDarrays (one at the 175 th iteration, the other at the 190 th) shows that the extra 15 iterations resulced in only gix values being changed by 1 in the fifth significant digit.

Note that, because the left, top, and right boundarles are all imperaeable, the left-hand colum, the top row, and the righthand column are all imaginary. So, in the PHED- and $B R A D$-arrays, the four outer corners of the cross section are at nodes (2,2), $(11,2),(11,13)$, and $(2,13)$ with the values 23.407, $-21.487,0.0$, and 0.0 , respectively, in the final PuED-distributions.

Data in the hydraulic head array of figure 7 were used to plot the lines of equal hydraulic head (equipotentials) in figure 11. Because of a boundary subject to -30 cm pressure head located only 3 cm higher than one subject to 0 -cm pressure hesd, the hydraulic head gradfent was directed from the lower to the higher boundary. Because the elevation datum was taken at the 0 pressure boundary, B on that boundary was 0 and therefore the Q -values in che flow region were negative.

The sample cross section was also run with $\Delta x=\Delta y$ throughout the solution mesh for $0.5-$ cm and l-cul mesh facrement sizes. The equipotential Ines of figure il almost exactly duplicated those produced by the 0.5cाr mesh tncrement case. For the l-cm mesh increment, however, the equipotentials in the upper part of the flow region were irregular in shape and conslderably displaced from their counterparts in figure 11. One may coociude, then, that the irregularity to the equipotential for which $B=-17$ would probably disappear if an even finer mesh was introduced near the notch.

Determination of acceptable convergence

Many hundreds of iferations may be necessary to reach convergence for large cross sections in which flow is partly unsaturated.

To cause the program to keep track of the rate of convergence would consume a significant amount of computer time. Instead of incurring such costs, this model requires user interaction to determine when acceprable convergence has been reached. As one ald to this end, the program periodically priats the PHED-values for a user-selected set of nodes. The value of $N N O D E S$ specifles the number of nodes selected. Through use of the input variable INTPRT, the user may select how often he wants these values printed.

For example, for INTPRT $=1$, the selected set of PHED-values is printed every iteration. For CNTPRT $=5$, printing is obtalned every fifth iceration. When the user wants to suppress such printing, he may give the input variable NNODES the value 0 . But recall that INTPRT also controls the frequency of checking elapsed time against ESTMR and should be given a reasonable value even if NNODES $=0$.

When selected nodes are printed, convergence rates may be examined by laspection or by plotting the manner in which PHED at a node varies with the number of iterations, as was done in the sample problem. If, after many iterations, convergence rate becomes slow, testing another set of overrelaxation factors may be worthwhile, because the optioum value found for the early iterations may not be optimum for later ones.

Selection of the printed nodes should be afmed at finding the node at which convergence is slowest. Experience with various cases will eventually guide the user in this respect, but one should probably start by considering a node from near each corner and ar least one from near the center of the solution mesh. A maximum of eight nodes may be selected.

Scanning or plotting PHED as a function of iteration number for a few selected nodes is only an indication of how convergence is going. Some cases involving unsaturated flow have shown seemingly complete convergence in part of the flow region while do another part the PHED-values were still changing appreclably with each additional iteration. Hopefully, one or more nodes in the stillconverging zone would have been included in the set selected for periodic princing. To be sure of this, after all the priated nodes have converged acceptably, one should compare two h-arrays that are separated by a few iterations.

Progran COMPAR, documented in appendix C, was developed for the purpose of comparing PHED-arrays. To get two decks for comparison, a user may restart a STDY2 case for, say, 15 iterations and compare the PHED-distribution deck obtained with the one produced by the preceding run. Or, if he thinks he will be close to convergence at the end of a longer
run, he may give the input variable idBle the value 1 . This will cause the program to punch the PHED deck (or write it on tape) when ITMAX is resched, then run 15 more iterations and produce another PHED-array, both as written printout and in puncheard or magnetic tape form. When recording outpur on magnetic tape, one should use the TDBLE $=1$ method. In this way, he obtains the two PHED-arrays within one logical tape file.

Experience has show that a given w-value may produce smooth convergence at most nodes, but cercain nodes may begin to show ingeability as final convergence is approached. This will usually be detected when the result at the end of an odd-numbered iteration is compared with that of an evennumbered iteration. If fluctuation occurs and if the amplitude is too wide, then OMEGA should be reduced and furcber convergence obcained.

The subsectioning facility of the model may be used to save computer time if one portion of the solution mesh concinues to change rapidly while the rest has apparently converged or is changing slowly. In this circumstance, rows and columns may be identified which are, in effect, boundaries between the converged and nonconverged parts of the solution mesh. These rows and columns may be considered as boundarles of known pressure head on the nonconverged part.
A. restart mun may then be set up in which:
2. Subsection parameters in input card groups 11 and 12, glossary of input variables, appendix A are given so that only nodes in the nonconverged part of the flow region are processed. The vartables JBETA, JETA, IBETA, and IETA when on a boundary between converged and nonconverged regions should have the value 0 for known presaure head. When requirement 4 below is fulfilled, BCUI, BCBI, BCLJ, and BCRJ will not influence the solution.
2. Nodes selected under control of INTPRT should be specified inside the nonconverged part with one or two of then being located near the new boundaries.
3. All other such geometrical input data as overall length and depth, Δx and Δy, and so forth, remain unchanged from the run that produced the restart deck.
4. The input variable MCBNGE (card group 1) has che value 0 .
5. The entire restart daca deck, including the entire PHED-array whether on cards or on rape, is submitted with no changes ocher than those mentioned above.

Such a restart preserves the input PHEDvalues at all nodes on the Doundary of and ourside the nonconverged part of the mesh whereas furcher convergence is obtained in the zone of interest.

After reasonable convergence has been achieved in the truncated model, subsectioning data for the complete cross section should be puc back inco the input data deck and iterations concinued uncil acceptable overall convergence is reached.

Definition of what constitutes an acceptable degree of convergence (che maximum acceptable difference between PHED-arrays) rests ulcimately with the user. He should keep in mind chat he is running a model. Regardless of how well successive PYEDdiscribucions agree, his solucion is only an approximation to the actual pressure distribution of the protocype. Besides model inaccuracles assoclated when non-zero Δx and Δy, the complexity of natural prototype systems and the difficulties of measuring their characteristics and properties are such that the modeler will be furtunate if he achieves betcer chan 15 - to 20 -percent correspondence between model results and protocype truth. All he should be striving for, then, is a reasonable approximation.

Anomalies in the isobar or equipotential parterns will somerimes be observed. These are not necessarily because of incomplete convergence. For example, if the isobars or equipotentials plotted from final PBED- and HEAD-arrays are quite irregular and show abrupt changes in direction, without physical reason, the mesh increments may have been too coarse.

Changing mesh increment size

An auxiliary program, called CARRY and documented in appendix B, was developed to facilitate changing mesh increment size. It is useful when one already has a PHED-array in punched card form and wishes to refine the solution mesh efther in total or in some localized area and then obtain further convergence without returning to a completely arbitrary starting distribution. CARRY produces an output PRED deck whth the number of nodes needed for the refined mesh. PAEDvalues at extraneous nodes in the input PHED deck are elfminated from the output deck. PHED-values at new aodes faserted into the original mesh are interpolated from values at neighboring nodes in chat original mesh. The output deck, then, portrays the same pressure head distribution as the input deck but in a differently arranged solution mesh.

CARRY concerns itself only with nodes instde and on the boundarles of the flow region. Its output deck does not contain the proper values for fmaginary nodes. To restart STDY 2 with a deck of CARRY output, oie must give the STDY2 input variable MCHNGE some value other than 0 . This assures that boundary conditions are properly get before further solution begins. For all normal restarts, MCRNGE should have the value 0 .

Model dimensions

The DOUBLE PRECISION and the DDMENSION statements near the beginning of the program listing, appendix A, show the number of values which can be given each array variable used by the program. For example, PHED (60,70), $\operatorname{HEAD}(60,70)$, and $\operatorname{BCON}(60,70)$ indicate that a solution mesh can have 60 columis and 70 rows, including those containing imaginary nodes. NOMLD(5) shows that a maximum of flve soil layers may be modeled. $\operatorname{PTAB}(50,5)$ and $\operatorname{KTAB}(50,5)$ foricate that five $h-K$ tables, each with a maximum of 50 lines can be raad in.

The user is free, within the 11mits of computer storage available to him, to change these dimension values, thus changing the number of columa and rows, the number of subsections, and so on, that can be handled in the model. When making changes in dimension, one should be sure that dimensions in all assoclated variables are changed. For example, PHED and HEAD are equivalenced, so that their dimensions must be the same. Also, every node has assoclated with it a PHED-value and an ECON-value, so the dimenslons of HCON should be the same as PHED and ERAD.

Computer facility adjustments

The program insted in appeadix A was written in USASI Fortran, so should be compatible with most computer systems now in operation. However, each computer facility has certain unique characteristics that must be considered when implementing the model. Job control cards, not shown with the listfing, will almost certainly vary from facility to facility. In addition, some program statements may also have to be modifled to be compatible with a particular system. The statements likely to require modification are flagged in the listing by M1, M2, . . . The same flag is given for all statementa of like caregory. They are discussed as follows:

M1.-Preclsion varies widely. The computer on which the listing was obtained and the aample problem run had single precision of four significant digits. If a computer with eight or more aignificant digits is used, the DOUBLE PRECISION stacement could be removed to save on storage requirements. If this is cone, the dimensioned varlables PHED and HEAD should be added to the DIMENSION statement.

[^4]facility and probably will need changing when implementing this program for the first time at a given compurer center. The routine in use with the computer producing the listing of appendix A and on which the sample problem was run returned time in mililseconds. The variable TTIME was introduced to convert to seconds for comparison with ESTIME. This would not be wented at a facility where the is returned in seconds.

M3.-COMENT is a variable to which an Aformat applies, that is, which can give alphammeric information to a program. This Information is read in as words of a certaln number of characters each. On the computer used in connection with this report, a word contains only four characters (20 words per 80-columm card). The statement under which COMENT is read is such that the total number of words read is specified in the DIMENSION statement, for example, 100. The fORMAT statement gives the number of words per card and the number of characters per word-20A4. Thus, with COMRNT dimensioned with 100 , the computer will read 100/20-5 cards. When running on a computer that has another word length, both the DIMENSION and the FORMAT statements must be changed to reflect the number of words and the number of characters per word in five 80 -colum cards. The user may want to change the number of COMRNT cards. If his FORMAT statement is compatible with che computer he is using, then a change in the dimension of COMENT will change the number of cards required.

M4. - $\operatorname{In} \operatorname{READ}(5, . .),. \operatorname{WRITE}(6, . . .),$. and $\operatorname{WRITE}(7, . .$.$) , the mmerals refer to$ the read, write, and punch units, respectively. One or more of these mumbers may differ from facility to facility. Because of the mumber of these statements, only one of each type was flagged. There are usually two ways to change the numeral assigning read, write, and punch units. One may replace the umerals in all read, write, and punch statements in the program so that they conform to the standard assigmenta at the facllity being used. The other method involves the use of job control cards to reassign the read function of the computer being used to unit 5, the write function to unit 6, and the punch function to unit 7.

M5. -The two statements flagged by this symbol refer to reading and writing magnetic tapes. Some computer centers have special and unique routines for accomplishing these tasks.

The status of each of the above posalble modifications, as well as questions regarding job control card requirementa, should be discussed whth congultants at the computer
center．A user should also have a consultant check the punching in the source deck of Fortran statements．Sueih symbols as the equal sign or parentheses are represented by
differenc punch combinations on different computers．A conversion routine is often availlable for coaverting the punching to a form compatible with the machine to be used．

Literature Cited

（1）Baver，L．D．，Gardner，W．H．，and Gardner，W．R．1972．Soll Physics．Ed． 4. 498 pp．，illus．John Wiley and Sons，New York，N．Y．
（2）Childs，E．C．1969．An Introduction to the Physical Basis of Soil Water Phenomens． 493 pp．，illus．John Wiley and Sons，New York，N．Y．
（3）Forsythe，G．E．and Wasow，W．R．1960．Finite Difference Methods for Partial Differential Equations． 444 pp．，illus．John Wiley and Sons，New York，N．Y．
（4）Greenspan，D．1968．Lectures on the Numerical Solution of Linear，Singular， and Nonlinear Differential Equations． 185 pp．，illus．Prentice Hall，Engle－ sood Cliffs，N．J．
（S）Yillel，D．1971．Sofl and Water Physical Princtples and Processes． $288 \mathrm{pp} .$, 11lus．Academic Press，New York，N．Y．
（6）Reisenauer，A．E．，Nelson，R．W．，and Knudsen，C．N．1963．Steady Darcian Transport of Fludds in Heterogeneous Partially Saturated Porous Media．AEC Res．and Develop．（Richland，Wash．）Rpt．HW－72335－PT2， 88 pp．，illus．
（7）Remson，I．，Hornberger，G．M．，and Kolz，F．J．1971．Numerical Merhods in Subsurface Hydrology with an Introduction to the Pinite Element Method． 389 pp．，illus．Wlley－Interscience，New York，N．Y．
（8）South，G．D．1965．Numerical Solution of Partlal Differential Equations． 179 pp．，illus．Oxford Untversity Press，New York，N．Y．

Appendix A：

STDY2－The Generalized Steady－State，Two－Dimensional Porous Media Flow Model

The general philosophy and the key con－ cepts of the model are presented in the preceding text．This appendix contalns detalled documentation of the computer program that embodiles the model．Included are（1）a program listing，（2）a flow chart for the program，（3）a glossary of input vartables arranged in the order of cheir
appearance in the input card deck，and （4）an alphabetical glossary of all other vardables used by the program．

The following program ilsting concains a mumber of flags to alert the user to possible modifications that may be necessary before moning the model on his computer．These modifications are discussed in the the text，Computer Facility Adjustments．

Program listing

STOYZ－STEADY STATE GENERAL GEOMETRY，GENERAL BOUNDARY CONDITICN mooEl．variagle delta x and ye layered sloping soils．

S．G．R．METHOO
3／18／74
CWE\＃F POSSTBLE NOOIFICATICM TYPE MI．

```
\(c\)
            DOUBLE PRECISION PNEL(60.70). KEAD(60.70). HEDA,NEOG,XA:XC.YA.YC
```

 1 . DELTA,AY,CY,AX,CX.YB,XE,ELEU*A*日*SINAL, COSAL-XOIST
 0002 PEAL XTAE. KAVE. LGTH
C**** POSSGBLE HODIFICATICA TYPE HZ.
C INTEGER CHKTH
C*E** POSSIGLE MODIFICATION TYDE M3.
c
0004
JSTOP(10). [EEG(10). IEND(10). JEETA(IO).JETA(10), ECLJ(IO).BCRJ(1O
). ISTART(10) IISTOP(IO).JEEG(IO).JENO(IO). IEETA(IO).IETA(IO).

ENOX (10), STARTX(10).STOPX(10), AEGY(IO).ENDY(10), INOOE(8).
JNODE(8), XO(12), DELK(12).KEND(10),KSTART(10).JERK(8.5).
IERK(8.5), NUFBRK(5). 日CL(10). ECR(10)

```
0005
    C
    C***** possigle modification iype mz.
    c
0006 CALL TASKTM
    c
    C*=**: POSSIELE MODIFICATION TYPE m4.
    c
00C7 S READ (5,10.END=15) ESTIME,KAPEAD, KARPCH.ITER,IFILE.
        1 IPSIGIILSIG.KTABLE.HCHNGE
0008 10 FGRHAT (F5.0.2I5)
        MFGRNAT (&
    C
    C##### POSSIELE MODIFICATICN TYPE MA
    C
OC10
0011
0012
    c
    C*#### POSSIGLE MOOIFICATION TYPE MZ -- NEXT TUO SYAYEMENTS.
    C
        2E ChKTM=0
        TTIME = 0.
        READ (5,30) LGTH, DEPTH.SLOPE.IMGTOP.IMGBOT.IMGLSD.IMGRSD.
            1 TNISIG,PHEOS.ELEV
        30 FORMAT (2F10.2.F5.2.515.2F10.2)
        PEAD (5.35) ITMAX.INTPRT.OMEGA.NOMEGA.NNOOES.IDELE.NCAROY.
        1 NCARDX.JGEON.IGEOM
        35 FORMAT (2[5.F10.2.715)
        NYCRO = NCAROY
        NXCPD = NCARDX
        ALPHA = ATAN(SLCPE)
        SINAL = SIN(ALPHA)
        COSAL = COS(ALPHA)
        ITMAXS = ITMAX
        IF (NNODES-NE.O) PEAD (5.40) (COORDI(K).COORDJ(K).K=1,NNODES)
        \triangleO FORHAT (8F10.2)
        READ (E.45) CCNENT
    C
    C***** POSSIBLE MOOIFICATICN TYPE M3.
    C
        45 FORMAT (2OA4)
        READ {5.50) LLNITS.KHPRNT
002日
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
cc2e
0027
        SO FORMAT (215)
        READ (5.55)(NUMLIN(NS).NUMBRK(NS),NS=1.LUNITS)
        5S FORMAT (IOI5)
            DO 60 NS = 1.LUNITS
                IF (HUHL{N(NS).EG.999) GO TO 60
                    IOUM = NUMLIN(NS)
                    LDUMA = NUMBRK (NS)
                READ (5,65) (XERK(K,NS),YQRK(K.NS),K=1. IOUMA)
                IF (KTABLE.EO.1) GO TO 6O
                READ (5.70) (PTAE(IT.NS),IT = {.IDUM)
                READ (5.70) (KTAB (IT,NS).IT = 1.IDUM)
    60 CONTINUE
    65 FOFMAT(BF10.2)
    70 FORMAT (EElO.3)
        REAO (5.75) (DTLGTH(MY), DELY(MY),MY = 1,NCAROY)
        READ (5.75) (OXLGTH(MX),DELX(MX),MX = 1.NCARDX)
    75 FORMAT (A(F10.2.F10.3))
    c
    C*** CONVERT X Y COCROINATES TO I.J COORDINATES ***********
    c
0047 NCARDY = NCARDY + 1
004E DELY(NCAROY) = DELY(NCAROY-1)
0049 OYLGTHLNCARDY1 = DEPTH
0050 NCARDX = NCARDX + 1
00\leq1
00:2
0
0C53
ELEVS = ELEV () ELEV = ELEV + DELY
OC5S JF (IMGTOP.EG.1) GO TO 8O
```

```
0056
0C57
0058
0C59
0 0 6 0
0061
0062
0063
0064
0065
OOSG
0067
006e
0069
0070
0071
0072
0073
0074
0c75
0076
0C77
0078
0079
0080
0081
OCB2
0083
0084
OC85
OC86
0C87
0c88
0089
0090
0091
0092
0093
0094
009E
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0209
0110
0111
0112
0113
|
0114
0115
0119
0120
0221
0122
0123
0124
0125
0126
0127
```

```
0116 170 IDUM = (XBAK\K,KS) + .00005) 1000.
```

0116 170 IDUM = (XBAK\K,KS) + .00005) 1000.
O117 IF (IDUM.EQ.O) GO TO 180
O117 IF (IDUM.EQ.O) GO TO 180
0118 \75 SUMX = SUMX + DELX(MX-1)
0118 \75 SUMX = SUMX + DELX(MX-1)

```
    IY(1)=1
```

 IY(1)=1
 GO TO es
 GO TO es
 BO JY(1)=2
 BO JY(1)=2
 .E5 OD 90 MY = 2.NCARDY
.E5 OD 90 MY = 2.NCARDY
IDUM = (DYLGTH(MY) - DYLGTH(MY-1)) / DELY(MY-1)
IDUM = (DYLGTH(MY) - DYLGTH(MY-1)) / DELY(MY-1)
JY(MY) = JY(MY-1) +IOUM
JY(MY) = JY(MY-1) +IOUM
IF (IMGEOT.EO.1) JY゙(NCAROY) = JY(NCARCY) + I
IF (IMGEOT.EO.1) JY゙(NCAROY) = JY(NCARCY) + I
MROW = \Y(NCARDY)
MROW = \Y(NCARDY)
IF (IMGLSD.EQ.1) GO TO 95
IF (IMGLSD.EQ.1) GO TO 95
\X(1)= =
\X(1)= =
GO TO 100
GO TO 100
G5 1X(1) = 2
G5 1X(1) = 2
10000 105 MX=2.NCAROX
10000 105 MX=2.NCAROX
IDUM = (DXLGTK(MX) - DXLGTK(MX-1)) / DELX(MX-1)
IDUM = (DXLGTK(MX) - DXLGTK(MX-1)) / DELX(MX-1)
IX(MX) = IX(MX-I) + IDUM
IX(MX) = IX(MX-I) + IDUM
IF(TMGRSO.EO.1) IX(NCAROX) = IX(NCAROX) \& 1
IF(TMGRSO.EO.1) IX(NCAROX) = IX(NCAROX) \& 1
MCOL = IX(NCAFDX)
MCOL = IX(NCAFDX)
DO 130 K = 1.NNCDES
DO 130 K = 1.NNCDES
SUNX = 0.
SUNX = 0.
mx=2
mx=2
IF (IMGLSD.EO.1) GO TO 110
IF (IMGLSD.EO.1) GO TO 110
I = 1
I = 1
G0 TD 115
G0 TD 115
10 I=2
10 I=2
115 IDUM = (COOROI (K) + .00005) 1000.
115 IDUM = (COOROI (K) + .00005) 1000.
IF (IDUM.EO.O) 60 TO I25
IF (IDUM.EO.O) 60 TO I25
SUMX = SUMX + DELX(MX-1)
SUMX = SUMX + DELX(MX-1)
IDUMA = (SUMX +.0000S) * 1000.
IDUMA = (SUMX +.0000S) * 1000.
I = I + I
I = I + I
IF (I.GE.IX(MX)) MX = MX + 1
IF (I.GE.IX(MX)) MX = MX + 1
IF (IDUMA.GE.IDUM) GO TO 125
IF (IDUMA.GE.IDUM) GO TO 125
GO TO 120
GO TO 120
INDDE (K) = I
INDDE (K) = I
125 CONTINUE
125 CONTINUE
10 CCNTINUE
10 CCNTINUE
SUNY = 0.
SUNY = 0.
MV = 2
MV = 2
IF (IMGTOF.EO.1) GO TO 135
IF (IMGTOF.EO.1) GO TO 135
J=1
J=1
GO TO 1.40
GO TO 1.40
135 J = 2
135 J = 2
140 IDUM = (COORDJ(K) + 00005) (1000.
140 IDUM = (COORDJ(K) + 00005) (1000.
IF (IDUM.EO.O) GD TO 150
IF (IDUM.EO.O) GD TO 150
SUNY = SUMY * DELY(MY-1)
SUNY = SUMY * DELY(MY-1)
IOUMA = SUMY +.00005)* 1000.
IOUMA = SUMY +.00005)* 1000.
J = J + I
J = J + I
IF (J.GE.JY(MY)) MY = MY + I
IF (J.GE.JY(MY)) MY = MY + I
IF (IDUMA GE.IDUN) GO TO 15O
IF (IDUMA GE.IDUN) GO TO 15O
GOTO 145
GOTO 145
JNODE(K) = J
JNODE(K) = J
CONT INUE
CONT INUE
NS = 1
NS = 1
160 IJK = NUMERK(NS)
160 IJK = NUMERK(NS)
DO 105 K = 1.【JK
DO 105 K = 1.【JK
SUMX = 0.
SUMX = 0.
Mx=2
Mx=2
IF (IMGLSD.EO.1) GO TD 165
IF (IMGLSD.EO.1) GO TD 165
I=1
I=1
GO TO 170
GO TO 170
165 I=2
165 I=2
IDUMA = (SUMX + .00005) % 1000.
IDUMA = (SUMX + .00005) % 1000.
I = L + I
I = L + I
IF (I.GE.IX(MX))MX=MX + = 1
IF (I.GE.IX(MX))MX=MX + = 1
IF (IDUMA.GE.IDUM) GO TO 180
IF (IDUMA.GE.IDUM) GO TO 180
GO TO 175
GO TO 175
18RK(K,NS)=I
18RK(K,NS)=I
IF (I.EQ.\muCGL-1) (ERK(K.NS) = MCOL
IF (I.EQ.\muCGL-1) (ERK(K.NS) = MCOL
CONTINUE
CONTINUE
DO 210 K=1.IJK

```
    DO 210 K=1.IJK
```

```
0128
0129
0130
0131
0132
0133
0135
0136
0137
0138
0139
0140
0141
01442
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0 1 6 0
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
017.6
0177
0178
0179
0100
0181
0182
0183
0184
0185
0186
0187
0108
0189.
0190
0191 29
0192
0193
0294
01.95
```

```
0134 195 190, 19% = (YERK(K.NS) +.00005) & 1000.
```

0134 195 190, 19% = (YERK(K.NS) +.00005) \& 1000.

```
    SUMY = 0.
```

 SUMY = 0.
 MY = 2
 MY = 2
 IF (IMGTOP.EQ.1) GO TO 190
 IF (IMGTOP.EQ.1) GO TO 190
 J = I
 J = I
 GO TO 195
 GO TO 195
 190 J=2
190 J=2
IF (1DUM.EQ.0) GO TO 2OS
IF (1DUM.EQ.0) GO TO 2OS
SUMY = SUMY + OELY(MY-1)
SUMY = SUMY + OELY(MY-1)
IDUMA = (SUMY * .0000S) F 1000.
IDUMA = (SUMY * .0000S) F 1000.
J=J+1
J=J+1
IF (J.GEaJY(MY)) MY = MY * I
IF (J.GEaJY(MY)) MY = MY * I
IF (IDUNA.GE.IDUM) GO TO 2OS
IF (IDUNA.GE.IDUM) GO TO 2OS
GO TO 200
GO TO 200
205 JGRK(X.NS) = J
205 JGRK(X.NS) = J
IF (J.EQ.MREM-l) JERK(K.NS) I MROW
IF (J.EQ.MREM-l) JERK(K.NS) I MROW
210 CONTINUE
210 CONTINUE
NS = NS + 1
NS = NS + 1
IF (NS.LE.LUNITE) GO TO 160
IF (NS.LE.LUNITE) GO TO 160
READ (S, 215) (STARTY(NSUGY), STOPY(NSUBY), BEGX(NSUBY), ENDX(NSUEY).
READ (S, 215) (STARTY(NSUGY), STOPY(NSUBY), BEGX(NSUBY), ENDX(NSUEY).
JBETA(NSUBY),JETA(NSUEY).BCLJ(NSUEY),8CRJ(NSUBY).NSUBY = 1.
JBETA(NSUBY),JETA(NSUEY).BCLJ(NSUEY),8CRJ(NSUBY).NSUBY = 1.
2 JGEOM)
2 JGEOM)
215 FORMAT(4F10.2.215.2F10.2)
215 FORMAT(4F10.2.215.2F10.2)
READ (5.220) (STARTX(NSUBX).STOPX(NSU日X). EEGY(NSUEX).ENOY(NSU日X).
READ (5.220) (STARTX(NSUBX).STOPX(NSU日X). EEGY(NSUEX).ENOY(NSU日X).
1 IBETA(NSUEX).IETA(NSUBX), BCUI(NSUBX), BCBI(NSUBX),FLUX(NSUEX),
1 IBETA(NSUEX).IETA(NSUBX), BCUI(NSUBX), BCBI(NSUBX),FLUX(NSUEX),
2 NSU日X = 1.IGECM)
2 NSU日X = 1.IGECM)
220 FORMAT(4F10.2..215.2F10.2.EIO.2)
220 FORMAT(4F10.2..215.2F10.2.EIO.2)
DO 222 NSU日Y = 1.JGEOM
DO 222 NSU日Y = 1.JGEOM
BCL(NSUBY) = BCLJ(NSUGY)
BCL(NSUBY) = BCLJ(NSUGY)
222 BCR(NSUBY) = BCRJ(NSURY)
222 BCR(NSUBY) = BCRJ(NSURY)
NSIG=1
NSIG=1
225 GO TO (230.240.245.255),NSIG
225 GO TO (230.240.245.255),NSIG
230 ICHK = IMGTOP
230 ICHK = IMGTOP
MCT = JGEOM
MCT = JGEOM
DO 235 MY = 1.NCARDY
DO 235 MY = 1.NCARDY
KD(MY) = JY(MY)
KD(MY) = JY(MY)
235 DELK(MY) = DELY(MY)
235 DELK(MY) = DELY(MY)
GO TO 260
GO TO 260
240 MCT = 1GEOM
240 MCT = 1GEOM
GO TO 260
GO TO 260
245 1CHK = IMGLSD
245 1CHK = IMGLSD
MCT = IGEOM
MCT = IGEOM
DO 250 MX = 1.NCAROX
DO 250 MX = 1.NCAROX
KD{MX) = IX(MX)
KD{MX) = IX(MX)
250 DELX(MX) = DELX(MX)
250 DELX(MX) = DELX(MX)
GO TO 260
GO TO 260
255 MCT = JGEOM
255 MCT = JGEOM
260 DO 370 NCT = 1.MCT
260 DO 370 NCT = 1.MCT
Gם TO (265.270.275.280).NSIG
Gם TO (265.270.275.280).NSIG
265 SOUMA = STARTY(NCT)
265 SOUMA = STARTY(NCT)
SQUMB = STOPY(NCT)
SQUMB = STOPY(NCT)
GO TO 285
GO TO 285
SOUMA = EEGY(NCT)
SOUMA = EEGY(NCT)
SDUMB = ENOY(NCT)
SDUMB = ENOY(NCT)
GO TO 285
GO TO 285
275 SDUMA = STARTX(NCT)
275 SDUMA = STARTX(NCT)
SDUME = STOPX(NCT)
SDUME = STOPX(NCT)
60 50 2e5
60 50 2e5
SDUMA = BEGX(NCT)
SDUMA = BEGX(NCT)
SDUMS = ERDX(NCT)
SDUMS = ERDX(NCT)
KSIG=0
KSIG=0
SUNY = 0.
SUNY = 0.
I=2
I=2
IF (ICHK.EO.1) GO TO 290
IF (ICHK.EO.1) GO TO 290
J=1
J=1
60 TO 295
60 TO 295
J=2
J=2
290 J = 2
290 J = 2
295 IDUM = \SOUMA +.00005\ = 1000.
295 IDUM = \SOUMA +.00005\ = 1000.
IF (IDUH.EO.O) GO TD 305
IF (IDUH.EO.O) GO TD 305
300 SUMY = SUMY * DELK{I-1)
300 SUMY = SUMY * DELK{I-1)
IDUMA = (SUMY *.00005) \& 1000.
IDUMA = (SUMY *.00005) \& 1000.
J = J + 1

```
        J = J + 1
```

```
0196
0197
0198
0199
0200
0201
0 2 0 2
0203
0204
0205
0206
0207
020日
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
    c
    C##### POSSIBLE MDDIFICATION TYPE m5.
    c
    3ES 00 390 LCT = 1.IFILE
    390 READ(9) PHED
        GO TO 380
    c
    C*## INITIALIZE PHED ARRAY,****#####*
    C
    395 IF(INISIG.EG.O)GO TO 410
        ZHED = -ELEV
        MY = 1
        J = 1
    400 00 405 r = 1. HCQ
    40S PHED(I.J) = ZHED
            J = J + 1
            IF (J.GT.MROW) GO TO $20
            ZHED = ZHED * DELY(MY)
            IF (J EEQ.JY(MY+1)) MY = MY + 1
            GOTO 400
    410 DO 415 J = 1.WRCY
                00415 I = 1.MCOL
                    PHEO(I.J) = PHEDS
    415
            GO TO 830
C
C** SET H-SPECIFIED BOUNOARY CONOITIDNS AT ENOS OF ROMS.
```



```
C
    425 00 445 NSU8Y = 1.JGECM
            IJK = JSTART(NSUBY)
            KSTOP = 」STCP(NSUBY)
            I = IBEG\NSUEY)
            LSTOP = IEND(NSUEY)
                IF (JBETA(NSU8V)-1) 430.432.426
```

0258	426	MY	$=2$
0259	427	IF	（IJK．LE．JY（NY））GO YO 428
0260		MY	＝MY＋ 1
0261		60	TO 427
0262	428	D0	$429 \mathrm{~J}=1 \mathrm{JK,KSTOP}$
0263			OHED（I－1．J）＝ECL（NSUEY）
0264			IF（JeEC\＆JY（MY）MY＝MY＋ 1
0265	429		BCL（NSUEY）$=$ ECL（NSUBY）＋OELY（HY－1）
0266		$G 0$	TO432
0267	430	DO	$431 \mathrm{~J}=\mathrm{IJK.KSTOP}$
0268	431		PHED【【－1．J）$=$ BCLJ（NSUBY）
0269	432	IF	（JETA（NSUBY）－1）437．445．433
0270	433	MY	$=2$
0271	434	1F	（IJK．LE®JY（MY））GO TO 435
0272		MY	$=M Y-1$
0273		G0	TO 434
0274	435	－0	$436 \mathrm{~J}=\mathrm{IJK.KSTOP}$
0275			PHED（LSTOP＋ $1 . J)=$ ECR（NSU日Y）
0276			IF（J．EO．JY（MY）J MY＝MY＊
0277	436		BCR（NSUBY）$=$ ECR（NSUBY）\＆DELY（MY－1）
0278		60	TO 445
0275	437	00	440 d $=1 J K \cdot K S Y O P$
0280	440		PHED〈LSTOP＊1＊J）＝BCRJ（NSUBY）
0281	445	CON	T INUE

C
C\& \ddagger 弗 SET H-SPECIFIED EOUNDARY CONDITIDNS AT ENDS OF COLUMNS.

C\#\# SET FLUX ANO IMPERMEAELE BCUNDARY CONDITIONS AT TOPS OF COLUMNS

c
$\triangle 5000545$ NSUBX $=1$. IGECM.
IJK = ISTART(NSU日X)
KSTOP = ISTCP(NSUEX)
J = jeEG(NSU日X)
LSTOP = JEND(NSUEX)
IF (IBETA(NSUBX).EO.O) GO TO 490
MY = 2
460 IF (J-JY(MY)) 470.475.465
465 MY $=$ MY +
60 TO 460
$470 \quad \mathrm{DEL}=2 . * \operatorname{DELY}(M \forall-1) *$ COSAL
60 TO 480
475 OEL = (DELY(MY-1) + DELY(MY)) COSAL
$480 \quad 004051=1 J K, K S T D P$

GD TO 500
490 IF (MSIG.NE.O) GO TO 545
DO 495 I = IJK.KSTDP
PHED(I.J-1) = BCUT(NSU日X)
$\begin{array}{ll}495 & \text { QHED (I.J-1) }=\text { BCUTA } \\ 500 & \text { IF (M5IG.NE.0) GC TO } 545\end{array}$
tF (IETA(NSU日X)\&EQ\&O) GO TO 535
」 = LSTOP
$M Y=2$
505 IF (J-JY(MY) 520.515 .510
$M Y=M Y+1$
GO TO 505
OEL $=(D E L Y(M Y-1)+D E L Y(M Y))$ COSAL
$520 \quad$ GO TO 525 \quad DEL 2. © DELY(MY-1) COSAL
$525005301=1 J K . K S T O P$
PHED(I.J+1) = FHED(I.J-1) + DEL
GO 70545
535 DO $540 I=1 J K, K 5 Y A P$
PMED (I LLSTOP + 1) = ECEI(NSU日X)
CONTINUE
IF (MSIG.EO.I) GO TO 1085
C

c

0319
0320
$550 \mathrm{MSIG}=1$
WAITE (6.555) CCMENT
c
C＊＊＊＊＊POSSIBLE MODIFICATION TYPE M3．
c
Eऽ5 FORMAT（1H1．20A4／（20A4）） WRITE（6．560）
560 FORMAT（IHO， 6 HESTIME $5 X$ ．6HKAREAD $5 \times$ ． 6 HKARPCH $5 X$ ．AHITER SX．
1 SHIFILE $5 X .5 H I P S I G$ SX．5HILSIG SX． 6 HKTAELE 5X． 6 HHCHNGE ）
WRITE（ 5.565 ）ESTIME，KAREAD．KARPCHIITER．IFILE．IPSIG．
1 ILSIG．KTABLE．MCHNGE
0325
0326
0327
0328
0329
0330
0331
0 コニ2
0333
0334
0335
0336
0337
0338
0339
0.340

0341
0342
$0 こ 43$
0344
0345
0346
0347
0348
0345
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
036ϵ
0367
036 日
0369
0370
0371
0.372

0373
0374
0375
0376
FORMAT（IH F6．O．IG．2III．IB．3110．I12） WRITE（ 6.570 ）
 IT SX，6HIMGLSD 5X．6HIMGRSD 5X．6HINISIG 5X．5HPHEDS 5X．4RELEV \} ■RITE（ 6.575 ）LGTH．OEPTH．SLDPE．INGTOP．IMGEOT．IMGLSD．IMGRSO． 1 INISIG．PHEDS．ELEVS
575 FORMAT（1H FB．2．F10．2．FB．2．110．4111．F13．2．F9．2） ๒RITE（6．5日0）
580 FORMAT（1HO SHITHAX SX．GHINTPRT $5 \times .5 H E M E G A ~ 5 X, G H N G M E G A ~ S X, G H N N D O E S ~$
 WRITE \｛G．5ES\} ITMAX,INTPRT, OMEGA, NONEGA, NNODESVIDELE,NVCRD. 1 NXCRD，JGEOM．IGEOM
SES FORMAT（1H 14．110．F11．2．2110．3112．2110） WRITE（6．590）
590 FOAMAT（IHO．З7HGEEMETRY AND BOUNOARY CONDITION DATA， VRITE（6，595）
595 FGRMAT（ 1 HO AHMCOL $5 \times .4$ KMROV） WRITE（6．600）MCOL．MAOM
600 FORMAT（1H 14．191 WRETE（6．605）
605 FGRMAT（ $1 H 0,20 H F O R$ RCM SUESECTIONS ） ■RITE（6．610）
610 FORMAT（ 14 SHNSUBY $5 X . G H S T A R T Y ~ S X . S M S T O P Y ~ S X, ~ 4 H B E G X ~ S X . ~ 4 H E N D X ~ S K . ~$ 15HJEETA 5X．4HJETA $5 X .4 H E Q J$ 6X．4HECRJ）
ĐRITE（6，615）（N．STARTY（N）STOPY（N），BEGX（N），ENOX（N）．JRETA（N）． 1 JETA（N），日CLJ（N），BCRJ（N），N＝1•JEECM）
615 FORMAT（1H（3．F13．2．F10．2．2F9．2．18．110．2F10．2） WRITE（6．E20）
620 FDRMAT \｛1H SHNSUBY $3 X, G H J S T A R T$ 3X．5HJSTOP $3 X .4 H I B E G$ 3X．AHIEND I GRITE（6．625）（NSUBY，JSTART（NSUBY）•JSTOP（NSUBY）•IEEG（NSUBY）． 1 IEND（NSURY）NSUQY＝1．JGEOM）
C25 FORMAT（1H I3．IS．（E．2IE） WR1TE（S．630）
630 FORMAT（ 1 HO．23HFOR CCLUMN SUBSECTIONS ） wRITE（ 6.635$)$
 ISHIBETA 5X．AHIETA $5 X .4 H E C U I ~ 6 X .4 H E C E I ~ 5 X .4 H F L U X I ~$ WRITE（6．G40）（N．STAFTX（N）．STQPX（N）．BEGY（N）．ENDY（N）．IEETA（N）I ！ IETA（N），日CUI（N），ECEI（N）．FLUX（N），N＝1，IGEOM）
G4O FORMAT（LH I 3．FI3．2．F10．2．2F9．2．IB．I 10．2F10．2．E10．2） WOITE（6．645）
 WRITE（ 6.625 ）（NSU日X．$\{$ START（NSUEX），ISTOP（NSUBX）JBEG（NSUBX）． 1 JEND（NSUBX），NSUEX $=1$ IGEOM） WRITE（ 6,650 ）
GSO FORMAT 11 HO SSHVARIABLE MESH INCREMENT DATA FOLLOM IN TRIPLETS AS 1XYZ ） WRITE（6．655）
GS5 FORMAT（IH SX．STHWHERE $X=$ MEASURED DISTANCE FRON AXIS（DXLGTH OR IDYLGTHI．） GPITE（6．6501
660 FORMAT（1H $11 \times, 36 H Y=$ ROW OR COLUMN NUMBER（JY OR IX）） WRITE（6．665）
GES FORMAT（IH $1 I X, 3 G H Z=$ INCFEMENT LENGTH（CELY OR OELX）） WRITE（6．670）
670 FORMAT（IM GHVERTICAC ） WRITE（ 6.675 ）（DYLGTH（N）．JY（N），DELY（N）．N＝1．NCAROY）
ธ75 FORMAT（1H 4 （F8．2．I5．F8．3． $8 \times$ ）） MRITE（6．680）
GEO FORMAT（IH IIMHCRIZONTAL ） WRITE（G．675）（DXLGTH（N）•IX（N），DELX（N），N＝1，NCARDX） DO 755 NS $=1$ LUNITS

IF（NUMLIN（NS）．EO．999）GO TO 750
VRITE（6．685）NS

C

c

0441 0442 0443 0444 0445 0446 0447 044 E 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0661 0462 0463 0464 0465 0466

930 YOIST $=0$ ． IF（IMGTOP．EO．1）YDIST $=-\operatorname{DELY(1)}$
－$\quad M Y=2$
$J=1$
$3351=1$
$M x=2$
XDIST $=0$ 。
IF（IMGLSD．EQ．I）XOIST＝－DE！X（i） NS $=1$
$940 N=2$
845 IF（T．LE．TARK（N．NSI）GO TA BEO
$850 \mathrm{~N}=\mathrm{N}+1$
IF（N．LE．NUMERK（NS））GO TO 845
855 NS $=$ NS +1
IF（NS：LE．LUNITE）GO TD 840 GO TO 870
B60 GRAO＝（YERK（N．NS）－YBRK（N－1．NS））（XGRK（N．NS）－XBRK（N－1，NS）） ELIJ $=$ YBRK $(N-1$ ．NS）$+(X D I S T-X E R K(N-1 . N S))$（ GRAD IF（YOIST•LEAELIJ），GO TO BBO
E65 NS＝NS＋1 IF（NS\＆LEーLUNITS）GO TO 840
870 WRITE（6．875）
E7S FGRMATIIHO $27 H$ SOIL UNIT INPUT CATA EAROR ） LSIG $=1$ GOTO 1152
BEO IF（NUMLIN（NS）．NE．999）GOTO B8S
C
c
C
c
\＃＊＊ REQUIRED．

0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
$047 E$
0479
0480
0481
0482

0483
0484
0485 0486 0487 O4日E 0489 0490 0491
0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505
QEQUIRED.
IF (MSTG.EQ.O) GO TO 425
60 TD 980
885 IF (PHED (I.J).GE.O.) GO TD 895
$1 T=$ NUMLIN(NS)/2
IF (PHED(I.J) = PTAB(IT.NS)) 890.930.900
$890 L=5$
GO TO 905
895 HCON(1,J) $=$ KTAB(1,NS)
GO TO 935
$900 \mathrm{~L}=1$
$9051 T=L$ FNUMLIN(NS)/8
IF (PHED(I.J) - PTAB\&IT.NS)) 910.930 .925
$910 L=L+1$
1F (L.LE.8) GO TO 905
915 解ITE (6.920)ITER.I.J
920.FORMAT (IHO.39HK TABLE LIMITS EXCEEDED. ITERATION NO. ISMSH I 3
1 I5.5H J = 15)
LSTG $=1$
GO TD 1180
$9251 T=1 T \cdot-1$
IF (PKED(I.J).GT.PTAE (IT.NS))GD TO 925
930 FACTOR $=$ (PHED(I•J) - PTAB(IT, NS)) / (PTA日(IT+1,NS) -PTAE(IT•NS))
HCON(I.J) = KTAB(IT.NSI + FACTOR (KTAB(IT+1,NS) - KTAB(ET,NS))
$035 \mathrm{I}=1+1$
IF (I -MCOL) 550.940 .945
940 IF (IMGRSO.EO.1) GO TO 955
GO TO 950
$945+=J+1$
IF (J.GT.MROW) GO TO 975
IF (J.EO.MROW.ANO.IMG日CT\&EOAI) GO TO 日 35
YDIST $=$ VDIST 4 DELY(MY-I)
IF (J.GE.JY(MY)) MY = MY +1
GO TO 835
950 KOLST $=$ XDIST + DELX (MX-1)
IF (I.GE.IX(MX)). $M X=M X+1$
IF \{I.GT.IBAK(N.NS) GO TO 850
ELIJ $=$ YERK (N-1.NS) * (XOIST - XBRK(N-IBNS)) GRAD
IF (YDIST.GT.ELIJ) GOTO 865
955 IF (PHEO(I,J).GE.O.) GO TO 895
IF (PHED(I.J) - PTABIIT.NS) 960.930 .970

```
0506 960 1T = 1T + 1
0507
0508
O509
0510
0\leqslant11
0512
0513
0514
    C
    C*** 㑤IN EOUIVALENT OF mOD-LDOPN SOLVING FINITE DIFFERENCE
    C EQUATION FOR EACH NODE OF MESH.**********
    980 DO 1080 NSUEY = 1.JGEOM
    C
    C*## EEGIN A ROW SUBSECTION.**********
    c
0516
0517
0S18
0519
    C
    C### LDCATE DELTA x AND DELTA Y AT TOP AND LEFT SIDE OF THE
    C ROM SUBSECTION.**#######*
    C
0\leq20
0521
0522
0523
0524
0525
0526
0527
0528
0<25
0530
0531
0531
0\leqslant32
0533
0534
0535
0536
0537
0\leq3E
0539
    MY =2
    ge5 IF (J.LE.JY(KY)) GO TO 990
    MY =MY + 1
                GO TO 9.5
    990 MX=2.
    995 IF (IJK.LE.IX(MX)) GOTO 1000
            NX = MX + 1
                    GO TO S95
    1000 GO TO 595 MXMST = MX
    c
    C*** START A ROW WITHIN THE SUESECTION,**###*****
    C
    1005 1 = I JK
            KBETA = JEETA(NSUEY)
                    KETA = O
                    MX = MXMYST
                    DELYM = OELY(MY-1)
                    IF (J.LT.JY(MY)) GD TO 10:0
                    DELYP = DELY(MY)
                    MY = MY + 1
                    MY = MY + 
    1010 DELYP = OELY(MY-1)
    1015 IF (J,NE.KSTOP) GO TO 1045
    c
                J = JSTART(NSUBY)
                KSTOP = JSTOP(NSUBY)
                    IJK = IBEG(NSU日Y)
                    LSTOP = IEND(NSUEY)
    IF'(IT.GTANUMLIN(NS))GO TO 915
    IF (PKED(I;.J) - PTAE(IT,NS)) S60.930.965
    965 1T = 1T - 1
    G0 YO 930
    970 1T = IT - 1
        IF (PHED(I.J).GT.PTAB(IT.NS)) GO TO g7O
        GO TO 930
    975 1F (MSIG.EQ.0) GO TO &25
    C
    C#** SET IMPERMEABLE ROUNDARY CONDITION. IF REQUIRED. AT BOTTOM
    C OF COLUMNS DRIDR TO SWEEPING LAST ROW OF SUBSECTION.**########
    C
0540
    DO 1040 NSUEX = I.IGEOM
```



```
0541 1020 IF (J.NE.JENO(NSUBX)) 60 TO 1040
                    IF (J.EO.JY(MY-1)) 60 TO 1025
                    DEL = 2.* DELY(MY-1) * COSAL
                    OEL = 2.**
                                DEL = COELY(MY-2) + DELY(MY-1)] * COSAL
0542
0543
0544
0544
0545
0546 1025
```



```
    0547 1030 
0542
    1030 llols, IOUMA = (START(NSUBX)
0540
    1030 llols, IOUMA = (START(NSUBX)
```



```
0550 1035 CONTINUE
    c
```



```
    C*** CALCULATIONS FOR INDIVIDUAL NODE WITHIN A ROW STARTS HERE****早早早㐘*
    C
0552 1045 DELXM = DELX(MX-1)
0553 IF{I|LY&{X(MX}) 60 T0 1050
0554
0554
0555
OELXP = DELX(MX)
055E
MX = MX + 1
GO TD 1055
```



```
    C
    1055
    YA =.5 (HCON(I.J) + MCON(I.J-1))
    YC= 5 (HCON(I.J) + HCON(I.J*I))
    XA =. 5 { {HCON{I.j} + MCON(I-I,J))
    xC=-5 {HCGN(I.J) & HCCN(I*I.J)}
            HEDA = PHED(I-I.J)
            HEDB = PHED (I+1.J)
            IF (KEETA,EO.O) GO TO 1000
            KEETA = 0
            XA = XC
            HEDA = HEDS * (DELXM + DELXP) & SINAL
            GOTD 106S
            IF (KETA.EO.O) GO TO 1065
            XC= KA
            HEDB = HEDA - (DELXM * DELXP) & SINAL
    1OES AY = YA/ DELYM
            CY = YC / DELYP
            AX = XA/ DELXM
            CX = XC/ OELXP
            YB = (DELYP YA + DELYM * YC) / (DELYM EELYP)
```



```
            EY = 2. / (DELYM * DELYP)
            EX = 2./ (DELXM * DELXP)
            DELTA = {&HCON(I.J-1) - MCON(I•J+1)}/ (DELYM + DELYP)} *
                        COSAL + (HCON(I-1.JI - HCON(1+1.J)) / (DELXM + DELXP)) &
        1 COSAL
    C
```



```
    C
        1 {EX (AX HEDA & CX * HEOB) +
                        EY (AY PHED(I:J-I) + CY PMED(IPJ+I)) + DELTA) /
        2 EY* (AY &HED(I&J
            I=I + I
            IF (I-LSTOP) 1045.1070.1075
            1070 KETA = JETA(NSUEY)
            GO TD 1045
            1075 J = J + I
            IF (J.LE.KSTOP) GO TO 1005
            1080 CONTINUE
0\subseteq82
0583
0584
05E5
0586
0587
0589
0589
        PHED(I.J) = (I.- OMEGA) PHED(IIJ) + OMEGA *
            GO TO 450
            C
```



```
    C&F# CHECK WHETHER TO PRINT. ON CPU TIME. AND ON NUMBER OF
```



```
    C
        1085 IPRINT = ITER/INTPRT
        IPRINT = INTPPT IPRINT
        \F (ITER.NE.IPRINT) GO TO g2S
        IF (NNODES.EO.O) GO TO 1090
        WRITE (G.EZO) ITER,(PHED(INODE(K)&JNODE(K)):K=1.NNODES\
    c
    C***** POSSIGLE MDDIFICATION TYPE M2 -- NEXT 3 STATEMENTS.
    C
        1090 CALL TASKTM(CHKTM)
        TTIME = TTIME + CHKTM
        TIME = TTIME/, 1000.
        IF (TIME.GE.ESTIME) GO TO 1100
        IF (TTER.LT.ITMAX) GO TD 825
        1F IILSIG.NE.1) GO TO 1110
        WRITE (G.1095) ITER
        1095 FORMAT (1HO.33X.33HFAESSURE HEAO CISTRIEUTION AFTER IS.
            1I2H {TERATIONE )
        LSIG=3
        GE TO 1180
        1100 LSIG=4
        MRITE (6.1105)
        1105 FORMAT (IHO IGHESTIME EXCEEOED )
        1110 IF (KARPCH.NE.1) GO TO 1145
```

c

C
0809
C
C\#\#\#\#* POSSIBLE MODIFICATION TYPE M4.
c
0610
0611

0613 GRITE (6.1125)
06141125 FORMAT (IHO,IGHRESYART PUNCHED)
OE15 GO TO 1140
c
C*** POSSIBLE MOOIFICATIGN TYPE MS.
c
1130 WRITE (10JPHED
GRITE (6,1135)
0617
061 H
0619
0620
0621
0622
0623
$0+24$
0625
0626
1133 FORMAT (IMO. 24 HRESTART WRITTEN ON TAPE)
1140 IF (IDELE.NE. I.OF.TIME.GE.ESTIME) GO TO 1145
IDBLE $=0$
ITMAX $=$ ITMAX -15
GO TD 825
1145 URITE (6.1150) TIME
1150. FORMAT (1HO.17HTOTAL CASE TIME =.F10.6.1OH SECONOS.)

1152 IF (NOMEGA.NE.O) GO TO 1205
IF (LSIGAEO.1) GO TO 5
c

C
c

C

```
0649
1180 DO 1185 J = 1.MFOW
    0050 1185 GRITE (G.1190) J.(PHED(I.J).1 # 1.MCOL)
0651 1190 FORMAT (1H IJ.2x,10012.5/(6x.10012.5))
0EE2 IF (LSIG -2) 11@2.785.1200
0653 1200 LF. (LSIG.EQ.4) GO TD 5
0654 GD TO 1110
    C
```



```
    c
OESE 120S READ (5.1210) CNEGADITMAX
0656 1210 FORMAT (F5.2.I5)
0657 IF IITMAX.EO.O) GO TO 5
065e IF {LSTG.EQ.1) GO TO 1205
0659 GRITE (6.1215) OMEGA.ITMAX
0660 1215 FORMAT (1HO 22HCONTINUE WITH OMEGA = F 5.2.10H. ITMAX = IS)
0651 GO TO 825
0662
        END
```

 \(J=1\)
 $M Y=2$
1155 = ELEV * COSAL
$I=0$
$m x=2$
XOIST $=0$
IF (IMGLSD.EQ.I) XDIST = -OELX(I)
1160 E XDIST F SINAL
$1=1+1$
IF (IEGT.MCOL) GO TO 1165
XOIST $=$ XOIST + OELX(MX-1)
IF (IX $M X$) © EO.I) $M X=M X+1$
HEAD (I.J) $=$ PHED(I.J) $+A+\square$
60 TO 1160
1165 」 = J 1
1F (J.GT.MRO: 60 TO 1170
ELEV = ELEV - DELY(MY-i)
IF (JY(MY)EEG.d) MY= MY + 1
GO 5O. 1155
1170 WRITE (6.1175)
1175 FORMAT (IHI.46X. 2 BHHYORAULIC HEAD DISTRIEUTION)
LSIG $=4$
c
C

Figure 12.-Flow charc for Stop2.

Figure 12.--Continued.

Flow chart

The flow chart (fig. 12) contains the major branching points in the STDY2 program listing. A major branch, in this context, significantly shifte the flow of the program from one part of the listing to another.

The numbers over each box of the flow chart key the operation(a) described in that box to statements in the program listing. When the number key over a box consists of the end points of a range of numbers, the program processes the included statements in the order of cheir appearance as modified by local branching to nearby statements.

Glossary of input variables

Input variables are defined in the following glossary in the order in which they must appear in the input data deck. As noted in their explanations, not all card groups are needed for every case.

Figure 13 shows punchcard layouts for the input data. The format number at the left end of each card serves to $1 d e n t x f y$ it with an idencically numbered format statement in the STDY 2 program listing. Each layout Image

Text continues on page 45.

Figure 13.--Itoput data layout for STDV2.

Figure 13.--Continued.

Figure 13.--Continued.

Figure 13.--Contfinued.

represents a group of one or more cards. They are in the order of their appearance in the input deck, whick is also the order in which they are discussed in the glossary. Some of chese varlables were also discussed in the text and their use illustrated in the sample problem. Besides variable names, Fortran formars are given in the figure and the glossary. A sample entry of each variable is shown in figure 13.

The input deck for any given run may include the data for as many cases as the user desires. Simply add one case behind another, that is, card group 1 for case m follows inmediately behind the last card group of case $\mathbb{m}-1$.
Card Group 1-A giagle card. Must be presenc in inpur deck for processing each case. Pormat (F5.0,8L5).
ESTIME - Time in seconds that user allots for the processing of a case withia a compucer's ceatral processing unit. It obtalns rescart data before a run scops when it exceeds the time limit given on the fob control card. This latcer limit must be greater than ESTIME by at least the amounc of cime necessary to compile the rus. Caution, The frequency of time checks depends on INTPRT--see card group 3. When several cases follow each other in a single run, the job coocrol card time should exceed the sum of the several ESTITE valueg. CAUTION, When a run encers an endless loop because of an input daca etror, ESTME cannot be checked. See the discussion of ITMAX, card group 3, for the procedure co follow when initializing a case-or when making a major change in inpur dacs.
KAREAD $=1$ means restart data are read in.
$\nmid 1$ means case starts frow one of program-generated initial PAED-arrays.
RARPCH $=1$ means restarc data are punched or written on magnectc cape at the end of case procesaing. * 1 means restart daca are nor saved in punched card or magoecic tape form.
KTER - Izeracion number. Ics iapuc value should be 0 when acarcing zo solve a new case. Otherwise, ic should have the value of the number of the iteration at the end of which the restarc data were produced. The value of ITER is not cricical to the solucion, but the number of iterations processed by a run is ITMAX-ITER. So, if one locreases ITMAX wichout increasing ITER, he will get more iteracions than he wancs or else ESTME will be exceeded.
IFILE $=0$ for card readin, card puachout of restart PBed data.
\$ O for cape readin, tape readout of rescart PRED daca.
A given input cape may have several files or PHED-arrays. 5
The value assigned TFILE for reading that tepe may be decermined as follows: TFILE $=\mathrm{R}-\mathrm{S}$

[^5]where $R=$ the number representing the position on che cape of the desired file.
S - the number representing the position on the tape of the file read in by che precediag case (has the value zera for che firsc case of a run).
For example, if the first case of a new run should atart from che PEED-array of the first file, then IfILE $=1-0=1$. If che second case must then use the fourth file, IFLLE $=4-1=3$. Again, if the third case should use che sixth file, 12 ILB $=6-4=2$. When the faitial PHEDarray is set up under control of LXISIG, card group 2, ipile mat either be 0 so produce punchcard restart or any number other than 0 to produce tape rescart.
IPSIG $=1$ to priat PHED-distribution with inftialization daca.
$\ddagger 1$ to suppress priat of PHED-distribution during initialization.
LISIG $=1$ to priat PHED-distribution at end of cage. $\$ 1$ co suppress print of PBED-distribution at end of case.
KLABLE $=1$ to cecain $h-K$ cable frow the mandiacely preceding case of che same run for use in processing a new case.
$\$ 1$ to read new $h-K$ table before processing a case. KTABLE must be 0 or some value other than 1 for first case of rua.
MCHNGE = O means chat rescart data have not been modified in any way after they were punched at the end of the preceding run, so chat boundary conditions in the deck are compatible with the pressuce head diatribution of the deck.

* O mesns chat rescart data to be read in have been processed chrough program CARRY or modified in some other way such chat boundary conditions must be set during initializacion of the new rub. MCRNGE may also be given a value ocher chan 0 for a nommally restarting run when the user wanta to priat che starting distribution of R-values. See KHPRNT, card group 6.
MCENGE has no mesulag for a run not starting with a restart PHED-array.

Card Group 2 - A single card. Must be present in loput deck for procesaing each case. Pormat (2P10.2,F5.2,5IS, 2F10.2)
LGTH - Perpendicular distance from y-axis to the rightmost boundary of the flow syaten. See page 6 Solurion Meah and the Carresian Coordinate Syster.
DEPTE - Perpendicular discance from 2 -axis to the lowest boundary of the flow system.
SLOPE - Tangenc of the angle between the x-axis and the hortzontal.
IMGTOP = 1 if any part of cop cross section boundary coincident with s-axis is impermeable or is subject to a non-zero flux.
$\$ 1$ If all parts of the cop boundsry are subject to a specified pressure head.
IMGBOT = 1 if lower cross section boundary (or les lowest segment, if complex) is impermeable. $\$ 1$ othervise.
IMGISD $=1$ if any part of left cross section boundaty coincident with che y-axis is impermeable.
$\$ 1$ otherwise.
IMGRSD = 1 if cight cross section boundary (or its rightuost segment, if complex) is impermeable.
71 otherwise.
INISIG $=0$ to gederate fnitial PRED-array in which PHED = PHEDS ac every node in solurion mesh, excepe chose on h-specified boundaries.
\% 0 to generace initial PRED-array which is smoothly diatributed in the y-direction beginaing with -ElEV on the top boundary and decreasing by incremencs of Δy from row to row.

PHEDS - The beginning PHED-value for each node in the solucion mesh except chose on n-specified boundaries when beginotag the procesaing of a net case. Has no meaning for restarts. Has no meaning if INISIG - 1.

ELEV - Blevation above a danm of che origin of coordinates of the Carcesian coordinate system. It is of cen convenient so sec the dacum at the lower left-haad corner of che cross saction, but ita posicion may be complecely arbicrary. See TNISIG.
Card Group 3 - A gingle card. Must be present in input deek for processlug each case. Formar (215, P10.2,715)
ITMAX - ITMAX-IIER is the number of iterations to be processed during a given run. When this number is reached, if RARPCE - 1 (card group 1), rescart data are obcalued in cards or on tape. This is the best way to stop the procesaing of a case. Also see the definition for IDBLE below. If che case is segmented to try differenc values of OMEGA, this ts the number of iteractions allocted to the first OMBCA value. The value given ITMAX should be a multiple of that given INTPRT. When starting a dew case or when rakiog such major changes in input data as changiog Δz and Δy, ITMAX should be given a small value, say from i to 3, to obtain just enough Iterations to make sure no errors have been made in the input data. For such a run, the cime lumit on the job control card should be set at only 5 seconds or so to assure that an input error that throws the program into an endless loop does not result in the use of excessive computer cime.
INTPRT - The number of iteracians becween printouts of pressure heads for selected podes. Time checks (for comparison with ESTDIB, card group 1) and 1teracion checks (for comparison with ITMAX) take place only after such printouts. Sven if no nodes are selected for princlog (gee NHODES), DNTPET muar be given a value to control the frequency of checking ESTITE and ITMAX.
OMEGA - The overrelaration factor (ω). If the case is segrented and several u-values tested, this to the initial u-qalue.
MOMRGA - 0 for nomal; unsegmented case.

+ 0 for case segmerted for changing relaxation factor (ω).
When RABPCH $=1$, NOMEGA $\& 0$ reaules in a programdefined file of gazd decs ta cards or maguetic cape for each value of w.
moDES - The number of nodes selacted for priating under conciol of INTPRT. May range from 0 to 8.
DBLB = 1 means that two qets of restart data 15 icersclors apart are wanted for convergence checking by program COMPAR. In thls event, 15 iteracions in excess of the given ITMAX are processed. RARPCB tant have the palue 1.
$\$ 1$ means chat case stops ac che ead of ITMAS iterarions with only one restart data sec (the latter 18 obtained only if KARPCB - 1).
NCARDY - The maximum value of KY , ctat is , the muber of palis of DYLGTH (MY), DELY(MY). See card group 9.
NCABDX - The maximum value of MX, that 14 , the number of palzs of DXDGTE(MX), DELX(MX). See card group 10 .
JGEOM - The number of row subsecclops into which a flou regiou has been divided. See card group 11.
IGEOM - The number of colum subsections into which a flow region hag been divided. See card group 12.

Gand Groug 4 - An optional card group wheh must be included if NTODES (eard group 3) is different Erom 0 . Consigce of one or two carda, depending on the rumber of nodes selected for printing under concrol of INTPRT. Format (8F10.2)-up to four pairs of the following varlables per card. Unneeded fields may be blank.
COOPDI(R) - The 2 -coordinate of the Ktb node selected for printing under control of INTPRI.

COORDJ (R) - The y-coordinate (pocicive dorn) of the Kth node selected for printing under concrol of IXTPRT.
NOTE: For use in the model, the above fust be converted co $1, J$ coordinates. If a point identified by its x, y coordinates as given by the above variables does not colncide with a node of che solution mesh, the nearest node to che right and below the x, y position will be used.

Card Group 5 - Five cards, even if some or all of them are slank, must be in input deck for processing each case. Forme (20A4)
COMENT - Varisble represencing the string of alphaqumeric characters chat serve as an identification and heading for a case's printout.

Card Group 6 - A single card that mase be presenc in the laput deck for processing each case. Pormat (2L5)
LUNITS - The number of soll units present in the cross section. May be any number up to and including 5.
KHPRNT = 1 if the gtarting K-distribucion is printed. A 1 orherwise.
NOTE: The facility for printing the K-distribution is provided as a useful way to check whecher soil unlc boundaries have been aseigned conrectly in the solucion mesh. The user should set DNISIG $=$ 0 and PEEDS ≥ 0.00 (boch in card group 2). This will specify a scarting condition of $h \geq 0$ at all nodes so thec che princed K -distribution will contain ooly saturased bydrsulic conductivities. With such a discribucion, it is relatively easy to correlate nodes and soil units. A alogle iteration is all that is needed to make chis check. Then the case may be scarted over again with whitever inftial PBED-distribution is most appropriate to the case. The initial Kdiscribution will contain meaningless daca if KAREAD $=1$ (if the case is being reatarted), unlese MCBNGE bas some value other than 0 .

Card Group 7 - A single card with must be present in the input deck for procesalig each case. Format (1015)-up to five pairs of the following variables. Janeeded fields may be blank.
NMLIN(NS) - Number of pairs of values of pressure head us, hydraulic conductivity appearing in the NSth h-K cable.
$=999$ indicates that $h-K$ relation 18 given by equaction racber chan by cable.
MMBRK (NS) - Number of x, y coordinate pairs needed to deseribe the lower boundary of the WSth soil unit. See XBRK (K), YBRK(K), card gToup 8. NOMRRK(NS) has a mindmum value of 2 for each soll unit.

Card Group A - A multiple card group. The input deck masc contain a separate card group 8 for sech aoll unte in the modeled cross section.
Subset a - One or two cards depending upon the number of x, y coordinate pairs needed to degeribe the lower boundary of a soil unit. Pormat (8 Fl 0.2) -up to four pairs per card of the following varibbles. Joneeded fielda may be blank.
KBRK (N,NS) - The z-coordinate of che Rth breakpoint in the botcom boundary of the NSth soil unit. Such boundary, which may be curving or complex in shape, may be approximated by a geries of up to aeven etraight lines, the meeting point between two consecucive segmencs of differenc slope being called a breakpoint. An intergection of the lower boundary of a soll unit with a boundary of the modeled cross seccion is also considered a breakpoint. So, each soil unit hes a minimum of two lower-boundery breakpaincs.
YBRX($B, N S$) - The y-coordinate (posicive down) of the Whh breakpoint in the botcom boundary of the NSch sofl unlt.

NOTE: The noce appended co card group 4 applies to chis aubset also.
Subset $b=$ One or more cards depending on NURIN(NS) (card group 7). This subser is absent from che Ioput deck if $\operatorname{NHLLN}(N S)=999$. It is also omitced if KTABLE $=1$ (card group l). Format (8E10.3)elght values of the following variable per cardunneeded fields in che lase card may be blank.
PTAB(IT,NS) - The array of pressure heads in the table of pressure head versus hydraulic conductivity for soil unic NS. Subseripe IT idencifies the particular line of the cable, chat is, $1 \leq I T<$ NUMLD(NS) The order of eatry should be from high pressure to low (In the order of incressing suction).
Subser c - One or more cards depending on NUMLIN(NS) (card group 7). This subset is absent from the loput deck if NUM IN $(N S)=999$. It is also omitted If KIABLE $=1$ (card group 1). Format (8E10.3) eight values of che following variable per card-unneeded fields in the last card may be blaok.
KTAB (IT,NS) - The array of hydraulic conductivities in che table of pressure head versus hydraulic conductivity for soil unit NS. See digcussion of subsec b. There should be the same number of KTAB entries as there are PTAB entries. $\operatorname{XIAB}(1, N S)$ should be the saturaced value of K, corresponding to $h=0=\operatorname{FTAB}(1, N S)$. KIAB ($2, N S$) should be che X-value corresponding to $\operatorname{PTAB}(2, N 5)$ and 90 on.

Card Group 9 - One to shree cards depending on the number of changes in $\hat{y} y$ in the solucion mesh. Yuse be present in input deck for processing each case. Format (4 (F10.2, F10.3)) -up to four pairs of the followiag variables per card--unneeded flelds in the last card may be blank.
DYLGTR (M) - The distance from the E-axis to the MYth boundary between regions of different Δy in the solucion mesh. The z-axis itself is the first such boundary, so DYGGTY $(1)=0.00$. If Δy is constant chrougbour the solution mesh, only DFLGTA(1) is needed. One does not need to messure DYLGTH values precisely. If DRGTH(MY) does not correspond exactly to the J -value of some row of the solution mesh, then Δy in that meah will change at the row fumediacely above the indicated posicion.
DELY(MY) - The MYCh value of by.
Card Group 10 - One to three cards depending on the number of changes in Δx in che solution mesh. Must be presenc in input deck for processing each case. Format (4 (P10.2, Fl0.3)) -up to four patrs of che following variables per card-unneeded fielda in the last card may be blank.
DXLGTA (MX) - The distance from the y-axis to the MXth boundary between regions of differeac Δx in the solution mesh. The y-axis icself is the first such boundary, so DXLGIT (i) $=0$. If Δx is constant throughout the solution mesh, only DKL.GTE (1) is needed. One does not need co measure DXIGTH values exaccly, If DXIGTH(MX) does not correapond exactly to the I-value of some column of the solution meah, chen Δx in that mesh $w 11$ change at the colluna immediately to the left of the indicaced posicion.

Caro Group 11 - One card for each row subseccion. Must be present in inpuc deck for processing each case. Format (4F10.2,215,2F10.2)-one sec of the following variables per card.
STARTY(NSUBY) - The diacance from the x-axis to the cop boundary row of row subsection NSUBY. NSUBY is an index varlable taking the values 1, 2, . . . JGEOM. See page B, Subdivision of Flow Cross Section and che noie below for decails of dividing che cross section inco subsections.
STOPY (NSUBY) - The distance from the r-axis to che bottom boundary row of row subsection NSUBY.
BEGX (NSUBY) - The diatance from the y-axis to the left-hand boundary colum of row subsection NSU8Y.

ENDX(NSIJBY) - The discance from the y-axls to the
right-hand boundary columa of rou subsection NSUBY.
JBETA(NSUEY) - Signals cype of boundary condicion at the beglnaing of rows in subsecion NSUBY.

- O where h is known and has the same value everywhere on the boundary. An exception to the condicion of h being equal everywhere on che boundary is discussed on page 25 .
$=1$ for impervious boundary.
$=2$ where the h-distribution along the boundary is hydrostatic.
JETA (NSUBY) - Signals cype of boundary coodition at the ends of rows in subsection NSUBY,
- O where h is knowl and has the same value everyWhere on the boundary. See JBETA(NSUBY) for an exception.
$=1$ for impervious boundary.
= 2 where the h-discribution along the boundary is hydrostatic.
BCLJ(NSUBY) - The pressure bead for an h-specified bourdary at the left end of the rows in subsection NSEBY. If h is distributed hydrostatically, this is the value of h at the left end of the cop row of subsection NSUBY. Bes no meaniag for an tmpervious boundary or for che pressure head boundary diacuseed on page 25.
BCRI(NSJBY) - The pressure head for an h-specified boundary at the right end of the rows in subsection NSUBY. If h is distribuced hydroscatically, this is the value of h ac the right end of the cop row of subsection NSUBY. Has no meaning for an impervious boundary or for the pressure head boundary discusaed on page 25 .
NOTE: Before being used for program control in a computer, the first two variables on this card are converted to the J-value of the top and boctom boundary rows of subsection NSUBY. The next padr of variables is converted to the Ioalue of the left and right boundary columns of the same subsection.
Consider two row subsections, one of uflich lies fimediately above the ocher. At the point where the two subsections connect, there is either a geomecrical cbange or a boundary condition change. In either event, one usually gelects Ay-values so chac the point of change colacides with a row of nodes. Suet a row is in a fixed posicion relative to the r-axis, though its j-value will change if ay between the x-axis and the rou changes. Other rows in the vicinity are subject to change boch in pogicion and in J-value when sy changes. The row of fixed position will either be the batton boundary of the upper subsection or the top boundary of the lower. Thus, the floating row immediately below it on above ic, respectively, will be a boundary of the ocher subsection. These floacing subsection boundaries are also encountered next to boundaries on which pregsure heads are spectified because auch boundartes are fixed but are not included to cross sections.
Because it depends on Δy or Δx, che exact position of a floating colum or boundary may be tedious to deteraine and may also change if mesh increments are changed during the courge of solving a given case. Decermining them exactiy is not necessary, however, if one follows certaln precaucions. In general, these rules should gulde the specificarion of subsection boundary posicions:

1. The posicion of fixed boundaries should be specified exactly as a distance z or y.
2. For a floating boundary next co a fixed row or columa:
a. If nearer the principal axis chan the fixed Inge, measure to the larcer and suberact some quantity that is amaller chan the smallest mesh facremenc likely to be used.
b. If farcher from the priacipal axis than the fixed line, weasure to the latter and add sowe quantity that is smaller than the smalleat mesh increment likely to be used.
The small quancities mentioned in 2 za and 26 above should not be gmaller thao 0.001 .
If h at one or boch ends of a subsection is discributed hydrostacically, one must specify lics value(s) for the rop row of the subsection. Thus, if that row is a floating boundary, one has to locace ic precisely to specify h. STARTY (NSOBX) way be given either precisely or according to the method given in the precediag paragraph, but h must be given lics exact value.
Card Group 12 - One card for each colum subsection. Musc be preseac in inpuc deck for processing each case. Formar (4F10.2,2I5, 2F10.2, E10.2)-one sec of the following varlables per card.
STARTX (NSUBX) - The discance from the y-axis to the left-hand boundary column of colum subsection NSUBX. NSUBX is an index variable caking the values 1, 2. . . . IGEOM. See page 8 , Subdivision of Flow Crosa Section, and the note at the end of card group 11 for detalled discussion of dividing a cross seccion into subsections.
SIOPX(NSUBX) - The distance from the y-axis to the right-hand boundary column of columa subsection NSUBX.
8EGY (NSUBX) - The distance from che x-axis co the cop boundary row of colum subsection NSUBK.
ENDY (NSUBX) - The diatance from the $2-a x 18$ to the bortom boundary rou of column subsection NSJBX.
IRETA(NSOBX) - Sigrals cppe of boundary condycion at the rop of the columas in subsection NSUBX.

- 0 for known h boundary.
* O for impervious or flux boundary.

IELA (NSUBX) - Sigaals cype of boundary coodicion at che bottom of the columns in subsection NSUBX.
= 0 for known h boundary.

* 0 for impervious boundary.

BCDI(NSUBX) - The pressure head for an h-specified boundary at the tops of colums in subsection NSUBX. Has no meaning for an impervious or flux boundary.
BCBI(NSDBX) - The preasure head for an h-specified boundary at che bottoms of column in subsection NSUBX. Has no mearing for an imperyious boundary.
FLUX(NSUBX) - The flux of water perpendicular to the upper, horizontal surface of column subsection NSUBX. Duits should be the sama as hydraulic conductivity units. For an impervious surface. FLIX = O.O. Has no meaning for an h-apecified boundary.
Card Group 13 - a multiple card group produced by a previous run for restart purposes. May also be a keypunched indtialization deck then a user has some way to closely approximate the solution PHED-array. For a new run for which che user canot give an approximate PRED-distribucion, there is no card group 13. When a magnetic cape ls used for rescart daca, there is no card group 13. Pormat (6013.6)-six values of the following vartable per card-unneeded fields in the last card may be blank.
YGED (I, J) - The pressure head value as node I, J as it was at the eud of the last iteration of the previous run.

NOTE: See discussion of DOUBLE PRECISION mencioned previously under Model Dfmensious, page 26. Hhen magnetic tape 13 used for inpuc/output and then it is anticipated that CARRY might subsequencly be uged to refine the mesh size, then PEFD should be dimensioned for the most refined mesh expected, that is, so that I, J in PHED (I, J) for the DOUBLE PRECISION staceneat have the largest values they are ever expected to have for the case at hand,

Nore, for cross sectious containing a large number of nodes, using a magnecic cape in place of card group 13 is faster, cheaper, and easier. This calls for the inclugion of cape assigramenc cards among the job concrol cards given ahead of the source deck. It also calls for giolag IFILE (card group 1) some value berides 0 . Ragrad (card group 1), however, must have the value 1 for tape readio as well as for card readin. See the discussion of [PLIE, card group 1.

Card Group 14 - A group congieting of two or more cards. Present in the iopur deek only if the processing of a case is gegmented to cry different overrelacation factors (NOMEGA \Rightarrow 1). Pormat (PS.2, 15) —one sec of the followig vartables per card.
OMEGA - See same variable in card group 2. When given in this card group, OMBCA is the 2 d , 3d, 4 th , value of ω to be tried while procesaing the case at hand.
ITHAX - See same varlable to card group 2. When given in this card group, ITMAX is the value of the iceration oumber (accumulacigg) at which processing. using the associated ω-value will scop. ITMAX should have a value that is a molectple of DTTPRT.

- 0 on final card of chis group.

Glossary of noninput variables

A - Used in calculation of BEAD.
ALPBA - Represents the angle whose tangent is the value SLOPE (1oput card group 2).
AX - A term in che finite difference equation.

$$
=\frac{K_{2-1}-k_{2} j}{\Delta \tau_{-}}
$$

AP - A term in che finite difference equation.

$$
=\frac{x_{i, j-\frac{1}{2}}}{\Delta v_{-}}
$$

B - Osed in calculation of iRAD.
BCI (NSUBY) $=$ BCLJ (NSUBY) and used to set hydrostatic boundary condicion.
BCR(NSOBY) - BCRJ(NSDBY) and used to set hydroscatic boundary condition.
CHETM - To set or resec computer clock and to read elapsed time. This variable might not be necessary at ocher facilicies.
COSAL - Cosine of the angle ALPEA.
CX - A term in the Einite difference equation.

$$
=\frac{k_{i+\frac{1}{2}, j}}{\Delta_{+}}
$$

CT - A term in the findte difference equation.
$=\frac{K_{i, j+1}}{\Delta y_{+}}$
DEL - Used in Eecting imperweable and flux boundary conditions at ends of columas and is the elevacion difference becween an imaginary node and ics real councerpart imediately toside the boundary.
DELK (MY) = DELX(MX) or DELY(MY) (input card groups 10 and 9) incroduced so chat either could be used in a single algorichm.
DSLTA - A teto in the finite difference equariog.

$$
=\left(\frac{K_{i, j-1}-X_{i, j+1}}{\Delta y_{-}+\Delta y_{+}}\right) \cos a+\left(\frac{K_{i-1, j}-K_{i+1, j}}{\Delta x_{-}+\Delta x_{+}}\right) \sin \alpha
$$

DELXM = Δ_{-}, that is, Δx to the left of a node.
DELXP $=\Delta I_{+}$, that is, $\Delta \tau$ to the right of a node.
DELYM $=\Delta y$, that $1 s, \Delta y$ above a node.
DELYP = $\Delta y+$, char 1s, Δy below a pode.

EIEVS - Readin value of ERED, saved because the latter is modified trice in the program.
ELIJ - Elevacion of node I,J; used in decemining which soll unit applies at node I, J.
$E X$ - A term in the finite differeace equation.
$=\frac{2}{\Delta x_{-}+\Delta x_{+}}$
EY - A cerm in the finite difference equation.

$$
=\frac{2}{\Delta y_{-}+\Delta y_{+}}
$$

PACTOR - Incerpolation factor for calculating hydraulic conductivicy when the corresponding pressure head lies between two entries in the table of PTAB versus KTAB.
GRAD - Representa the slope of a straight-line segment in the lower boundary of a soll unit. Used in decerminiog which aoll unic applies at each node. $\operatorname{aCON}(L, J)$ - Conductiviry for node I,J.
$\operatorname{FEAD}(I, J)$ - Bydraulic head at node I, J.
HEDA - Duma variable that represents $\mathrm{PHED}(\mathrm{I}-1, J)$ in flatie difference equation. Provides vehicle for substicuting

$$
\operatorname{PHED}(I+1, J)+\left(\Delta r_{-}+\Delta x_{f}\right) \sin \alpha
$$

in equacion for left boundary node when that boundary is mpermeable.
HEDE - Dummy variable that represents PGED (I+1,J) in finite difference equation. Provides vehicle for subgcicutiog

$$
\operatorname{FHED}(1-1, J)-\left(\Delta \tau_{-}+\Delta x_{+}\right) \sin \alpha
$$

in equation for right boundary node then that boundary 18 impermeable.
I - Colum number, I, in the finite differeace equation. Also used as a DO loop Index.
IBEC(NSUBY) - The I-value of the left-hand boundary colum on row subsection NSUBY.
IBRK (N,NS) - The I-coordinate of the Nth breakpoint in the bottom boundary of the NSth soll unit.
ICER - Represencs DMETOP or MMGLD (input card group 2) so that either can appear in a single algorithm.

ICT - Counter used in reading restart tape. Bnables program to skip over umanted files of data on a cape produced by a multicase rm.

DOM - Dumpy varisble that represents other variables there the latter, because of gubscriptigg or because chey are of che RBal cype, cannot be used in DSASI Fortran.
IDUMA - Duminy varlable uaed in the game way as IDOR. IEND (NSDBY) - The I-value of the right-hand boundary colum of row subsection NSUBY.
IJK - Dumay variabie thac represencs a given value of I or J as the gtarting index of a Do loop, using I or J as an index.
INODE(K) - The I-coordinate of the Kch node selected for princing under concrol of INTPRT.
IPRINT - Used with IRTPRT (Lnput card group 3) in concrolling frequency of princing PBrD-velues for selected nodes and also frequency of checking elapaed time and auaber of iterations processed.

ISTART(NSUBX) - The I-value of the left-hand boundary colum of colum subsection NSURX.
ISTOP (NSUBX) - The I-velue of the Fight-hand Doundary colum of colum subsection NSUBX.
ITMAXS - A scorage variable for TTMAX. When chsnging OMECA values in a run, each w is used a number of iteracions equal to IMMAX. ITMAXS is set equal to ITMAX ac che beginning and lacremeacs ITMAX each cime a new ω in read.
LX (MX) - The I-value of the MXth column at which Δx changes in value.
J - Row number, J, in che finite difference equation.
JBEG(NSUBX) - The J-value of the sop boundary row of COlum subsectiou NSOBX.

JBRK (N,NS) - The J-coordinace of che Nch breakpoint in the boctom boundary of the NSth soll umit.
JEID (NSUBX) - The J-value of the bottom boundary row of colvim subsection NSUBX.
JNODE (K) - The J-coordinste of the Rth node selected for printing control of IfrigRT.
JSTARI (NSTBY) - The J-value of the cop row of row subsection NSJBY.
JSTOP (NSUBY) - The 1-value of the bottom row of row subsection NSOBY.
JY (MY) - The J-walue of the MYth now at which Δy changes in value.
K - A subscripting index for D loops.
KAVR - An average value of hydraulic conduceivicy ac the surface of the sotl. Uied in setting nonsaturated flux boundary condition.
KBETA - Unsubscripted representation of JBETA(NSUBY), whose value can be changed during execucion. Used In setcing boundary condition at left end of row.
W(MY) - Represents DX or JY so that either may appear in a siagle algorichm.
KFND(NCT) - Represents ISTOP(NSUBX), JSTOP (NSUBY), IRND (NSUBY), JEN (NSORX) so chat any one of them may appear in a single equation.
KFTA - Unsubscripced represencation of JETA(NSUBY), those value can be changed during execution. Sets boundary condicion at rigbt ead of row.
RSIG - A signal variable; concrols flow of program.
RSTART(NCT) - Represents ISTART(NSUEX), JSTART(NSUBY), IBEG (NSUBY), JBEG(NSUBX) so that any one of chem may appear in a alngle equation.
KSTOP - The l-value or J-value of the laet colum or row, respectively, in a subsection. Replaces subsctipted variables as an index in DO loops.
L - Takes the values $1-8$ and is used to break the $h-K$ table into eighths for the rapid lookup of $\operatorname{BCON}(\mathrm{I}, \mathrm{J})$.
LNOM - Signal varlable; directs flow of program while princing $h-K$ cable.
LSIG - Signal variable; direces flow of program after writing PHED- or HRAD-array.
LSTOP - The I- or J-value of the final (boundary) node af che end of a row or column. Replaces subscripted variables as an iadex in DO loops.
MCOL - The numbex of columas, including imaginary colums, in the solucion mesh.
MCT - Represents JGEOK or IGBOM so that either may appear in a single algortchm.
MROW - The number of rowa, including imaginary rours, in the solution mesh.
MSIG - Signal variable; directs flow of program after setring boundary conditions.
MOMYST - Stores che atarcing value of MX for a given subsection. Resecs lix when starcing new rows within the subsection.
NCT - An index; controle certain progrem loops.
NSIG - A signal variable; controls flow of program.
MMM - Separatea che printed pressure head-hydraulic conductivity tabie into four columns in which PTAB tucreages down Eirst row first, then down second, and so forth.
NOMA - Used In printing FTAB-KCAB cable. Allows changing format when blanks occur in fourth segment of cable. -
NXCRD - Initial value of NCARDX.
NYCRD - Interal value of NCARDY.
SDUMA - A dumary variable that representa STARTJ (NSUBY), BEG (NSUBY), STARTI (NSUBX), and BEGI (NSUBK); so that any one of them may appear in a single algorthm.
SDUMB - A durmy variable used to represent STOPJ (NSUBY), ENDI(NSUBY), STOPI(NSUBX), and ENDJ (NSUBX), so thac any one of them may appear in a single algorithm.
SINAL - The gine of alpha.
sonx - Deternines the I- and J-values associated with various x and y input measuremencs.
SUMY - Used in sacue way as SUMX.

IINE - Accumulated CPO time in seconds. Its velue is updated periodically by the internal timing routine (TASKIM) and compared against ESTME. When TME exceeds ESTIME, the run is stopped.
TIIME - Converts time obtained from TASKTM co seconds. This variable mighe not be necesaaty at some computer facilictes.
$X A$ - An average hydraulic conductivity

$$
\left(\frac{\operatorname{BCON}(I, J)+\operatorname{ACON}(I-1, J)}{2}\right)
$$

for preparing terms for the finite difference equation. XB - A cerm in the finite difference equation.

$$
=\frac{\Delta x_{+}\left(K_{i-\frac{k_{1, j}}{} j}\right)+\Delta x_{-}\left(K_{i+k_{2}, j}\right)}{\Delta x_{-}-\Delta x_{+}}
$$

XC - An average hydraulic conductivity

$$
\left(\frac{\operatorname{BCON}(I, J)+\operatorname{BCON}(I+1, J)}{2}\right)
$$

for prepariag terms for che finite difference equacion. KDIST - Represents discance in J-direction from y-axis.

YA - An average hydraulic conductivity $\left(\frac{\operatorname{HCOR}(I, J)+R C O N(I, J-1)}{2}\right)$
for preparing tems for the finite difference equacion. YB - A tem in the fialte difference equation.

$$
=\frac{\Delta y_{+}\left(X_{i, j-\frac{1}{2}}\right)+\Delta y_{-}\left(R_{i, j+\frac{1}{2}}\right)}{\Delta y_{-}-\Delta y_{+}}
$$

YC - An average hydraulic conductivicy

$$
\left(\frac{\operatorname{BCON}(I, J)+\operatorname{BCON}(I, J+1)}{2}\right)
$$

for preparing rems for the finice difference equation.
YDIST - Represents distance in y-direccion from r-axis.
ZHED - Elevacion head used in calculacing tocal hydraulic head and in secting the drained-to-equilibrim initial PEED-artay.

Appendix B:

CARRY - To Facilitate Changing Finite Difference Mesh Spacing

Operation of such a finite difference model as STDY2 produces an array of values of the dependent variable, each value being associated with a node of the solution mesh superimposed over the region of interest. The accuracy with which these values represent the true values of the dependent variable at these points depends to large aeasure upon the mesh spacing chosen before running the model.

After beginning or even finishing a solution for a particular mesh spacing, one may wish to refine chis spacing in part or all of the solution mesh and continue runuing the model for an improved estimate. The results of the previous run provide a good estimated distribucion from which to start the improvement run, but a refined mesh will usually contain nodes at positions where values of the dependent variable have not been estimated and may eliminate some nodes of the original mesh. Considerable time and effort would be required to effect the necessary changes by hand.

In terms of the dependent variable of STDY2, the purpose of CARRY is to convert a given PHED-array into another of different mesh spacing. Linear interpolation provides PEED-values for nodes whose positions do not correspond with those of nodes in the original mesh.

Processing imaginary rows and columns on the outer limits of the solution mesh is unnecessary and, for operational reasons, undesirable in CARRY; but providing these rows and columns in CARPY's output deck $1 s$ necessary for later input to STDY2. To reserve their positions in the card deck or on magnetic tape, a value of O is applied at each imaginary node on the outer limits.

For economy of operation, such imaginary and unused nodes within the solution mesh as those within the trench or notch of figures 5
and 6 are processed in the same way as all other nodes. Their new values are of no consequence to STDY2.

This appendix contains (1) a program listing, (2) a glossary of input variables, (3) a glossary of noninput variables, and (4) a sample problem.

A progran listing of CARRY follows. Modificarions which might be necessary before running the program on other computers are flagged. Their numbering and explanations are the same as for STDY2, appendix A. In general, the variables in the DOUBLE PRECISION and DIPENSION statements should have the same dimensions as in STDY2. For magnetic cape input/output, it is particularly necessary that GHBD and PYEDN have the same dimensions as PHED in STDY2.

The logic of this program is straightforward and is readily apparent from inspection of the listing. Therefore, a flow chart is not included.

Glossary of input variables

Input variables are defined in the order of their appearance in the iaput data deck. Figure 14 shows punchcard layouts for the input data. The manner of presentation is the same as in appendix A. As with STDY2, several cases may be processed during a single computer run.
Card Group 1 - Five cards, even if some are blank. Must be in the inpur deck for processing each case. Formac (20A4)
COMEXT - A1phanumeric idencificalion princed at head of outpue.
Card Group 2 - A single card. Must be present in input deck for processing each case. Pormat (2F10.2,6IS)
LGTH - Same value as variable of same name io input card group 2 of STDY2.
DEPTH - Same value as vartable of same neme in input card group 2 of 5 SDY2.

Text continues on page 56.

Program listing


```
        SECOND ARRAY OF THE SAME OUANTITY OISTQIBUIGO OVER THE SAME SIZE
        MREA AS THE ORIGINAL ARQAY, EUT WITM OIFFEQENT. NOT NECESSARILY
        UNIFORM, GRID SPACING. OLO ANO NEW GRIO SOACINGS ARE COMPLETELY
        INDEDENDENT.
    3/10/74.
C*MA** POSSIBLE MOOIFICATICN TYPE HI*
C
C****E DOSSIBLE MODIFICATIGN TYPE M3.
    OINENSION PHEON(G0.7a).DELX(12),DELXN(12),DELY(1Z).OELYN(12),
        11X(121,1XN(12).JY(12).JYN(12), COMENY(100),OXLGTH(12),OXLGTN(12).
        2OYLGTH(12),OYLGTN(12)
    c
    C=|#** POSSIBLE NODIFICATION TYPE HA
    c
    008
cos
    c
    **** PJSSIbLE mODIFICATION TYPE NA.
C bTITE (6.10) COMENT
##* DOSSIBLE NCOIFICATION TYPE MJ.
C (O FORHAT ({HI.20A4/(20A4))
            GO TO 20
        15 5TOO
        2O FEAO (5,25) LGTHADEPTH.IFILE:ITAPE.NGAROY.NGAROX:NCROYN.NCROXN
        25 FORMAT (2FIO.2,EI5)
            FEAD (5, 30)IHGTGP,IMGEOT,1MGLSD.IMGRSO
        3O FORMAT (415)
            GEAO (S.35) (OYLGTY(MY),OELY(NY),MY=1 *NCARDYI
        35 FCRHAT (A(FIO.2.F10.3))
            FEAD (5.35) (OXLGTK(MX),OELX(MX),NX=I,NCARDXI
            GEAD (5.35) (OYLGTN(MYN),OELYN(NYN),MYN=1.NCRDYN)
            GEAO (5.35) (OXLGTN(MXN).OELXN(MXN),MXN=1.NCROXN
c
G*E: CONVERT K.Y CODQOINATE DATA TO I J COORDINAYES.Em**A&*#**
C
    NYCRO = NCAROY
    WXCRD = NGAROX
    AYCRON = NCROYN
    NXCRION = NCPOXN
    NCAROY = NCAROY +1
    NCAROX = NCAROX +1
    NCRDYN = NCROTN + 
    NGRDXN = NCROXN +1
    DYLGTH(NCARDY! = DEFTM
    OYLGTN(NGROYN) = OEDTM
    OXLGTH(NCAROX) = LGTH
    OXLGTN(NGROXNS = LGTH
    OELY(NCAROYI = DELY(NCAQDY-1)
    OELX(NCARDX) = OELX(NCAROX-1)
    DELYN(NCRDYN) = OELYN(N(ROYN-1)
    OELXN(NCROXNS = OELYN(NOROXN-I)
    CELXN(NCROXN) = OELXNXNCROXN-I)
    IF {IMGTAP.EO.I\ GO TC 40
    J\:1:=1
        JWN(1)=1
        GO YO 45
    JY(1)=2
    Jrn(1) = 2
    4 OO 50 MY = 2,NCAROY
            IDUM = (DYLGTH(MY) -DYLGTH(HY-\)), DELY(MY-I)
            JY(MY) = JY(NY-1) , IOUN
    OO 55 NTN = 2,NCRDYN
            IOUM = (OYLGTN(NYN) - OYLGTN(MYN-I)) /OELYN(KYN-1)
            IYN(MYN) = JYN(MYN-1) & IOUM
    IF (IMGBOT.NE.I) GO TO 6O
    JY{NCAROY) = JY(NCARDY) + 1
    JYN(NCROYN) = JYN(NCRDYN) * \
    60
    MROM = JY(NCARDY)
            MROWN = JYN(NCROYN)
            IF (IMGLSO.EO.1) GO TO ES
            1\times(1)=1
            IXN(I) = 1
            GO 10 70
        65 (x(1) = 2
            1XN(1)=2
        70 DO 75 Mx = 2.nCAROX
            IDUN = (OXLGYH(HX) - OXLGTM(Hx-I)) / OELX(HX-1)
            IX(NX) = 1X(HX-1) + IDUH
```



```
\begin{tabular}{|c|c|c|}
\hline 0138 & &  \\
\hline 0139 & & HK＝Hx－1 \\
\hline 0140 & & TOUMA \(=\) Hx＊ 1 \\
\hline 0141 & 225 & xposa \(=\) xodse \\
\hline 0142 & & xDOSE \(=\times\) POSE + OELX（MX） \\
\hline 0143 & & txpose \(=(x p g S 9 * .000005) \cdot 10000\) \\
\hline 0144 & & IF（IXPOSN．GE．IXPDSEI GO TO 220 \\
\hline 0145 & & GOTO 210 \\
\hline 0146 & 230 & continue \\
\hline
\end{tabular}
C
CAEA SUEEP COLUHNS INTERPOLAYING NEG ROMS OR COPYING OR OELEYING OLO
C ROMSAS REOUIRED.a**********
    1F (|MGCSD.EO.I) GO TO 235
    1 دx = 1
    K= MCOLN
    GO YO 240
    235 1JK=2
    24000 275I = 1NK.HCOLN
            MY=1
            IOUMA = 2
            MYN = 1,
            (F ([MGTOP.EO.1) GO TO 24S
            j=1
            JN=
            60 TO 250
    245 J = 2
            JN=2
    Yoosa = 0.
            YOOSN = 0.
            YPOSB = YOOSA OELY(1)
    255 PHED(I.JN) = PHEON(I.J) + ({YPOSN - YPOSA) f (YOOSB - YPOSA) e
            (OHEDN(I.J&11 - PrEDN(I.J))
C*** SET IMAGINARY NODES: IF ANY. ON OUTERNOST DOMS ANO COUUNS TO zERO.
C -A*******)
            JN= JN * I
            IF (JN.LE.JYN(IOUM)) GO TA 260
            MYN = MYN + 1
            COUM = WYN+
            IF (MYN.GE.NCRDYN) GO TO 275
    260 YPOSN = YPOSN + OELYN(MYN)
            IYPOSB = \YPOSE * 00000SJ = 10000
            IYPOSN = \YPOSN *.000005\ = 10000
            IF (IYPCSN.LT.IYPOSB) 60 ro 255
    205 」= 」+1
            [F (J.&T.JY(IDUMA)) 60 T0 270
            MY = MY * I
            couma = MY +
    270 YpOSA = YpOS日
            YPOSS = YPDSB - OELY(MY)
            MPPOSE = (YPOSE .000005) (10000
            IF IIYPOSN.GE.IYPOSE| कo ro 265
            GD 10 255
    2?E COHTTNUE
        If (IMGRSD.NE.1) GO TO 28S
            DO 28OJ= I,MPOMN
    280 PHEO(HCOLN,J) =0.
    28S IF IIMGEOT.NEN\, GO TO 295
        DO 290 1 = 1.WCCLN
            PHEO(I.MAOTK) = 0.
    205 IF ([MGLSO.NE.1) GO TO 305
        DO 300 J = 1.FRCEN
            PHEO(1,J) = 0.
    305 IF (IMGTOP,NE.1) GO TO 3,5
        00310 I =1.MCCLN
    310 DHEO(I.1)=0
c
```



```
c
    345 WAITE (6.320)
    320 FOAMAT [IHO GQX.23HNEY FRESSURE NEAD ARPAY, 
        MORMAT \IHO 49K.23
    325 URITE (6.175) J.(PNED(I.JIII=1.MCQN)
    IF (ITAPE.EQ.O) 60 T0 33E
C
C***** POSSIBLE MODIFICATION TYPE mS.
C WRITE (10) PNED
        GRITE (0.330)
    330 FORMAT \1HO {JNTADE WQITTEN. \
        G0 T0:
c
    C****: DOSSIBLE MOOIFICATION TYPE H4.
C 335 VRITE 17.155)((PHED(I.J).I=1,HCOLM).J=1, MROYN.)
        G&ITE(7.340)
        3\triangleO FORMAT (ISHE*锗#ENO GF FILE)
        WRITE (6.345)
    345 FORMAT IINO 1&HCAROS PUNCHED. %
        GO TO 1
        END
```

Figure 14.--Input data layout for carry.

Figute 24.-Continued.

IFLE = 0 when inpuc array is in card form and output array la in card form.
>0 when input is read from tape and output lo vitten ou eape. The value indicates the posi= cion of the input file on a mulifile cape. See explanation of same variabie in SIDY2, card group 1, for inatructions regarding determination of position.
ITAPB $=0$ when oucpuc is on cards. $\$ 0$ then outpue is on Enpe.
FCARDI - Same value as variable of ame name in card stoup 3 of STDY2.
MCARDX - Same value as variable of same name in card group 3 of STDYZ.
NCRDY - The mumer of DYLGTi-DELYM pairs in card group 6 of chia program.
 group 7 of this program.

Card Group 3 - A aingle card. Must be preaent in input deck for procesaing each case. Pormst (4I5)
DAGTOP - Same value as vartable of same name in inpat card group 2 of STDY2.
DMGBOT - Same value as variable of same name in input card sroup 2 of SIDY2.
DHGLSD - Same value as varinble of game name in input card group 2 of 5TDY2.
HGGRD - Same value as variable of same qame in input card group 2 of STDY 2 .
Card Group 4 - One to three cards depending on the number of changes of Δy in the old (inpur) solution meah. Must be prement in 1npur deck for processing each cese. Pormat (4 (F10.2,F10.3))
Por a given case, this card group is identical both to variable ames and ta values to card group 9 of the 1nput deck for STDY2.
Card Group 5 - One to three cards depending on the number of changes in Ar in the old (Ioput) oolution mest. Kuse be present in input deck for procebsing each case. Pormat (4 (F10.2,F10.3)) For a given case, this card group is identical both da variable names and 1n valuea to aard group 10 af the input deck for STDT2.

Card Group 6 - One to chree cards depending on the number of changes in Δy in the nev (outpuc) solution mesh. Hust be present in inpot deck for proceseling each case. Format (4 (FIO.2,F1O.3)) four paics of the following variables per cardmoneeded fields in the last card may be blank.
DYLCTN (MYN) - The distance from the sacdg to the MWith boundary betveen regions of different oy in the new (output) folucion mesh.
DEIM(MYN) - The MYTED value of Ay in the new (output) mesh.
Notes , when the new (outpur) deck has been obrained from CARRY, this card group mey be substituted directly inco STDY2's Lnput deck as catd group 9. The values. in the carda are then equated to DHGETM(MY) and DELY (MY).
Card Group 7 - One to three cards depending on the number of changes in ix in che new (output) solution mesh. Kuot be present in input deck for processing each case. Pormat (4 ($\mathrm{F} 10.2, \mathrm{~F} 10.3$)) four pairs of the following variables per cardumeeded fields in che last card may be blank.
DXLGTN (KXN) - The distance from the y-axts to che No th boundary between regions of different Δx in the new (outpuc) solution meah.
DEIXR(MKN) - The Monch valus of Δx in che aew (oucput) mesh.
NOTE, When the new (output) deck tas been obteined from CAREY. this card group may be substituted directig into STDT2's input deck ab card group 10. The values in the cards are then equated to DELGIB(MX) and DECX (MX).

Card Group B - Group of several cards, the monber being dependent upon the number of nodes in the solution mesh. When agneric tape is used for Liput, there is no card group 8. Format (6D13.6)air values of the following parlable per candunceded flelda in the last card may be blank.
YERD (I, J) - The value of presoure hasd at the node at the intersection of the Ith colum and Jth row of the old (input) mesh.
See PHEDN (I, J) in globsary of nonimput varlables for use of PRED-array after input io complete. NOTE, When magretic tape is used for inpat/oucput, be sure chat $\operatorname{PGRD}(I, J)$ and P PREDN (I, J) in GArry are dimenaloned exactly as PHED (I, J) is in STDY2. When pumch cards are used, PHED (I, J) and PBEDN (I, J) mus have dimensions at least as Large as choge needed for the new (output) mesh. Dimensioning is spectfled in the DODBLE PRBCISION and DDMNSION statements.

Glossary of noninput variables

I - Colum number, l, in the solutiqn mesh.
ICT - Counter used in reading reatart tape. Enables program to skip over uranced files of data on a cape produced by a multicase rm.
IDUM - Dumy variable; repreaenta other pariables where the latter; becsuse of subscripting or because chey are of the REAL type, camot be used.
IDTMA - Drmany variable used in same way as DOM.
IJX - Drmary variable representing the I- or J-value with vhich to atart a DO 100p.
IN - Index variable used in place of I to represent colum poaition when setting up che output acraty.
IX (MX) - The I-vaiue of the MXth colum in the old (tnput) mesh at which Δx changes in value.
DRN(MXN) - The I-value of the HRNth collmin in the nev (output) mest at which Δx changes in value.
LXPOSB. IXPOSN - Integer representacions of XPOSS and XPOSN after addiag . 000001 and mulciplying by 10,000. Necesarty for comparing equallty because resl numer comparisons are not rellable.
IYPOSE, TYPOSN - Integer representations of YPOSB and TPOSN. See DKPOSB and IXPOSN.
I - Row momber, J, in the folution meab.
Ji - Lodex variable used in place of J to represent row position when setting up the output array.
J ($M Y$) - The J-value of the ITY th row to the old (input) mesh at wish Δy changes in value.
JYF(MN) - The J-value of the WYNth row in the new (ootput) wesh ac which dy changes in value.
区 - A DO loop index.
HCOL - The number of column, tacluding tmaginary colman, is the old (input) solution mesh.
MCOLN - The mumber of columns, including imaginary columes, in the new (outpur) solution meab.
MROL - The number of rowa, inciuding imaginary cows, in the old (inpor) solucion mesh.
MROLN - The number of rows, fincluding inaginary rows, in the new (output) solution mesh.
NXCRD - Storage varlable repreaenting the input variable NCARDX (card group 2).
NXCRDN - Storage variable representing the input batiable NCRDXN (card group 2).
NYCRD - Storage varlable representing the 1nput varlable XCARDY (eard group 2).
KYCRDN - Storage variable representing the input variable NCRDYN (card group 2).
$\operatorname{PBEDN}(I, J)$-The value of pressure bead at the (I, J) ch node in an latermediace mesh. Each row of YHED (I,J) is ewept from left to right so that PERD-values at nodes at comon.dratances from the left boundary are copled tato gEEDN. Dalues ac inserted nodes are interpolated linearly and also entered into PYEDN at the proper diatance from the left boundary. Hhen all rows are swept, FEKDN concaling an axray with the number of colums
to be contatned in the output array but with the number of rows contained in the laput array.
The columns in PHRDN are then swept from top to boccour, reading values at common diatances from the top back into paid and interpolating values for iaserced nodes. Then colum sweeping is finished, PHED concains the output array with the desired number of columns and rows.
XPOSA, XPOSN, XPOSS - Distances from the y-axis.
A gode to the new array (PHEDN) with coordinates (IN,J) may fall becween two nodes in the old (ioput) array with coordinates (I, J) and ($I+1, J$). XPOSA gives the distance 50 (I, J)
xposn gives the distance 50 ($\mathrm{DN}^{2}, \mathrm{~J}$) XPOSs gives the diatance to ($\mathrm{I}+1, \mathrm{~J}$)
These form the basis for interpolatiog PHEDN(IN,J) between $\operatorname{PBZD}(\mathrm{I}, \mathrm{J})$ and $\mathrm{PHED}(\mathrm{I}+1, \mathrm{~J})$.
TPOSA, YFOSN, YPOSB - D1scances from the 2 -axis.
See XPOSA, XPOSN, XPOSB descripcion.
YPOSA gives the distance to (I,J)
YPOSN gives the discance to ($1, \sqrt[N]{ }$)
YPoss gives the distance to ($\mathrm{I}, \mathrm{J}+1$)
Thege form the basis for interpolating PHED ($1, J N$) between PHEDN (I, J) and $\operatorname{PHEDN}(I, J+1)$.

Sample problem

Figure 15 shows the cross section of figure 4 with a superimposed uniform mesh of l-cm spacing. Flgure 16 shows sample data
for converting the PBED-array pielded by a STDY solution for that spacing to an array Wh the mesh spacing of figures 8 and 9. Figure 17 shows the printout for the sample ran, including the new array of PBED-values.

Discusaion of the STDY2 sample problem in the text noted that node $(2,2)$ seemed to converge most slowly, Taking its converged value, -23.407 m , as an index of comparison, the STDY2 日ample problem converged to within 99 percent of that value in about 80 iterations with $\omega=$ I.60. Conceivably, an investigator might have approached the septic tank problem first with the coarser mesh and then alght have wanted to refine 1t. Instead of starting anew, as in the STDY2 sample problem, the converged PHED-array for the coarser mesh might have been used as the basis of the intital guess for the refined mesh. The data for the CARRY printout were given STDY 2 in the form of a regtart deck, and convergence to the same solution as that achleved in the STDY2 sample problem was reached in 45 iterations, a gaving of about 43 percent.

Figure 15.--Unifora l-cs mesh superimposed on cross seccion of figure 4.

Figure 16.--Iaput data for CARRY sample problem.

DATA SHEgT CAREY				Date	3/78				Fage 1 of 3			
Care 5mall-Scale Sepcic Tank												
Card Grp 1												
Varlable	COMEST											
Forint	(20A4)											
Value Cd 1	CARRY-	CONVERTI	SHALL-S	ALE SEPTI	C tank	$\times 7$ (M)	RESIART					
Cd 2	OLD: DE	LTA X =	프TA $\mathrm{P}=$	CK								
Cd 3	NEW: PI	NE YESH	I2E NRAR	OTCH								
Cd 4	BLASK											
cd 5	BLANX											
Card Grp 2												
Variable	LGTE	DEPTE	IFILE	ITAPE	NCARDY	NCARDX	NCRDYN	NCRDXX				
Pormat	F10. 2	P10. 2	15	\sim			\rightarrow	15				
Value	6.00	7.00	0	0	1	1	3	3				
Card Grp 3												
Variable	IMGTOP	DMGBOT	IMGLSD	IMGRSD								
Eenmac	15	-	\rightarrow	15								
Value	1	0	1	1								

Case Small-Scale Sepcic Tank

Man

ard Grp 8										
VarLable-	PHED	PHED	YBED	PHED	PHRD	PHED				
Eormat	D13.6	\checkmark			-	D13.6				
Value	USE RESL	T DECK	PRODUCPT	STIJY2	RUN					
					.					

Figure 16.--Continued.

$\begin{aligned} & \text { LE TH } \\ & \text { G. } 00 \end{aligned}$	$\begin{aligned} \text { DEPTH } \\ 7.00 \end{aligned}$	IFILE	$1 \text { TAPE }$	NCAROT	ACAPDX	HCROYN	NCRDXN 3
$\underset{\varphi}{\mathrm{HCOL}}$							
$\begin{gathered} \text { MCTOD } \\ 1 \end{gathered}$	$\begin{gathered} \text { imgeot } \\ 0 \end{gathered}$	tral so	$\begin{gathered} \text { INGRS } \\ 1 \end{gathered}$				

$$
\begin{array}{r}
\text { OLD DRESSURE MEAD ARRAY } \\
-0.800000 * 01-0.271100+02-0.27104 D+02-0.2706 * D+02-0.2 S E 270+02-0.25402
\end{array}
$$

$$
\begin{aligned}
& \text { SURE HEAD ARRAY } \\
& \text { SU270 +02-0.254020+02-0.2424ED }
\end{aligned}
$$ $-0.000000+01-0.251100+02-0.251040+02-0.250640 \cdot 02-0.248270+02-0.244960+02-0.233280+02-0.231690+02-0 \cdot 700000+01$ $-c .500000+51-0.2414 A 0+02-0.241870+02-0.243950+02-0.232880+02-0.224620+02-0.202650+02-0.195100+02-0.500000+01$ $-0.400000+01-0.231100+02-0.231040+02-0.230640402-0.300000+02-0.210380+02-0.170400402-0.159150+02-0.400000+01$

 $-0.200000+01-0.116650+02-0.116030+02-0.113360+02-0.104970+02-0.781+70+01-0.051810+01-0.614440+01-0.200000+01$ $-6.100000+01-0.397350+01-0.394570401-0.383980+01-0.356010$-01-0.353500+01-0.272010+01-0.262040+01-0.100000+01

CAROS PUNCTEO.
Pigure 17.-- Printout of CARRY sample problem.

Appendix C: COMPAR - For Comparing Two-Dimensional Data Arrays

This progran was developed specifically for comparing PHED-arraya obtained from program STDY2. But it can be used for comparing any pair of two-dimensional data arrays, provided they bave the same mubers of rows and columns.

STDY2 iteratively solves a syatem of finite difference equations to change an arbitrary array of PHED-values to one that satisfies some particular sec of boundary conditions. This solution array is approached aspmptotically, so that one may decide that a solution is acceptable if, at each node in the solution meah, PHED-values from successive iterations do not differ by more than some small amount.

COMPaR recelves two PHED-arrays as input. At each rode of the solution mesh, it obtains the ratio of the difference in the two PHEDvalues to the value of one of them. If the absolute value of this ratio is larger than a value apeciffed by the user, information is printed that identifies the location of the node and gives the two PHED-values and the ratio.

A program 11sting of COMPAR is given below. Modifications that might be necesaary before running the program on other computers are flagged. Their numbering and explanat1ons are the same as for STDY2, appendix A. For magnetic tape input, PAKD $1(\mathrm{I}, \mathrm{J})$ and PHRD2(I, J) muat be given the same dimensions as PHED ($1, J$) in STDY2. This dimensiontig is done by means of the DOUBLE PRECISION atatement in COMPAR.

The logic of this program is stralghtforward and is readily deduced from inspecthon of the listing. No flow chart is given.

A user may compare more than one pair of arrays in one COMPAR run by simply subuitting an taput data deck for aach case compared.

Glossary of input variables

Input varlables are defined in the order of their appearance in the inpur dara deck. Pigure 18 showe punchcard layouts for these data. The manner of pregentation is the same as in appendix A.

Card Group 1-Five cards, even if some are blank. Must be in the inpul deck for procesolng each case. Fomme (20A4)
combgr - Aiphammeric identification printed at head of output.
Card Group 2 - A aingle card. Must be present in input deck for procesaing each cese. Format (D13.6.315)
DLIMIT - If eaitio (defined in the glossary of nonioput variebles) exceeds the value given for DLDMIT, a

Line of printout identifies the offending node. Becsula the main purpose of COMPAR is convergence checking, one usually selecte an a value for DLIMT the maximm value of RaTIO he ds Hillog to accept in what he considers a converged solution.
KROW - The number of rows is che solution mesh. This value is obtained from the printout of the STDY 2 case producing che arrays compared.
MCOL - The number of colums in the solution mesh. Thus value is abcained from the printout of the SIDY2 cese producing the arrays compared.
IPILE $=0$ if input arrag is in card form.
>0 if input is read from tape. The value is che position of che input file on a multifile tape. See explanacion of game variable in STDY2, gloseary of input varlables, card group l. This program reads two files at once, however, po that che definition of R and S in the equarion TPIE a - S muat be modified:
$R=$ the nuber representing the position of the PHEDI file on che tape
S = che maber repreaenting the position on the cape of the second file (PHED2) read in by the preceding case of the game rum (has che value zero for the firat case of che run)

Card Group 3 - A multiple card group produced by a STDY2 run. If STDY2 wrote magnetic tape, there is no card group 3. Format (6D13.6)-six values of Che following varlable per card--unneeded fields tui the last card may be left blank.
PHED $(1, J)$ - The presoure head value at node (I, J) of the solution mesh. See PFBD2 $(1, J)$, card group 4 .

Card Group 4 - a mitiple card group produced by a STDY 2 rua. If STDY2 wrote magnetic cape, there is ar card group 4. Format (6D13.6)-six values of tre following variable per card-unneeded fields in the last cerd may be blank.
PHRD2(I, J) - The presoure head value at aode (I, J) of che solition mesh. The arrays concaining PHEDl and PHBD2 are obtained from STDY2 one or more 1terations apart. Through the use of DSEB, STDY2 card group 3, theae arrays are 15 iterations apart. When uaing cards, however, the user may restart a cose and obtaln PHED2 after any number of iteracions, considering the eards used to che input daca deck for reatart as FFED if be wlshes.

Note: If argnetic tepe is used for inpuc, be sure that $\operatorname{PBED} 1(I, J)$, and $\operatorname{PHED} 2(I, J)$ are dimensioned exactly che same as PHBD (X, J) in STDT2. If punch cards are vaed, PHED1 (I,J) and PHED2 (I, J) wint bave dimensions at least as lirge as chose exhibited by che input daca. Dimenstoning is apecifled in the DOJBLIE PRECISION and DEMENSION atatements.

Glossary of noninput variables

DIFP - The absolute differance between PHED1 and PHED 2.
I-Colum number, I, in the array being compared. ICT - A coumtar uaed in calecting the wanced input t1le from amultifila cepe.
$J-$ Rov momber, J, in the arrayw balig compred. CATTO - DIFY divided by PHEDI.
figure 18.--Input data layout for Compar.

Program listing

```
    c COMPAR - COMDARES DATA IN TMG ARRAYS, PHEDICI,JS
        ano phedz(I,J), of eGual dimensions.
        3/18/74
    c*r**: possible modification type ml
001
    dOUBLE PRECISION PHEDI(80,70),PHED2(B0,70),RATIO,DIFF,OLIMIT
    C*On** pOSSIBLE KODIFICATION TYPE mJ.
    2
    c (loos
    C=mese pOSSIGLE modification type M4.
        5 READ 15,10.END=TOICEMENT
        10 FeRMat (2044)
        HaITE (6.15) CCMENT
        15 FERmAT (2H1,20$4/(20441)
        READ 15,20) DLIMIT,MROM,HCOL,IFILE
        20 FCRMAT (C13.6,315)
        WRITE 1s,251
        29 FORMAT (LHO, &X,GHOLIKIT GX,4HRROM 3X,GHNCCL 2X,5MIFILE,
        MRITE (S,30) OLFIT,MRON,MCOL.IFILE
        30 FORMAT (1H 023.6,16.[7.1%)
        WMITE (6,35)
        35 FORMAT (1HO 2X,1H1 2x.1HJ 5X,5HRATIO 5X,10HPMEOLII,JI 3X,
            110HPHED2(1,J) /1)
            IF IIFILE.NE.0) GC TO 45
            READ (5,401 I(PHEOLII,JI,I=1,RCOLI,JO1,MROW)
    40 FORMAT 16013.6)
        REAO (5,40) ((9HEDZ(I,J),I=1,MCOL),J=1, MROW)
        GO ro s5
    c
    C***** possible modification type hs.
    45 OC 50 ICT = I,IFIzE
        READ {9} PHEOl
    go READ (9) PHEDZ
    C*** Compare arrays node by nooe **o***u***
        S5 DO BS J = 1, #RCM
            OO65 I = I,RCOL EO.O.OR.PHEOS\I,J),EO.0) GO TO 65
            OIFF = DABS(PMEOI(I,J) - PHEDZ(I.JH)
            RATIO = DABS (DIFF/ PHEDII{,Jl:
            jf frayfg.lt.climiti go th os
            HRITE (6,60) I,J,RATIO,PHEDI(I,J),PGEDZII,SI
            60 FORMAT (1x,213,3013.61
            65 CONTINUE
            60 ro 5
            STOP
```


Appendix D:

List of Non-Fortran Symbols

h - Soil wacer pressure head (L).
H - Eydraulic head (L).
1 - Colum number in solution mesh.
j - Row number in solution mesh.
K - Hydraulic conductivity (LT-1).
m - Iceration number io the finice differencing acheme.
v - Flux rate (LT^{-1}).
x - Distance parallel to x-axis of the Cartesian coordinate system, posicive to che right (L).
y-Distance parallel to the y-axis. For purposes of presentacion of the model equations, y is positive upward. The significance of this is that infiltracion is a gegative flux and upward evaporacion is a posicive flux. For purposes of measurement between the x-axis and rows of nodes in the solution mesh, however, y is positive dommard (L).
s-Elevation above a datum (L).
α - The tangent of the angle a is the slope of che cross section.
 in the solution mesh (L).
Δx_{+}- Length of mesh increment to right of node $1, j$ (L).

Ay_ - Length of mesh increment above node i, J (L).
Δy_{+}- Length of mesh increment below node f,J, (L).

- O Oerrelaxation factor.

Appendix E: Program Updating

Although the program has beed run for a number of different cases, there will undoubtedly be reason to alter it in the future--either to correct as yet undetected errors, to modify output formats, or to tmprove efficiency.

Notification of updating will be by mimeographed reports. Users who wish to receive updare notices should ask to be placed on the update malling list by writing to the author:
C. R. Amerman

USDA ARS
207 Business Loop 70 East
Columbia, KO 65201

[^0]: ${ }^{1}$ Hydraulic Engineer, Watershed Research, Agriculcural Research Service, U.S. Department of Agriculture, 207 Business Loop 70 Ease, Columbia, Mo. 65201

[^1]: ${ }^{2}$ Italic numbers in parentheses refer to Literacure cited, p. 27.

[^2]: ${ }^{3}$ Greenspan, D., 1973, personal commolcacion.

[^3]: ${ }^{4}$ See foornoce 3, page 5.

[^4]: M2. -These statements pertain to time monitoring for comparigon with ESTIMR. Most computer facilities have a library routine which may be called to start the clock and another to return time accumulation to the program. These are often unique to the

[^5]: ${ }^{5}$ These are program-defined files and are not to be confused with logical tape files. A given computer run may produce several program-defined flles in one logical file, depending on the number of cases processed, the number of segmencs in a case, and whecher DDBLE $=1$ for one or more cases. Logical files used by a given run are idencified in job control eards. At the end of a run, a logical file is ceminaced with an end-of-file mark on the cape. The program-defined files are nor so terminated, but their limits are defined by the DIMENSION statement.

