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Abstract 52 

Large-scale networks of phase synchronization are considered to regulate the communication 53 

between brain regions fundamental to cognitive function, but the mapping to their structural 54 

substrates, i.e., the structure-function relationship, remains poorly understood. Biophysical 55 

Network Models (BNMs) have demonstrated the influences of local oscillatory activity and 56 

inter-regional anatomical connections in generating alpha-band (8–12 Hz) networks of phase 57 

synchronization observed with Electroencephalography (EEG) and Magnetoencephalography 58 

(MEG). Yet, the influence of inter-regional conduction delays remains unknown. In this study, 59 

we compared a BNM with standard “distance-dependent delays”, which assumes constant 60 

conduction velocity, to BNMs with delays specified by two alternative methods accounting for 61 

spatially varying conduction velocities, “isochronous delays” and “mixed delays”. We 62 

followed the Approximate Bayesian Computation (ABC) workflow, i) specifying 63 

neurophysiologically informed prior distributions of BNM parameters, ii) verifying the 64 

suitability of the prior distributions with Prior Predictive Checks, iii) fitting each of the three 65 

BNMs to alpha-band MEG resting-state data (N = 75) with Bayesian Optimisation for 66 

Likelihood-Free Inference (BOLFI), and iv) choosing between the fitted BNMs with ABC 67 

model comparison on a separate MEG dataset (N = 30). Prior Predictive Checks revealed the 68 

range of dynamics generated by each of the BNMs to encompass those seen in the MEG data, 69 

suggesting the suitability of the prior distributions. Fitting the models to MEG data yielded 70 

reliable posterior distributions of the parameters of each of the BNMs. Finally, model 71 

comparison revealed the BNM with “distance-dependent delays”, as the most probable to 72 

describe the generation of alpha-band networks of phase synchronization seen in MEG. These 73 

findings suggest that distance-dependent delays contribute significantly to the neocortical 74 

architecture of human alpha-band networks of phase synchronization. Hence, our study 75 

illuminates the role of inter-regional delays in generating the large-scale networks of phase 76 

synchronization that might subserve the communication between regions vital to cognition. 77 

 78 

Keywords: Biophysical Network Models (BNMs); Magnetoencephalography (MEG) resting-79 

state; Axonal conduction delays; Phase synchronization; Approximate Bayesian Computation 80 

(ABC); Bayesian Optimisation for Likelihood-Free Inference (BOLFI) 81 
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1. Introduction 82 

Communication between brain regions is fundamental to all sensorimotor and cognitive 83 

functions (Fries (2015), Buszáki (2006), Varela et al. (2001)). Phase synchronization between 84 

neuronal oscillations from different brain regions is considered to subserve inter-regional 85 

communication by regulating the relation of spike arrival times to windows of excitability in 86 

the receiving brain region (Fries (2015), Fries (2005), Womelsdorf et al. (2007), Salazar et al. 87 

(2012)). Distinct sets of brain regions are recruited into networks of phase synchronization in 88 

tasks involving, e.g., working memory (Kitzbichler et al. (2011), Palva et al. (2010)), language 89 

(Doesburg et al. (2016)), visual attention (Lobier et al. (2018), Gross et al. (2004)), and 90 

sensorimotor processing (Hirvonen et al. (2018)). Neurophysiological studies have revealed 91 

reciprocal interactions between excitatory and inhibitory neuronal populations to underlie 92 

intra-regional phase synchronization (Buzsáki (2006), Traub (1997), Gray (1994)). However, 93 

the mapping between large-scale, inter-regional networks of phase synchronization and their 94 

structural substrates, i.e., the structure-function relationship, remains poorly understood.  95 

 96 

Biophysical Network Models (BNMs) comprise models of individual brain regions linked by 97 

biologically informed patterns of anatomical connections via finite conduction delays 98 

(Woolrich & Stephan (2005)). BNMs are a powerful tool to understand the structure-function 99 

relationship pertaining to inter-regional networks of phase synchronization (Breakspear 100 

(2017)). BNMs have been used to demonstrate the influences of oscillatory activity from 101 

neuronal populations (Forrester et al. (2020)), the pattern of inter-regional anatomical 102 

connections (Finger & Bönstrup et al. (2016)), and inhibitory synaptic plasticity (Abeysuriya 103 

et al. (2018)), in generating large-scale networks of phase synchronization observed in 104 

Electroencephalography (EEG) or Magnetoencephalography (MEG) resting-state. They have 105 

also been used to relate the heterogeneity of inter-regional conduction delays to the observed 106 

(Dotson et al. (2014)) bimodal distribution in angles of inter-regional phase synchronization 107 

(Petkoski et al. (2018), Petkoski & Jirsa (2019)). However, the influence of inter-regional 108 

delays in generating the pattern of connection strengths in large-scale networks of phase 109 

synchronization observed in EEG or MEG resting-state, has not been investigated. 110 

 111 

BNMs typically specify inter-regional delays by dividing the Euclidean distance between 112 

regions with a biologically-informed but spatially uniform conduction velocity (Abeysuriya et 113 

al. (2018), Hadida et al. (2018), Cabral et al. (2014), Nakagawa et al. (2014), Deco et al. (2009), 114 
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Ghosh et al. (2008)). BNMs with “distance-dependent delays” assuming spatially uniform 115 

conduction velocity have been used to generate alpha-band (8–12 Hz) inter-regional networks 116 

of phase synchronization corresponding to those observed in MEG (Abeysuriya et al. (2018)) 117 

and EEG resting-state (Finger & Bönstrup et al. (2016)). However, a wealth of evidence from 118 

human intra-cranial EEG recordings (Trebaul et al. (2018), Lemaréchal et al. (2022)) and 119 

animal electrophysiological studies across species (Chomiak et al. (2008), Swadlow et al. 120 

(1978), Miller (1975), Swadlow (1990), Simmons & Pearlman (1983)) report spatially varying 121 

conduction velocities. Theoretical proposals have suggested that the fine temporal co-122 

ordination in many cognitive functions requires regulating conduction velocities, to 123 

compensate for delay heterogeneity due to varying connection lengths (Seidl (2014), Pajevic 124 

et al. (2014)). Myelination of neurons can regulate conduction velocities through the linear 125 

relationship between outer axonal diameter and conduction velocity (Rushton (1951), Waxman 126 

& Bennett (1972)). Computational models incorporating activity-dependent myelination have 127 

been demonstrated to yield inter-regional connections with highly similar conduction delays, 128 

irrespective of the length of these connections (Noori et al. (2020)). Animal 129 

electrophysiological studies (Salami et al. (2003), Carr & Konishi (1990)) have also found 130 

evidence for “isochronous delays”, i.e., highly similar delays, across connections, possibly as 131 

a result of activity-dependent myelination. Alternative theoretical proposals have suggested 132 

that the need for fine temporal co-ordination might be balanced by the high metabolic costs of 133 

myelinating long-distance connections (Aboitiz et al. (2003)), resulting in a combination of 134 

“distance-dependent” and “isochronous” inter-regional conduction delays. In line with this 135 

proposal, animal electrophysiological studies have found evidence for isochronous delays in 136 

ipsilateral but not contralateral connections (Chomiak et al. (2008)). However, these 137 

alternative, biologically plausible methods to specifying inter-regional delays in BNMs, have 138 

not been compared to the standard “distance-dependent delays” method. 139 

 140 

In this study, we compared the “distance-dependent delays” method to two alternative 141 

biologically plausible methods to specifying inter-regional delays in BNMs of alpha-band (8–142 

12 Hz) networks of phase synchronization. We focused on alpha-band frequencies i) because 143 

they provide a basis to compare against previously proposed BNMs of phase synchronization 144 

(Abeysuriya et al. (2018), Finger & Bönstrup et al. (2016)), which also focused on alpha-band 145 

frequencies, ii) because of the clear evidence for alpha-band oscillations manifested as a 146 

spectral peak in the 8–12 Hz range both in our own MEG dataset (see Section 2.1) and in 147 

previous human electrophysiological studies (Mahjoory et al. (2020), Donoghue et al. (2020), 148 
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Wang (2010)) - oscillations are a pre-requisite for phase synchronization, and iii) because of 149 

the prominent functional role of alpha-band oscillations in cognitive functions, e.g., stimulus 150 

suppression, stimulus selection and top-down modulation (Palva & Palva (2007), Foxe & 151 

Snyder (2011), Klimesch (2012)). Apart from a standard BNM with “distance-dependent 152 

delays”, we defined a BNM with “isochronous delays” which assumed highly similar inter-153 

regional delays across connections, and a BNM with “mixed delays” which assumed inter-154 

regional delays to be a function of both the distance between regions and an isochronous or 155 

constant delay.  156 

 157 

We followed an Approximate Bayesian Computation (ABC) workflow to compare the three 158 

BNMs. To do this, we first specified prior distributions for parameters of each of the three 159 

BNMs based on strong neurophysiological constraints derived from the aggregated animal 160 

electrophysiology literature (Tripathy et al. (2014), Tripathy et al. (2015)). In these models, 161 

prior distributions are probability distributions reflecting our existing knowledge on the values 162 

of BNM parameters, while posterior distributions are probability distributions reflecting our 163 

updated knowledge on the values of BNM parameters after accounting for evidence from MEG 164 

data. We ran Prior Predictive Checks to verify the suitability of the chosen prior distributions, 165 

and then applied Bayesian Optimisation for Likelihood Free Inference (BOLFI) (Gutmann & 166 

Corander (2016)) to separately fit the BNMs with “distance-dependent delays”, “isochronous 167 

delays”, and “mixed delays”, to an experimental MEG resting-state dataset (N = 75). Finally, 168 

we used ABC model comparison (Beaumont (2019)) to compare the three fitted BNMs with 169 

an independent MEG resting-state dataset (N = 30). The Prior Predictive Checks revealed the 170 

range of dynamics generated by the three BNMs to encompass those reflected by the phase 171 

synchronization phenomena we observed in MEG resting-state. This suggested the suitability 172 

of the prior distributions of the parameters of all three BNMs. Fitting the three BNMs to 173 

experimental MEG data with BOLFI yielded reliable posterior distributions, representing 174 

constraints on the values of BNM parameters after accounting for evidence from the MEG data. 175 

Finally, ABC model comparison revealed the BNM with “distance-dependent delays” as more 176 

probable than the other BNMs, to describe the mechanisms generating large-scale alpha-band 177 

networks of phase synchronization observed in MEG resting-state. 178 
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2. Materials & Methods 179 

 180 

Figure 1. Workflow comparing strategies to specify inter-regional delays in Biophysical 181 

Network Models (BNMs) of phase synchronization. Bayesian Optimisation for Likelihood-182 

Free Inference (BOLFI) was used to fit BNMs with “isochronous delays”, “mixed delays”, 183 

and “distance-dependent delays” to Magnetoencephalographic (MEG) resting-state data (N = 184 

75), i.e. to determine parameter values for each of the three BNMs that would generate alpha-185 

band inter-regional networks of phase synchronization corresponding closely to those 186 

observed in MEG resting-state. Approximate Bayesian Computation (ABC) model 187 

comparison was then used to choose between BNMs with “isochronous delays”, “mixed 188 
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delays”, and “distance-dependent delays”, by comparing their alpha-band networks of phase 189 

synchronization to those observed in an independent MEG dataset (N = 30). 190 

 191 

We used an ABC workflow to compare the “isochronous delays”, “mixed delays”, and 192 

“distance-dependent delays” methods of specifying inter-regional delays in BNMs of alpha-193 

band networks of phase synchronization (Figure 1). First, we employed the high-dimensional 194 

ABC inference method BOLFI (Gutmann & Corander (2016)) to fit BNMs with “isochronous 195 

delays”, “mixed delays”, and “distance-dependent delays”, to an MEG resting-state dataset 196 

(N = 75). Then, we used ABC model comparison (Beaumont (2019)) to choose between the 197 

three fitted BNMs on an independent MEG resting-state dataset (N = 30). We used the ABC 198 

workflow since it provides methods to fit and compare BNMs despite their likelihood 199 

functions being intractable or mathematically difficult to formulate (Green et al. (2015), 200 

Lintusaari et al. (2017)). Further, ABC methods perform Bayesian inference (Gelman et al. 201 

(2013), van de Schoot et al. (2021), Gelman et al. (2020)), which provides a principled 202 

framework i) to combine existing knowledge from e.g., animal electrophysiology with 203 

evidence from observed MEG data to estimate values of BNM parameters, and ii) to account 204 

for uncertainty in the values of BNM parameters. We express existing knowledge of BNM 205 

parameters as prior distributions while we express updated knowledge of BNM parameters, 206 

given the observed data, as posterior distributions. Marginal distributions represent the 207 

probability distributions of individual BNM parameters irrespective of the values of other 208 

BNM parameters. Conditional distributions represent the probability distributions of 209 

individual BNM parameters given the value of another BNM parameter. Joint distributions 210 

represent the probability distribution of all BNM parameters given the values of all other 211 

BNM parameters. In this paper, we refer to marginal prior and posterior distributions of BNM 212 

parameters as simply their “prior distributions” and “posterior distributions” respectively, 213 

while we refer to conditional or joint prior and posterior distributions by their entire names, 214 

e.g., “conditional prior distribution”. 215 

2.1 BNM specification 216 

BNMs comprise models of individual brain regions linked by biologically informed patterns 217 

of anatomical connections with finite conduction delays. For BNMs implementing each of 218 

the delay specification methods, we used Wilson-Cowan (WC) oscillators to model the 219 

dynamics of individual brain regions (Wilson & Cowan (1972), Kilpatrick (2013), Cowan et 220 
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al. (2016)). WC oscillators have been used to model dynamics of individual brain regions in a 221 

number of modelling studies emulating brain functional networks (Hadida et al. (2018), 222 

Hellyer et al. (2016), Heitmann et al. (2017)), including modelling studies on inter-regional 223 

networks of phase synchronization (Abeysuriya et al. (2018), Hlinka & Coombes (2012)). 224 

The dynamics of WC oscillators arise from the interaction between excitatory and inhibitory 225 

neuronal populations, i.e., the Pyramidal Inter-Neuronal Gamma (PING) model of oscillation 226 

generation (Traub et al. (1997)) and are also influenced by external inputs and the dynamics 227 

of linked oscillators. Hence, the ensemble of connected WC oscillators represented our 228 

current understanding on the generation of neuronal oscillations and inter-regional phase 229 

synchronization (Buzsáki (2006), Gray (1994)). The dynamics of oscillator 𝑥 is given by: 230 

 231 

𝜏𝑒

𝑑𝑈𝑒

𝑑𝑡
= −𝑈𝑒(𝑡) + 𝐹(𝑤𝑒𝑒𝑈𝑒(𝑡) − 𝑤𝑒𝑖𝑈𝑖(𝑡) − 𝑏𝑒 + 𝐽𝑒+𝜓𝑒(𝑡) + 𝑘 ∑ 𝐼𝐻(𝑥, 𝑦). 𝐾(𝑥, 𝑦)

𝑁

𝑦=1

𝑈𝑒(𝑡 − 𝑇(𝑥, 𝑦)))  232 

𝜏𝑖

𝑑𝑈𝑖

𝑑𝑡
= −𝑈𝑖(𝑡) + 𝐹(𝑤𝑖𝑒𝑈𝑒(𝑡) − 𝑤𝑖𝑖𝑈𝑖(𝑡) − 𝑏𝑖 + 𝐽𝑖  +𝜓𝑖(𝑡))                                                                               (1) 233 

 234 

where 𝑇 is an 𝑁 × 𝑁 matrix, with 𝑇(𝑥, 𝑦) specifying the inter-regional conduction delay from 235 

brain region 𝑦 to brain region 𝑥, in milliseconds. 𝑁 is the number of brain regions or WC 236 

oscillators. We assumed the dynamics of each of the 𝑁 brain regions to be governed by equation 237 

1, in line with the assumption of identical brain regions in previous modelling studies of inter-238 

regional phase synchronization in MEG (Abeysuriya et al. (2018), Finger & Bönstrup et al. 239 

(2016)). Further, we assumed all 𝑁 brain regions to generate oscillatory dynamics, in agreement 240 

with the previously reported cortex-wide alpha-band spectral peaks in a large MEG resting-241 

state dataset (N = 187) (Mahjoory et al. (2020)) as well as the prominent alpha-band spectral 242 

peak across regions and subjects in our own MEG dataset (N = 75) (Figure S1) – spectral peaks 243 

are a signature of oscillatory dynamics (Wang (2010)).  244 

 245 

For the BNM with “distance-dependent delays”, we estimated 𝑇(𝑥, 𝑦) by dividing the Euclidean 246 

distance between regions 𝑥 and 𝑦 (in mm) by a scalar value 𝑣, which was the spatially uniform 247 

conduction velocity (in metres/second) assumed by distance-dependent delays. We estimated 248 

Euclidean distance between the centroids of brain regions in MNI space. For the BNM with 249 

“isochronous delays”, we populated the upper triangular elements of  𝑇 by sampling from a 250 

Gaussian distribution whose mean was given by a 𝑑𝑒𝑙𝑎𝑦 parameter (in milliseconds) and whose 251 

standard deviation was given by the product of the 𝑑𝑒𝑙𝑎𝑦 parameter and a 𝑐𝑜𝑒𝑓𝑓𝑣𝑎𝑟𝑑𝑒𝑙𝑎𝑦 252 
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parameter, which controlled the coefficient of variation around the mean. We constrained each 253 

of the delays to be positive using the ‘absolute’ operation and then constrained each of the 254 

delays to be integers using the ‘ceiling’ operation. Finally, we constrained the delays to be 255 

identical in both directions, i.e., 𝑇(𝑥, 𝑦)=𝑇(𝑦, 𝑥) for all 𝑥 and 𝑦 values, by copying all upper-256 

triangular elements of 𝑇(𝑥, 𝑦) to their corresponding lower-triangular elements. For the BNM 257 

with “mixed delays”, the inter-regional delays were determined both by an inter-regional 258 

distance term as well as a constant or isochronous delay term. We implemented the “mixed 259 

delays” method by first estimating the 𝑁 × 𝑁 velocity matrix 𝑉𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 implied by the distance-260 

dependent contribution. To do this, we set all non-diagonal elements of 𝑉𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 to the value of 261 

the spatially uniform conduction velocity 𝑣 assumed by distance-dependent delays. We next 262 

estimated the velocity matrix 𝑉𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 implied by the isochronous delay contribution. To do 263 

this, we divided the 𝑁 × 𝑁 matrix of inter-regional distances by the scalar value of 𝑑𝑒𝑙𝑎𝑦 264 

parameter assumed by isochronous delays. We then combined the 𝑉𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑉𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 265 

matrices in the relative proportion specified by the 𝑐𝑜𝑒𝑓𝑓𝑏𝑎𝑙𝑎𝑛𝑐𝑒 parameter, which typically 266 

assumed values between 0 and 1. We estimated the 𝑁 × 𝑁 velocity matrix 𝑉𝑚𝑖𝑥𝑒𝑑 implied by 267 

“mixed delays” by: 268 

 269 

𝑉𝑚𝑖𝑥𝑒𝑑(𝑥, 𝑦) = 𝑐𝑜𝑒𝑓𝑓𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑉𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦)) + (1 − 𝑐𝑜𝑒𝑓𝑓𝑏𝑎𝑙𝑎𝑛𝑐𝑒)(𝑉𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠(𝑥, 𝑦))                              (2) 270 

 271 

Finally, we estimated the 𝑁 × 𝑁  matrix 𝑇 of “mixed delays” by an element-wise division of 272 

the 𝑁 × 𝑁 matrices of inter-regional distances and the 𝑁 × 𝑁 velocity matrix, 𝑉𝑚𝑖𝑥𝑒𝑑. We 273 

constrained all delays to be positive using the ‘ceiling’ operation. Please refer Figure S2 for 274 

illustrations of example matrices of conduction velocities and resulting matrices of inter-275 

regional delays for the “isochronous delays”, “mixed delays” and “distance-dependent 276 

delays” methods. 𝐹(𝑧) =
1

1+𝑒−𝑧 is a sigmoid function, 𝑈𝑒(𝑡) and 𝑈𝑖(𝑡) are the mean firing rates at 277 

time 𝑡 of the excitatory and inhibitory populations respectively, 𝑤𝑒𝑒 and 𝑤𝑖𝑖 are the excitatory-278 

excitatory and inhibitory-inhibitory connection weights respectively, 𝑤𝑖𝑒 and 𝑤𝑒𝑖 are the 279 

excitatory-inhibitory and inhibitory-excitatory connection weights, 𝑏𝑒 and 𝑏𝑖correspond to the 280 

firing thresholds of excitatory and inhibitory populations, 𝐽𝑒 and 𝐽𝑖 are injection currents to 281 

excitatory and inhibitory populations, 𝜓𝑒(𝑡) and 𝜓𝑖(𝑡) are noise input modelled by a Gaussian 282 

process with zero mean and standard deviation given by 𝜓𝑠𝑖𝑔𝑚𝑎 , 𝜏𝑒 and 𝜏𝑖 are the time 283 

constants of the excitatory and inhibitory populations, and 𝑘 is a scalar multiplier over the 284 

coupling matrix 𝐾, which is an 𝑁 × 𝑁 matrix. 𝐾(𝑥, 𝑦) is the strength of the structural 285 

connection from brain region 𝑦 to brain region 𝑥. 𝐼𝐻 is an 𝑁 × 𝑁 matrix that we used to 286 
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selectively scale inter-hemispheric structural connections to compensate for the known under-287 

estimation of long-distance connections by diffusion MRI-based tractography (Sotiropoulos 288 

& Zalesky (2019)). We specified the 𝐼𝐻 matrix by setting all elements corresponding to intra-289 

hemispheric connections to 0, while we set all elements corresponding to inter-hemispheric 290 

connections to an identical positive value given by the 𝐼𝐻𝑠𝑐𝑎𝑙𝑖𝑛𝑔 parameter.  291 

 292 

Each of the three BNMs had 11 parameters in common, i.e., those parameters corresponding 293 

to the dynamics of individual brain regions and the structural connectome. In addition, the three 294 

BNMs had different sets of parameters to specify the matrix of inter-regional delays - the BNM 295 

with “distance-dependent delays” had the 𝑣 parameter, the BNM with “isochronous delays” 296 

had the 𝑑𝑒𝑙𝑎𝑦 and 𝑐𝑜𝑒𝑓𝑓𝑣𝑎𝑟𝑑𝑒𝑙𝑎𝑦 parameters, while the BNM with “mixed delays” had the 𝑣, 297 

𝑑𝑒𝑙𝑎𝑦 and 𝑐𝑜𝑒𝑓𝑓𝑏𝑎𝑙𝑎𝑛𝑐𝑒 parameters. 298 

2.1.1 Specifying strength of structural connections between WC oscillators 299 

We specified the number and positions of brain regions as per the Destrieux brain parcellation 300 

(Destrieux et al. (2010)), whose 148 regions provided a balance between biologically detailed 301 

brain regions and computationally tractable model simulations. We specified the strengths of 302 

structural connections between WC oscillators by first estimating a 148 × 148 Destrieux atlas-303 

based group-averaged (N = 57) matrix of the number of streamlines between brain regions, 304 

estimated by constrained spherical deconvolution (Smith et al. (2013)) and probabilistic 305 

tractography (Smith et al. (2012)) on pre-processed DWI images from the Human Connectome 306 

Project (van Essen et al. (2013)). The strengths of structural connections varied across seven 307 

orders of magnitude, i.e., from 10-2 through 104, and log-transformed strengths were inversely 308 

related to Euclidean distance between brain regions (Figure S3). We normalised each element 309 

in the structural connectivity matrix by its row-sum (Hlinka & Coombes (2012), Forrester 310 

(2020)). This normalisation strategy adjusts for potential tractography-induced confounds 311 

between streamline counts and sizes of brain regions. Similar strategies have been shown to 312 

improve the correspondence between diffusion MRI tractography-based structural connectivity 313 

estimates and those from retrograde tracer injections in macaque (Donahue et al. (2016)). 314 

2.1.2 Simulating the model 315 

We simulated all three BNMs with the DDE23a integrator (Shampine & Thompson (2001)), 316 

through the Brain Dynamics Toolbox (BDT) (Heitmann et al. (2018)). We ran the model 317 
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simulations for 65 seconds with a 250 Hz sampling frequency, and set Absolute Tolerance to 318 

1 × 10-6 and Relative Tolerance to 1 × 10-3, to limit local discretisation error. We discarded 319 

data from the first 5 seconds to minimise the effect of transient dynamics. We used dynamics 320 

of only the excitatory neuronal populations for further processing since the pyramidal neurons 321 

in excitatory populations are the dominant contributors to the measured MEG signals (Lopes 322 

da Silva (2013)). The dynamics of the excitatory neuronal populations represented the mean 323 

firing rate of pyramidal neurons in these populations.  324 

2.2 Prior specification 325 

We specified prior distributions of BNM parameters as Gaussian distributions whose mean 326 

and standard deviation we set based on i) biological constraints, including values reported in 327 

the aggregated animal electrophysiology literature and human intra-cranial EEG recordings, 328 

ii) values found to be optimal in the MEG and functional Magnetic Resonance Imaging 329 

(fMRI) modelling literature on brain functional networks, and iii) ranges of values generating 330 

oscillatory dynamics - oscillations are a pre-requisite of phase synchronization. 331 

 332 

Prior distributions of 𝜏𝑒 and 𝜏𝑖 333 

We set the prior distribution of 𝜏𝑒, the time constant of excitatory neuronal populations, to 334 

18.6 ± 3.6 ms (mean ± standard deviation) (Figure 2a) based on the weighted mean and 335 

pooled standard deviation of ‘layer 2/3 pyramidal neurons’ time constants in the 336 

NeuroElectro database (Tripathy et al. (2015)). We used values from ‘layer 2/3 pyramidal 337 

neurons’ since post-synaptic potentials (PSPs) from apical dendrites of supra-granular 338 

neurons are the dominant contributors to the measured MEG signal (Baillet (2017)). We set 339 

the prior distribution of 𝜏𝑖, the time constant of inhibitory neuronal populations, to 15.1 ± 4.7 340 

ms based on the weighted mean and pooled standard deviation of time constants of different 341 

cortical inhibitory cell types in the NeuroElectro database: ‘basket cells’, ‘double bouquet 342 

cells’, ‘chandelier cells’, ‘Martinotti cells’, ‘bipolar cells’ and ‘interneurons from deep 343 

cortical layers’. We used values from diverse inhibitory cell types due to the variety of 344 

inhibitory cell types forming connections to ‘layer 2/3 pyramidal neurons’ (Markram et al. 345 

(2004)). We fixed 𝐽𝑒 and 𝐽𝑖, injection currents to excitatory and inhibitory populations to 0, 346 

reflecting negligible sensory and thalamic input at resting-state (Meijas et al. (2016)). 347 
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 348 

Figure 2. Prior specification a. Bar plot for time constants of excitatory and inhibitory 349 

neurons across multiple studies reported in NeuroElectro database. Whiskers indicate 350 

standard deviation. b. Bar plot for spike thresholds of excitatory and inhibitory neurons 351 

across multiple studies reported in NeuroElectro database. c. Logistic function curves for 352 

𝑏𝑒=3 and 𝑏𝑖=5, where 𝑏𝑒 and 𝑏𝑖  are firing thresholds of the excitatory and inhibitory neuronal 353 

populations respectively. d. Histogram for standard deviation of activity from excitatory 354 

neuronal populations across multiple combinations of plausible parameter values for 𝑤𝑒𝑒, 𝑤𝑒𝑖, 355 

𝑤𝑖𝑒 and 𝑤𝑖𝑖, which are connection strengths within and between excitatory and inhibitory 356 

neuronal populations. Vertical red line indicates standard deviation threshold of 7 × 10-3, to 357 

detect oscillatory dynamics. e. 3-D scatter plot displaying combinations of 𝑤𝑒𝑒, 𝑤𝑒𝑖 and 𝑤𝑖𝑒, 358 

generating oscillatory dynamics. Colour of dots indicates standard deviation of dynamics. 359 

 360 

Prior distributions of 𝑏𝑒 and 𝑏𝑖 361 

We set the prior distribution of 𝑏𝑒, the firing threshold of excitatory neuronal populations, to 3 362 

± 1. We set the mean to a positive value since neurons fire in response to net excitation. We 363 

used a low value since the typical excitation of 20 millivolts (from -60 millivolts resting-state 364 

to -40 millivolts spike threshold) at which neurons fire, is small compared to the 100 millivolt 365 

range of the membrane potential (Kandel & Schwartz (1985)). We set the prior distribution of 366 
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𝑏𝑖, the firing threshold of inhibitory neuronal populations,  to 5 ± 1. We set the mean to 5 due 367 

to the higher spike thresholds of inhibitory neurons (-39.6 millivolts) compared to excitatory 368 

neurons (-43.2 millivolts) (Figure 2b), as per values in the NeuroElectro database (Tripathy et 369 

al. (2015)). Higher spike thresholds of inhibitory neurons is also in agreement with the high 370 

spike thresholds of nest basket cells, which make up a high proportion of inhibitory neurons 371 

(Wang et al. (2002)). We set the standard deviation to 1, to reflect the partial overlap in the 372 

spike thresholds of excitatory and inhibitory neurons (Figure 2b). Prior means of 𝑏𝑒 and 𝑏𝑖 set 373 

firing thresholds of excitatory and inhibitory populations to 3 and 5 respectively (Figure 2c). 374 

 375 

Prior distributions of 𝑤𝑒𝑒, 𝑤𝑒𝑖, 𝑤𝑖𝑒 and 𝑤𝑖𝑖 376 

We set the prior distribution of 𝑤𝑖𝑖, strength of connections within inhibitory neuronal 377 

populations, to 1 ± 0.2. These values reflected the strict biological constraint of sparse 378 

recurrent structural connectivity between inhibitory interneurons (Markram et al. (2004), 379 

Binzegger et al. (2004)). We set the prior distributions of 𝑤𝑒𝑒, 𝑤𝑒𝑖 and 𝑤𝑖𝑒, connection 380 

strengths within excitatory neuronal populations, from inhibitory to excitatory, and excitatory 381 

to inhibitory, to 20 ± 5, 18 ± 6 and 18 ± 6 respectively. These reflected ranges of parameters 382 

values generating oscillatory dynamics, as defined by a standard deviation threshold (Figure 383 

2d–e). The higher value of the prior mean for 𝑤𝑒𝑒 compared to those of 𝑤𝑒𝑖 and 𝑤𝑖𝑒 reflected 384 

the biological constraint of dense structural connections between ‘layer 2/3 pyramidal 385 

neurons’ (Binzegger et al. (2004), Douglas et al. (1989), Douglas & Martin (2007), Jansen & 386 

Rit (1995)). The wide standard deviations for 𝑤𝑒𝑒, 𝑤𝑒𝑖 and 𝑤𝑖𝑒 reflected the uncertainty in their 387 

values due to differing reports on their relative magnitudes - anatomical studies report 388 

structural connections within excitatory populations to be much denser than those between 389 

excitatory and inhibitory populations (Binzegger et al. (2004), Douglas & Martin (2007)), 390 

while physiological studies report functional connections within excitatory populations to 391 

have similar strength to functional connections between excitatory and inhibitory populations 392 

(Seeman & Campagnola et al. (2018), Campagnola & Seeman et al. (2022)). 393 

 394 

Prior distributions of 𝜓𝑠𝑖𝑔𝑚𝑎, 𝑘, and 𝐼𝐻𝑠𝑐𝑎𝑙𝑖𝑛𝑔 395 

We set the prior distribution of 𝜓𝑠𝑖𝑔𝑚𝑎, i.e., standard deviation of the noise input to excitatory 396 

and inhibitory populations, to 0.15 ± 0.05. The very low values assumed by 𝜓𝑠𝑖𝑔𝑚𝑎 respected 397 

the biological constraint of negligibly small probability that a neuronal population fires solely 398 

due to noise input (Faisal et al. (2008)). Further, these settings allowed 𝜓𝑠𝑖𝑔𝑚𝑎 to encompass 399 
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values between 0.01 and 0.32 found to be optimal in previous MEG and fMRI modelling 400 

studies (Abeysuriya et al. (2018), Hellyer et al. (2016), Deco et al. (2009)). We set the prior 401 

distribution of 𝑘, the scalar multiplier over the structural connectome, to 1.5 ± 0.5. These 402 

values respected the biological constraint that extrinsic sources of excitation to brain regions 403 

are substantially weaker than intrinsic sources (Douglas & Martin (2007)). Further, these 404 

settings allowed 𝑘 to encompass values between 1 and 3 found to be optimal in previous 405 

MEG and fMRI modelling studies (Hadida et al. (2018), Hellyer et al. (2016), Cabral et al. 406 

(2014), Deco & Jirsa (2012)). We set the prior distribution of 𝐼𝐻𝑠𝑐𝑎𝑙𝑖𝑛𝑔, the inter-hemispheric 407 

scaling factor over the structural connectome, to 2.5 ± 0.5. These values reflected the known 408 

underestimation of long distance connections by diffusion MRI (Sotiropoulos & Zalesky 409 

(2019)). Further, these settings allowed 𝐼𝐻𝑠𝑐𝑎𝑙𝑖𝑛𝑔 to encompass values between 1.5 and 3.5 410 

found to be optimal in previous MEG modelling studies (Hadida et al. (2018)). 411 

 412 

Prior distributions of 𝑣, 𝑑𝑒𝑙𝑎𝑦, 𝑐𝑜𝑒𝑓𝑓𝑣𝑎𝑟𝑑𝑒𝑙𝑎𝑦 and 𝑐𝑜𝑒𝑓𝑓𝑏𝑎𝑙𝑎𝑛𝑐𝑒 413 

Across the three methods, we estimated the matrix of inter-regional delays by element-wise 414 

division of the matrix of inter-regional distances by the matrix of conduction velocities. 415 

However, each method had a different set of parameters to estimate their corresponding 416 

matrix of conduction velocities, in accordance with that method’s assumptions on spatial 417 

variation in conduction velocities (see Section 2.1). Hence, we set prior distributions for 418 

parameters specific to each of the three methods.  419 

 420 

For the “distance-dependent delays” method, we had conduction velocity parameter 𝑣. We set 421 

the prior distribution of 𝑣 to 8 ± 2 m/s. We set the mean as 8 m/s to fall within the values 422 

between 5–11 m/s reported to be optimal across several MEG and fMRI modelling studies 423 

(Abeysuriya et al. (2018), Nakagawa et al. (2014), Cabral et al. (2014), Hellyer et al. (2016), 424 

Hadida et al. (2018)). We set the standard deviation to 2 m/s, so that values from the prior 425 

distribution of 𝑣 would encompass central tendency values between 1.1 m/s and 7.4 m/s 426 

reported across human electrophysiological (Trebaul et al. (2018), (Lemaréchal et al. (2022), 427 

Aboitiz et al. (1992)), macaque electrophysiological (Swadlow et al. (1978)) and macaque 428 

microscopy (Firmin et al. (2014)) studies. For the “isochronous delays” method, we had the 429 

mean delay parameter, 𝑑𝑒𝑙𝑎𝑦, and a parameter controlling the coefficient of variation, 430 

𝑐𝑜𝑒𝑓𝑓𝑣𝑎𝑟𝑑𝑒𝑙𝑎𝑦. We set the prior distribution of 𝑑𝑒𝑙𝑎𝑦 to 10 ± 3 ms. We set the mean as 10 ms in 431 

line with the optimal “mean delay” across several MEG and fMRI modelling studies 432 
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(Abeysuriya et al. (2018), Nakagawa et al. (2014), Cabral et al. (2014), Hellyer et al. (2016), 433 

Hadida et al. (2018)). We set the standard deviation to 3 ms, so that values from the prior 434 

distribution fell within the 1.5–24.9 ms range of inter-hemispheric delays reported across 435 

human and macaque electrophysiological studies (Aboitiz et al. (1992), Swadlow et al. 436 

(1978)). We set the prior distribution of 𝑐𝑜𝑒𝑓𝑓𝑣𝑎𝑟𝑑𝑒𝑙𝑎𝑦 to 0.2 ± 0.05 respectively. We chose 437 

this setting so that low values from this parameter’s prior distribution would generate nearly 438 

identical conduction delays across connections, while high values would generate sets of 439 

inter-regional delays whose variation was similar to sets of distance-dependent delays. For 440 

the “mixed delays” method, we had the 𝑐𝑜𝑒𝑓𝑓𝑏𝑎𝑙𝑎𝑛𝑐𝑒 parameter. Values between 0 and 1 441 

indicated the relative proportion of isochronous delays and distance-dependent delays, 0 442 

indicating fully isochronous delays. We set the prior distribution of 𝑐𝑜𝑒𝑓𝑓𝑏𝑎𝑙𝑎𝑛𝑐𝑒 to 0.5 ± 0.15, 443 

so that values from this parameter’s prior distribution generated sets of delays traversing the 444 

intermediate space between “distance-dependent” and “isochronous” sets of delays. 445 

 446 

We refer the reader to our open dataset (Williams et al. (2023)) for time constants and spike 447 

thresholds of single studies, from which we estimated prior distributions of 𝜏𝑒, 𝜏𝑖, 𝑏𝑒 and 𝑏𝑖. 448 

2.3 Prior Predictive Checks 449 

Prior Predictive Checks are performed to assess the suitability of the prior distributions and 450 

the model, before proceeding to fit the model to observed data (Gelman et al. (2013), van de 451 

Schoot et al. (2021), Gelman et al. (2020)). In the Prior Predictive Checks, we used different 452 

test statistics to determine if the range of dynamics generated by the BNM encompassed 453 

those we observed in the MEG resting-state data. We ran 1,000 simulations of each of the 454 

three BNMs with parameter values drawn from their respective joint prior distributions. 455 

Then, we estimated the values of four test statistics from the dynamics of each of the 1,000 456 

simulations and compared the sample medians of these test statistics, to the values of those 457 

test statistics on MEG resting-state data. We estimated the following test statistics: i) median 458 

of alpha-band phase synchronization strengths between all pairs of 148 brain regions, to 459 

measure central tendency in the strengths of phase synchronization, ii) median absolute 460 

deviation (MAD) of alpha-band phase synchronization strengths between all pairs of 148 461 

brain regions, to measure dispersion in the phase synchronization strengths, iii) mean of the 462 

Kuramoto order parameter (Kuramoto (1984), Breakspear et al. (2010)), to measure strength 463 

of zero-lag phase synchronization across the dataset, and iv) standard deviation of the 464 
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Kuramoto order parameter, to measure variability in zero-lag phase synchronization across 465 

the dataset. Please see Section 2.3.2 for details. 466 

2.3.1 Processing experimental and simulated MEG data 467 

We used eyes-open experimental MEG resting-state data from 75 subjects for ~600 seconds, 468 

at a sampling frequency of 1000 Hz. Data was collected with a 306-channel MEG system 469 

(204 planar gradiometers and 102 magnetometers, Elekta-MEGIN Oy) at HUS BioMag 470 

laboratory, Helsinki. Ethics approval was obtained from the Ethics Committee of Helsinki 471 

University Central Hospital. The study was performed according to the guidelines in the 472 

Declaration of Helsinki. Written informed consent was obtained from each participant prior 473 

to the study. Please see Siebenhühner et al. (2020) for further details. 474 

 475 

We used temporal Signal Space Separation (Taulu & Hari (2009)) implemented in MaxFilter 476 

to suppress extra-cranial noise, and Independent Component Analysis (ICA) in FieldTrip 477 

(Oostenveld et al. (2011)), to remove artefacts of ocular, cardiac, or muscular origin. 478 

 479 

We estimated subject-specific forward and inverse operators to map between source space 480 

and MEG sensor space, based on individual T1-weighted anatomical MRI scans that we 481 

collected at a resolution of 1 × 1 × 1 mm with a 1.5T MRI scanner (Siemens, Germany). We 482 

processed these MRIs with FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) and used the 483 

dynamic Statistical Parametric Mapping (dSPM) method (Dale et al. (2000)) implemented in 484 

MNE (Gramfort et al. (2014)) to estimate inverse operators based on subject-specific head 485 

conductivity models and cortically constrained source models. We applied fidelity weighting 486 

to these inverse operators to reduce the influence of MEG field spread (Korhonen et al. 487 

(2014)). We applied these subject-specific inverse operators to MEG sensor-level data, to 488 

reconstruct dynamics at up to 7,500 sources per hemisphere for each subject. Next, we 489 

averaged the reconstructed dynamics within each brain region in the Destrieux atlas, to obtain 490 

the representative dynamics for each of the 148 regions. We then downsampled these source 491 

collapsed datasets of each subject to 250 Hz, before bandpass filtering in the alpha frequency 492 

band (8–12 Hz) with Morlet wavelets of peak frequency = 9.83 Hz and width parameter = 5. 493 

We chose a high value for the Morlet width parameter to account for subject-wise variability 494 

in the limits of the alpha frequency band (Haegens et al. (2014)). These operations yielded 75 495 

subject-specific alpha-band experimental MEG datasets, at the level of brain regions. From 496 
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30 of these subjects, we recorded another set of resting-state data. We used these 30 497 

additional MEG datasets to choose between the three BNMs with ABC model comparison. 498 

Further, we recorded eyes-closed MEG resting-state data from 28 of the original cohort of 75 499 

subjects. We used these 28 additional MEG datasets to choose between the three BNMs in 500 

eyes-closed MEG resting-state, where the compared BNMs had been fit to the original 501 

dataset of eyes-open MEG resting-state data from 75 subjects. 502 

 503 

We generated simulated MEG data by first simulating the BNMs for 65 seconds at a 504 

sampling frequency of 250 Hz, before removing data from the first 5 seconds to remove the 505 

effect of transient dynamics. Then, we successively projected the simulated data to sensor-506 

level with the same 75 subject-specific forward operators whose MEG data we recorded, and 507 

applied the 75 subject-specific inverse operators to the simulated sensor-level MEG data, 508 

resulting in 75 simulated source-space MEG datasets. Next, we performed the source 509 

collapsing and bandpass filtering of the simulated source-space MEG data identically as to 510 

the experimental MEG resting-state data, yielding 75 subject-specific alpha-band datasets of 511 

simulated MEG, across 148 brain regions of the Destrieux brain atlas. 512 

2.3.2 Estimating test statistics for Prior Predictive Checks  513 

For both simulated and experimental MEG datasets, we estimated the median and median 514 

absolute deviation (MAD) of phase synchronization strengths. To do this, we first estimated 515 

subject-specific matrices of phase synchronization between all pairs of 148 brain regions 516 

from the alpha-band source-space MEG datasets of each subject. We measured phase 517 

synchronization using weighted Phase Lag Index (wPLI), which is insensitive to the 518 

confounding influence of MEG field spread on estimates of phase synchronization (Vinck et 519 

al. (2011), Siebenhühner et al. (2016), Palva et al. (2018)). We estimated wPLI as: 520 

 521 

𝑤𝑃𝐿𝐼 =
|𝐸(|𝐼𝑚𝑎𝑔(𝑋)|𝑠𝑖𝑔𝑛(𝐼𝑚𝑎𝑔(𝑋))|

𝐸(|𝐼𝑚𝑎𝑔(𝑋)|)
                                                                                                                 (3) 522 

 523 

where 𝑋 is the cross-spectrum between a pair of signals and 𝐼𝑚𝑎𝑔(𝑋) is its imaginary 524 

component. We then averaged these subject-specific matrices along the subject dimension to 525 

obtain group-level matrices of phase synchronization. We estimated the median of phase 526 

synchronization strengths from the upper triangular elements of the group-level matrix of phase 527 

synchronization. We estimated the median absolute deviation (MAD) of phase synchronization 528 
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strengths as the median of absolute differences between each phase synchronization strength 529 

and the median phase synchronization. 530 

 531 

For both simulated and experimental source-space MEG datasets, we estimated the mean and 532 

standard deviation of the Kuramoto order parameter 𝑅, by first estimating 𝑅 at each time 𝑡: 533 

 534 

𝑅(𝑡) = |
1

𝑁
∑ 𝑒𝜙𝑘(𝑡)

𝑁

𝑘=1

|                                                                                                                                   (4) 535 

 536 

where 𝜙𝑘(𝑡) is the instantaneous phase of the oscillator with index 𝑘, and 𝑁 is the total 537 

number of oscillators. We estimated the mean and standard deviation of 𝑅(𝑡) for the alpha-538 

band MEG dataset of each subject and then averaged these estimates across subjects, to 539 

obtain group-level estimates of the strength and variability of zero-lag phase synchronization. 540 

Please refer Table 1 for an overview of the test statistics we used, how we estimated them and 541 

our purpose in using them. 542 

 543 

Test statistic Estimation Purpose 

Central tendency in 

strengths of inter-regional 

phase synchronization 

Median of upper-triangular 

elements of group-level 

matrix of phase 

synchronization 

To measure overall strength of 

inter-regional phase 

synchronization 

Dispersion in strengths of 

inter-regional phase 

synchronization 

Median Absolute Deviation 

(MAD) of upper-triangular 

elements of group-level 

matrix of phase 

synchronization 

To measure overall variability 

of inter-regional phase 

synchronization 

Strength of aggregate 

phase synchronization 

Mean of subject-level 

means of Kuramoto order 

parameter  

To measure strength of 

simultaneous, zero-lag phase 

synchronization across dataset 

Temporal variability of 

aggregate phase 

synchronization 

Mean of subject-level 

standard deviations of 

Kuramoto order parameter 

To measure temporal 

variability of simultaneous, 

zero-lag phase synchronization 

across dataset 
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Table 1. Descriptions of each test statistic, their estimation and purpose. 544 

2.4 BNM fitting 545 

We used an ABC method, BOLFI (Bayesian Optimisation for Likelihood-Free Inference) 546 

(Gutmann & Corander (2016)) to fit each of the BNMs to experimental MEG data. We used 547 

the BOLFI implementation in the Python package, Engine for Likelihood Free Inference 548 

(ELFI) (Lintusaari et al. (2018)). We chose BOLFI to estimate BNM parameters since it is 549 

suitable for i) likelihood-free inference (LFI) settings where a model’s intractable likelihood 550 

function renders standard likelihood-based methods inapplicable (Lintusaari et al. (2017)), 551 

and ii) high-dimensional inference, i.e. estimating more than ~10 model parameters - standard 552 

LFI methods such as ABC-Sequential Monte Carlo (SMC) (Sisson et al. (2007), West et al. 553 

(2021)) are only suitable to estimate a few model parameters and do not scale well to high-554 

dimensional settings (Gutmann & Corander (2016)). BOLFI has been used to infer 555 

parameters of models in diverse fields, including genetics (Corander et al. (2017), McNally & 556 

Kallonen et al. (2019), Arnold et al. (2018)), cosmology (Leclercq (2018)), computational 557 

social science (Asikainen et al. (2020)) and cognitive science (Kangasrääsiö et al. (2019)). 558 

While a method similar to BOLFI has been used to estimate parameters of BNMs in Systems 559 

Neuroscience (Hadida et al. (2018)), it does not perform Bayesian inference - limiting its 560 

ability to include existing e.g., neurophysiological constraints on values of BNM parameters, 561 

and to account for uncertainty in the values of BNM parameters when comparing BNMs. 562 

 563 

BOLFI estimates posterior distributions of BNM parameters using Bayes’ rule (Gelman et al. 564 

(2013)) to combine prior distributions of BNM parameters with an approximation of the 565 

BNM’s likelihood function. We employed a Gaussian Process (GP)-based surrogate model to 566 

approximate the BNM’s likelihood function. We trained the GP model with the results of 567 

multiple BNM simulations, to learn the mapping between combinations of parameter values 568 

and the corresponding discrepancies between BNM dynamics and MEG data. We used 569 

summary statistics to describe the BNM dynamics and MEG data. We used GPs due to their 570 

suitability in modelling smooth input-output relationships (Rasmussen & Williams (2006)) - 571 

we expected similar combinations of parameter values to generate similar BNM dynamics. 572 

Previously studied BNMs have demonstrated smooth input-output relationships (Hadida et al. 573 

(2018), Perl et al. (2020)). GPs acquire their smoothness constraint from their covariance 574 

matrix. We specify the functional form of the covariance matrix with a kernel, and we use a 575 
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kernel lengthscale parameter to quantify the rate of decrease in covariance with increases in 576 

values of BNM parameters. When used with BOLFI, GP surrogate models have drastically 577 

reduced the number of model simulations required to accurately estimate values of model 578 

parameters (Gutmann & Corander (2016)). Hence, we used BOLFI with GP surrogate models 579 

to fit high-dimensional BNMs of between 12 to 14 parameters in our study, to MEG data.  580 

2.4.1 BOLFI settings 581 

We employed the following procedure and settings to apply BOLFI to estimate joint posterior 582 

distributions of each of the three BNMs. We set the prior distributions of parameters for each 583 

BNM as per the values we had specified (Section 2.2). We used the 148 × 148 group-level 584 

matrix of static phase synchronization estimated from MEG resting-state (Section 2.3.2) to 585 

represent experimentally observed dynamics, against which we compared BNM dynamics. 586 

We chose to compare the group-level matrices of static phase synchronization estimated from 587 

the MEG data and BNM dynamics rather than corresponding descriptions of time-varying 588 

phase synchronization, due to i) the stable inter-regional patterns of phase synchronization 589 

across time reported in recent human electrophysiological studies (Nentwich et al. (2020), 590 

Mostame & Sadaghiani et al. (2021), Sadaghiani et al. (2022)), and ii) since comparing 591 

descriptions of time-varying phase synchronization returned by, e.g., a HMM (Hidden 592 

Markov Model)-based method (Vidaurre et al. (2018)) would add a layer of complexity to the 593 

BNM fitting by increasing the dimensionality of the summary statistics (Lintusaari et al. 594 

(2017)) by a multiplicative factor equal to the number of hidden states and introducing 595 

problems of “state matching” between hidden states estimated from the MEG data and BNM 596 

dynamics. We simulated the BNM at 10,000 combinations of parameter values drawn from 597 

the BNM’s joint prior distribution. From the dynamics of each BNM simulation, we 598 

estimated 148 × 148 group-level matrices of phase synchronization. We chose the summary 599 

statistics to be the vector of upper-triangular elements of the 148 × 148 group-level matrices 600 

and used the Structural Similarity Index (SSI) (Wang et al. (2004)) to measure the similarity 601 

between summary statistics of the BNM dynamics and those from MEG data. We used SSI to 602 

measure similarity due to i) it simultaneously comparing mean, standard deviation and 603 

pattern of values in two input vectors in contrast to alternative measures such as, e.g., Pearson 604 

Correlation which only compares the pattern of values in two input vectors, ii) its 605 

demonstrated effectiveness in comparing empirical brain functional networks to those 606 

generated by BNMs (Piccinini et al. (2021)) and generative models (Perl et al. (2020)), and 607 
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iii) its reported good performance in comparing high-dimensional images in image 608 

processing applications (Ledig et al. (2017), Dong et al. (2015), Wang et al. (2004a)), which 609 

is analogous to our comparing high-dimensional vectors of phase synchronization strengths. 610 

We estimated SSI as: 611 

 612 

𝑆𝑆𝐼(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝜎𝑦 + 𝐶2𝑦)

(𝜇𝑥
2 + 𝜇𝑦

2 +  𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 +  𝐶2)
                                                                                              (5)  613 

 614 

where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦 and 𝜎𝑥𝜎𝑦 are local means, local standard deviations and cross-covariances 615 

of the vectors 𝑥 and 𝑦 respectively, and 𝐶1 = 0.012 and 𝐶2 = 0.032. 𝑥 and 𝑦 were respectively 616 

the vectors of phase synchronization strengths estimated from BNM dynamics and MEG 617 

data. SSI values typically fall between 0 and 1, values close to 1 indicating highly similar 618 

vectors (Wang et al. (2004)). We expressed the discrepancy between summary statistics from 619 

MEG data and BNM dynamics as 𝑙𝑛(1 − 𝑆𝑆𝐼). Hence, the discrepancy value for identical 620 

vectors would be -∞. We applied the natural logarithm to provide finer resolution at low 621 

discrepancy values (Gutmann & Corander (2016)). A single BNM simulation can exceed 24 622 

hours, hence simulating BNMs at 10,000 combinations of parameter values in a serial manner 623 

would have prohibitively long run-time. We reduced computational run-time by exploiting 624 

the independence of BNM simulations, using an “embarrassingly parallel” paradigm on a 625 

HPC cluster to simulate BNMs at each of the 10,000 samples. We used “array jobs” to run 626 

the 10,000 simulations in 2,000 sets of 5 simulations, wherein we set the time limit for each 627 

set to 120 hours and the RAM memory limit to 30 GB. However, note that running BNM 628 

simulations in this manner only permitted training the GP model with combinations of 629 

parameter values drawn from their joint prior distributions. We did not run BNM simulations 630 

at points suggested by a Bayesian Optimisation (BO) acquisition function, i.e., we did not 631 

have an active learning stage in the GP training. Since BNM simulations are not independent 632 

of each other during active learning, including an active learning stage would make 633 

computational run-times prohibitively long. We used an ARD (Automatic Relevance 634 

Determination) squared exponential kernel with a constant basis function to specify the 635 

functional form for the covariance matrix of the GP surrogate model. Algorithmic complexity 636 

of fitting the GP model scales as a cube of the number of simulations (Gutmann & Corander 637 

(2016)), hence fitting the GP model to ~10,000 points can be computationally expensive. To 638 

aid convergence, we first used the subset of data method (2,000 points) to fit the GP model 639 

and used the residual noise variance estimated from this fit as a fixed parameter when fitting 640 
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the GP model to ~10,000 points. Once the GP fitting was complete, we assessed the quality 641 

of the fit by estimating the Pearson Correlation between actual discrepancies and GP-642 

predicted discrepancies. We also determined the relative importance of each BNM parameter 643 

in explaining the actual discrepancies, by computing  𝑒𝑥𝑝
−𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑐𝑎𝑙𝑒𝑠 of the estimated ARD 644 

kernel lengthscales. Next, we estimated the posterior distributions of BNM parameters by 645 

combining the GP-based likelihood function with prior distributions of the BNM parameters. 646 

To estimate posterior distributions, we used the NUTS method (Hoffman & Gelman (2014)) 647 

to sample 1,000 points each, from 4 chains, with half these points being used for warm-up. 648 

We set the posterior defining threshold as the minimum of the GP-based mean discrepancy 649 

function (Gutmann & Corander (2016)), and set 0.8 as the target probability, which is within 650 

the recommended range for this value (Betancourt et al. (2014)). Finally, we assessed 651 

convergence of the posterior sampling stage by checking if the effective number of samples 652 

was ＞100 and 𝑅̂ ＜1.05, for each of the BNM parameters (Vehtari et al. (2021)). Effective 653 

number of samples indicates the number of samples from the posterior after accounting for 654 

autocorrelation between samples (Geyer et al. (2011)), while the 𝑅̂ diagnoses “chain mixing” 655 

by comparing between-chain and within-chain estimates of model parameters - values close 656 

to 1 suggest the absence of “chain mixing”. 657 

2.4.2 Assessing sensitivity of discrepancies to values of BNM parameters 658 

The accuracy of posterior distributions estimated by ABC methods are highly dependent on 659 

the sensitivity of the discrepancies between ‘simulated’ and ‘observed’ dynamics, to the 660 

values of the BNM parameters (Lintusaari et al. (2017), Sunnåker et al. (2013)). For BOLFI, 661 

the accuracy of the posterior distributions are also dependent on the sensitivity of the GP-662 

predicted discrepancies to the values of BNM parameters. We used fake-data simulations to 663 

assess the sensitivity of the actual and GP-predicted discrepancies, to values of two BNM 664 

parameters 𝑤𝑒𝑒 and 𝑤𝑒𝑖. For these fake-data simulations, we used the same BNM as specified 665 

in Section 2.1, but with “instantaneous delays” or “zero delays” - using instantaneous delays 666 

allowed us to run the BNM simulations several orders of magnitude faster since we were 667 

solving ordinary differential equations rather than delay differential equations. We first 668 

generated a reference dataset of ‘observed’ dynamics by selecting a combination of parameter 669 

values producing oscillatory dynamics. We used the following values: 𝑤𝑒𝑒 = 12.9, 𝑤𝑒𝑖 = 13.4, 670 

𝑤𝑖𝑒 = 12.4, 𝑤𝑖𝑖 = 0.85, 𝑏𝑒 = 2.85, 𝑏𝑖 = 4.7, 𝜏𝑒 = 15.9, 𝜏𝑖 = 18.1, 𝑘 = 1.6, 𝐼𝐻𝑠𝑐𝑎𝑙𝑖𝑛𝑔= 2.83 and 671 

𝜓𝑠𝑖𝑔𝑚𝑎= 0.13. We simulated the BNM with these parameter values 1,000 times with ODE45 672 
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(Bogacki & Shampine (1996)), other settings being identical to that specified in Section 673 

2.1.2. For each of the 1,000 simulations, we generated group-level matrices of phase 674 

synchronization, then averaged across these 1,000 group-level matrices to generate the 675 

reference group-level matrix of phase synchronization. Next, we generated datasets of 676 

‘simulated’ dynamics by running 20 BNM simulations at every point in the 100 × 100 grid 677 

defined by every pairwise combination of 𝑤𝑒𝑒 and 𝑤𝑒𝑖 values. We varied 𝑤𝑒𝑒 and 𝑤𝑒𝑖 across 678 

100 equally spaced points from 10 to 30 and from 6 to 30 respectively. We fixed values of all 679 

other BNM parameters to the same value as for the reference dataset. From the datasets of 680 

‘simulated’ dynamics, we generated 20 group-level matrices of phase synchronization for 681 

every point in the 100 × 100 grid, and averaged across these 20 repetitions to obtain a single 682 

group-level matrix at each point in the 100 × 100 grid. Then, we estimated discrepancies 683 

between the reference ‘observed’ summary statistics and ‘simulated’ summary statistics at 684 

every point on the 100 × 100 grid. We then determined if the discrepancy surface reached a 685 

global minimum at the point on the grid representing the combination of true values of 𝑤𝑒𝑒 686 

and 𝑤𝑒𝑖. Further, we estimated a GP surrogate model relating the BNM parameter values to 687 

the corresponding discrepancies. We determined if the surface of GP-predicted discrepancies 688 

reached a global minimum at the point on the grid representing the combination of true 689 

values of 𝑤𝑒𝑒 and 𝑤𝑒𝑖. These investigations revealed if the actual and GP-predicted 690 

discrepancies were sensitive to the values of two BNM parameters, 𝑤𝑒𝑒 and 𝑤𝑒𝑖. 691 

2.5 BNM evaluation 692 

We evaluated the three fitted BNMs by comparing the posterior distributions of each of the 693 

BNM parameters to their respective prior distributions. Comparing the posterior distributions 694 

of BNM parameters to their prior distributions revealed additional constraints on the values 695 

of these parameters learnt from the MEG data, through BOLFI model fitting. Further, we ran 696 

Posterior Predictive Checks to assess the similarity between dynamics from the fitted BNMs 697 

and those reflected by the phase synchronization phenomena in the observed MEG data. 698 

2.5.1 Posterior Predictive Checks 699 

We used Posterior Predictive Checks (Gelman et al. (2013), Gelman et al. (2020), van de 700 

Schoot et al. (2021)) to determine if the dynamics generated by the three fitted BNMs 701 

correspond to those reflected by the phase synchronization phenomena in the MEG data. We 702 

ran 1,000 simulations of each of the three BNMs with parameter values drawn from their 703 
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respective joint posterior distributions. Just as for the Prior Predictive Checks (Section 2.3), 704 

we then estimated the values of four test statistics from the dynamics of each of the 1,000 705 

BNM simulations and compared the sample medians of these test statistics to the values of 706 

those test statistics on experimental MEG resting-state data. We used the same set of test 707 

statistics as for the Prior Predictive Checks: i) median of alpha-band phase synchronization 708 

strengths between all pairs of 148 brain regions, ii) median absolute deviation (MAD) of 709 

alpha-band phase synchronization strengths between all pairs of 148 brain regions, iii) mean 710 

of Kuramoto order parameter, and iv) standard deviation of Kuramoto order parameter (see 711 

Table 1 for details).  712 

2.6 BNM comparison 713 

We used standard ABC model comparison to compare the fitted BNMs with “isochronous 714 

delays”, “mixed delays”, and “distance-dependent delays”. We simulated the three BNMs, 715 

each with 1,000 sets of parameter values drawn from their respective joint posterior 716 

distributions. We simulated the BNMs at samples from their joint posterior distributions 717 

rather than their joint prior distributions since the posteriors represent probable values of 718 

BNM parameters after combining information from both previous neurophysiology 719 

experiments and our own MEG data. In contrast, the priors represent probable values of 720 

BNM parameters based only on information from previous neurophysiological experiments. 721 

Hence, the posteriors are more likely than the priors to reflect the ground-truth values of the 722 

BNM parameters. It follows from this that comparing the BNMs with samples from their 723 

respective posterior distributions enables isolating the influence of delays-related BNM 724 

parameters by reducing the potentially confounding effect of inaccurate estimates of other 725 

BNM parameters on the model comparison. For each of the three BNMs, we estimated 726 

discrepancies between dynamics from each of the 1,000 simulations to dynamics from an 727 

independent dataset of MEG resting-state data (N = 30). We estimated discrepancy as 𝑙𝑛(1 −728 

𝑆𝑆𝐼), identical to the original BNM fitting (Section 2.4.1). SSI is the Structural Similarity 729 

Index between the vectors of inter-regional phase synchronization strengths from BNM 730 

dynamics and MEG data. We estimated probability of each BNM by the relative acceptance 731 

rate of discrepancies associated with that BNM, with respect to a specified minimum 732 

discrepancy (Beaumont (2019)). We estimated model probabilities for a range of minimum 733 

discrepancies between -1 and 0, where -1 corresponded to a conservative threshold accepting 734 

very few discrepancy values across BNMs while 0 corresponded to a liberal threshold. We 735 
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then chose between the three BNMs based on the model probabilities across a range of 736 

discrepancy thresholds.   737 

 738 

We refer the reader to our GitHub repository for the Python and MATLAB code, and 739 

SLURM scripts (https://github.com/nitinwilliams/eeg_meg_analysis/tree/master/MEGMOD), 740 

that we used to simulate, fit and compare the BNMs. Within the GitHub repository, please 741 

check file_descriptions.txt for names of files implementing 1.) MATLAB functions to 742 

simulate each of the three BNMs – we called each of these functions via “array jobs” 743 

implemented in SLURM scripts (to be run on HPC resources), which we also make available, 744 

2.) MATLAB code to estimate the input set of parameter values and output set of 745 

discrepancies for BOLFI model fitting, for each BNM, 3.) Python code to use the ELFI 746 

toolkit to fit each of the BNMs to MEG resting-state data with BOLFI, 4.) MATLAB code to 747 

generate the set of posterior distributions returned by BOLFI in the correct order and scale, 748 

5.) MATLAB functions to simulate each of the three BNMs with samples from their posterior 749 

distributions – we called each of these functions via “array jobs” implemented in SLURM 750 

scripts (to be run on HPC resources), which we also make available, and 6.) MATLAB code 751 

implementing ABC model comparison to compare the three fitted BNMs. 752 

3. Results 753 

We compared the “isochronous delays”, “mixed delays”, and “distance-dependent delays” 754 

methods of specifying inter-regional delays in BNMs of alpha-band networks of phase 755 

synchronization. We specified BNMs implementing each of the three methods and then used 756 

an ABC workflow to adjudicate between them. The steps we followed were: i) we employed 757 

constraints from previous human and animal electrophysiological studies as well as the MEG 758 

and fMRI modelling literature, to specify prior distributions for parameters of each BNM, ii) 759 

we used Prior Predictive Checks to determine whether each of the BNMs, constrained by 760 

their prior distributions, generated dynamics encompassing those reflected by the phase 761 

synchronization phenomena in the MEG data, iii) we used fake-data simulations to verify that 762 

the estimated discrepancies between BNM dynamics and MEG data, were sensitive to the 763 

values of two BNM parameters, iv) we applied BOLFI to fit each of three BNMs to MEG 764 

resting-state data (N = 75), yielding posterior distributions of their parameters, v) we 765 

employed Posterior Predictive Checks to verify that the fitted BNMs generated dynamics 766 

corresponding closely to those observed in the MEG dataset they were trained on, and vi) we 767 
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applied ABC model comparison to determine which of the three fitted BNMs generated 768 

alpha-band networks of phase synchronization most similar to those observed in an 769 

independent MEG resting-state dataset (N = 30). 770 

3.1 Prior specification 771 

We combined the prior distribution of BNM parameters with an approximation of the BNM 772 

likelihood function to estimate the posterior distributions of BNM parameters. Hence, using 773 

biologically plausible, well-motivated prior distributions was important to accurately 774 

estimating the posterior distributions of BNM parameters. We set prior distributions of BNM 775 

parameters based on biological constraints, parameter values found to be optimal in the MEG 776 

and fMRI modelling literature, and ranges of values generating oscillatory dynamics. We set 777 

the priors to be Gaussian distributed and list their means and standard deviations below, 778 

along with brief rationales for choosing these values (Table 2). We refer the reader to 779 

Materials & Methods, Section 2.2 (see Figure 2) for a detailed description of the prior 780 

specification. 781 

 782 

Parameter 

(description)  

Mean ± SD 

(units) 

Rationale 

𝑤𝑒𝑒  

(Connection strength 

within excitatory 

neuronal 

populations) 

20 ± 5 

(a.u.) 

i) Dense recurrent structural connectivity between 

‘layer 2/3 pyramidal neurons’ (Binzegger et al. 

(2004), Douglas et al. (1989), Douglas & Martin 

(2007), Jansen & Rit (1995)) 

ii) Similar strength of functional connections to those 

between excitatory and inhibitory neuronal 

populations i.e., 𝑤𝑒𝑖 and 𝑤𝑖𝑒 (Seeman & Campagnola 

et al. (2018), Campagnola & Seeman et al. (2022)) 

iii) Encompasses range of values generating 

oscillatory dynamics 

𝑤𝑒𝑖  

(Connection strength 

from inhibitory to 

excitatory neuronal 

populations) 

18 ± 6 

(a.u.) 

i) Weaker strength of structural connections 

compared to dense connectivity within excitatory 

neurons (Binzegger et al. (2004), Douglas & Martin 

(2007)) 

ii) Similar strength of functional connections to those 

within excitatory neurons and from excitatory to 

inhibitory neurons i.e., 𝑤𝑒𝑒 and 𝑤𝑖𝑒 (Seeman & 

Campagnola et al. (2018), Campagnola & Seeman et 

al. (2022)) 

iii) Encompasses range of values generating 

oscillatory dynamics 
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𝑤𝑖𝑒  

(Connection strength 

from excitatory to 

inhibitory neuronal 

populations) 

18 ± 6 

(a.u.) 

i) Weaker strength of structural connections 

compared to dense connectivity within excitatory 

neurons (Binzegger et al. (2004), Douglas & Martin 

(2007)) 

ii) Similar strength of functional connections to those 

within excitatory neurons and from excitatory to 

inhibitory neurons i.e., 𝑤𝑒𝑒 and 𝑤𝑖𝑒 (Seeman & 

Campagnola et al. (2018), Campagnola & Seeman et 

al. (2022)) 

iii) Encompasses range of values generating 

oscillatory dynamics 

𝑤𝑖𝑖  

(Connection strength 

within inhibitory 

neuronal 

populations) 

1 ± 0.2 

(a.u.) 

Sparse recurrent structural connectivity between 

inhibitory neurons (Markram et al. (2004), Binzegger 

et al. (2004)) 

𝑏𝑒 

(Firing threshold of 

excitatory neuronal 

populations) 

3 ± 1 (a.u.) Low positive value since neurons fire in response to 

small, net excitation 

𝑏𝑖 

(Firing threshold of 

inhibitory neuronal 

populations) 

5 ± 1 (a.u.) i) Low positive value since neurons fire in response 

to small net excitation 

ii) Spike thresholds of inhibitory neurons are higher 

than spike thresholds of excitatory neurons, across all 

studies reported in NeuroElectro database 

𝜏𝑒 

(Time constant of 

excitatory neuronal 

populations) 

18.6 ± 3.6 

(ms) 

Time constants of ‘layer 2/3 pyramidal neurons’ 

across studies in NeuroElectro database  

𝜏𝑖 

(Time constant of 

inhibitory neuronal 

populations) 

15.1 ± 4.7 

(ms) 

Time constants of ‘basket cells’, ‘double bouquet 

cells’, ‘chandelier cells’, ‘Martinotti cells’, ‘bipolar 

cells’ and ‘interneurons from deep cortical layers’ 

reported across all studies in NeuroElectro database 

𝑘 1.5 ± 0.5 

(a.u.) 

i) Low positive value since extrinsic input to 

excitatory population much lower than intrinsic input 

(Douglas & Martin (2007)) 
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(Scalar multiplier 

over structural 

connectome) 

ii) Encompassing range of values reported in MEG 

and fMRI modelling literature (Hadida et al. (2018), 

Hellyer et al. (2016), Cabral et al. (2014), Deco & 

Jirsa (2012)) 

𝐼𝐻𝑠𝑐𝑎𝑙𝑖𝑛𝑔 

(Inter-hemispheric 

scaling factor over 

structural 

connectome) 

2.5 ± 0.5 

(a.u.) 

i) Known under-estimation of long-distance 

connections by diffusion MRI (Sotiropoulos & 

Zalesky (2019)) 

ii) Encompassing range of values reported in MEG 

modelling literature (Hadida et al. (2018)) 

𝜓𝑠𝑖𝑔𝑚𝑎  

(Standard deviation 

of noise to excitatory 

and inhibitory 

populations) 

0.15 ± 0.05 

(a.u.) 

i) Positive value, much lower than firing thresholds 

of excitatory (𝑏𝑒) and inhibitory (𝑏𝑖) populations, 

since negligible probability of population firing due 

to noise input (Faisal et al. (2008)) 

ii) Encompassing range of values reported in MEG 

and fMRI modelling literature (Abeysuriya et al. 

(2018), Hellyer et al. (2016), Deco et al. (2009)) 

𝑣 

(Conduction 

velocity) 

8 ± 2 (m/s) i) Within range of conduction velocities and 

corresponding axonal diameters reported in human 

and animal neuroanatomical and neurophysiological 

studies (Trebaul et al. (2018), Lemaréchal et al. 

(2022), Swadlow et al. (1978)), Aboitiz et al. (1992), 

Firmin et al. (2014)) 

ii) Encompassing range of values reported in MEG 

and fMRI modelling literature (Abeysuriya et al. 

(2018), Nakagawa et al. (2014), Cabral et al. (2014), 

Hellyer et al. (2016), Hadida et al. (2018)) 

𝑑𝑒𝑙𝑎𝑦 

(Mean conduction 

delay) 

10 ± 3 (ms) i) Within range of inter-hemispheric delays reported 

in human and animal electrophysiological studies  

(Aboitiz et al. (1992), Swadlow et al. (1978)) 

ii) Encompassing range of values reported in MEG 

and fMRI modelling literature (Abeysuriya et al. 

(2018), Nakagawa et al. (2014), Cabral et al. (2014), 

Hellyer et al. (2016), Hadida et al. (2018)) 

𝑐𝑜𝑒𝑓𝑓𝑣𝑎𝑟𝑑𝑒𝑙𝑎𝑦  

(Coefficient of 

variation in 

conduction delays) 

0.2 ± 0.05 

(a.u.) 

i) Low values of parameter would generate sets of 

nearly identical inter-regional delays 

ii) High values of parameter would generate sets of 

inter-regional delays with similar variation to sets of 

“distance-dependent delays” 

𝑐𝑜𝑒𝑓𝑓𝑏𝑎𝑙𝑎𝑛𝑐𝑒  0.5 ± 0.15 

(a.u.) 

Specified to enable the “mixed delays” method to 

traverse the intermediate space between the 
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(Coefficient of 

balance between 

“distance-

dependent” and 

“isochronous” 

delays) 

“distance-dependent delays” and “isochronous 

delays” methods 

Table 2. Means and standard deviations of prior distributions for each of the BNM 783 

parameters, along with brief rationales for choosing the specified values. 784 

3.2 BNMs simulated at prior means generate alpha-band dynamics 785 

A pre-requisite for alpha-band phase synchronization is alpha-band oscillatory dynamics 786 

from individual brain regions. Hence, we investigated if the BNMs generated oscillatory 787 

dynamics at alpha-band frequencies. To do so, we ran 10 second simulations of BNMs with 788 

“isochronous delays”, “mixed delays”, and “distance-dependent delays” at their respective 789 

prior means. Then, we determined the peak frequencies of their dynamics - oscillations 790 

manifest as peaks in frequency spectra. We found that each of the three BNMs generated 791 

oscillatory dynamics (Figure 3a–c) with mean amplitude of 0.15 and mean standard deviation 792 

of 0.08 across brain regions. These oscillatory dynamics had spectral peaks in alpha-band 793 

(Figure 3d–f), with peak frequencies of 12.9 ± 0.07 Hz (mean±standard deviation), 12.9 ± 0.1 794 

Hz and 12.8 ± 0.14 Hz for BNMs with “isochronous delays”, “mixed delays” and “distance-795 

dependent delays” respectively, across regions (Figure 3g–i). The mean peak frequencies of 796 

all BNMs fell within the 10.3 Hz ± 2.8 Hz distribution of alpha-band peak frequencies 797 

reported in experimental MEG data (Haegens et al. (2014)). Hence, the three BNMs 798 

simulated at their respective prior means generated alpha-band oscillations, fulfilling a pre-799 

requisite to investigate large-scale, alpha-band networks of phase synchronization. 800 
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 801 
Figure 3. BNMs simulated at prior means generate alpha-band oscillatory dynamics. a-802 

c. 10 s time course of dynamics from ‘left fronto-marginal gyrus and sulcus’ of BNMs with 803 

“isochronous delays”, “mixed delays”, and “distance-dependent delays” respectively. d-f. 804 

Frequency spectra of dynamics from ‘left fronto-marginal gyrus and sulcus’, of all three 805 

BNMs. g-i. Alpha-band peak frequencies of each region, of all three BNMs, in dorsal view. 806 

Plots on brain surface were visualised with BrainNet Viewer (Xia et al. (2013)). 807 

3.3 BNM dynamics encompass those observed in MEG data 808 

The BOLFI fitting method assumes the suitability of the prior distributions of the BNM 809 

parameters and that the BNMs are not mis-specified. Hence, we performed Prior Predictive 810 

Checks to assess the ability of the BNMs, constrained by their prior distributions, to generate 811 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.03.27.534336doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

the phase synchronization phenomena observed in MEG resting-state (Gelman et al. (2020), 812 

van de Schoot et al. (2021)). In addition, the Prior Predictive Checks allowed us to assess the 813 

similarity of the phase synchronization phenomena generated by the three BNMs, when these 814 

BNMs were constrained by their respective prior distributions. We performed the Prior 815 

Predictive Checks by comparing the sample medians of four test statistics that we estimated 816 

from 1,000 simulations of each of the BNMs, against the value of those same test statistics 817 

estimated on the experimental MEG dataset (N = 75). We simulated the three BNMs with 818 

parameter values drawn from their joint prior distributions. As the test statistics, we used the 819 

median and median absolute deviation (MAD) of phase synchronization strengths between all 820 

region pairs, to measure their central tendency and dispersion respectively. We also estimated 821 

the mean and standard deviation of the Kuramoto order parameter, to measure overall 822 

strength and variability of zero-lag phase synchronization respectively (see Section 2.3.2 and 823 

Table 1 for details of each test statistic). We found that the values of each of the four test 824 

statistics estimated on the MEG dataset lay within the range of values of those test statistics 825 

estimated from the dynamics of each of the three BNMs (Figure 4a–l). The dispersion in 826 

strengths of inter-regional phase synchronization estimated on the MEG dataset was 0.02, 827 

which was close to the median values of 0.03, 0.02 and 0.02 for this test statistic, for the 828 

“isochronous delays”, “mixed delays”, and “distance-dependent delays” methods, 829 

respectively (Figure 4d–f). However, the central tendency of 0.09 for the strengths of inter-830 

regional phase synchronization estimated on the MEG dataset was distant from the median 831 

values of 0.7, 0.78 and 0.79 for this test statistic, for the three methods, respectively (Figure 832 

4a–c). The mean and standard deviation of the Kuramoto order parameter had bimodal 833 

distributions for the sets of values estimated from dynamics of each of the three BNMs. 834 

Kuramoto mean and standard deviation close to 0.08 and 0 respectively, reflected parameter 835 

combinations for which the BNMs did not generate oscillatory dynamics while values close 836 

to 0.05 and 0.025 respectively, reflected parameter combinations for which the BNMs 837 

generated oscillatory dynamics. We found the values of 0.05 and 0.03 respectively, of these 838 

test statistics on the MEG dataset, to be close to their values for cases when the BNMs 839 

generated oscillatory dynamics (Figure 4g–l). The Prior Predictive Checks suggest that the 840 

three BNMs generate dynamics encompassing those reflected by the phase synchronization 841 

phenomena in MEG resting-state data. This suggests the suitability of the prior distributions 842 

of the BNM parameters and that the BNMs are not mis-specified,  and hence can be fit to the 843 

MEG data with the BOLFI method. In addition, the correspondence between the three BNMs 844 
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in the values of each of the test statistics (Figure 4a–l), suggested that each of the BNMs, 845 

constrained by their prior distributions, generate similar phase synchronization phenomena. 846 

 847 
Figure 4. BNM dynamics encompass those observed in MEG data. a-c. Histograms of 848 

median of alpha-band phase synchronization strengths from multiple BNM simulations, 849 

where parameter values were drawn from joint prior distributions of BNMs with 850 

“isochronous delays”, “mixed delays”, and “distance-dependent delays” respectively. d-f. 851 

Histograms of median absolute deviation (MAD) of alpha-band phase synchronization 852 

strengths from multiple BNM simulations, of the three BNMs respectively. g-i. Histograms 853 

of mean of Kuramoto order parameter from multiple BNM simulations, of the three BNMs 854 

respectively. j-l. Histograms of standard deviation (SD) of Kuramoto order parameter from 855 

multiple BNM simulations, of the three BNMs respectively. For all panels, the red line 856 

indicates the corresponding value of that test statistic estimated from the MEG dataset. 857 
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3.4 Discrepancies between BNM dynamics and MEG data are 858 

sensitive to values of BNM parameters 859 

BOLFI returning accurate posterior distributions is highly dependent on whether the 860 

estimated discrepancies between BNM dynamics and MEG data are sensitive to values of the 861 

BNM parameters (Lintusaari et al. (2017), Sunnåker et al. (2013)). In the asymptotic case, 862 

BOLFI assumes the surface of discrepancies between summary statistics of BNM dynamics 863 

and MEG data to have a global minimum at the combination of true parameter values. We 864 

used fake-data simulations to assess this for two BNM parameters, 𝑤𝑒𝑒 and 𝑤𝑒𝑖. To do so, we 865 

first generated the ‘observed’ summary statistics as the vector of phase synchronization 866 

strengths between all region pairs, averaged across 1,000 BNM simulations. We ran the BNM 867 

simulations with a pre-chosen set of parameters values, with 𝑤𝑒𝑒 = 12.9 and 𝑤𝑒𝑖 = 13.4. Then, 868 

we generated ‘simulated’ summary statistics as the vector of phase synchronization strengths, 869 

averaged across 20 BNM simulations. We generated ‘simulated’ summary statistics  at every 870 

point on a 100 ×100 grid defined by every pair of 𝑤𝑒𝑒 and 𝑤𝑒𝑖  values, where we varied 𝑤𝑒𝑒 871 

from 10–30 and 𝑤𝑒𝑖 from 6–30. We fixed values of other BNM parameters to the same values 872 

used to generate the ‘observed’ summary statistics. Finally, we estimated the discrepancies as 873 

𝑙𝑛(1 − 𝑆𝑆𝐼) between the reference ‘observed’ summary statistics and the ‘simulated’ summary 874 

statistics at each point on the 100 ×100 grid. SSI is the Structural Similarity Index. We also 875 

estimated a set of Gaussian Process (GP)-predicted discrepancies from a GP model trained 876 

with the set of actual discrepancies and corresponding BNM parameter values. We found that 877 

the surface of actual discrepancies reached a global minimum at the combination of the true 878 

parameter values, i.e., 𝑤𝑒𝑒=12.9,  𝑤𝑒𝑖=13.4 (Figure 5). In addition, we found low discrepancies 879 

at points on the grid corresponding to high values of 𝑤𝑒𝑒 and 𝑤𝑒𝑖, but these values were higher 880 

than the discrepancy value at the combination of true parameter values. For example, we 881 

estimated a discrepancy of -2.48 at the combination of true values (𝑤𝑒𝑒=12.9,  𝑤𝑒𝑖=13.4), 882 

while we estimated a discrepancy of -2.06 at 𝑤𝑒𝑒=27.6, 𝑤𝑒𝑖=24.2. Notably, the surface of GP-883 

predicted discrepancies also reached a global minimum at the combination of the true 884 

parameter values (Figure S4). These results demonstrate the sensitivity of the discrepancies to 885 

the values of 𝑤𝑒𝑒 and 𝑤𝑒𝑖, suggesting that BOLFI can return accurate posterior distributions of 886 

at least these two BNM parameters. 887 
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 888 

Figure 5. Discrepancies are sensitive to values of BNM parameters 100 ×100 grid of 889 

discrepancies between summary statistics of BNM dynamics at every pair of 𝑤𝑒𝑒 and 𝑤𝑒𝑖 890 

values, and BNM dynamics at 𝑤𝑒𝑒=12.9, 𝑤𝑒𝑖=13.4. 𝑤𝑒𝑒 is the strength of connections within 891 

excitatory neuronal populations, 𝑤𝑒𝑖 is the strength of connections from inhibitory to 892 

excitatory neuronal populations. Red lines indicate ground-truth values of 𝑤𝑒𝑒 and 𝑤𝑒𝑖. 893 

Discrepancies were measured by 𝑙𝑛(1 − 𝑆𝑆𝐼). SSI is the Structural Similarity Index. 894 

3.5 BOLFI yields BNM parameter estimates informed by MEG data  895 

The behaviour of BNMs is highly dependent on the parameter values with which they are 896 

simulated. So, we first constrained values of the parameters of each of the three BNMs with 897 

MEG data, before proceeding to compare the three BNMs. To do so, we applied the high-898 

dimensional inference method BOLFI (Gutmann & Corander (2016)), to fit each of the 899 

BNMs to MEG resting-state data (N = 75). BOLFI uses standard Bayesian inference to 900 

combine the prior distributions of BNM parameters with an approximation of the BNM’s 901 

likelihood function, to estimate posterior distributions of BNM parameters. BNMs typically 902 

have intractable likelihood functions, so BOLFI approximates these with Gaussian Process 903 

(GP) models trained on parameters values of multiple BNM simulations and the 904 

corresponding discrepancies between BNM dynamics and MEG data. We ran 10,000 905 

simulations of each of the three BNMs and trained GPs parameterised with ARD squared 906 

exponential kernels, on values of the BNM parameters and the corresponding discrepancies. 907 

We estimated discrepancies as 𝑙𝑛(1 − 𝑆𝑆𝐼) between the vectors of inter-regional phase 908 

synchronization strengths estimated from BNM dynamics and MEG data. SSI is the 909 

Structural Similarity Index (Wang et al. (2004)).  910 
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The multiple BNM simulations yielded 9004, 9063, and 9093 completed simulations of 911 

BNMs with “isochronous delays”, “mixed delays”, and “distance-dependent delays” 912 

respectively, the others exceeding the time limit or crossing the memory limit. These “out of 913 

memory” errors likely reflect the excessive memory demand due to very small step sizes 914 

taken by the solver when dealing with discontinuities in the solution of the system of 915 

differential equations representing each BNM. For the completed simulations, we found 916 

Pearson Correlations between actual and GP-predicted discrepancies of 0.58, 0.67 and 0.67, 917 

for BNMs with “isochronous delays”, “mixed delays”, and “distance-dependent delays” 918 

respectively (Figure S5a–c). These close correspondences suggested the GP-based models of 919 

each BNM to suitably approximate their likelihood functions. For all three BNMs, we found 920 

that parameters governing dynamics of individual brain regions had a strong influence on 921 

predicting the discrepancies between BNM dynamics and MEG data (Figure S5d–f). In 922 

particular, the strength of connections within excitatory neuronal populations (𝑤𝑒𝑒), between 923 

excitatory and inhibitory populations (𝑤𝑒𝑖 and 𝑤𝑖𝑒), and the firing thresholds of excitatory (𝑏𝑒) 924 

and inhibitory populations (𝑏𝑖), had a strong influence. The influence of these parameters is 925 

consistent with neurophysiological studies on, e.g., the role of reciprocal interaction between 926 

excitatory and inhibitory populations, in generating the oscillatory dynamics necessary for 927 

inter-regional phase synchronization (Buzsáki (2006), Traub (1997)). We also found that the 928 

parameter controlling the strength of inter-regional anatomical connections (𝑘) had an 929 

influence on predicting the discrepancies between BNM dynamics and MEG data. This is 930 

also consistent with understanding on the role of these connections in promoting inter-931 

regional phase synchronization (Gray (1994)). 932 

 933 

BOLFI yielded reliable posterior distributions of parameters of all three BNMs. 𝑅̂ values 934 

were lower than 1.05 for all parameters and effective numbers of samples exceeded 100 935 

(Vehtari et al. (2021)) for all but one parameter, i.e., 𝑏𝑖 in the BNM with “isochronous 936 

delays” which had 91 effective samples. For all three BNMs, the mass of the posterior 937 

distributions of 𝑏𝑒 shifted toward lower values compared to their prior distributions while the 938 

mass of the posterior distributions of 𝑏𝑖 shifted toward higher values (Figure 6a–c). For the 939 

BNM with “isochronous delays” for example, prior means for 𝑏𝑒 and 𝑏𝑖 were 3 and 5 940 

respectively, while their posterior means were 2.7 and 5.4 (Figure 6a). These posterior 941 

distributions of 𝑏𝑒 and 𝑏𝑖 across BNMs, are in agreement with neurophysiological constraints 942 

that spike thresholds of inhibitory neurons are higher than spike thresholds of excitatory 943 

neurons (see Figure 2b and Section 2.2 on Prior Specification). For all three BNMs, we also 944 
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observed the mass of the posterior distributions of 𝜏𝑖, time constant of inhibitory neuronal 945 

populations, to shift toward higher values compared to their prior distributions (Figure 6a–c). 946 

For the BNM with “isochronous delays” for example, prior mean for 𝜏𝑖 was 15.1 ms while its 947 

posterior mean was 16.4 ms (Figure 6a). For BNMs with “mixed delays” and “distance-948 

dependent delays”, mass of the posterior distributions of 𝑤𝑒𝑒 and 𝑤𝑖𝑒 shifted toward lower 949 

values (Figure 6b–c). For the BNM with the “distance-dependent delays” for example, prior 950 

means for 𝑤𝑒𝑒 and 𝑤𝑖𝑒 were 20 and 18 respectively, while their posterior means were 18.5 and 951 

14.5 (Figure 6c). Notably, the lower values of 𝑤𝑒𝑒 were in better agreement with empirical 952 

estimates of functional connectivity within excitatory neuronal populations  (Seeman et al. 953 

(2018), Campagnola et al. (2022)) than corresponding estimates of structural connectivity 954 

(Jansen & Rit (1995), Douglas & Martin (2007), Douglas et al. (1989), Binzegger et al. 955 

(2004)). We also inspected posterior distributions of BNM parameters relating to inter-956 

regional delays. For BNMs with “isochronous delays” and “mixed delays”, the posterior 957 

means of the delay parameter 𝑑𝑒𝑙𝑎𝑦 were shifted to 9.5 ms and 9.6 ms respectively, from their 958 

prior means of 10 ms (Figure 6a–b). Taken together, we found that applying BOLFI yielded 959 

reliably estimated posterior distributions of parameters of the three BNMs, which were in 960 

agreement with neurophysiological results. Hence, we could use these BNMs, constrained by 961 

MEG data, to choose between the three methods to specify inter-regional delays.   962 

 963 

We note that the estimated posterior distributions could be used to specify BNMs in future 964 

modelling efforts. We refer the reader to our open dataset (Williams et al. (2023)), where we 965 

have made available the joint posterior distribution of each of the three BNMs, from which 966 

the marginal distributions that we report here, as well as their conditional distributions and 967 

joint distributions can be used to specify values of BNM parameters. 968 
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 969 

Figure 6. BOLFI yields BNM parameter estimates informed by MEG data a. Marginal 970 

posterior distributions of BNM with “isochronous delays” b. Marginal posterior distributions 971 

of BNM with “mixed delays” c. Marginal posterior distributions of BNM with “distance- 972 

dependent delays”. Black lines indicate prior distributions, while red lines indicate kernel 973 

density estimates of posterior distributions. 974 

3.6 Fitted BNM dynamics correspond to those observed in MEG data 975 

The procedure we used to compare the three BNMs assumed the absence of computational 976 

problems when the BNMs were fit to MEG data. Hence, we used Posterior Predictive Checks 977 

(Gelman et al. (2020), van de Schoot et al. (2021)) to evaluate the fitted BNMs, before 978 
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comparing them in the next stage. In addition, we used the Posterior Predictive Checks to 979 

assess the similarity of the phase synchronization phenomena generated by the three BNMs, 980 

when these BNMs were constrained by their respective posterior distributions. We performed 981 

the Posterior Predictive Checks by comparing sample medians of four test statistics that we 982 

estimated from 1,000 simulations of each of the fitted BNMs, against the value of those test 983 

statistics estimated on the MEG dataset. Identical to the Prior Predictive Checks (Section 984 

3.3), the test statistics that we used were the median and median absolute deviation (MAD) of 985 

phase synchronization strengths between all region pairs, to measure their central tendency 986 

and dispersion respectively. We also estimated the mean and standard deviation of the 987 

Kuramoto order parameter, to measure overall strength and variability of zero-lag phase 988 

synchronization respectively (see Section 2.3.2 and Table 1 for details of each test statistic). 989 

We found the sample medians of the four test statistics estimated on the dynamics of all three 990 

BNMs to correspond closely to the values of those test statistics on the MEG dataset (Figure 991 

7a–l). Just as for the Prior Predictive Checks, the value of 0.02 for dispersion in phase 992 

synchronization strengths in the MEG dataset was close to the median values of 0.03 for this 993 

test statistic across the three methods (Figure 7d–f). In contrast to the Prior Predictive Checks 994 

however, the value of 0.09 for central tendency in phase synchronization strengths in the 995 

MEG dataset was close to the values of 0.35, 0.27 and 0.17 for this test statistic, for the 996 

“isochronous delays”, “mixed delays”, and “distance-dependent delays” methods respectively 997 

(Figure 7a–c). The corresponding values from the Prior Predictive Checks were 0.7, 0.78 and 998 

0.79. These results suggest that compared to the mean strengths of phase synchronization 999 

generated by the BNMs before fitting, those generated by the fitted BNMs were more similar 1000 

to those we observed in the MEG dataset while also being more different across BNMs. Just 1001 

as for the Prior Predictive Checks, the mean and standard deviation of the Kuramoto order 1002 

parameter had a bimodal distribution for the set of values estimated from the dynamics of all 1003 

three BNMs. In contrast to the Prior Predictive Checks however, the sample medians of these 1004 

test statistics were close to their values in the MEG dataset. The value for mean of the 1005 

Kuramoto order parameter was 0.06, 0.05 and 0.05 for the “isochronous delays”, “mixed 1006 

delays”, and “distance-dependent delays” methods respectively, which was close to 0.05 for 1007 

this test statistic in the MEG dataset (Figure 7g–i). Similarly, the value for standard deviation 1008 

of the Kuramoto order parameter was 0.02 across the three methods, close to the value of 1009 

0.03 for this test statistic in the MEG dataset (Figure 7j–l). Compared to the values of the test 1010 

statistics estimated on the dynamics of the BNMs before fitting, their values estimated on the 1011 

dynamics of the fitted BNMs corresponded more closely to the values of those test statistics 1012 
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in the MEG dataset. This suggests that compared to the prior distributions of the BNM 1013 

parameters, their posterior distributions more accurately reflected the ground-truth values of 1014 

the BNM parameters. Hence, the Posterior Predictive Checks suggested that all three BNMs 1015 

were fit to the MEG data without computational problems, and that they could be used to 1016 

choose between the three methods with ABC model comparison. 1017 

 1018 
Figure 7. Fitted BNM dynamics correspond to those observed in MEG data. a-c. 1019 

Histograms of median of alpha-band phase synchronization strengths from multiple BNM 1020 

simulations, where parameter values were drawn from joint posterior distributions of BNMs 1021 

with “isochronous delays”, “mixed delays”, and “distance-dependent delays” respectively. d-1022 

f. Histograms of median absolute deviation (MAD) of alpha-band phase synchronization 1023 

strengths from multiple BNM simulations, of the three BNMs respectively. g-i. Histograms 1024 

of mean of Kuramoto order parameter from multiple BNM simulations, of the three BNMs 1025 

respectively. j-l. Histograms of standard deviation (SD) of Kuramoto order parameter from 1026 
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multiple BNM simulations, of the three BNMs respectively. For all panels, the red line 1027 

indicates the corresponding value of that test statistic estimated from the MEG dataset. 1028 

3.7 BNM with “distance-dependent delays” more probable than 1029 

BNMs with “isochronous delays” and “mixed delays” 1030 

Finally, we compared the three methods to specify inter-regional delays in BNMs of large-1031 

scale networks of phase synchronization observed in MEG resting-state. Having fitted BNMs 1032 

implementing each of the methods to an MEG dataset (N = 75), we used ABC model 1033 

comparison (Beaumont (2019), Sunnåker et al. (2013)) to choose between the fitted BNMs 1034 

with a separate MEG dataset (N = 30). To do so, we first ran 1,000 simulations of each of the 1035 

three BNMs, with parameter values drawn from their respective joint posterior distributions. 1036 

For each of the three BNMs, we estimated discrepancies between BNM dynamics from each 1037 

of the simulations, and MEG data. We computed discrepancy as 𝑙𝑛(1 − 𝑆𝑆𝐼) between vectors 1038 

of phase synchronization strengths from BNM dynamics and MEG data. We then estimated 1039 

model probability of each BNM by the relative acceptance rate of discrepancies associated 1040 

with that BNM, with respect to a range of minimum discrepancies from -1 to 0. Model 1041 

probabilities represented how likely each of the BNMs were, to describe the generation of 1042 

large-scale, alpha-band, networks of phase synchronization seen in MEG resting-state data. 1043 

The multiple simulations yielded 807, 767 and 779 completed simulations for BNMs with 1044 

“isochronous delays”, “mixed delays”, and “distance-dependent delays” respectively, the 1045 

others exceeding the time limit or crossing the memory limit. The model comparison method 1046 

assumes equal numbers of simulations across BNMs, so we used only the first 767 completed 1047 

simulations of the three BNMs, i.e., lowest number of completed simulations across BNMs. 1048 

Model probabilities of the BNM with “distance-dependent delays” were higher than those of 1049 

the BNMs with “isochronous delays” and “mixed delays”, across thresholds from -0.7 to -0.2 1050 

(Figure 8). For a threshold of -0.5 for example, the BNM with “distance-dependent delays” 1051 

had a probability of 0.54, while the BNM with “mixed delays” had a probability of 0.32 and 1052 

the BNM with “isochronous delays” had the lowest probability of 0.14. We found the higher 1053 

probabilities of the BNM with “distance-dependent delays” to be driven by the similarity 1054 

between its mean strengths of phase synchronization to that observed in the MEG data, rather 1055 

than the similarity in its standard deviation or its pattern of phase synchronization strengths to 1056 

those observed empirically (Figure S6). We found the three BNMs to be similarly probable at 1057 

low thresholds close to 0 and high thresholds close to 1. However, the very low and very high 1058 
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numbers of accepted simulations at these thresholds respectively, render their probabilities 1059 

non-informative. Notably, we observed an identical pattern of results at intermediate 1060 

discrepancy thresholds when using eyes-closed MEG resting-state data in the ABC model 1061 

comparison, inspite of the BNMs being fit to eyes-open MEG resting-state data (Figure S7). 1062 

Hence, the ABC model comparison revealed the BNM with “distance-dependent delays” as 1063 

the most probable and the BNM with “isochronous delays” as the least probable, of 1064 

describing the generating of large-scale networks of phase synchronization seen in MEG. 1065 

 1066 

Figure 8. BNM with “distance-dependent delays” more probable than BNMs with 1067 

“isochronous delays” and “mixed delays”. Model probabilities of BNMs with “isochronous 1068 

delays”, “mixed delays”, and “distance-dependent delays”, for a range of minimum 1069 

discrepancies between phase synchronization strengths of BNM dynamics and MEG data. 1070 

Discrepancies are estimated as 𝑙𝑛(1 − 𝑆𝑆𝐼), where SSI is the Structural Similarity Index. 1071 

 1072 

While the three BNMs differed in the extent to which distance between brain regions 1073 

determined the inter-regional delays, they also differed in the variability or heterogeneity of 1074 

their delays. BNMs with “distance-dependent delays” had the highest delay heterogeneity. 1075 

Hence, we performed a control analysis to assess whether the correspondence between phase 1076 

synchronization strengths of the BNM with “distance-dependent delays” and those in MEG 1077 

data arose merely from delay heterogeneity. To do so, we ran 1,000 simulations of a BNM 1078 

with “randomised delays”, where we used randomly resampled (without replacement) 1079 

versions of “distance-dependent delays” used in the ABC model comparison. We simulated 1080 

the BNM with “randomised delays” at the same parameter values we had used to simulate the 1081 

BNM with “distance-dependent delays” in the ABC model comparison. Then, we estimated 1082 
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discrepancies between dynamics of the BNMs with “randomised delays” and MEG data, and 1083 

used a Wilcoxon rank-sum test to compare these to the corresponding discrepancies for the 1084 

BNMs with “distance-dependent delays”. We found the discrepancies for the BNM with 1085 

“distance-dependent delays” to be much lower (p = 4.5e-46) than those for the BNM with 1086 

“randomised delays” (Figure S8). The sample median of discrepancies for the BNM with 1087 

“distance-dependent delays” was -0.41, while the sample median of discrepancies for the 1088 

BNM with “randomised delays” was -0.22. Hence, the control analysis revealed that mere 1089 

delay heterogeneity does not account for the correspondence between inter-regional phase 1090 

synchronization strengths of the BNM with “distance-dependent delays” and those in MEG 1091 

data. These results rule out alternative explanations for the BNM with “distance-dependent 1092 

delays” being more probable than BNMs with “isochronous delays” and “mixed delays”, of 1093 

describing the generation of large-scale networks of phase synchronization seen in MEG. 1094 

4. Discussion 1095 

Large-scale networks of phase synchronization are considered to regulate communication 1096 

between brain regions, but the relationship to their structural substrates remains poorly 1097 

understood. In this study, we used an ABC workflow to compare the “isochronous delays”, 1098 

“mixed delays”, and “distance-dependent delays” methods of specifying inter-regional delays 1099 

in BNMs of phase synchronization. Prior Predictive Checks revealed BNMs of all three 1100 

methods to generate phase synchronization phenomena encompassing those observed in 1101 

MEG resting-state. Fitting the BNMs to MEG resting-state data yielded reliable posterior 1102 

distributions of parameters of all the three BNMs. Finally, ABC model comparison of the 1103 

fitted BNMs revealed the BNM with “distance-dependent delays” to be the most probable to 1104 

describe the generation of large-scale networks of phase synchronization seen in MEG. 1105 

 1106 

Previous modelling studies have demonstrated the role of distance-dependent inter-regional 1107 

delays in generating power spectra of MEG activity from individual brain regions (Cabral et 1108 

al. (2022)), alpha-band inter-regional networks of amplitude correlation (Cabral et al. (2014), 1109 

Nakagawa et al. (2014)), and the observed bimodal distribution (Dotson et al. (2014), Dotson 1110 

et al. (2015)) in angles of inter-regional phase synchronization (Petkoski et al. (2018), 1111 

Petkoski & Jirsa (2019)). However, networks of phase synchronization are physiologically 1112 

distinct from networks of amplitude correlation (Engel et al. (2013)) and exhibit different 1113 

patterns of connectivity (Siems & Siegel (2020)). Similarly, angles of phase synchronization 1114 
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are distinct from the strengths of phase synchronization that we modelled. In contrast to these 1115 

studies, we demonstrated the role of distance-dependent conduction delays in generating 1116 

alpha-band inter-regional networks of phase synchronization observed in MEG resting-state. 1117 

 1118 

Those few modelling studies which use BNMs with distance-dependent delays to generate 1119 

networks of phase synchronization only contrast them to BNMs with “zero delays”. These 1120 

studies (Abeysuriya et al. (2018), Finger & Bönstrup et al. (2016)) have demonstrated BNMs 1121 

with distance-dependent delays to generate alpha-band networks of phase synchronization 1122 

more similar to those in MEG or EEG resting-state, than networks from BNMs with “zero 1123 

delays”. However, “zero delays” are biologically implausible, implying infinite conduction 1124 

velocities. In contrast, we demonstrate that BNMs with distance-dependent delays generate 1125 

networks more similar to those in MEG resting-state than those from BNMs implementing 1126 

two biologically plausible methods accounting for spatially varying conduction velocities.  1127 

  1128 

The generation of phenomena observed in MEG, e.g., power spectra, amplitude correlations 1129 

(Cabral et al. (2022), Cabral et al. (2014)) by BNMs with distance-dependent delays has been 1130 

linked to the variability or heterogeneity of these delays (Lee et al. (2009), Touboul (2012)). 1131 

We demonstrate that inter-regional distances rather than delay heterogeneity per se, explain 1132 

the similarity between alpha-band networks of phase synchronization generated by BNMs 1133 

with distance-dependent delays, and those observed in MEG resting-state.  1134 

 1135 

Previous neurophysiological and modelling studies have contributed to our understanding of 1136 

the structure-function relationship underlying phase synchronization. For example, studies 1137 

have demonstrated the role of excitatory-inhibitory connections in generating local oscillatory 1138 

dynamics (Buzsáki (2006), Traub et al. (1997)) required for phase synchronization, and the 1139 

role of anatomical connections in promoting inter-regional phase synchronization (Gray 1140 

(1994), Finger & Bönstrup et al. (2016)). In our study, intermediate diagnostics from BOLFI 1141 

model fitting corroborated these previous results. For example, we found supporting evidence 1142 

for the role of intra-regional connections between excitatory and inhibitory populations in 1143 

generating local oscillatory dynamics, and for the role of inter-regional anatomical 1144 

connections in promoting inter-regional phase synchronization. In addition to these previous 1145 

studies, we furnish new understanding on the role of inter-regional delays in generating large-1146 

scale networks of phase synchronization observed in MEG resting-state. Our results suggest 1147 
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that the dynamics of brain regions interact though inter-regional anatomical connection via 1148 

distance-dependent delays to generate large-scale networks of phase synchronization. 1149 

   1150 

Inter-regional conduction delays reported in human and animal neurophysiological studies 1151 

provide a basis for comparison to the distance-dependent conduction delays suggested by our 1152 

modelling study. Human studies have reported correlations of 0.44 between tract length and 1153 

the onset latency of the stimulation-based evoked potential in intra-cranial EEG recordings 1154 

(Trebaul et al. (2018)), which is consistent with the linear relationship between inter-regional 1155 

distance and inter-regional delays suggested by our study. Inter-regional delays estimated 1156 

with a model-based approach on intra-cranial EEG recordings (Lemaréchal et al. (2022)) also 1157 

reported a linear relationship between tract length and estimated delays for most brain 1158 

regions, consistent with the distance-dependent delays suggested by our study.  1159 

 1160 

In contrast to the distance-dependent conduction delays reported for most brain regions with 1161 

intra-cranial EEG recordings (Lemaréchal et al. (2022)), some brain regions present highly 1162 

similar conduction delays with several other regions. For example, the right insula has highly 1163 

similar conduction delays between 6–8 ms with several ipsilateral brain regions  (Lemaréchal 1164 

et al. (2022)). Animal neurophysiological studies have also presented evidence for 1165 

isochronous delays, in specific brain regions. For example, efferent connections of layer V 1166 

neurons from regions in the rat ventral temporal cortex had largely isochronous conduction 1167 

delays with several ipsilateral brain regions (Chomiak et al. (2008)), and afferent connections 1168 

of layer IV neurons from thalamus also had highly similar delays with a number of cortical 1169 

brain regions (Salami et al. (2003)). These highly similar delays for a few brain regions might 1170 

be due to regulation in conduction velocities by activity-dependent myelination (Noori et al. 1171 

(2020)), in response to specialised roles of these regions in functions involving fine temporal 1172 

coordination, e.g., sensory cue processing (Chomiak et al. (2008), Pajevic et al. (2014)). We 1173 

propose that future work could investigate methods to specify inter-regional delays, which 1174 

account for the region-specific nature of their distance-dependence.  1175 

 1176 

Due to their high delay heterogeneity, BNMs with distance-dependent delays might be prone 1177 

to the dynamical regime of amplitude death, i.e., cessation of oscillations (Atay (2003)). 1178 

Phase synchronization cannot occur in regimes of amplitude death due to absence of 1179 

oscillations and in fact, dynamically adjusting conduction velocities by activity-dependent 1180 

myelination regulation has been suggested as a means of avoiding this regime (Pajevic et al. 1181 
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(2014)). However, our Posterior Predictive Checks revealed oscillatory dynamics from 1182 

several simulations of the fitted BNM with distance-dependent delays, despite the highly 1183 

heterogeneous nature of these delays. Further, BNMs from previous studies (Cabral et al. 1184 

(2022)) report regimes of reduced amplitude rather than amplitude death, despite using 1185 

distance-dependent conduction delays which are highly heterogeneous by nature. 1186 

 1187 

Distance-dependent conduction delays predict long inter-regional delays between spatially 1188 

distant brain regions. These long delays might be deleterious to inter-regional communication 1189 

through phase synchronization, particularly when the lag of phase synchronization is close to 1190 

the oscillatory time period (Aboitiz et al. (2003), Pajevic et al. (2014)). However, modelling 1191 

studies have demonstrated several means by which phase synchronization lags might be 1192 

adjusted, enabling rapid inter-regional communication despite long conduction delays. For 1193 

example, the presence of a common relay region between two interacting regions (Vicente et 1194 

al. (2008)), driving currents (Tiesinga et al. (2010)), or local inhibition (Battaglia et al. 1195 

(2007)) can adjust the lag of phase synchronization towards zero. Hence, temporally precise 1196 

inter-regional communication can occur despite the presence of long inter-regional delays. 1197 

 1198 

We mention some limitations of our study and propose approaches to addressing these. First, 1199 

we used the Euclidean distance between regions divided by conduction velocity to estimate 1200 

inter-regional delays. Using Euclidean distance to specify tract length facilitated comparison 1201 

to several previous modelling studies on brain functional networks (Abeysuriya et al. (2018), 1202 

Hadida et al. (2018), Cabral et al. (2014), Nakagawa et al. (2014), Deco et al. (2009), Ghosh 1203 

et al. (2008)), which also used this measure. However, any spatially varying errors in tract 1204 

length estimation introduced by Euclidean distance could mask the contribution of spatially 1205 

varying conduction velocities in determining inter-regional delays. Diffusion MRI-based 1206 

tractography can potentially provide more accurate estimates of the tract length, but current 1207 

methods are also prone to error from seeding and termination biases (Girard et al. (2014), 1208 

Sotiropoulos & Zalesky (2019)). Future work could employ the ABC workflow we used, to 1209 

compare different methods to specify tract lengths, thereby further constraining BNMs of 1210 

inter-regional networks of phase synchronization. Second, we focused only on alpha-band 1211 

frequencies due to the clear evidence for alpha-band oscillations both in our own MEG 1212 

dataset and in previous MEG resting-state studies (Mahjoory et al. (2020)), oscillations being 1213 

a pre-requisite for phase synchronization. Hence, our findings are only relevant to phase 1214 

synchronization in alpha-band frequencies. However, we note that brain regions also generate 1215 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.03.27.534336doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

oscillatory activity in delta, low-beta and high-beta frequency bands (Mahjoory et al. (2020)). 1216 

Future modelling work could study phase synchronization in multiple frequency bands by, 1217 

e.g., including multiple generators per brain region (Deco et al. (2017)). Note that broadening 1218 

the range of frequencies studied would change the values of the summary statistics we use to 1219 

describe the BNM dynamics and those in MEG data, likely resulting in changes to the 1220 

posterior distributions of the BNM parameters to those we have reported here. Third, we 1221 

assumed that all brain regions generate oscillations, in line with empirically observed cortex-1222 

wide alpha-band spectral peaks both in our own MEG dataset and in previous MEG resting-1223 

state studies (Mahjoory et al. (2020)). However, we acknowledge recent evidence from intra-1224 

cranial EEG and MEG data suggesting that not all brain regions might generate oscillations 1225 

(Myrov et al. (2023)). Future modelling studies could examine the role of sparse oscillation 1226 

generators across cortex, including the interaction between sparsity and inter-regional delays, 1227 

in the structure-function relationship of large-scale networks of phase synchronization. 1228 

Finally, we assumed BNM parameters governing local dynamics to be identical across brain 1229 

regions. This was effective in limiting the number of BNM parameters to be estimated, while 1230 

introducing region-wise variation in BNM parameters would have exponentially increased 1231 

the volume of parameter space resulting in much higher numbers of BNM simulations 1232 

required to sample the parameters space (Gutmann & Corander (2016)). However, we 1233 

acknowledge empirical evidence for region-wise variation in structural and functional 1234 

properties of brain regions (Markello & Hansen et al. (2022)), and modelling work 1235 

suggesting the utility of informing BNMs with this region-wise variation (Demirtaş et al. 1236 

(2019), Sanz-Perl et al. (2022)) to emulate empirically observed dynamics. Future BNMs of 1237 

inter-regional phase synchronization could parameterise region-wise variation with only a 1238 

few parameters, by, e.g., expressing the variation in terms of empirically observed spatial 1239 

gradients (Mahjoory et al. (2020), Markello & Hansen (2022)). 1240 

 1241 

The ABC workflow that we employed for model fitting and model comparison naturally 1242 

accounted for uncertainty in values of BNM parameters. We also employed a number of 1243 

recommended best practices (Gelman et al. (2020), van de Schoot et al. (2021)) as we 1244 

proceeded from specifying the three BNMs through to fitting these BNMs and comparing the 1245 

fitted BNMs. In particular, we i) used prior distributions of BNM parameters informed by the 1246 

aggregated neurophysiology literature and the literature on modelling brain functional 1247 

networks, ii) verified suitability of the prior distributions and specification of the BNMs with 1248 

Prior Predictive Checks, iii) verified assumptions underlying the BOLFI model fitting with 1249 
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fake-data simulations, iv) used diagnostics of the GP-based surrogate modelling to assess 1250 

intermediate stages of the BOLFI model fitting, v) employed established convergence 1251 

diagnostics to assess reliability of the estimated posterior distributions of BNM parameters, 1252 

vi) verified that BOLFI fitting had completed without error using Posterior Predictive 1253 

Checks, vii) performed ABC model comparison across a range of discrepancy thresholds, and 1254 

viii) completed a control analysis to rule out alternative explanations for the results of the 1255 

ABC model comparison. We therefore propose that our results are robust. In conclusion, we 1256 

found evidence that distance-dependent delays crucially contribute to the generation of alpha-1257 

band inter-regional networks of phase synchronization observed in MEG resting-state. 1258 

 1259 
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Supplementary figures 1675 

 1676 
Figure S1. Group-level frequency spectrum displays alpha-band spectral peak. Group-1677 

level frequency spectrum averaged across brain regions, of source-reconstructed MEG 1678 

resting-state data. Red borders of rectangle outline band of alpha frequencies (8–12 Hz). 1679 
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 1689 
Figure S2. Specifying inter-regional delays for “isochronous delays”, “mixed delays” 1690 

and “distance-dependent delays” methods. a-b. Matrices of inter-regional conduction 1691 

velocities and conduction delays for “isochronous delays” method, c-d. Matrices of inter-1692 

regional conduction velocities and conduction delays for “mixed delays” method, e-f. 1693 

Matrices of inter-regional conduction velocities and conduction delays for “distance-1694 

dependent delays” method. 1695 
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 1714 
Figure S3. Log-transformed strengths of structural connections are inversely related to 1715 

distance between brain regions. Scatter plot of Euclidean distance between every pair of 1716 

brain regions in the 148-region Destrieux brain atlas and log-transformed strengths of 1717 

structural connections between these regions. 1718 
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 1744 
Figure S4. Gaussian Process (GP)-predicted discrepancies are sensitive to values of 1745 

BNM parameters 100 ×100 grid of GP-predicted discrepancies between summary statistics 1746 

of BNM dynamics at every pair of 𝑤𝑒𝑒 and 𝑤𝑒𝑖 values, and BNM dynamics at 𝑤𝑒𝑒=12.9, 1747 

𝑤𝑒𝑖=13.4. 𝑤𝑒𝑒 is the strength of connections within excitatory neuronal populations, 𝑤𝑒𝑖 is the 1748 

strength of connections from inhibitory to excitatory neuronal populations. Red lines indicate 1749 

ground-truth values of 𝑤𝑒𝑒 and 𝑤𝑒𝑖. Discrepancies were measured by 𝑙𝑛(1 − 𝑆𝑆𝐼). SSI is the 1750 

Structural Similarity Index. 1751 
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 1754 
Figure S5. Gaussian Process (GP) regression results during application of BOLFI to fit 1755 

BNMs to MEG resting-state data. a-c Scatter plot of actual and GP-predicted discrepancies 1756 

between BNM dynamics and MEG data, for the “isochronous delays”, “mixed delays” and 1757 

“distance-dependent delays” methods respectively. d-f Relative importance of each BNM 1758 

parameter in predicting discrepancies BNM dynamics and MEG data, for the three methods. 1759 
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 1764 

Figure S6. BNM with “distance-dependent delays” most probable when comparing 1765 

mean of connection strengths, but not their standard deviation or pattern. a. Model 1766 

probabilities of BNMs with “isochronous delays”, “mixed delays” and “distance-dependent 1767 

delays”, when comparing mean of connection strengths. b. Model probabilities of BNMs 1768 

with “isochronous delays”, “mixed delays” and “distance-dependent delays”, when 1769 

comparing standard deviation of connection strengths. c. Model probabilities of BNMs with 1770 

“isochronous delays”, “mixed delays” and “distance-dependent delays”, when comparing 1771 

pattern of connection strengths. Discrepancies are estimated as 𝑙𝑛(1 − 𝑆𝑆𝐼), where SSI is the 1772 

Structural Similarity Index. 1773 
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 1781 

Figure S7. BNM with “distance-dependent delays” more probable than BNMs with 1782 

“isochronous delays” and “mixed delays” for eyes-closed MEG resting-state data. Model 1783 

probabilities of BNMs with “isochronous delays”, “mixed delays”, and “distance-dependent 1784 

delays”, for a range of minimum discrepancies between phase synchronization strengths of 1785 

BNM dynamics and MEG eyes-closed resting-state data. Discrepancies are estimated as 1786 

𝑙𝑛(1 − 𝑆𝑆𝐼), where SSI is the Structural Similarity Index. 1787 
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 1805 

Figure S8. Delay heterogeneity does not explain correspondence between phase 1806 

synchronization strengths of dynamics from BNM with “distance-dependent delays” 1807 

and those in MEG data. Histogram of discrepancies between dynamics of BNM with 1808 

“distance-dependent delays” (green) and MEG data, and histogram of discrepancies between 1809 

dynamics of BNM with “randomised delays” (gray) and MEG data. Histogram overlap is also  1810 

shown (dark green). Discrepancies are 𝑙𝑛(1 − 𝑆𝑆𝐼), SSI is the Structural Similarity Index. 1811 
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