1	Three-dimensional morphological analysis of the dynamic digestive system in the green
2	brittle star
3	Daiki Wakita ¹ , Keisuke Naniwa ² , and Hitoshi Aonuma ^{1,2*}
4	¹ Graduate School of Life Science, Hokkaido University, Sapporo 0600810, Japan
5	² Research Institute for Electronic Science, Hokkaido University, Sapporo 0600812, Japan
6	
7	*Corresponding author: Hitoshi Aonuma, D.Sc.,
8	Research Institute for Electronic Science, Hokkaido University, Sapporo 0600812, Japan.
9	Tel/Fax: +81-117063832, Email: aon@es.hokudai.ac.jp
10	

1	1
1	1

Abstract

12	Brittle stars (Echinodermata: Ophiuroidea) digest a great diversity of food in their stomach,
13	which widely lies in the central disk. As for a possible digestive activity, the green brittle star
14	Ophiarachna incrassata is known to show a dynamic movement at the disk. This
15	phenomenon would deeply involve the morphological structure of the stomach. However,
16	past anatomical studies have shown the digestive system in two dimensions after wide
17	incision of the body wall anchoring the stomach. This methodology restrains us from
18	understanding how the stomach actually shapes inside a brittle star. We aim to visualize the
19	morphology of brittle stars' digestive system in a non-destructive and three-dimensional way,
20	with a comparison between a relaxed specimen and a specimen fixed at the very moment of
21	the disk's movement. Employing X-ray micro-computed tomography (micro-CT) and
22	introducing an instant freezing method with cryogenic ethanol, we found the stomach wholly
23	transformed during the movement. We here brought transparency to the <i>in vivo</i> position of gut
24	contents to hint the mechanism and digestive function of the movement. Our outcome
25	spotlights a dynamic digestive process in echinoderms and a widely applicable method for
26	probing into its relation with body structure.
27	
28	Keywords
29	marine invertebrate, echinoderm, ophiuroid, stomach anatomy, feeding behavior, X-ray
30	micro-computed tomography, instant freezing
31	

32	Introduction
33	More than 2,300 species of brittle stars (Echinodermata: Ophiuroidea) are known worldwide
34	and constitute the largest class among extant echinoderms (Stöhr et al. 2019). Diversity in
35	feeding habits could be an explanatory factor for the current success of this group (Fontaine,
36	1965). Their food varies in sort and scale, from sediment or small organisms including
37	diatoms, dinoflagellates, foraminifera, and copepods, to the whole or part of large organisms
38	such as polychaetes, bivalves, crabs, fish, other echinoderms, and sessile algae
39	(Nagabhushanam & Colman, 1959; Fontaine, 1965; Hendler & Miller, 1984; Pearson & Gage,
40	1984; Ambrose, 1993). Their radially extending arms play a role in capturing food (Fontaine,
41	1965; Warner, 1971; Reimer & Reimer, 1975; Hendler & Miller, 1984), and then internal
42	digestive organs take center stage.
43	Contrary to the various targets in feeding, brittle stars share the general structure of
44	the digestive system. Its mouth is followed in order by buccal cavity, pharynx, esophagus, and
45	stomach (Schechter & Lucero, 1968). Lacking intestine and anus, it terminates with the
46	stomach, which occupies a large space inside the disk-central part of the body (Smith, 1940;
47	Schechter & Lucero, 1968; Pentreath, 1971; Uchida & Irimura, 1974). The stomach consists
48	of a single sac radially dividing into 10 pouches: five radial (ambulacral) pouches and five
49	interradial (interambulacral) pouches (Pentreath, 1969). We also read a contradicting
50	statement that brittle stars' stomach totally has 15 swellings in a common context (Uchida &
51	Irimura, 1974). Interradial pouches are well-folded structure deeply lying between the bases
52	of arms, whereas radial pouches are limited in narrow spaces over arms (Pentreath, 1969,
53	1971; Uchida & Irimura, 1974). These pouches never extend into arms except the species
54	Ophiocanops fugiens Koehler, 1922 (Fell, 1963).

55	Over and above anatomical studies, a dynamic perspective of digestion has been
56	discussed based on live observation. In the green brittle star Ophiarachna incrassata
57	(Lamarck, 1816), Wakita et al. (2018) reported a rhythmic movement termed "pumping"
58	(Video S1; c.f. Fig. 1), which is frequently observed at the disk after feeding. The series of
59	expansion and shrinkage can be recognized as a sort of peristaltic movement of the stomach.
60	Its unique coordinated patterns are explainable by assuming internal fluid flows, the way of
61	which depends on the morphology of the disk. In particular, five-armed individuals make
62	unsynchronized movements between five body parts, whereas those are well synchronized in
63	a six-armed case—peculiar individual difference in brittle stars. Thus, in this phenomenon,
64	the morphological structure of the stomach may be of great importance, although it is unclear
65	how pumping transforms it.
66	In previous studies, the morphological structure of the digestive system in brittle
67	stars has been visualized only by two-dimensional sketches or tissue sections (Smith, 1940;
68	Pentreath, 1969, 1971; Schechter & Lucero, 1968; Uchida & Irimura, 1974; Frolova &
69	Dolmatov, 2006, 2010). Moreover, traditional anatomy has employed a wide dissection of the
70	body wall, which considerably distorts the morphology in focus. This issue arises from the
71	fragileness of digestive organs as well as its deep attachment to the body wall by collagen
72	strands (Schechter & Lucero, 1968; Uchida & Irimura, 1974). The aim of our study is to
73	visualize non-destructive and three-dimensional (3D) morphological structure of the digestive
74	system in brittle stars, in comparative terms of a relaxed condition and a condition during
75	pumping. For this purpose, we employ X-ray micro-computed tomography (micro-CT) while
76	introducing an instant freezing method using cryogenic ethanol for making a <i>snapshot</i> of the
77	dynamically moving body (Fig. 1). We also probe into the internal morphology of the

- six-armed specimen studied by Wakita et al. (2018), so as to internally validate the prior
- assumption that this specific individual has six symmetrical units—previously it was made up
- 80 merely in external terms. The primary conclusion in our study is that pumping could
- 81 transform the entire stomach to help digestion in large brittle stars, with its coordinated
- 82 patterns apparently reflecting five- or six-fold symmetrical arrangement in internal
- 83 morphology.

8	Λ
o	-

- 93 Individuals of the green brittle star Ophiarachna incrassata were obtained commercially
- 94 (Aqua Shop Saien, Sapporo, Japan) and reared in aquariums ($600 \times 600 \times 600$ mm) filled
- 95 with artificial seawater at 25–28°C with the salinity of 32–35‰ (TetraMarin Salt Pro, Tetra
- 96 Japan Co, Tokyo, Japan). They were fed with dried krill (Tetra Krill-E, Tetra Japan Co,

97 Tokyo, Japan).

98 X-ray micro-computed tomography

00	TTT'.1 .1 !			1 1 1	•	1 1'	11	C ¹		1 1'
uu	M/1th tho 0.1 m	to 19300	otionto ra	hee havele	numning	hodies as	WALL 90	tive and	CIV ormod	hodiac
22			sugate n	Janua ana	Dumping	obuics as	wen as	nvc- and	i sin-armou	Douics.
			···· (]····							7

- 100 we chose three individuals: (1) a five-armed individual a day after feeding, with the disk
- 101 diameter of 15 mm in a living anesthetized condition; (2) a five-armed individual a week after
- 102 feeding, with the disk diameter of 18 mm; (3) a six-armed individual with the diameter of 25
- 103 mm, which had hardly shown feeding behavior for a few months. The six-armed one
- 104 corresponds to that studied by Wakita et al. (2018). For the relaxed case, the animals (1) and
- 105 (3) each were anaesthetized in 3% MgCl₂ solution for an hour at room temperature and then
- 106 fixed with Bouin solution—(1) for 10 days and (3) for five months—at 3°C with their arms

107 cut near the bases. For looking into the pumping body, the animal (2) was put in a styrofoam

- 108 box ($127 \times 157 \times 100$ mm) with 100–200 ml of artificial seawater and then fed with a dried
- 109 krill. While we observed the rhythmic movement (pumping; c.f. Video S1), -80°C ethanol
- 110 was poured onto the disk so that the animal (2) kept a momentary shape with expansion and
- shrinkage (Fig. 1). After slowly shaking the box for 10 min, the sample was put in Bouin
- 112 solution for a day at 3°C with their arms cut.

113 After fixation, all the samples (1)–(3) were dehydrated with ethanol series (70%), 114 80%, and 90%) for two days each, and stained with 1% iodine diluted in ethanol for three 115 days at 3°C to enhance the contrast of tissues in later X-ray exposure (Metscher, 2009). They 116 were rinsed with 100% ethanol for a day at room temperature and then moved into t-butyl 117 alcohol liquidized with a water bath above 40° C. After immersion in *t*-butyl alcohol for a day 118 twice at 26° C, samples were superficially dried on tissues for several seconds and then put at 119 -20° C for 10 min so that instantly frozen *t*-butyl alcohol would keep the original morphology 120 as possible. They were freeze-dried by using a vacuum evaporator (PX-52, Yamato Ltd.,

121	Japan) with a cold alcohol tra	p (H2SO5, AS	ONE, Japan).	All chemicals	were purchased	from

122 Kanto Chemical Co. (Tokyo, Japan).

123	Samples were scanned on an X-ray micro-CT system (inspeXio, SMX-100CT,
124	Shimadzu Corporation, Kyoto, Japan), where X-ray source was operated at 75 kV and 40 $\mu A.$
125	Scanned images were reconstructed and rendered by using VGStudio MAX ver. 2.2.6
126	(Volume Graphics, Heidelberg, Germany) with the voxel size of 10–50 μ m. For segmentation
127	of each sample using Amira ver. 2019.1 (Thermo Scientific, Waltham, USA), we traced the
128	inner surface—boundary with contrasting X-ray absorptivity—of the digestive cavity
129	beginning from the mouth. Note that segmentation was not available in regions where the
130	inner wall stuck to each other so that the cavity was too flat to be identified. We also
131	segmented gut contents, which were recognizable as highly absorptive areas inside the cavity.
132	3D animations were created with VGStudio MAX for slice images and Amira for segmented
133	images, which are given in Videos S2–4.
134	
135	Results
136	The morphology of the digestive system, particularly the stomach, was well visualized by
137	segmenting the inner wall of the digestive cavity (Figs 2-4). In the five-armed specimen fixed
138	after anesthesia (Video S2), skeletal structure comprised five symmetrical sectors in
139	appearance (Fig. 2A). The cavity's surface was smoothly defined from the mouth to the

- uppeulaitee (11g. 211). The early's surface was shissaily actified from the mount to the
- 140 stomach (Fig. 2B), so we required less subjectivity in the segmentation (Fig. 2C–E). The
- 141 stomach comprised five larger interradial pouches and five smaller radial pouches (Fig. 2C).
- 142 As noted in Methods, no region in a totally flat cavity was segmented, hence the gaps forming
- 143 a cobweb-like structure could be interpreted as the missing flattened parts of the stomach, not

144	representing there were many holes in morphology (Fig. 2C). The stomach was plain in the
145	aboral side (Fig. 2C,D) but well wrinkled in the oral (Fig. 2E). Viewed orally, a ridge could be
146	traced along each midline of two sorts of pouches, which descended into several branches
147	(Fig. 2E). Interradial pouches narrowed at the bases with their breadth increasing distally,
148	with the end being round so that we could trace smoothly between the oral and aboral surfaces
149	(Fig. 2C–E). Radial pouches were more flat, shaped along arm skeletal plates, and made distal
150	ends with rough and sharp edges (Fig. 2D,E). The distal parts of interradial pouches extended
151	until near the oral wall, whereas their bases and radial pouches were restricted aborally (Fig.
152	2D). The oral room at the center contained a jaw apparatus and its peripheral organs, which
153	would include the circumoral nerve ring and the water vascular system (Fig. 2A,B). In this
154	specimen, two large pieces of food were respectively observed at the aboral base of an
155	interradial pouch-might be partially shared by one adjacent radial pouch-and the oral end
156	of another interradial (Fig. 2C–E).

Fig. 2 Three-dimensional visualization of the digestive system in a five-armed relaxed
individual of the green brittle star *Ophiarachna incrassata*. Body structure was scanned with
X-ray micro-computed tomography (micro-CT) and reconstructed in three dimensions, which
is displayed in grayscale. The inner surface of the digestive cavity beginning from the mouth

162	is colored blue. Contents in the stomach are colored red. Regions where the inward cavity was
163	totally flat were not segmented (not colored blue) with a technical limitation, which reflects
164	the apparent holes of the stomach and the apparent exposure of gut contents. (A)
165	Reconstructed images viewed from the oral side, sectioned at a plane shown in (B) by the
166	dotted line. (B) Oral-aboral section on a plane indicated in (A) by the dotted line; the bottom
167	is oral; slab thickness is 0.38 μ m. (C) Aboral view of the segmented model. (D) Lateral view
168	of the segmented model from the side indicated in (C) by the arrow; the bottom is oral; the
169	grayscale images are truncated in the front for clarity. (E) Enlarged oral view of the
170	segmented model. Abbreviations: a, arm skeleton; b, body wall; e, esophagus; f, food (gut
171	content); m, mouth; ir, interradial pouch; r, radial pouch. Scale bars represent 5 mm.
172	Three-dimensional animation is shown in Video S2.
173	In the specimen frozen during pumping (Video S3), we found no noticeable damage
174	due to the instant freezing method in external and internal morphology (Figs 1 and 3A).
175	Besides, there seemed to be no large difference in the texture of the digestive wall in scanned
176	images, compared to those observed in the relaxed one. We recognized a well-defined
177	separation between the mouth and the stomach and a tight closure of the mouth (Fig. 3B; see
178	the esophagus "e" and the mouth "m"), so we did not clearly identify the continuous space
179	from the mouth opening. However, we had no ambiguity in segmenting the internal surface
180	which was recognizable as the stomach's one (Fig. 3C-E) when comparing to the relaxed case
181	(Fig. 2C–E). The stomach wall during pumping was smoothly fitted to the distorted body wall
182	
	with less obvious folding (Fig. 3C). The globular shaping of the stomach was also upheid
183	from the observation that we saw no network-like segmentation denoting flattened patches

- 185 pouches, which directed toward the aboral and lateral sides (Fig. 3D). Meanwhile, radial
- 186 pouches at their neighbors also became more or less open (Fig. 3D). The oral surface likewise
- 187 showed an entire extension, where we barely found sharp structure such as branched ridges
- 188 (Fig. 3E). The cavity between the body and stomach walls (perivisceral coelom) appeared to
- 189 be narrowly limited (Fig. 3B,D), not largely differing from the relaxed case (Fig. 2B,D). A
- 190 food lied almost at the center of the stomach in this specimen (Fig. 3C,E).

192	Fig. 3 Three-dimensional visualization of the digestive system in a five-armed individual
193	during the dynamic movement "pumping" in the green brittle star Ophiarachna incrassata.
194	Body structure of an instantly frozen individual shown in Fig. 1 was scanned with X-ray
195	micro-computed tomography (micro-CT) and reconstructed in three dimensions, which is
196	displayed in grayscale. The inner wall of the digestive cavity is colored blue, which was
197	identified in comparison with the relaxed specimen (Fig. 2). Contents in the stomach are
198	colored red. Regions where the inward cavity was totally flat were not segmented (not colored
199	blue) with a technical limitation, which reflects the apparent exposure of gut contents.
200	Arrowheads denote well-expanding portions. (A) Reconstructed images viewed from the oral
201	side, sectioned at a plane shown in (B) by the dotted line. (B) Oral-aboral section on a plane

202	indicated in (A) by the dotted line; the bottom is oral; slab thickness is 0.36 μ m. (C) Aboral						
203	view of the segmented model. (D) Lateral view of the segmented model from the side						
204	indicated in (C) by the arrow; the bottom is oral; the grayscale images are truncated in the						
205	front for clarity. (E) Enlarged oral view of the segmented model. Abbreviations: a, arm						
206	skeleton; b, body wall; e, esophagus; f, food (gut content); m, mouth; ir, interradial pouch; r,						
207	radial pouch. Scale bars represent 5 mm. Three-dimensional animation is shown in Video S3.						
208	In the specimen with six arms (Video S4), a jaw apparatus and arm skeletal plates						
209	apparently arranged in six-fold radial symmetry (Fig. 4A). As in the five-armed relaxed case,						
210	the digestive cavity was smoothly traceable from the mouth to the stomach (Fig. 4B). Though						
211	the segmentation, we realized that the inner openings of interradial pouches were almost as						
212	flat as those of radial ones (Fig. 4B). This reduction was probably because this individual had						
213	not fed for a few months before fixation. Although the boundaries between radial and						
214	interradial pouches were less conspicuous (Fig. 4C) than the five-armed ones (Fig. 2C), the						
215	two types could be distinguished when we saw the model from several angles (Fig. 4B,C). In						
216	particular, interradial pouches hung down more orally (Fig. 4B) and showed ridged midlines						
217	on the oral surface (Fig. 4C). Here we could count 12 pouches—six interradial and six radial						
218	nouches (Fig. $4C$)						

Fig. 4 Three-dimensional visualization of the digestive system in a six-armed relaxed

221	individual of the green brittle star Ophiarachna incrassata. Body structure was scanned with
222	X-ray micro-computed tomography (micro-CT) and reconstructed in three dimensions, which
223	is displayed in grayscale. The inner wall of the digestive cavity beginning from the mouth is
224	colored blue. Regions where the inward cavity was totally flat were not segmented (not
225	colored blue) with a technical limitation. (A) Reconstructed images viewed from the oral side,
226	sectioned at a plane indicated in (B) by the dotted line. (B) Lateral view of the segmented
227	model from the side indicated in (C) by the arrow; the bottom is oral; the grayscale images are
228	truncated in the front for clarity. (C) Oral view of the segmented model. Abbreviations: a, arm
229	skeleton; b, body wall; ir, interradial pouch; r, radial pouch. Scale bars represent 5 mm.
230	Three-dimensional animation is shown in Video S4.
231	
232	Discussion
233	Our study has three main achievements. The first is 3D visualization of the uninjured stomach
234	
	in brittle stars (Fig. 2, Video S2). The schematics were directly reconstructed from micro-CT
235	in brittle stars (Fig. 2, Video S2). The schematics were directly reconstructed from micro-CT scanned images, including less imagination than previous sketches. The second is
235 236	in brittle stars (Fig. 2, Video S2). The schematics were directly reconstructed from micro-CT scanned images, including less imagination than previous sketches. The second is introduction of a fresh methodology in micro-CT scanning, where we investigated a moving
235 236 237	in brittle stars (Fig. 2, Video S2). The schematics were directly reconstructed from micro-CT scanned images, including less imagination than previous sketches. The second is introduction of a fresh methodology in micro-CT scanning, where we investigated a moving body's momentary shape made by instant freezing with cryogenic ethanol (Figs 1 and 3,
235 236 237 238	 in brittle stars (Fig. 2, Video S2). The schematics were directly reconstructed from micro-CT scanned images, including less imagination than previous sketches. The second is introduction of a fresh methodology in micro-CT scanning, where we investigated a moving body's momentary shape made by instant freezing with cryogenic ethanol (Figs 1 and 3, Video S3). The resultant snapshot provides a further understanding of the previously reported
 235 236 237 238 239 	 in brittle stars (Fig. 2, Video S2). The schematics were directly reconstructed from micro-CT scanned images, including less imagination than previous sketches. The second is introduction of a fresh methodology in micro-CT scanning, where we investigated a moving body's momentary shape made by instant freezing with cryogenic ethanol (Figs 1 and 3, Video S3). The resultant snapshot provides a further understanding of the previously reported phenomenon, <i>pumping</i> (Wakita et al. 2018), as a possible digestive activity. The last is
 235 236 237 238 239 240 	 in brittle stars (Fig. 2, Video S2). The schematics were directly reconstructed from micro-CT scanned images, including less imagination than previous sketches. The second is introduction of a fresh methodology in micro-CT scanning, where we investigated a moving body's momentary shape made by instant freezing with cryogenic ethanol (Figs 1 and 3, Video S3). The resultant snapshot provides a further understanding of the previously reported phenomenon, <i>pumping</i> (Wakita et al. 2018), as a possible digestive activity. The last is internal inspection of the specific six-armed individual studied by Wakita et al. (2018) (Fig. 4,
 235 236 237 238 239 240 241 	in brittle stars (Fig. 2, Video S2). The schematics were directly reconstructed from micro-CT scanned images, including less imagination than previous sketches. The second is introduction of a fresh methodology in micro-CT scanning, where we investigated a moving body's momentary shape made by instant freezing with cryogenic ethanol (Figs 1 and 3, Video S3). The resultant snapshot provides a further understanding of the previously reported phenomenon, <i>pumping</i> (Wakita et al. 2018), as a possible digestive activity. The last is internal inspection of the specific six-armed individual studied by Wakita et al. (2018) (Fig. 4, Video S4). A supernumerary seemed to be simply a member of six equivalents, which helps a
 235 236 237 238 239 240 241 242 	in brittle stars (Fig. 2, Video S2). The schematics were directly reconstructed from micro-CT scanned images, including less imagination than previous sketches. The second is introduction of a fresh methodology in micro-CT scanning, where we investigated a moving body's momentary shape made by instant freezing with cryogenic ethanol (Figs 1 and 3, Video S3). The resultant snapshot provides a further understanding of the previously reported phenomenon, <i>pumping</i> (Wakita et al. 2018), as a possible digestive activity. The last is internal inspection of the specific six-armed individual studied by Wakita et al. (2018) (Fig. 4, Video S4). A supernumerary seemed to be simply a member of six equivalents, which helps a prebuilt assumption on pumping coordination.

244	2C) as Pentreath (1969) reported, not supporting another literature writing the total number 15						
245	(Uchida & Irimura, 1974). Since the latter also mentions radial and interradial pouches, it						
246	might be miswriting or another interpretation given the complex folding. The wrinkles						
247	running on the oral surface would be a reflection in part of skeletal morphology and other						
248	organs' anchoring, while probably being capable of a large amount of food by its extension. In						
249	fact, the specimen shown in Fig. 3 accommodates a relatively large food ranging across						
250	several pouches. Although the segmented stomach structure in Fig. 2 looks like a web						
251	network, we can interpret that these holes as untraceable flat parts of the cavity so that						
252	pouches connect with each other throughout the central space.						
253	Comparison between the relaxed and pumping specimens in scanned images (Figs 2						
254	and 3) indicates that pumping dynamically transforms the stomach, where it is natural to						
255	suppose internal fluid flows to some extent. The outer space of the stomach (perivisceral						
256	coelom) would make insignificant flows for pumping, considering the constant narrowness						
257	even in the pumping body (Fig. 3B,D). The mouth-stomach separation emerging in the						
258	pumping specimen (Fig. 3B) can be defined as the constriction of esophagus, referring to						
259	Schechter & Lucero (1968). This observation and the tight closure of the jaw						
260	apparatus—surrounding buccal cavity—(Fig. 3B) both would reinforce Wakita et al.'s (2018)						
261	assumption that the total fluid volume is constant during pumping; there is no outward						
262	leakage. Although their study built a water-connecting network with five nodes for the						
263	five-armed case, there could be 10 rooms given the number of pouches (Fig. 2C). However,						
264	the slits between the pouches were actually not deep as depicted in the pumping specimen						
265	(Fig. 3C). With this texture, the five-fold arm skeleton would rather work as partitions (Fig.						
266	3A,B), making it reasonable to represent five rooms influencing the major behavior of						

internal flows. This explanation could also apply to the six-armed case. The rigid skeletal
partitions symmetrically made by six arms (Fig. 4A) would be more dominant in fluid flow,
compared to the flexibly transformable stomach with 12 pouches (Fig. 4C). Our scan also
supports Wakita et al.'s (2018) explanation with six symmetrical nodes for this six-armed
specimen. We thus retain the explanatory power of the pumping network with five or six
symmetrical nodes—not 10 or 12 nodes in two different sizes.
Visibility in the original position of gut contents gives two suggestions for the

274 phenomenon pumping. The first is about its initiation. After a brittle star eats something, food 275 fragments would be seated at some pouches (Fig. 2C-E); even if a prey stays at the center, its 276 body shape would never weight equally among all the pouches (Fig. 3C). The contents thus 277 make the stomach morphology more asymmetric, which might trigger the initiation of a 278 pumping series as Wakita et al. (2018) let one interradial volume unequal at the beginning of 279 simulation. The second involves the purpose of pumping. In many animals including humans, 280 food transfers from the mouth to the anus in one direction; the linear structure guarantees that 281 nutrients are absorbed point by point. On the other hand, the digestive cavity of brittle stars 282 has neither unidirectional tracts nor the anus, so a piece might easily stick to a dead end—just 283 as shown in Fig. 2. Transformation of the stomach by pumping would give more opportunities 284 to displace the piece with it spreading a nutritious flow. This strategy would be effective in 285 large-sized species, where gut contents travel longer distances piece by piece. Therefore, 286 although we used the single species *Ophiarachna incrassata*, other large brittle stars are 287 supposed to exhibit pumping in a similar manner. 288 CT scanning technique for 3D visualization has been employed by several studies

289 on brittle stars. Landschoff & Griffiths (2015) revealed how a brooding brittle star

290	accommodates several juveniles inside its body, comparing two species; another was similarly					
291	examined later (MacKinnon et al. 2017). In a taxonomic context, Okanishi et al. (2017)					
292	described skeletal structure of a euryalid brittle star without dissolving its thick skin. Clark et					
293	al. (2018) paid attention to the joint connection of vertebrae to understand the mobility of					
294	arms in two species. Our study would carry a novelty in (1) focusing on the digestive system,					
295	(2) comparing two behavioral conditions (relaxed v.s. pumping), and (3) comparing two					
296	morphologically different individuals within a species (five-armed v.s. six-armed) in CT					
297	scanned brittle stars. Notably, the snapshotting method for (2), where cryogenic ethanol is					
298	poured onto a living animal, is widely applicable for the scanning purpose of body structure					
299	during dynamic movements in echinoderms. These approaches give prominence to a dynamic					
300	digestive process and its relation with body structure, which would be a hot clue to ethology,					
301	ecology, and evolution in echinoderms.					
302						
303	Acknowledgments					
304	This work was partly supported by JSPS KAKENHI (Grant Number 16KT0099), JST CREST					
305	(Grant Number JPMJCR14D5), and Hokkaido University Frontier Foundation (Nitobe School					
306	Financial Assistance), Japan.					
307						
307 308	Competing interests					
307308309	Competing interests The authors declare no competing financial interests.					
307308309310	Competing interests The authors declare no competing financial interests.					
 307 308 309 310 311 	Competing interests The authors declare no competing financial interests. Author contributions					

313	micro-computed tomography, K.N. conducted segmentation, D.W. drafted the manuscript and						
314	prepared figures and videos, K.N. and H.A. revised the manuscript, and all the authors						
315	approved the article.						
316							
317	References						
318	Ambrose WG Jr (1993) Effects of predation and disturbance by ophiuroids on soft-bottom						
319	community structure in Oslofjord: results of a mesocosm study. Mar Ecol Prog Ser 97,						
320	225–236. https://doi.org/10.3354/meps097225.						
321	Clark EG, Hutchinson JR, Darroch SA, Mongiardino Koch N, Brady TR, Smith SA, Briggs						
322	DE (2018) Integrating morphology and in vivo skeletal mobility with digital models to						
323	infer function in brittle star arms. J Anat 233, 696–714.						
324	https://doi.org/10.1111/joa.12887.						
325	Fell HB (1963) The phylogeny of sea-stars. <i>Philos T R Soc B</i> 246, 381–435.						
326	https://doi.org/10.1098/rstb.1963.0010.						
327	Fontaine AR (1965) The feeding mechanisms of the ophiuroid Ophiocomina nigra. J Mar						
328	Biol Assoc UK 45, 373–385. https://doi.org/10.1017/S0025315400054904.						
329	Frolova LT, Dolmatov IY (2006) Regeneration of the epithelial lining of the stomach after						
330	autotomy of a disk in the brittle star Amphipholis kochii (Lütken) (Echinodermata:						
331	Ophiuroidea). Russ J Mar Biol 32, 68–70.						
332	https://doi.org/10.1134/S106307400601010X.						
333	Frolova LT, Dolmatov IY (2010) Microscopic anatomy of the digestive system in normal and						
334	regenerating specimens of the brittlestar Amphipholis kochii. Biol Bull 218, 303-316.						
335	https://doi.org/10.1086/BBLv218n3p303.						

336 Hend	ler G.	Miller JE	(1984)) Feeding	behavior	of Asterop	orpa annulata.	a gorgonocephalid
----------	--------	-----------	--------	-----------	----------	------------	----------------	-------------------

- brittlestar with unbranched arms. *B Mar Sci* **34**, 449–460. https://doi.org/10088/8751.
- 338 Lamarck JD (1816) Ordre second: radiaires échinodermes. In: Histoire Naturelle des Animaux
- 339 sans Vertèbres 2 (ed. Lamarck JD), pp. 522–568. Paris: Verdière, Libraire, quai des
- 340 Augustins, No. 27. https://doi.org/10.5962/bhl.title.12712.
- 341 Landschoff J, Griffiths CL (2015) Three-dimensional visualisation of brooding behaviour in
- two distantly related brittle stars from South African waters. *Afr J Mar Sci* **37**, 533–541.
- 343 https://doi.org/10.2989/1814232X.2015.1095801.
- 344 MacKinnon RB, Landschoff J, Griffiths CL (2017) Seasonality and 3D-visualization of
- 345 brooding in the hermaphroditic ophiuroid *Amphiura capensis*. Invertebr Biol 136,
- 346 146–158. https://doi.org/10.1111/ivb.12164.
- 347 Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow
- 348 high-contrast 3D imaging of diverse non-mineralized animal tissues. *BMC Physiol* 9, 11.
- 349 https://doi.org/10.1186/1472-6793-9-11.
- 350 Nagabhushanam AK, Colman JS (1959) Carrion-eating by ophiuroids. *Nature* **184**, 285.
- 351 https://doi.org/10.1038/184285a0.
- 352 Okanishi M, Fujita T, Maekawa Y, Sasaki T (2017) Non-destructive morphological
- 353 observations of the fleshy brittle star, Asteronyx loveni using micro-computed
- tomography (Echinodermata, Ophiuroidea, Euryalida). *ZooKeys* **663**, 1–19.
- 355 https://doi.org/10.3897/zookeys.663.11413.
- 356 Pearson M, Gage JD (1984) Diets of some deep-sea brittle stars in the Rockall Trough. *Mar*
- 357 *Biol* **82**, 247–258. https://doi.org/10.1007/BF00392406.
- 358 Pentreath RJ (1969) The morphology of the gut and a qualitative review of digestive enzymes

- in some New Zealand ophiuroids. *J Zool* **159**, 413–423.
- 360 https://doi.org/10.1111/j.1469-7998.1969.tb03898.x.
- 361 Pentreath RJ (1971) Respiratory surfaces and respiration in three New Zealand intertidal
- 362 ophiuroids. *J Zool* **163**, 397–412. https://doi.org/10.1111/j.1469-7998.1971.tb04540.x.
- 363 Reimer RD, Reimer AA (1975) Chemical control of feeding in four species of tropical
- 364 ophiuroids of the genus *Ophioderma*. *Comp Biochem Phys A* **51**, 915–927.
- 365 https://doi.org/10.1016/0300-9629(75)90075-4.
- 366 Schechter J, Lucero J (1968) A light and electron microscopic investigation of the digestive
- 367 system of the ophiuroid *Ophiuroiderma panamensis* (brittle star). *J Morphol* **124**,
- 368 451–481. https://doi.org/10.1002/jmor.1051240405.
- 369 Smith J (1940) The reproductive system and associated organs of the brittle-star Ophiothrix
- 370 *fragilis. J Cell Sci* **2**, 267–309.
- 371 Stöhr S, O'Hara T, Thuy B (2019) World Ophiuroidea Database.
- 372 http://www.marinespecies.org/ophiuroidea. Accessed 29 April 2019.
- 373 https://doi.org/10.14284/358.
- Uchida T, Irimura S (1974) Ophiuroidea. In: *The Systematic Zoology 8B* (ed. Uchida T), pp
- 375 142–207. Tokyo: Nakayama Book Company.
- 376 Wakita D, Hayase Y, Aonuma H (2018) Five breaks synchrony while six keeps synchrony:
- 377 individual difference in the coordinated pattern of five- and six-armed brittle stars.
- 378 *BioRxiv*, 340471. https://doi.org/10.1101/340471.
- 379 Warner GF (1971) On the ecology of a dense bed of the brittle-star Ophiothrix fragilis. J Mar
- 380 *Biol Assoc UK* **51**, 267–282. https://doi.org/10.1017/S0025315400031775.

2	0	2
Э	0	Ζ

383 Supporting Information

- 384 Video S1. Rhythmic movement "pumping" in a five-armed individual of the green brittle star
- 385 *Ophiarachna incrassata*.
- **Video S2.** 3D animation of the images shown in Fig. 2 (five-armed relaxed individual).
- 387 Video S3. 3D animation of the images shown in Fig. 3 (five-armed pumping individual).
- 388 Video S4. 3D animation of the images shown in Fig. 4 (six-armed relaxed individual).