Answer to the questions \#43280, Biology, Other

A young couple has been arguing about their son who has O blood type, meanwhile they are having A and B blood type. What might explain this outcome?
A. the husband is homozygotic B and his wife is heterozygotic A
B. The husband is heterozygotic A and his wife is heterozygotic B
C. the husband is heterozygotic B and his wife is homozygotic A
D. the husband is heterozygotic B and his wife is heterozygotic A
E. both of B and D are correct

Answer: The correct answer is E

$\Uparrow \mathrm{AO} \mathrm{x} q \mathrm{BO}$	$q \mathrm{AO} \mathrm{x} \not \mathrm{BO}^{\lambda}$
\downarrow	\downarrow
1 AO 1	1 AO
1 BO	1 BO
1 OO	1 OO
1 AB	1 AB

Homozygotic son (OO) could be born in families B and D with the probability $1 / 4$ (probability to get allele O from both parents is $1 / 2$, thus probability of the zygote (genotype and phenotype in the case of co-dominance) is a product of the probabilities of both gametes ($1 / 2 \times 1 / 2$). As these traits are not sexlinked it does not matter which parent has A or B allele. Thus, both cases are equiprobable.

