Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-03T19:13:17.530Z Has data issue: false hasContentIssue false

3 - Association of the Chondrocranium and Dermatocranium in Early Skull Formation

Published online by Cambridge University Press:  25 March 2017

Christopher J. Percival
Affiliation:
University of Calgary
Joan T. Richtsmeier
Affiliation:
Pennsylvania State University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellairs, A. D. and Gans, C. (1983). A reinterpretation of the amphisbaenian orbitosphenoid. Nature, 302, 243244.CrossRefGoogle Scholar
Biegert, J. (1963). The evaluation of chracteristcs of the skull, hands and feet for primate taxonomy. In: Washburn, S. L. (ed.) Classification and Human Evolution. Chicago, IL: Aldine Publishing.Google Scholar
Cattell, M., Lai, S., Cerny, R. and Medeiros, D. M. (2011). A new mechanistic scenario for the origin and evolution of vertebrate cartilage. PLoS ONE, 6, e22474.CrossRefGoogle ScholarPubMed
Cheverud, J. M., Ehrich, T. H., Vaughn, T. T., et al. (2004). Pleiotropic effects on mandibular morphology II: differential epistasis and genetic variation in morphological integration. Journal of Experimental Zoology Part B, Molecular and Developmental Evolution, 302, 424435.Google Scholar
Cole, A. G. and Hall, B. K. (2004). The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology, 107, 261273.Google Scholar
de Beer, G. R. and Woodger, J. H. (1930). The early development of the skull of the rabbit. Philosophical Transactions of the Royal Society B, 230, 373414.Google Scholar
de Beer, G. R. (1937). The Development of the Vertebrate Skull. New York, NY: Oxford.Google Scholar
Depew, M. J., Tucker, A. S. and Sharpe, P. T. (2002). Cranifacial development. In: Rossant, J. and Tam, P. P. L. (eds.) Mouse Development. San Diego, CA: Academic Press.Google Scholar
Donoghue, P. C., Sansom, I. J. and Downs, J. P. (2006). Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. Journal of Experimental Zoology Part B, Molecular and Developmental Evolution, 306, 278294.Google Scholar
Donoghue, P. C. J. and Keating, J. N. (2014). Early vertebrate evolution. Palaeontology, 57, 879893.Google Scholar
Eames, B. F., Allen, N., Young, J., et al. (2007). Skeletogenesis in the swell shark Cephaloscyllium ventriosum. Journal of Anatomy, 210, 542554.Google Scholar
Eloff, F. C. (1948). The early development of the skull of Otomys tropicalis. Annals of the Transvaal Museum, 21, 103152.Google Scholar
Fawcett, E. (1917). The primordial cranium of Microtus amphibius (water-rat), as determined by sections and a model of the 25-mm stage. Journal of Anatomy, 51, 309359.Google Scholar
Fawcett, E. (1923). The primordial cranium of Xerus (spiny squirrel) at the 17 and 19 millimeters stages. Journal of Anatomy, 57(Pt 3), 221237.Google Scholar
Flaherty, K. V., Musy, M., Sharpe, J. and Richtsmeier, J. T. (2015). Patterns of asynchrony between developmental age and chronological age in utero. American Journal of Physical Anthropology, Suppl 60, 134.Google Scholar
Gaupp, E. (1906). Die Entwickelung des Kopfskelettes. In: Hertwig, O. (ed.) Entwickelungslehre der Wirbeltiere. Jena: Gustav Fischer.Google Scholar
Giles, S., Rucklin, M. and Donoghue, P. C. (2013). Histology of “placoderm” dermal skeletons: implications for the nature of the ancestral gnathostome. Journal of Morphology, 274, 627644.Google Scholar
Goodrich, E. S. (1930). Studies of the Structure and Development of Vertebrates. London: Macmillan.Google Scholar
Hall, B. K. (1970). Cellular differentiation in skeletal tissues. Biological Reviews, 45, 455484.Google Scholar
Hall, B. K. (2014). Endoskeleton/exo (dermal) skeleton – mesoderm/ neural crest: two pair of problems and a shifting paradigm. Journal of Applied Ichthyology, 30, 608615.Google Scholar
Hall, B. K. (2015). Bones and Cartilage. San Diego, CA: Elsevier.Google Scholar
Hall, B. K. and Gillis, J. A. (2013). Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. Journal of Anatomy, 222, 1931.Google Scholar
Hirasawa, T. and Kuratani, S. (2015). Evolution of the vertebrate skeleton: morphology, embryology, and development. Zoological Letters, 1, 2.Google Scholar
Hopson, J. A. and Rougier, G. W. (1993). Braincase structure in the oldest known skull of a therian mammal: implications for mammallian systematics and cranial evolution. American Journal of Science, 293, 268299.Google Scholar
Janvier, P. (1996). Early Vertebrates. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Kadam, K. M. (1976). The development of the chondrocranium in the golden hamster, Mesocricetus auratus (waterhouse). Gegenbaurs Morphologisches Jahrbuch, 122, 796814.Google ScholarPubMed
Kaufman, M. H. and Bard, J. B. L. (1999). The Anatomical Basis of Mouse Development. San Diego, CA: Academic Press.Google Scholar
Kawasaki, K. and Weiss, K. M. (2003). Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proceedings of the National Academy of Sciences USA, 100, 40604065.Google Scholar
Kawasaki, K., Buchanan, A. V. and Weiss, K. M. (2009). Biomineralization in humans: making the hard choices in life. Annual Review of Genetics, 43, 119142.Google Scholar
Kawasaki, K. (2011). The SCPP gene family and the complexity of hard tissues in vertebrates. Cells Tissues Organs, 194, 108112.CrossRefGoogle ScholarPubMed
Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology Evolution and Systematics, 39, 115132.CrossRefGoogle Scholar
Klingenberg, C. P. (2014). Studying morphological integration and modularity at multiple levels: concepts and analysis. Philosophical Transactions of the Royal Society of London B, 369, 20130249.CrossRefGoogle ScholarPubMed
Koyabu, D., Werneburg, I., Morimoto, N., et al. (2014). Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. Nature Communications, 5, 3625.Google Scholar
Li, S. W., Prockop, D. J., Helminen, H., et al. (1995). Transgenic mice with targeted inactivation of the Col2a1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes & Development, 9, 28212830.Google Scholar
Lieberman, D. E., Ross, C. F. and Ravosa, M. J. (2000). The primate cranial base: ontogeny, function, and integration. American Journal of Physical Anthropology, 43, 117169.Google Scholar
Lieberman, D. E., Hallgrimsson, B., Liu, W., Parsons, T. E. and Jamniczky, H. A. (2008). Spatial packing, cranial base angulation, and craniofacial shape variation in the mammalian skull: testing a new model using mice. Journal of Anatomy, 212, 720735.Google Scholar
Macklin, C. C. (1921). The skull of a human fetus of 43 millimeters greatest length. Contributions to Embryology, 10, 57103.Google Scholar
Maier, W. and Ruf, I. (2014). Morphology of the nasal capsule of primates – with special reference to Daubentonia and Homo. Anatomical Record, 297, 19852006.Google Scholar
McBratney-Owen, B., Iseki, S., Bamforth, S. D., Olsen, B. R. and Morriss-Kay, G. M. (2008). Development and tissue origins of the mammalian cranial base. Developmental Biology, 322, 121132.Google Scholar
McCarthy, R. C. (2001). Anthropoid cranial base architecture and scaling relationships. Journal of Human Evolution, 40, 4166.Google Scholar
McLeod, M. J. (1980). Differential staining of cartilage and bone in whole mouse fetuses by Alcian blue and Alizarin red S. Teratology, 22, 299301.Google Scholar
Meulemans, D. and Bronner-Fraser, M. (2007). Insights from amphioxus into the evolution of vertebrate cartilage. PLoS ONE, 2, e787.Google Scholar
Mezey, J. G., Cheverud, J. M. and Wagner, G. P. (2000). Is the genotype–phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics, 156, 305311.Google Scholar
Moore, W. J. (1981). The Mammalian Skull. New York, NY: Cambridge University Press.Google Scholar
Oisi, Y., Ota, K. G., Fujimoto, S. and Kuratani, S. (2013). Development of the chondrocranium in hagfishes, with special reference to the early evolution of vertebrates. Zoological Science, 30, 944961.CrossRefGoogle Scholar
Olson, E. C. and Miller, R. L. (1958). Morphological Integration. Chicago, IL: University of Chicago.Google Scholar
Patterson, C. (1977). Cartilage bones, dermal bones and membrane bones, or the exoskeleton versus endoskeleton. In: Andrews, S. M., Miles, R. S. and Walker, A. D. (eds.) Problems in Vertebrate Evolution. New York, NY: Academic Press.Google Scholar
Porto, A., de Oliveira, F. B., Shirai, L. T., De Conto, V. and Marroig, G. (2009). The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evolutionary Biology, 36, 118135.Google Scholar
Presley, R. and Steel, F. L. (1978). The pterygoid and ectopterygoid in mammals. Anatomy and Embryology, 154, 95110.Google Scholar
Romer, A. S. (1963). The “ancient history” of bone. Annals of the New York Academy of Sciences, 109, 168176.Google Scholar
Romer, A. S. and Parsons, T. S. (1977). The Vertebrate Body. Philadelphia, PA: Saunders.Google Scholar
Ross, C. and Henneberg, M. (1995). Basicranial flexion, relative brain size, and facial kyphosis in Homo sapiens and some fossil hominids. American Journal of Physical Anthropology, 98, 575593.CrossRefGoogle ScholarPubMed
Ross, C. F. and Ravosa, M. J. (1993). Basicranial flexion, relative brain size, and facial kyphosis in nonhuman primates. American Journal of Physical Anthropology, 91, 305324.Google Scholar
Rychel, A. L., Smith, S. E., Shimamoto, H. T. and Swalla, B. J. (2006). Evolution and development of the chordates: collagen and pharyngeal cartilage. Molecular Biology and Evolution, 23, 541549.Google Scholar
Scott, J. H. (1958). The cranial base. American Journal of Physical Anthropology, 16, 319348.Google Scholar
Spoor, F. (1997). Basicranial architecture and relative brain size of Sts 5 (Australopithecus africanus) and other Plio-Pleistocene hominids. South African Journal of Science, 93, 182186.Google Scholar
Starck, D. (1979). Vergleichende Anatomi der Wirbeltiere auf evolutionsbiologischer Grundlage. New York, NY: Springer.Google Scholar
Wada, H. (2010). Origin and genetic evolution of the vertebrate skeleton. Zoological Science, 27, 119123.Google Scholar
Wagner, G. P., Pavlicev, M. and Cheverud, J. M. (2007). The road to modularity. Nature Review Genetics, 8, 921931.Google Scholar
White, T. D., Black, M. T. and Folkens, P. A. (2012). Human Osteology. San Diego, CA: Academic Press.Google Scholar
Wible, J. R. (2011). On the treeshrew skull (Mammalia, Placentalia, Scandentia). Annals of the Carnegie Museum, 79, 149230.Google Scholar
Youssef, E. H. (1966). The chondrocranium of the albino rat. Acta Anatomica, 64, 586617.Google Scholar
Youssef, E. H. (1969). Development of the membrane bones and ossification of the chondrocranium in the albino rat. Acta Anatomica, 72, 603623.Google Scholar
Zeller, U. (1987). Morphologenesis of the mamalian skull with special reference to Tupaia. In: Kuhn, H.-J. (ed.) Morphogenesis of the Mamalian Skull. Hamburg: Paul Parey.Google Scholar
Zhang, G. and Cohn, M. J. (2006). Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates. Proceedings of the National Academy of Sciences USA, 103, 1682916833.Google Scholar
Zhang, G., Miyamoto, M. M. and Cohn, M. J. (2006). Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton. Proceedings of the National Academy of Sciences USA, 103, 31803185.Google Scholar
Zhang, G., Eames, B. and Cohn, M. (2009). Evolution of vertebrate cartilage development. Current Topics in Developmental Biology, 86, 1542.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×