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Abstract. Substrings of length k, commonly referred to as k-mers, play a vital role in sequence anal-
ysis, reducing the search space by providing anchors between queries and references. However, k-mers
are limited to exact matches between sequences. This has led to alternative constructs, such as spaced
k-mers, that can match across substitutions. We recently introduced a class of new constructs, strobe-
mers, that can match across substitutions and smaller insertions and deletions. Randstrobes, the most
sensitive strobemer proposed in [18], has been incorporated into several bioinformatics applications such
as read classification, short read mapping, and read overlap detection. Randstrobes are constructed by
linking together k-mers in a pseudo-random fashion and depend on a hash function, a link function,
and a comparator for their construction. Recently, we showed that the more random this linking ap-
pears (measured in entropy), the more efficient the seeds for sequence similarity analysis. The level of
pseudo-randomness will depend on the hashing, linking, and comparison operators. However, no study
has investigated the efficacy of the underlying operators to produce randstrobes.
In this study, we propose several new construction methods. One of our proposed methods is based on
a Binary Search Tree (BST), which lowers the time complexity and practical runtime to other methods
for some parametrizations. To our knowledge, we are also the first to describe and study the types of
biases that occur during construction. We designed three metrics to measure the bias. Using these new
evaluation metrics, we uncovered biases and limitations in previous methods and showed that our pro-
posed methods have favorable speed and sampling uniformity to previously proposed methods. Lastly,
guided by our results, we change the seed construction in strobealign, a short-read mapper, and find
that the results change substantially. Also, we suggest combining the two versions to improve accuracy
for the shortest reads in our evaluated datasets. Our evaluation highlights sampling biases that can
occur and provides guidance on which operators to use when implementing randstrobes.

1 Introduction

In sequence analyses, k-mers play an important role in various algorithms and approaches. For example,
k-mers can be used as seeds for sequence similarity search, where a seed shared between two sequences acts
as an anchor in order to identify similar regions between, e.g., DNA, RNA, or protein sequences. When used
as seeds, k-mers enable rapid identification of shared regions and are used in a large number of short and
long-read mapping algorithms [4,21], and other approaches for querying large sequence datasets [13].

Both a feature and a limitation with using k-mers as seeds is that sequences must be identical for the seed
to match. In biological data, it is common that mutations in DNA occur in the form of substituted, deleted,
and inserted nucleotides. In addition, common DNA and RNA sequencing techniques are noisy and introduce
additional altering of the nucleic acids. In order to provide anchors also in regions with high divergence, seeds
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are allowed to anchor over mutations. k-mer alternatives have therefore been explored extensively in the
literature, such as spaced k-mers [11]. See [21] for an overview of several other seeding constructs used in
read mapping.

1.1 Strobemers

Recently, we introduced a new class of seed constructs, called strobemers [18]. Strobemers allow a pair of
seeds to match across substitutions, insertions and deletions. Strobemers expand on the ideas of neighboring
minimizer pairs [5,22] and k-min-mers [7] that link together neighboring minimizers [17] into a seed. At a
high level, strobemers generalize this linking by considering several downstream k-mers within a window
as potential candidates to link. Three different methods to link the k-mers (minstrobes, randstrobes, and
hybridstrobes) were described in, [18] where the most effective seed was randstrobes. While there are appli-
cations that use other strobemer types [8], randstrobes have been most frequently used, e.g., for short-read
mapping [20], transcriptomic long-read normalization [15], and read classification [23] in bioinformatic ap-
plications. Our recent proof-of-concept study also shows that randstrobes can provide accurate sequence
similarity ranking through estimating the Jaccard distance [12].

In [12], we also found that the sensitivity of strobemers, measured as producing at least one seed match
in a mutated region of fixed length, is strongly correlated with the pseudo-randomness of the seed construct
(measured through entropy), where higher entropy yields higher sensitivity. In [12], we also introduced
new strobemer variations, further improving sequence matching performance. Despite the introduction of
these new variations, randstrobes remain the simplest and most used construct. Since randstrobes are now
employed in multiple applications and the possibility of future applications exists, it is important to study
how to construct them best.

Constructing randstrobes consists of converting strings to integers through a hash function and selecting
candidate k-mers to link through a link function and a comparator operator (detailed definitions in Sec. 2,
Methods). Randstrobes are pseudo-random seeds, meaning the linking pattern is fixed but appears random.
Biases in these functions and operators through correlation will result in biases in linking the k-mers, making
the seed less efficient for, e.g., sequence matching. Fig. 1 shows some of the sampling biases we observed in
this study with different methods. So far, no evaluation has been performed of the underlying operators to
produce randstrobes.

1.2 Our contribution

As randomness is important for sensitivity [12], we propose several new methods to perform the core oper-
ations in randstrobes (hashing, linking, and comparison) beyond previously published methods [18,20,23].
We also observe several types of bias (Fig. 1) with previously proposed methods and design metrics that
are suitable to detect and measure them. Using new evaluation metrics, we uncovered biases and limitations
in previous techniques and improved existing method to be faster and better randomly distributed. Our
benchmarking of our proposed methods show that some combinations of hash functions, link- and com-
parison operators produce strictly favorable results to previously proposed methods, improving e.g., seed
uniqueness, sampling uniformity, and construction runtime.

In addition, one of the randstrobe construction methods we present is based on a Binary Search Tree
(BST) that lowers the time complexity of constructing randstrobes from what was previously reported
in [18]. The method is much faster than other methods when the strobe selection window is large and achieve
comparable randomness to the best performing method for large windows. As runtime is important in several
time consuming bioinformatics applications, such a BST implementation may be useful for applications where
a large sampling window is desired.

Finally, we find that the combination of link function and comparator used in the short-read mapper
strobealign [20] perform strictly worse regarding seed uniqueness than other methods. Guided by this ob-
servation, we changed the seed construction strobealign. While our new implementation does not increase
strobealign’s accuracy on our benchmarked datasets, we observe that the accuracy improves substantially
for an approach that selects the best alignment score per read from our modified version and the default
version of strobealign. This finding can be used to increase strobealign’s accuracy further. In summary, our
evaluation highlights linking biases that can occur and provide guidance for which operators to use when
implementing randstrobes.
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Fig. 1: Illustration of desired random sampling of the second strobe for strobemers consisting of two strobes
(case A). Whenever a pseudo-random method is used to select the downstream strobe based on the first
strobe, it generates some sampling bias. Case B to E show different biases we observed in the sampling. The
metrics we propose to measure the bias is displayed under each of the illustrations of cases B to E.

2 Methods

2.1 Definitions

We use 0-indexed notation. We typically use S and T to denote strings, and we use the notation S[i : j],
i < j to refer to a substring starting at position i and ending and including the character at position j
in S. We let the | · | operator denote the length of strings. Here, our alphabet consists of the letters (or
nucleotides) (Σ = {A,G,C, T}). We use h(x) → z, where x and z are integers to denote a hash function
without specifying the underlying function. As for representation in memory, DNA strings shorter or equal
to 32 nucleotides can be stored with 64-bit integers by encoding A, C, G, and T as 00, 01, 10, and 11,
respectively. Other letters, such as N for unknown nucleotide, will be ignored.

In this study, we will consider strings shorter than 32 nucleotides and use variable x to represent the 64-bit
integer values encoding either the 2-bit representation of the string or the hash value resulting from hashing
the string. While the constraint on 32 nucleotides is often seen as a limitation for k-mer-based methods in
bioinformatics, it does not represent a limitation to the same extent for strobemers as they consist of several
combined k-mers, which we discuss in Section 2.2. Finally, we use & for bitwise AND, ⊕ for bitwise XOR,
|| for concatenation (e.g., concatenating two 64-bit integers into a 128-bit representation), and % for the
modulo operator. We also use B(x) to represent the function that returns the number of set bits in x.

2.2 An overview of constructing strobemers

A k-mer is a substring of k nucleotides in a biological sequence S. Consequently, a k-mer only needs the
length of the substring, k, as a parameter to be specified. A strobemer is a set of linked k-mers. Specifically, a
strobemer consist of n l-mers l0, . . . , ln−1, denoted strobes, where the first strobe l0 has a determined position
i in S. Downstream strobe lm, m ∈ [1, n−1] is selected in an interval S[i+wmin+(m−1)wmax : i+mwmax]
in S, and linked (appending the strobe to previous strobes) to the m previous strobes. Here, wmin and wmax

specify the range of the sampling window. For example, strobe l1 is sampled in S[i+ wmin : i+ wmax] and
linked to l0.

Since we consider 64-bit integer representations of the strobes in this study, we will from now on refer to
the strobes as x0, x1, . . . xn−1 and, when clear from context, we alternate x to mean either the strobe itself or
its integer representation. This is also the reason we use the more general term linking instead of appending
(strobes to the seed), as the linking method will vary with the strobe representation, as we discuss in detail
in the next section.
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The methods to select strobes differ [18], and using alternating strobe lengths has also been explored [12].
However, randstrobes were shown to be more sensitive for sequence matching than other methods using fixed
strobe lengths (minstrobes and hybridstrobes) [18], and simpler to construct than alternating strobe lengths
(altstrobes and multistrobes) [12], and is so far most commonly implemented in practice, e.g., [20,15,23].
Therefore, we will consider only the randstrobes method in this study. Randstrobes are parameterized by
(n, l, wmin, wmax). The novelty compared to, e.g., k-mers and spaced k-mers is that strobemers allow flexi-
bility in the strobes’ spacing and can produce matches between two sequences in a region with insertions or
deletions.

2.3 Strobemer construction: constraints and objectives

Let Mwmax
wmin

(xi|xi−1, . . . , x0), or simply M when context is clear, be a method to sample a strobe xi in a
window given by its parametrization (n, l, wmin, wmax). We put the following constraints on M .

Constraint 1: M selects xi based on, and only on, the sequence information of xi−1, . . . , x0.
Constraint 2: M is deterministic. That is, for two identical strings S and T , the same strobes are produced.

We want to find a method M such that

Objective 1: Maximize H(M(xi|xi−1, . . . , x0)), where H denotes the entropy. Intuitively, M should sample
xi as uniform within the window as possible, regardless of previous strobes and the sequence in the
window.

Objective 2: M constructs randstrobes as fast as possible.

Constraint 1 is necessary to rule out degenerate but high entropy solutions for sequence matching. An
example of a degenerate approach is using a (pseudo) random number generator (RNG) such as rand() in
C++. Such a method has good entropy. However, assume two similar strings, S and T , where one string
contains a deletion. The RNG will (in all likelihood) produce different numbers as soon as the deletion is
encountered and will continue to produce different numbers throughout the remaining part of the string.
Such an approach cannot be used for string-matching applications. Therefore, the method’s decision must
be based on, and only on, the underlying sequence. As for the objectives, Objective 1 describes a conditional
entropy (conditioned on the first strobe and the window), which is challenging to measure. We cannot only
evaluate entropy by measuring the uniformity of sampling sites within a window across a sequence. For
example, assume a method that selects a strobe if it is identical to the previous strobe (otherwise, it uses
some other decision). If the distance between two consecutive identical strobes is uniformly distributed, the
method will appear to have a perfect entropy while it, in fact, has low entropy for other input. Related, it is
easy to display high entropy for randomly generated sequences. However, we are primarily interested in what
happens in repetitive regions, common in biological sequences, and more challenging to produce sampling
uniformity over. Objective 2 is straightforward.

2.4 Constructing randstrobes

The process of creating randstrobes can be separated into four modular components: 1) Hashing the strobes,
2) linking the strobes, 3) the use of sampling comparator when linking, and 4) the construction of the final
seed hash value. We discuss each of the components below and suggest different functions to perform them.

Hashing strobes Since each strobe is represented as a 64-bit integer using the binary encoding, the integers
can further be hashed. The reason for hashing a strobe x as z = h(x) is that it can improve the pseudo-
randomness. We evaluate the following hash functions for the strobes.

1. hNO(x): The original 2-bit encoding of nucleotides is used without applying a hash function.
2. hTW(x): Thomas Wang hash [1], an invertible hash function used, e.g., in the popular aligner min-

imap2 [10].
3. hXX(x): XXHash [3].
4. hWY(x): WYHash [2].

Previously, hNO(x) was used in [18] and hTW(x) was used [20]. This is the first study using hXX(x) and
hWY(x) as hash functions to construct randstrobes.
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Linking strobes The second strobe x1 is linked to the first strobe x0 by selecting the candidate strobe x′
1 in

the window that minimizes or maximizes the link function ℓ. For example, in the first strobemers study [18],
two link functions were used. The first was ℓ(x0, x

′
1) = (x0 + x′

1) mod p, p ∈ Z (originally proposed in the
preprint [19]). The second one was ℓ(x0, x

′
1) = (x0 + x′

1)&q, where q is a bitmask of 16 ones’ on the lowest
significant bits and remaining 0’s (proposed as faster alternative in the final publication [18]). We call these
function ℓMOD and ℓAND, respectively. Furthermore, two additional link functions were described in [20,23]
that we denote ℓBC and ℓXOR. Here we propose three more alternatives: ℓXV, ℓCC, and ℓMAMD. We provide
formal definitions of all the link functions below.

– ℓMOD(x0, x1) = (h(x0) + h(x1)) mod p, p ∈ N . (See [18])
– ℓAND(x0, x1) = (h(x0) + h(x1))&q, q ∈ N . (See [18])
– ℓBC(x0, x1) = B(h(x0)⊕ h(x1)). (See [20])
– ℓXOR(x0, x1) = h(x0)⊕ h(x1). (See [23])
– ℓXV(x0, x1) = h(x0 ⊕ x1). (Proposed in this study)
– ℓCC(x0, x1) = h(x0||x1). (Described in the pseudo code in [18] but never studied)
– ℓMAMD(x0, x1) = (h(x0) mod p) + (h(x1) mod p) mod p, p ∈ N . Similar to ℓMOD but uses a BST.

(Proposed in this study)

The ℓMAMD and ℓMOD are theoretically identical. However, in practice the ℓMOD can overflow the integer
limit (264 − 1), while ℓMAMD can not if p < 263 − 1 . Furthermore, ℓMAMD uses a BST (ℓMAMD is described
in detail in Supplementary Section A1) with a different computational complexity. We will discuss the
computational complexity of all methods at the end of Section 2.3. In this section, we only discussed linking
the first two strobes. Linking additional strobes can be done recursively by applying the same link function
between the previous resulting randstrobe hash value b with the next candidate downstream strobes xm,
m > 2 as ℓ(b, xm).

Sampling comparator The sampling comparator is closely tied to the link-function. Specifically, the
comparator function, here denoted c(·), specifies the criteria for which we select strobe x1 among can-
didates x′

1. To our knowledge, the only sampling comparator that has been proposed is cmin(x0, x
′
1) =

argminx′
1∈W ℓ·(x0, x

′
1) [18,20,23], where W is the collection of strobes in the window defined by wmin and

wmax. In this study we propose cmax(x0, x
′
1) = argmaxx′

1∈W ℓ·(x0, x1). Another example of a comparator
operator could be, e.g., selecting the median value.

The comparator can influence the result for some hash and link constructions. A concrete example is con-
structing randstrobes by using cmin(x0, x

′
1) = argminx′

1∈W (ℓXOR(hNO(x), hNO(x
′
1)). Consider a repetitive

region consisting of the same short repeat with occasional variations (e.g., a telomeric region). Our method
will be biased towards selecting identical strobes as identical values in x and x1 will have an XOR value
of 0. Here, a max comparator will likely sample strobes with variants in such region, thus improving the
uniqueness of seeds.

The final seed hash value We have so far discussed only how to select strobes. However, once the strobes
have been decided, we need to represent the randstrobe with a final hash value. The final hash value is what
should be indexed and queried, for e.g., a seed-and-extend mapping framework. We denote the function to
produce the final seed hash value as f(x0, . . . , xn). We need the function f to be as uncorrelated with the
link-function as possible. If we would use the hash value that comes out of ℓ(x0, x1), with, e.g., cmin, we
are projecting hash values to the minimum value in each window. This leads to unnecessary hash collisions
compared to a uniform hash function. Furthermore, as mentioned in [18], it is important to avoid symmetric
functions f(x0, x1) = f(x1, x0) (e.g, f(x0, x1) = x0 + x1) if distinguishing direction from, e.g., inversions is
important (although a symmetric function is used to forward and reverse complements seeds in, e.g., read
mapping [20]. Taking into consideration the above we use

f(x0, x1, . . . , xn−1) =

{
2x0 − x1 if n = 2,

2f(x0, x1, . . . , xn−2)− xn−1 if n > 2.

This formulation allows f not to have any apparent correlation with any of the benchmarked link-functions,
as we will see in the results.
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Linking more than two strobes Generally, to link xm, to x0, . . . xm−1, m ∈ [2, n − 1], we use ℓ(b, x′
m),

where x′
m are the candidate strobes in the window, and b denotes a base value calculated from the previous

m strobes. We set the b equal to the previous strobes’ final hash value, e.g., b = f(x0, x1) and ℓ(b, x′
2) in the

case of three strobes. This method can be applied recursively.

Time complexity of randstrobe construction Before discussing computational complexity we make
the following classifications of our link functions:

1) Cheap computation: This group includes ℓMOD, ℓAND, ℓBC, ℓXOR and ℓMAMD. We denote them as
computationally cheap because the hashing and linking can be separated. That is, we only need to
calculate hash values once for each strobe, and the link function can be applied after.

2) Expensive computation: This group includes ℓCC, and ℓXV. For these methods we need to evaluate
the hash value for the combination of x0 and all its candidate downstream strobes, for each new x0.

The time complexity of constructing randstrobes from a string of length |S| varies with the link-function
class. Let th be the time complexity for the hash function, n the number of strobes, and W = wmax−wmin+1
be the window size. Then, S − nwmax − l + 1 the number of randstrobes constructed from S. We assume
that the linking operators (i.e., +, &, ⊕, mod , ||) can be performed in constant (O(1)) time, although the
runtimes vary among the operators with ⊕ being cheaper to perform while || being relatively expensive.

Expensive computation methods perform (1+nW ) hash calculations, and nW other operations (such as
+, &, ⊕, mod , ||), per randstrobe. So the total complexity is O((|S| −nwmax− l+1)((1+nW )th+nW )).
Cheap computation methods spend at most (|S| − l + 1) hash calculations and (|S| − nwmax − l + 1)(nW )
on other operations, in total. So the total complexity is O((|S| − l + 1)th + (|S| − nwmax − l + 1)(nW )). If
we assume that S >> nwmax − l+1 and th = Ω(1) (i.e., the complexity of th is at least a constant), we can
simplify the expression of the time complexity of expensive computation methods and cheap computation
methods to O(|S|nWth), and O(|S|th + |S|nW ), respectively.

Lastly, the ℓMAMD link function is part of the cheap computation category. However, the time complexity
is further reduced to O(|S|th+ |S|n logW ) through the logarithmic time complexity of searching for elements
(see Supplementary Section A1 for details). While the BST implementation increases the constant coefficient
through the BST overhead, we will see that the speed-up is substantial for large windows. We have abstracted
over the exact time complexity of the hash functions. The cheapest computation is hNO which only streams
over the sequence without performing hashing. Some hash functions also support streaming [14] and can
lower th.

2.5 Evaluation Metrics

There are different sampling biases that can arise as illustrated in Fig 1. We were not able to find a singular
metric that captured all of these biases, instead we propose four suitable metrics that would capture cases
B-E in Fig 1. A desirable result is that the selection of the second (or any downstream) strobe is performed as
uniformly in the window and as independently of previous seed as possible. Several seed-based applications
also requires fast construction; therfore, we also benchmark construction runtime.

Notation for evaluation metrics Let N be the total number of seeds constructed from a string S, and
M the number of seeds with distinct final seed hash value in S. Recall that (n, l, wmin, wmax) parameterize
the number of strobes, their length, and the minimum and maximum window offset for the sampling window
of the randstrobes. We let i and j be index variables over the set of randstrobes seeds sorted by their first
strobe position. Since we here sample one randstrobe per position in S, the index variables are equivalent
to the start position of the randstrobe seed on S, and the N seeds can be ordered with respect tp the start
position on S. We let sik refer to the kth strobe in seed i and pik to its position in S.

E-hits The E-hits metric was introduced in [20]. It provides a number between 1 and |S|, which is the
expected number of times a seed occurs in the reference. The E-hits metric was used as a measure for expected
seed repetitiveness in S when sampling reads uniformly at random from a reference string S, assuming S
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is much larger than the span of the seed [20]. We restate the E-hits metric here for self-containment. Let
i ∈ [1,M ] be an index variable over the set of distinct seeds in S and N > M be the total number of seeds
in S (multiset). Let xi denote the number of times seed i occurs in S. Let qi be the probability of producing
seed i when selecting a seed randomly from the N seeds. The E-hits metric is then the expected value over
seed hits E[X] computed as

E[X] =
M∑
i=1

qixi =
M∑
i=1

xi

N
xi =

1

N

m∑
i=1

x2
i . (1)

In this study, seeds are represented as hash values. The above formula is equivalent if we replace the
notion of a seed with the hash value representation of a seed. In this case, E-hits measures the expected
number of identical hash values, which includes both repetitive seeds and non-desired hash collisions. We
will measure the E-hits for the final seed hash values produced with f , and denote this quantity Ef . This is
the same use of E-hits as in [20].

E-hits of inter-strobe distance and strobe position The idea and formulation of E-hits can be used to
measure the repetitiveness of other quantities. To measure biases B and D in Fig 1, we look at the distribution
of inter-strobe distances within a randstrobe. Let djk be the distance between the first strobe and the kth
strobe in seed j (in this study, we only consider k = 2 or k = 3). We can then let xi in Eq. 1 instead denote
the number of times we observe distance djk. The E-hits formula then measures the expected number of
times we observe the distance djk when randomly drawing a seed from S. We denote this quantity as Ed,
we omit index variable k when it is clear from the context.

We measure bias C by computing the repetitiveness of the position of kth strobes in S. Along the same vein
as Ed, we let xi in Eq. 1 instead represent the number of times we observe the kth strobe in any randstrobe
being at position p in S. For this quantity, the E-hits formula then measures the expected number of times
position p was sampled as the kth strobe when drawing a seed uniformly at random from S. Similarly to
Ed, we denote this quantity as Ep and omit index variable k when it is clear from the context. We can
compare Ed and Ep against a reference method that generates strobe positions uniformly at random within
the sampling windows. This comparison allows us to study the relative magnitudes of the bias between the
methods.

The conflict metric To study which complex dependencies as depicted in Case E in Fig 1, we introduce
the conflict metric, which aims to measure the size of the overlaps of strobes from a set of neighbouring
randstrobes with start positions in [i, j], i < j. An overlap higher than what is expected under random
sampling indicates selection bias. Let o(i, j, k) = max(0, l− |pjk − pik|) measuring the number of overlapping

positions of the kth strobe between two randstrobes i and j. Then
∑n−1

k=0 o(i, j, k) is the total number of
overlapping positions between two randstrobes. The conflict metric for randstrobe i is then defined as

Ci = max
j∈[i+1,min(N,i+l)]

n−1∑
k=0

o(i, j, k).

In other words, Ci is the largest observed overlap with any of the l consecutive downstream randstrobe
seeds. We let the conflict metric (C) be the value of Ci averaged over all seeds in S. As with the other metrics,
we can compare C against a reference method generating strobe positions uniformly at random within the
sampling windows. In addition to measuring bias E, this measure also captures biases B, C, and D (Fig 1).

The above formula does not take into account that strobes of different orders (k) between neighboring
randstrobes might overlap. However, even if this is possible for some values of wmin, it does not originate
from the bias that we want to measure, and can therefore be omitted.

3 Results

We evaluated all compatible combinations of ℓ, c and h. Some hash functions and link-functions that are
incompatible such as using hTW and ℓCC with strobes larger than 16nt (32 bits) because hTW is designed for
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64-bit integers. We used p = 100, 001 for ℓMAMD and ℓMOD in our experiments. The evaluation is available
at https://github.com/Moein-Karami/RandStrobes/.

3.1 Experiment setup

As discussed in section 2.3, it is easy to produce randstrobes with high entropy if the underlying sequence in
[wmin, wmax] has high entropy (e.g., randomly generating letters in {A,C,G,T}). Therefore, we are interested
in evaluating pseudo randomness in repetitive regions, common in biological sequences. We use both a
simulated highly repetitive sequence, as well as chromosome Y from the CHM13 human assembly [16],
including telomere regions. We simulated a repetitive sequence S as follows. A sequence T consisting of 25
nucleotides A, G, C, and T was randomly generated and appended to S. We then simulated a new copy of T ′

from T by mutating each position in T with a probability of p = 0.02, where the mutation could either be a
substitution, insertion, or deletion with equal probabilities. T ′ was then appended to S and used as the new
template to simulate the next copy T ′′. This recursive procedure was repeated 40,000 times. If the length
of any template copy decreased to below 15 nucleotides, we only considered substitutions and insertions for
those templates. This process resulted in a string of approximately 1,5 million nucleotides.

We used randstrobe parameter value of n = 2, l = 20, wmin = 21, wmax = 100. In addition, we also
report the results for three strobes (n = 3) in Supplementary Section A3. Finally, since the metrics we use
could be difficult to interpret in a vacuum, we have, when applicable, also included suitable reference values.
These reference values could either be k-mers with size k = nl, or a fully random method, denoted uniform,
that produces randstrobes by uniformly at random selecting a position in the sampling window [wmin, wmax]
(using rand() in C++). We remark that method produces different randstrobes from the same sequence.
Thus, we cannot use uniform randstrobes for anything other than providing best-case reference values for
other methods.

To evaluate runtime, we use an E. coli genome (strain NZ CP018237.1) of roughly 5.5 million nucleotides.
We report the median runtime from 25 runs. We consider the difference between the starting and the
finishing time of creating and storing randstrobes in a vector as the execution time. The experiments were
run on an Linux computer, with an Intel i7-4510U CPU at 2.00GHz, compiled with gcc with flag -O3.
For the runtime, we evaluated randstrobes parametrized as (n = 2, l = 20, wmin = 21, wmax = 100) and
(n = 2, l = 20, wmin = 21, wmax = 1000) since the window size affects runtime. Strobemers with n > 3 show
no substantial gain in the context of sequence matching at the cost of additional runtime [12](although they
have been modified and used for specific scenarios [8]). Also, the relative performance can be extrapolated
from the n = 2 and n = 3 cases, since the construction is recursive, therefore, we omit them in this study.

3.2 Pseudo-randomness

Overall, the expensive-computation linking methods ℓCC and ℓXV yield the most desirable pseudo-randomness
across the three metrics Ed, Ep2, and C (Fig. 2A-C). When comparing the less computationally expensive
methods, we observe that bias in only one or two of the metrics we designed, which motivates the analysis
of pseudo-randomness using several metrics. The following sections will analyze the results when construct-
ing randstrobes with two strobes. We see similar trends when constructing randstrobes with three strobes
(discussed in Supplementary Section A2).

Bias B and D Biases B and D (Fig. 1), characterized best with Ed, reflect a sweeping bias in the sampling
(Fig. 1). Our benchmarks are performed on a repetitive sequence, so some bias in Ed is expected, which is
not reflected in the uniform best-case scenario. We observe that all methods have higher Ed than the uniform
method, but ℓBC and ℓXOR have a substantially higher bias (Fig. 2a). Both of these link methods depend
on the XOR operator.

Bias C Bias C (Fig. 1) indicates over-sampling a given position and is best characterized with Ep. Again,
all methods deviate from the uniform (Fig. 2b). Methods such as ℓAND, ℓMAMD, ℓMOD, and ℓXOR indicate
a clear over-sampling of the same position, while ℓCC and ℓXV have values relatively near uniform. Notably
ℓBC and ℓXOR with cmin have lower values of Ep than uniform. However, this is undesirable and further
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(a)

(b)

(c)

Fig. 2: Results for metrics Ed, Ep, and C for randstrobes with parameter settings (n = 2, l = 20, wmin =
21, wmax = 100) for the repetitive sequence dataset. The x -axis shows the different linking methods, and
the max and min comparator are shown in left and right panels, respectively. The x -axis also contains the
reference value denoted uniform, indicating near perfect randomness. For metric Ed, the lowest possible value
is desirable, as the Ed metric reaches the minimum under a uniform distribution. For Ep and C, a value
close to the uniform is desirable, which is different from the minimum, due to bias B in Fig. 1. The y-axis
has been set to start close to the lowest observed value to better illustrate differences between the methods.
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illustrates how these methods suffer from biases B and D, which results in lower values on Ep than expected.
We also note a difference between ℓMOD and ℓMAMD when hashing. This difference is likely because ℓMOD

is allowed to overflow increasing randomness, while ℓMAMD is not. This overflow does not happen for hNO

since the individual strobe values are always below 22l = 240.

Non-trivial bias with the conflict metric We designed the conflict metric to detect any sampling biases
that are difficult to classify (Case E in Fig. 1). However, our results indicate that this metric did not pick
up any notable biases that our metrics Ed and Ep did not already show. However, the conflict metric agrees
with the two other metrics and and acts as a supplementary aspect to them. The min comparator performs
substantially worse for ℓBC and ℓXOR, as well as ℓXV when a hash function is not applied. elaborate on this
result in the following sections.

Importance of using a hash function before linking First, using a hash function before linking is
performed for all linking methods except for ℓCC , which applies the hash function after concatenation of the
strobes. We will therefore exclude ℓCC from the discussion in this section. Our experiments show that using a
hash function increases the randomness of all methods. Most notable is the difference for ℓXV . Link functions
that use the XOR operator are generally sensitive to when strobes are similar. This can be understood by
considering that two identical strobes will always be projected to a value of 0. Similarly, two strobes with
only a substitution difference would only have bits set where the mutation occurs unless a hash function is
used. Therefore, link methods based on XOR are sensitive to the hash function used in repetitive regions.
We observe that hWY, hXX, and hTW have near identical results, except when using the ℓMOD link function
where hWY and hXX are slightly preferred.

Max comparator is better in repetitive regions We can see in Fig 2 that the max comparator is
always either as good or better than the min comparator. The largest differences are observed for the link
functions based on the XOR operator. In repetitive regions, the min comparator is likely to pick the same or
similar strobes since many bits will be set to 0, while the max comparator inverts this behavior and instead
is more likely to select as different strobes as possible (to increase the likelihood of significant set bits). This
behavior is beneficial in repetitive regions where we benefit from more seeds with unique mutations. Our
experiments indicate that the comparator affects mainly ℓBC , ℓXOR. However, these link functions are used
in bioinformatics tools [20,23], highlighting that sampling could be improved in repetitive regions.

Fig. 3: E-hits of seed hash values for various hash functions (color), link functions (x-axis) and comparators
(panels) used to construct randstrobes with parameters (n = 2, l = 20, wmin = 21, wmax = 100). The x-axis
also contains reference values for k-mers of size k = 40. The y-axis has been cut at 3 to better illustrate
differences.
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Seed repetitiveness We have, in previous sections, investigated linking bias arising from combinations
of hash, link and comparator functions. However, overall seed repetitiveness in the reference is one of the
most important measures for applications such as average nucleotide identity (ANI) estimation or sequence
mapping. First, we confirmed that using our final hash function f to represent a seed resulted in a non-visible
number of hash collisions, as measured by the fraction of unique final hash values to the number of unique
randstrobe seeds obtained from extracting the sequence at the sampling positions (Fig. 6). The lowest ratio
of unique final hash values to actual seeds we observed was 0.9981 for ℓBC with cmin. Many of the methods
had no collisions (ratio equal to 1.0). K-mers without hashing (used as reference value) has a ratio of 0.9996.
This is because we represent k-mers as two adjacent strobes (x0, x1) with the same final function as the
randstrobes (f(x0, x1) = 2x0 − x1) because they do not fit into 64 bits. Regardless, this is a very small
amount of collisions and should not affect the analysis.

Given that there were no significant amount of hash collisions in our seeds, we computed the E-hits of the
final seed hash value (Ef ). We also included k-mers of length 40 in this experiment for reference. Agreeing
with previous analyses, we observed that it is important to use a hash function before linking strobes and
that ℓBC and ℓXOR should, if used, be combined with the max comparator (Fig. 3). Additionally, we see
that randstrobes have lower Ef than k-mers for most hash and link functions, but can increase repetitiveness
with some combinations if a hash function is not applied on the strobes.

(a) Small window

(b) Large window

Fig. 4: Median runtime (seconds) on 25 instances for each combination on an E. coli genome of 5.5 million
nt. Each combination generated randstrobes with n = 2, l = 20, wmin = 21, and wmax = 100 (Panel A) and
wmax = 1000 (Panel B).
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3.3 Runtime performance

Figure 4 shows the construction time for window sizes using wmax = 100 and wmax = 1000, respectively.
Despite the expensive-computation methods (ℓCC and ℓXV ) are performing a factor of nW more hash
computations, they are only about twice as slow on the smaller window (with hWY ) to cheap computation
methods (Fig. 4A) and about four times slower for large windows (Fig. 4B). One explanation could be that
the window is fitting in cache, resulting in that the much higher amount of hashing calls are cheap compared
to loading new parts of the array with strobes into cache. We also observe that the ℓMOD based on typically
expensive modulo computation is substantially slower than other methods in the cheap-computation class.
Finally, when constructing randstrobes with large windows, ℓMAMD is much faster than other methods
Fig 4b. This is due to the BST implementation instead of a linear search across each window. However, due
to its special updating technique utilizing arithmetic properties of the modulo operator, the method can
only be used with the modulo link function. As for the hash functions, hWY performs better than hXX on
our data for the expensive computation class, where strobes are represented by a struct of two 64-bit integer
strobes. The best timing results in the expensive-computation class was ℓXV combined with hWY , albeit
with a small margin to ℓCC combined with hWY .

Fig. 5: A comparison between ℓMAMD and ℓCC with parameters (n = 2, l = 128, wmin = 129, wmax = x),
where x is plotted on the x-axis. Left panel shows E-hits on Chromosome Y from the CHM13 human
assembly [16]. The right panel shows median runtime out of 10 runs on an E. coli genome of 5.5 million nt.

3.4 Randstrobes in large windows

The ℓMAMD link function opens up the possibility to construct randstrobes in large windows. We were
interested in the uniqueness of seeds that ℓMAMD produced compared to the best-performing method ℓCC

(using cmax). For this analysis we increased p to 19,019,684,767,739,993 as the window sizes tested were
approaching previous p (100,001), which is not good for pseudo-randomness. We investigated the expected
uniqueness (E-Hits) of the seeds computed across chromosome Y of the CHM13 assembly (Fig. 5, left panel).
In the figure, a window size of 0 corresponds to k-mers of size 256. We make two key observations about
the uniqueness of seeds. First, we note that there is no substantial difference between the two link functions
on chromosome Y from the CHM13 assembly, including telomere regions and many repetitive multigene
families. Second, we observe that the E-hits function is not linearly decreasing, which we initially expected.
Minimum repetitiveness occurs at wmax = 2, 000 instead of the largest evaluated window at wmax = 10, 000.
This is likely explained by the observation that, beyond a certain window size, the more likely it is that the
same pair of strobes is found and linked. We also looked at how the runtime scaled with window size. Figure 5
(right panel) shows the median runtime from 10 runs on the E. coli genome of 5.5 million nucleotides. We
observe that our BST implementation greatly outperforms ℓCC .
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Table 1: Strobealign accuracy results (% of total read pairs) when mapping paired-end reads using the
min comparator, max comparator, and when selecting the best read alignment between the two versions
(combined). The diff column shows the percent point difference in accuracy between combined and min-
comparator only, and the rightmost column indicate the difference of the combined results to that of BWA,
the overall most accurate aligner in the benchmark in [20]. Negative values indicate that strobealign has
higher accuracy.

dataset (genome-read length) min comparator max comparator combined diff combined diff to BWA

drosophila-50 90.1890 90.1542 90.4216 +0.2326 +0.0901
drosophila-75 91.6441 91.6422 91.6818 +0.0377 -0.0233
drosophila-100 92.3879 92.3948 92.4168 +0.0289 -0.0207
drosophila-150 93.2112 93.2220 93.2302 +0.0190 -0.0350
drosophila-200 93.5209 93.5309 93.5347 +0.0138 -0.0617
drosophila-300 95.3608 95.3681 95.3734 +0.0126 -0.0425
drosophila-500 95.6936 95.7124 95.7132 +0.0196 -0.0774

CHM13-50 90.6350 90.5854 91.0971 +0.4621 +0.5227
CHM13-75 92.5158 92.5197 92.6462 +0.1304 +0.2038
CHM13-100 93.2198 93.2153 93.3182 +0.0983 +0.1367
CHM13-150 94.1404 94.1486 94.2101 +0.0698 +0.0543
CHM13-200 94.4340 94.4397 94.4870 +0.0530 +0.0241
CHM13-300 95.6266 95.6271 95.6779 +0.0512 +0.0796
CHM13-500 95.9505 95.9555 96.0153 +0.0648 +0.0523

rye-50 69.1402 68.9105 71.1016 +1.9613 +2.3892
rye-75 80.5345 80.4464 81.5855 +1.0511 +1.4724
rye-100 85.6483 85.6312 86.4098 +0.7615 +0.9966
rye-150 90.2038 90.2065 90.6332 +0.4295 +0.4415
rye-200 91.4773 91.4661 91.7506 +0.2733 +0.1812
rye-300 94.5574 94.5816 94.6644 +0.1070 +0.1012
rye-500 95.1326 95.1618 95.2114 +0.0787 +0.0374

maize-50 71.4703 71.3223 73.0630 +1.5927 +1.6149
maize-75 82.1255 82.0405 82.9049 +0.7794 +0.7763
maize-100 87.1317 87.1404 87.7111 +0.5793 +0.5152
maize-150 91.6731 91.6841 91.9923 +0.3191 +0.1784
maize-200 92.9204 92.9328 93.1210 +0.2005 +0.0883
maize-300 96.7084 96.7183 96.8246 +0.1163 +0.0332
maize-500 97.2899 97.2962 97.4021 +0.1122 -0.0025

3.5 Implementing cmax in strobealign

We observed in our benchmark (Fig. 2) that cmin together with ℓBC were particularly bad in terms of seed
uniqueness and randomness (Fig. 2 and 3). Strobealign [20] is a short-read mapper that uses ℓBC together with
the cmin. Guided by our benchmark, we wanted to investigate whether cmax would result in better mapping
results. First, strobealign adds other modifications to the strobemer constructions, such as thinning out the
k-mers by using syncmers [6], masking the majority of bits before applying ℓBC , and applying customized
window sizes (wmin and wmax) based on thinning rate and read length. Such modifications may make the
observations from our analysis less effective or even inapplicable to the seeding within strobealign.

Nevertheless, we evaluated the accuracy of strobealign (v0.11.0) when mapping reads to the drosophila,
CHM13, maize, and rye genomes used in [20] for read lengths 50, 75, 100, 150, 200, 250, 300, 500 by simulating
one million read pairs (reads if single-end experiment) for each instance. While we did not observe a direct
improvement in accuracy only when comparing the accuracy results between the two versions for neither
paired-end (Table 1) nor single-end reads Table S1, we observed a large improvement in accuracy when
combining the results of the two runs of strobealign. In the case of the paired-end reads (Table 1), the
combined results were obtained as follows. We pick the alignment from cmax if the read pair was properly
paired with cmax but not with cmin or the sum of alignment scores for cmax was higher than for cmin where
unmapped reads count as having a score of 0. Otherwise, we picked the result from cmin. For the single-end
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reads, the combined results were obtained by selecting the best alignment per read (decided by alignment
score) when comparing the SAM files, where unmapped reads count as having a score of 0.

We observed that both in the paired-end and single-end experiments, the shorter read lengths benefited
the most from combining the results (seen from the percentage point difference in Table 1 and S1. The
generally most accurate aligner in the benchmark of strobealign [20] was BWA-MEM [9]. We included the
percentage point difference to BWA-MEM in Table 1 and S1, where a negative result indicates that the
accuracy from the combined experiment was more accurate than BWA-MEM. While strobealign is more
accurate when aligning reads to drosophila for most read lengths, BWA-MEM is more accurate on the
larger genomes CHM13, rye, and maize. However, by comparing the diff column to the combined diff to
BWA column, the percentage point difference to BWA-MEM is decreased by half or more for many of the
datasets, when combined results are used.

For the single-end experiment, we also generated a combined version where we only used the cmax

result if a read was unmapped with the default strobealign (i.e., using cmin). This version also generated
a relatively large increase in accuracy, particularly for the shorter reads (Table S2). This suggests that
expensive alignment rescue steps (both in the seeding step and in the alignment step) may be avoided for
the shorter reads by having more matching seeds.

In addition, we observed no apparent difference in the number of mapped reads, memory usage, and
runtime between the two versions of strobealign. Our results suggest a mapping strategy where the cmin

and cmax comparators could be combined to allow for more accurate read alignment with strobealign for the
shortest read lengths. While the combined results were obtained as a proof-of-concept by running strobealign
twice, more efficient solutions could be implemented, as discussed in future work.

4 Discussion and conclusions

Constructing randstrobes can be split into four modular operations: computing a hash value of the individual
strobes (hash function), computing a hash value of two linked strobes (link function), selecting the final
randstrobe out of several candidates through a comparator function, and computing the final randstrobe
hash value of the selected randstrobe. The three first operations (hash, link, and comparator functions)
produce different results depending on their implementation. We proposed and evaluated new hash link
and comparator methods to construct randstrobes. We also designed metrics for evaluating the bias of
different methods. Our evaluation metrics and benchmark across several different combinations of operations
to produce randstrobes uncovered biases and limitations in previously proposed techniques. Our evaluation
provides general guidelines for which method to use in the three steps when considering using randstrobes
as seeds for sequence comparison applications. From our evaluation we conclude the following.

– Hashing: Always use a hash function to hash the strobes before linking. It does not result in a large
overhead in construction time while being beneficial for pseudo-randomness for most link functions. The
hash functions has roughly the same pseudo-randomness performance, but hWY function had the best
runtime performance for the expensive-methods class in our evaluation.

– Comparator: For repetitive sequences with occasional variations, such as in the dataset we benchmarked
on, a max comparator will be inclined to select strobes that are different. In contrast, if present, the min
comparator will select identical strobes for some of the link functions, resulting in lower uniqueness if
several repeated copies are used. Since we did not observe any notable difference in computation time
between the min and max comparators, we suggest always using the max comparator when implementing
randstrobes.

– Link function: There is a trade-off between execution time and pseudo-randomness performance. The
slower ℓCC and ℓXV has the highest pseudo-randomness (Fig. 2), but are more expensive to compute
(Fig. 4). The recommended method would depend on the needs of the application and the window size.

– Pitfalls: First, the ℓMOD function should be used together with cmin due to its selection of identical
strobes in repetitive regions which causes excessive repetitiveness of seeds. Second, the ℓMOD does not
offer beneficial pseudo-randomness and is computationally more expensive compared to other methods
in the same class. Therefore, we do not recommend its use in any scenario.
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– Large windows: The construction time of randstrobes depends on the window size, and they can
become computationally expensive to compute for large windows. The ℓMAMD link function can over-
come the high construction time and scales well for very large windows. However, it has slightly higher
repetitiveness compared to the expensive class methods (Fig. 5).

We also observed how results in the bioinformatic tool strobealign, using strobemer-based seeding, pro-
duce different results under different implementations. Suggesting putting further thought into the underlying
method for constructing randstrobes.

4.1 Future work

Using a rolling hash function The cheap computation methods separate the steps of applying a hash
function to the strobes from applying the link function. This class of methods may benefit from using a
rolling hash function, such as the one proposed in [14], that can be applied to the hash computation. Such
optimization is beneficial primarily if the hashing is expensive relative to the linking, which is not the case
for lager window sizes. However, by arithmetic reasoning, we designed a link function ℓMAMD that reduced
the time complexity of the construction. It remains to be investigated whether the rolling hash approach
allows for arithmetic operations that could reduce the computations in the linking step.

Combining min and max comparators We found improved accuracy when combining results from
the min and max comparators in strobealign. Our proof-of-concept approach involved running strobealign
twice and post-processing the alignments, resulting in slightly more than twice the runtime compared to a
single run. To mitigate the runtime and memory doubling, integrating seeds from both comparators into
strobealign is a solution. This would only double the vector containing the seeds in memory; for instance,
it would increase from 9.6GB to 19.2GB for CHM13 data. This memory increase leads to a peak memory
in strobealign rising from 14.7GB to 24.3GB. It is not obvious that the runtime would increase over current
strobealign. Most datasets have uniquely mapped reads sharing the same candidate locations from both
comparators. Also, extension alignment, a bottleneck in strobealign, can be done once for most reads, and
costly alignment rescue steps, performed especially for shorter reads, would be reduced in a combined min-
max version. One could consider implementing such a high sensitivity setting within strobealign for the
shortest read lengths, compromising memory usage.

5 Data availability

Our scripts to generate data, construct randstrobes, and perform the benchmarks of the methods are found
at https://github.com/Moein-Karami/RandStrobes. The scripts for running the strobealign analysis are
found at https://github.com/marcelm/K_Sahlin_2201/tree/main.
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A Appendix

A.1 ℓMAMD implementation

Link functions ℓMOD and ℓMAMD use the same modulo operation. However, ℓMAMD reduces the time complex-
ity of the construction through the use of a Binary Search Tree (BST). The ℓMAMD method is implemented
as follows. Consider the min comparator and a BST B containing all the possible candidates x′

1 for the
second strobe x1 by storing the hash of each strobe modulo p. We want to choose x1 = argminx′

1
(x0 + x′

1)

mod p. First note that we have 0 ≤ x0+x′
1 < 2p for all possible strobes (x′

1) in the window, because we store
all the hash values modulo p. There are two possibilities for the best value x′

1 that we discuss separately.

– If x0 + x′
1 < p, the best possible candidate is the smallest value in the window. This is because for

any other value x′′
1 that is greater than x′

1 and satisfies x0 + x′′
1 < p, we have x′′

1 > x′
1 =⇒ x0 + x′′

1

mod p > x0 + x′
1 mod p.

– If p ≤ x0 + x′
1 < 2p, the best possible candidate is the smallest value that is equal to or greater than

p−x0 in the window. This is because for any other value x′′
1 that is greater than x′

1, we have x0+x′′
1 > p

and x′′
1 > x′

1 =⇒ x0 + x′′
1 mod p > x0 + x′

1 mod p. For any other value x′′′
1 that is smaller than x′

1, we
have x′′′

1 + x0 < p, which falls under the previous situation.

Therefore, the only two candidates for x′
1 are the minimum value in B and the smallest value that is equal

to or greater than p − x0. We can compare the two values and select the best one. These values can both
be found in O(log(Wmax −Wmin)) time, where Wmax and Wmin are the boundaries of the window. Finding
the minimum element in a BST is a standard operation. For the second case, in the BST implementation we
use (std::set in C++), we can find the greatest value y ≤ p− x0. We can then find the next element in O(1)
which implies the smallest value that is greater than p− x0.

To create the next randstrobe, the window swaps the value corresponding to the leftmost value in the
window with an incoming value (rightmost value in the new window). Removing and adding values are also
O(log(Wmax −Wmin)) operations in a BST. If a max comparator is used, we have an analogous case.

A.2 Results for randstrobes with three strobes

We also investigated constructing randstrobes with (n = 3, l = 20, wmin = 21, wmax = 100). In general, we
observed similar behavior in terms of pseudo-randomness as for the construction of randstrobes with two
strobes (Fig. 7). This is expected due to the recursive nature of the construction. That is, when selecting the
m-th strobe, we perform the selection based on a base value constructed from previous strobes (described in
section 2.3). This process repeats recursively. When m = 2, the base value is simply the hash value of the
first strobe.

As for the uniqueness of seeds, as demonstrated in [18], randstrobes with three strobes are relatively
more unique than k-mers with the same number of sampled bases (Fig. 8, k = 60) . This is due to the
increase in range of the seed, thus, the increased number of options available for selecting strobes. But some
combinations (e.g., no hashing or based on the XOR operator; Fig. 8) can reduce the uniqueness.
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A.3 Figures

Fig. 6: Ratio of number of unique final seed hash value to number of unique strobemers for (n = 2, l =
20, wmin = 21, wmax = 100).
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(a)

(b)

(c)

Fig. 7: Results for metrics Ed, Ep3, and C for randstrobes with parameter settings (n = 3, l = 20, wmin =
21, wmax = 100) for the repetitive sequence dataset. The x-axis shows the different linking methods and the
reference value denoted uniform, indicating near perfect randomness. For metrics Ed and C, a low value is
desirable. For Ep3, a value close to uniform is desirable, and is not necessarily as low as possible, due to bias
B in Fig. 1. The results for the max and min comparator are shown in left and right panels in each subfigure,
respectively.
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Fig. 8: E-hits of final seed hash values for randstrobes with three strobes with parameter settings (n = 3, l =
20, wmin = 21, wmax = 100) compared to k-mers with k = 60
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A.4 Tables

Table S1: Strobealign accuracy results (% of total reads) when mapping single-end reads using the min com-
parator, max comparator, and when selecting the best read alignment between the two versions (combined).
The diff column shows the difference between combined and min comparator only, and the rightmost column
indicate the difference of the combined results to that of BWA, the overall most accurate aligner in the
benchmark in [CIT strobealign].

dataset (genome-read length) min comparator max comparator combined diff combined diff to BWA

drosophila-50 82.5118 82.3825 84.2688 +1.7570 +2.5606
drosophila-75 87.9944 87.9556 88.2902 +0.2958 +0.2191
drosophila-100 89.2585 89.2853 89.4715 +0.2130 +0.1209
drosophila-150 90.9438 90.9455 91.0235 +0.0797 +0.0184
drosophila-200 91.9501 91.9644 91.9927 +0.0426 +0.0286
drosophila-300 93.2169 93.2451 93.2396 +0.0227 +0.0067
drosophila-500 94.5768 94.5895 94.6109 +0.0341 +0.0162

CHM13-50 81.6910 81.5544 83.6503 +1.9593 +2.9080
CHM13-75 88.9220 88.9050 89.4662 +0.5442 +0.6695
CHM13-100 90.6392 90.6112 91.0038 +0.3646 +0.3714
CHM13-150 92.3990 92.3885 92.5668 +0.1678 +0.1467
CHM13-200 93.2258 93.2383 93.3355 +0.1097 +0.0965
CHM13-300 94.1503 94.1331 94.2176 +0.0673 +0.1184
CHM13-500 95.0598 95.0737 95.1460 +0.0862 +0.1218

rye-50 44.6869 44.4947 46.1874 +1.5005 +2.1252
rye-75 60.2210 60.0863 61.3118 +1.0908 +1.5198
rye-100 69.3358 69.3736 70.4965 +1.1607 +1.5197
rye-150 80.4388 80.3968 81.3871 +0.9483 +0.8698
rye-200 85.9181 85.8857 86.6284 +0.7103 +0.6255
rye-300 90.5230 90.5150 90.9841 +0.4611 +0.5704
rye-500 93.5070 93.5344 93.7914 +0.2844 +0.3686

maize-50 47.4174 47.2713 48.8452 +1.4278 +2.0588
maize-75 61.9111 61.8251 62.8084 +0.8973 +1.1361
maize-100 70.5000 70.4634 71.4263 +0.9263 +1.0928
maize-150 81.1708 81.1807 81.9200 +0.7492 +0.5582
maize-200 86.7010 86.7061 87.2567 +0.5557 +0.3617
maize-300 91.8729 91.8704 92.2597 +0.3868 +0.3108
maize-500 95.4025 95.4229 95.7271 +0.3246 +0.2333
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Table S2: Strobealign accuracy results (% of total reads) when mapping single-end reads using the min
comparator, max comparator, and when adding the reads that were mapped only with the max comparator
to the mapping results with the min comparator (combined). The diff column shows the difference between
combined and min comparator only.

dataset (genome-read length) min comparator max comparator combined diff

drosophila-50 82.5118 82.3825 84.1942 +1.6824
drosophila-75 87.9944 87.9556 88.2319 +0.2375
drosophila-100 89.2585 89.2853 89.4176 +0.1591
drosophila-150 90.9438 90.9455 90.9823 +0.0385
drosophila-200 91.9501 91.9644 91.9590 +0.0089
drosophila-300 93.2169 93.2451 93.2170 +0.0001
drosophila-500 94.5768 94.5895 94.5769 +0.0001

CHM13-50 81.6910 81.5544 83.1962 +1.5052
CHM13-75 88.9220 88.9050 89.1354 +0.2134
CHM13-100 90.6392 90.6112 90.7793 +0.1401
CHM13-150 92.3990 92.3885 92.4377 +0.0387
CHM13-200 93.2258 93.2383 93.2328 +0.0070
CHM13-300 94.1503 94.1331 94.1504 +0.0001
CHM13-500 95.0598 95.0737 95.0598 +0.0000

rye-50 44.6869 44.4947 45.2202 +0.5333
rye-75 60.2210 60.0863 60.2857 +0.0647
rye-100 69.3358 69.3736 69.3846 +0.0488
rye-150 80.4388 80.3968 80.4509 +0.0121
rye-200 85.9181 85.8857 85.9201 +0.0020
rye-300 90.5230 90.5150 90.5230 +0.0000
rye-500 93.5070 93.5344 93.5070 +0.0000

maize-50 47.4174 47.2713 48.0640 +0.6466
maize-75 61.9111 61.8251 61.9915 +0.0804
maize-100 70.5000 70.4634 70.5609 +0.0609
maize-150 81.1708 81.1807 81.1898 +0.0190
maize-200 86.7010 86.7061 86.7042 +0.0032
maize-300 91.8729 91.8704 91.8729 +0.0000
maize-500 95.4025 95.4229 95.4025 +0.0000
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