Continuous Groups

- We studied space , time infinitesimal translations $x^{\mu} \rightarrow x'^{\mu} = (1 + \frac{i}{\hbar} \epsilon^{\mu} . \hat{O}_{\mu}) x^{\mu} = x^{\mu} + \epsilon^{\mu}$
- Infinitesimal transformation will give parameters ϵ^{μ} and generators \hat{O}_{μ}
- For rotations in space, show that the generators are angular momentum L and the rotation angles are parameters
- In spacetime, we have Lorentz transformationrotations in space and boost transformations giving six parameters and six generators observation: no of generators equal to # of parameters

Symmetries

- Free particle is described by Hamiltonian P²/2m
- Note that the commutator [H,p]=0
- Under space translation, H is invariant which implies the free particle system possesses translation symmetry
- The generators of translation must commute with the H
- Does the free particle system possess rotational symmetry?

Rotations

- Under infinitesimal rotation, the change in position vector will be δr = δϑ x r
- Under rotation operation R, the wavefunction obeys Ψ(r) = Ψ'(Rr=r + δr)
- Do similar steps which we did for translation to determine the exponential form denoting rotation operator

Rotations

Infinitesimal rotations $R(\delta \theta) = \mathbb{I} - i\delta \theta \hat{n} L$

Verify the relation

 $\mathbf{R}(\delta\theta\hat{\mathbf{i}})\mathbf{R}(\delta\theta\hat{\mathbf{j}}) - \mathbf{R}(\delta\theta\hat{\mathbf{j}})\mathbf{R}(\delta\theta\hat{\mathbf{i}}) = \mathbf{R}(\delta\theta^{2}\hat{\mathbf{k}}) - \mathbb{I}$

This implies our familiar angular momentum algebra

$$[L_x, L_y] = iL_z$$

Orthogonal Group O(3)

- O(3) consists of set of 3 ×3 orthogonal matrices (determinant +1 or -1)
- Direct product with inversion group $O(3) = SO(3) \otimes C_s$
- Each element of SO(3) will be specified by three parameters

 $R_{\hat{\mathbf{n}}}(\psi) = R(\psi, \theta, \phi)$

Special Orthogonal Group SO(3)

Rotation by angle ψ about the direction $\hat{\mathbf{n}} = (\theta, \phi)$:

 $R_{-\hat{\mathbf{n}}}(\psi) = R_{\hat{\mathbf{n}}}(-\psi)$ which implies $0 \le \psi \le \pi$

 $R_{-\hat{\mathbf{n}}}(\pi) = R_{\hat{\mathbf{n}}}(\pi)$

Group manifold is a sphere of radius π . \therefore SO(3) is a compact group.

SO(3) group manifold

Group manifold is doubly connected

Lorentz Group

Generators are

 $\hat{O}_{\mu\nu} = \hat{L}_{\mu\nu}$ where $\hat{L}_{0i} = \hat{K}_i$ are boosts and $\hat{L}_{ij} = \epsilon_{ijk}\hat{L}_k$ are the rotations in space.

Parameters are $\epsilon_{\mu\nu}$

Find the algebra of these generators

Special orthogonal group

- Set of n x n orthogonal matrices with det = +1 forms group SO(n)
- These matrices will leave magnitude of position vector in n-dimensional space invariant
 - $\sum_{i=1}^{n} (x_i x_i) = \text{constant}$
- SO(m,n) refers to (m+n) x (m+n) matrices satisfying $\sum_{i=1}^{n} (x_i x_i) - \sum_{j=1}^{m} (y_j y_j) = const$

Lorentz group is SO(3,1)- why?

Lie Algebra

- Lie algebra g is a vector space on which is defined a binary operation having the following properties
- (1) For all x and y in \mathfrak{g} , [x, y] is in \mathfrak{g} .
- (2) For all *x*, *y* and *z* in g, and scalars λ and μ, [λ*x* + μ*y*, *z*] = λ[*x*, *z*] + μ[*y*, *z*].
 (3) [*x*, *y*] = -[*y*, *x*].
- (4) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. [Jacobi identity]

[,] is called Lie Bracket

Lie Bracket [x,y]=0 for all x,y implies Lie algebra is abelian

Lie algebra continued

- $[x_s, x_t] = C_{st}^k x_k$ where C_{st}^k are the structure constants which are antisymmetric is s,t indices
- Lie subalgebra b is a subset of elements of a Lie algebra g such that the elements of forms a Lie algebra
- Further, if [g,h] ε 𝔥, then 𝔥 is an invariant subalgebra

Examples of Lie algebra

 Consider a two dimensional complex vector space. The linear operators acting on such a vector space are 2x2 matrices with complex entries. The Lie algebra is denoted as gl(2, €) spanned by

$$E_1 = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] E_2 = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

$$E_3 = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] E_4 = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$$

• It is a 4-dimensional complex vector space of linear operators

Examples Lie algebra

 Subalgebras of gl(2, C) - One example is the set of traceless & Hermitian matrices denoted as sl(2, C)

$$X = \left[\begin{array}{cc} a & z \\ z^* & -a \end{array} \right]$$

- 𝔅l(2, 𝔅) is a 3-dimensional complex vector space of linear operators
- 3-dimensional real subalgebra of sl(2, C) is our familiar su(2) algebra (angular momentum algebra)

Special Unitary group

 SU(2) is obtained by exponential map of su(2) Lie algebra generators (three Pauli matrices)

 $g(\theta \hat{n}) = \cos(\theta/2)\mathbb{I} + i\hat{n}.\sigma\sin(\theta/2),$

- Unlike SO(3), $g(2\Pi) \neq g(0)$ and $g(4\Pi) = I$
- SU(2) group manifold is a solid sphere of radius
 2 ∏ which is a simply connected manifold
- Two element of SU(2) is mapped to one element of SO(3)- two to one mapping [double cover of SO(3)]

Lie group

- General linear group of degree n is a set of invertible nxn matrices under matrix multiplication
- Matrices with real entries are GL(n, R) and matrices with complex entries are GL(n,C)
- Subgroups of GL groups are SL(n,R) and SL(n,C)
- Orthogonal groups are subgroups of GL(n,R)
- Symplectic groups Sp(2n,R) are another subgroup of SL(2n,R)