## Continuous Groups

- We studied space, time infinitesimal translations

$$
x^{\mu} \rightarrow x^{\prime \mu}=\left(1+\frac{i}{\hbar} \epsilon^{\mu} \cdot \hat{O}_{\mu}\right) x^{\mu}=x^{\mu}+\epsilon^{\mu}
$$

- Infinitesimal transformation will give parameters $\epsilon^{\mu}$ and generators $\hat{O}_{\mu}$
- For rotations in space, show that the generators are angular momentum $L$ and the rotation angles are parameters
- In spacetime, we have Lorentz transformationrotations in space and boost transformations giving six parameters and six generators
observation: no of generators equal to \# of parameters


## Symmetries

- Free particle is described by Hamiltonian $P^{2} / 2 m$
- Note that the commutator [H,p ]=0
- Under space translation, H is invariant which implies the free particle system possesses translation symmetry
- The generators of translation must commute with the H
- Does the free particle system possess rotational symmetry?


## Rotations

- Under infinitesimal rotation, the change in position vector will be $\delta \mathbf{r}=\delta \boldsymbol{\vartheta} \times r$
- Under rotation operation R, the wavefunction obeys $\Psi(r)=\Psi^{\prime}(R r=r+\delta r)$
- Do similar steps which we did for translation to determine the exponential form denoting rotation operator


## Rotations

Infinitesimal rotations $R(\boldsymbol{\delta} \boldsymbol{\theta})=\mathbb{I}-i \delta \theta \hat{n} . \boldsymbol{L}$

Verify the relation

$$
\mathbf{R}(\delta \theta \hat{\mathbf{i}}) \mathbf{R}(\delta \theta \hat{\mathbf{j}})-\mathbf{R}(\delta \theta \hat{\mathbf{j}}) \mathbf{R}(\delta \theta \hat{\mathbf{i}})=\mathbf{R}\left(\delta \theta^{2} \hat{\mathbf{k}}\right)-\mathbb{I}
$$

This implies our familiar angular momentum algebra

$$
\left[L_{x}, L_{y}\right]=i L_{z}
$$

## Orthogonal Group O(3)

- $\mathrm{O}(3)$ consists of set of $3 \times 3$ orthogonal matrices (determinant +1 or -1 )
- Direct product with inversion group

$$
O(3)=S O(3) \otimes C_{S}
$$

- Each element of SO(3) will be specified by three parameters

$$
R_{\hat{\mathbf{n}}}(\psi)=R(\psi, \theta, \phi)
$$

## Special Orthogonal Group SO(3)

Rotation by angle $\psi$ about the direction $\quad \hat{\mathbf{n}}=(\theta, \phi)$ :

$$
\begin{aligned}
& R_{-\hat{\mathbf{n}}}(\psi)=R_{\hat{\mathbf{n}}}(-\psi) \text { which implies } 0 \leq \psi \leq \pi \\
& R_{-\hat{\mathrm{n}}}(\pi)=R_{\hat{\mathbf{n}}}(\pi)
\end{aligned}
$$

Group manifold is a sphere of radius $\pi$.
$\therefore \mathrm{SO}(3)$ is a compact group.

## SO(3) group manifold



Group manifold is doubly connected

## Lorentz Group

Generators are

$$
\begin{aligned}
\hat{O}_{\mu \nu} & =\hat{L}_{\mu \nu} \text { where } \hat{L}_{0 i}=\hat{K}_{i} \text { are boosts } \\
\text { and } \hat{L}_{i j} & =\epsilon_{i j k} \hat{L}_{k} \text { are the rotations in space. }
\end{aligned}
$$

Parameters are $\varepsilon_{\mu v}$
Find the algebra of these generators

## Special orthogonal group

- Set of $\mathrm{n} \times \mathrm{n}$ orthogonal matrices with det $=+1$ forms group SO(n)
- These matrices will leave magnitude of position vector in n-dimensional space invariant
$\sum_{i=1}^{n}\left(x_{i} x_{i}\right)=$ constant
- $\mathrm{SO}(\mathrm{m}, \mathrm{n})$ refers to $(\mathrm{m}+\mathrm{n}) \times(\mathrm{m}+\mathrm{n})$ matrices satisfying $\sum_{i=1}^{n}\left(x_{i} x_{i}\right)-\sum_{\mathrm{j}=1}^{\mathrm{m}}\left(y_{j} y_{j}\right)=$ const
Lorentz group is SO(3,1)- why?


## Lie Algebra

- Lie algebra $g$ is a vector space on which is defined a binary operation having the following properties
(1) For all $x$ and $y$ in $\mathfrak{g},[x, y]$ is in $\mathfrak{g}$.
(2) For all $x, y$ and $z$ in $\mathfrak{g}$, and scalars $\lambda$ and $\mu,[\lambda x+\mu y, z]=\lambda[x, z]+\mu[y, z]$.
(3) $[x, y]=-[y, x]$.
(4) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$. [Jacobi identity]
[, ] is called Lie Bracket
Lie Bracket $[x, y]=0$ for all $x, y$ implies Lie algebra is abelian


## Lie algebra continued

- $\left[\mathrm{x}_{\mathrm{s}}, \mathrm{x}_{\mathrm{t}}\right]=\mathrm{C}_{s t}{ }^{\mathrm{k}} \mathrm{X}_{\mathrm{k}}$ where $\mathrm{C}_{s t}{ }^{\mathrm{k}}$ are the structure constants which are antisymmetric is s,t indices
- Lie subalgebra $\mathfrak{b}$ is a subset of elements of a Lie algebra $g$ such that the elements of forms a Lie algebra
Further, if $[g, h] \varepsilon \mathfrak{h}$, then $\mathfrak{h}$ is an invariant subalgebra


## Examples of Lie algebra

- Consider a two dimensional complex vector space. The linear operators acting on such a vector space are $2 \times 2$ matrices with complex entries. The Lie algebra is denoted as $\mathfrak{g l}(2, \mathbb{C})$ spanned by

$$
\begin{aligned}
& E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] E_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& E_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] E_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- It is a 4-dimensional complex vector space of linear operators


## Examples Lie algebra

- Subalgebras of $\mathfrak{g l ( 2 , C ) \text { - One example is the set of }}$ traceless \& Hermitian matrices denoted as $\mathfrak{s l}(2, \mathbb{C})$

$$
X=\left[\begin{array}{cc}
a & z \\
z^{*} & -a
\end{array}\right]
$$

- $\mathfrak{s l}(2, \mathbb{C})$ is a 3-dimensional complex vector space of linear operators
- 3-dimensional real subalgebra of $\mathfrak{s l}(2, \mathbb{C})$ is our familiar su(2) algebra (angular momentum algebra)


## Special Unitary group

- $\operatorname{SU}(2)$ is obtained by exponential map of su(2) Lie algebra generators (three Pauli matrices)

$$
g(\theta \hat{n})=\cos (\theta / 2) \mathbb{I}+i \hat{n} . \sigma \sin (\theta / 2)
$$

- Unlike $\mathrm{SO}(3), \mathrm{g}(2 \Pi) \neq \mathrm{g}(0)$ and $\mathrm{g}(4 \Pi)=\mathrm{I}$
- $\operatorname{SU}(2)$ group manifold is a solid sphere of radius $2 \Pi$ which is a simply connected manifold
- Two element of $\operatorname{SU}(2)$ is mapped to one element of $\mathrm{SO}(3)-$ two to one mapping
[double cover of SO(3)]


## Lie group

- General linear group of degree n is a set of invertible nxn matrices under matrix multiplication
- Matrices with real entries are $G L(n, R)$ and matrices with complex entries are GL( $n, C$ )
- Subgroups of GL groups are $\operatorname{SL}(n, R)$ and SL(n,C)
- Orthogonal groups are subgroups of GL(n,R)
- Symplectic groups Sp(2n,R) are another subgroup of $\operatorname{SL}(2 n, R)$

