
Advanced Graphics

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

OpenGL
and

Shaders II

1

2.Perspective and Camera Control

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU

2

Getting some perspective

To add 3D perspective to our flat model, we face three
challenges:

● Compute a 3D perspective matrix
● Pass it to OpenGL, and on to the GPU
● Apply it to each vertex

To do so we’re going to need to apply our perspective matrix
in the shader, which means we’ll need to build our own 4x4
perspective transform.

3

4x4 perspective matrix transform

Every OpenGL package provides utilities to build a
perspective matrix. You’ll usually find a method named
something like glGetFrustum() which will assemble a 4x4
grid of floats suitable for passing to OpenGL.

Or you can build your own:
α: Field of view, typically 50°

ar: Aspect ratio of width over
height

NearZ: Near clip plane

FarZ: Far clip plane

P =

4

Writing uniform data from Java

Once you have your perspective matrix, the next step is to copy it out to the
GPU as a Mat4, GLSL’s 4x4 matrix type.

1. Convert your floats to a FloatBuffer:

2. Write the FloatBuffer to the named uniform:
int uniformLoc = GL20.glGetUniformLocation(
 program, “name”);
if (uniformLoc != -1) {
 GL20.glUniformMatrix 4fv(uniformLoc, false, buffer);
}

5

float data[][] = /* your 4x4 matrix here */
FloatBuffer buffer = BufferUtils.createFloatBuffer(16);
for (int col = 0; col < 4; col++) {
 for (int row = 0; row < 4; row++) {
 buffer.put((float) (data[row][col]));
 }
}
buffer.flip();

Reading uniform data in GLSL

The FloatBuffer output is received in the shader as a
uniform input of type Mat4.

This shader takes a matrix and applies it to each vertex:
#version 330

uniform mat4 modelToScreen;

in vec4 vPosition;

void main() {
 gl_Position = modelToScreen * vPosition;
}

Use uniforms for fields that
are constant throughout the
rendering pass, such as
transform matrices and
lighting coordinates. 6

Object position and camera position: a
‘pipeline’ model of matrix transforms

Object definition

Local or “model” space

Scene composition
Viewing frame definition
Lighting definition

World space

Backface culling
Viewing frustum culling
HUD definition

Viewing

space

Hidden-surface removal
Scan conversion
Shading

3D screen space

Image

Display space

L2W

W2V

V2S

S2D

P’ = S2D • V2S • W2V • L2W
• PL

P’ = S2D • V2S • W2V • L2W • PL
Each of these transforms can be
represented by a 4x4 matrix.

See also: the matrix stack design pattern, in the appendix of this lecture.7

#version 330

uniform mat4 modelToWorld;
uniform mat4 worldToCamera;
uniform mat4 cameraToScreen;

in vec3 v;

void main() {
 gl_Position = cameraToScreen
 * worldToCamera
 * modelToWorld
 * vec4(v, 1.0);
}

A flexible 3D graphics framework will
track each transform:
● The object’s current transform
● The camera’s transform
● The viewing perspective

transform
These matrices are all “constants” for
the duration of a single frame of
rendering. Each can be written to a
16-float buffer and sent to the GPU
with glUniformMatrix4fv.
Remember to fetch uniform names
with glGetUniformLocation, never
assume ordering.

The pipeline model in OpenGL & GLSL

8

The pipeline model in software:
The matrix stack design pattern

A common design pattern in 3D graphics, especially when
objects can contain other objects, is to use matrix stacks to
store stacks of matrices. The topmost matrix is the
product of all matrices below.
● This allows you to build a local frame of reference—

local space—and apply transforms within that space.
● Remember: matrix multiplication is associative but not

commutative.
■ABC = A(BC) = (AB)C ≠ ACB ≠ BCA

Pre-multiplying matrices that will be used more
than once is faster than multiplying many
matrices every time you render a primitive.

A

AB

ABC

9

Matrix stacks

Matrix stacks are designed for nested relative
transforms.

pushMatrix();
 translate(0,0,-5);
 pushMatrix();
 rotate(45,0,1,0);
 render();
 popMatrix();
 pushMatrix();
 rotate(-45,0,1,0);
 render();
 popMatrix();
popMatrix();

identity

T

identity

T

T • R1

identity

T

T • R2

identity

T

…

render your
geometry here

10

Scene graphs

A scene graph is a tree of
scene elements where a
child’s transform is relative
to its parent.

The final transform of the
child is the ordered product
of all of its ancestors in the
tree.

MfingerToWorld =
(Mperson • Mtorso • Marm • Mhand • Mfinger)

Person

Torso

Arm Arm Leg …

Hand

Finger

…

…

…

11

void renderLevel(GL gl, int level, float t) {
 pushMatrix();
 rotate(t, 0, 1, 0);
 renderSphere(gl);
 if (level > 0) {
 scale(0.75f, 0.75f, 0.75f);
 pushMatrix();
 translate(1, -0.75f, 0);
 renderLevel(gl, level-1, t);
 popMatrix();
 pushMatrix();
 translate(-1, -0.75f, 0);
 renderLevel(gl, level-1, t);
 popMatrix();
 }
 popMatrix();
}

Hierarchical modeling in action

12

Hierarchical modeling in action

“HierarchyDemo.java” - github.com/AlexBenton/AdvancedGraphics13

https://github.com/AlexBenton/AdvancedGraphics

3. Lighting and Shading

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU

14

Lighting and Shading (a quick refresher)

Recall the classic lighting equation:
● I = kA + kD(N•L) + kS(E•R)

n

where…
● kA is the ambient lighting coefficient of the object or scene
● kD(N•L) is the diffuse component of surface illumination (‘matte’)
● kS(E•R)

n is the specular component of surface illumination (‘shiny’)
where R = L - 2(L•N)N

We compute color by vertex or by polygon fragment:
● Color at the vertex: Gouraud shading
● Color at the polygon fragment: Phong shading

Vertex shader outputs are interpolated across fragments, so
code is clean whether we’re interpolating colors or normals.

15

Lighting and Shading: required data

Shading means we need extra data about vertices.
For each vertex our Java code will need to provide:
● Vertex position
● Vertex normal
● [Optional] Vertex color, kA / kD / kS, reflectance, transparency…

We also need global state:
● Camera perspective transform
● Camera position and orientation, represented as a transform
● Object position and orientation, to modify the vertex positions above
● A list of light positions, ideally in world coordinates

16

Shader sample –
Gouraud shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;
uniform vec3 lightPosition;

in vec4 v;
in vec3 n;

out vec4 color;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
 vec3 p = (modelToWorld * v).xyz;
 vec3 n = normalize(normalToWorld * n);
 vec3 l = normalize(lightPosition - p);
 float ambient = 0.2;
 float diffuse = 0.8 * clamp(0, dot(n, l), 1);

 color = vec4(purple
 * (ambient + diffuse), 1.0);
 gl_Position = modelToScreen * v;
}

#version 330

in vec4 color;

out vec4 fragmentColor;

void main() {
 fragmentColor = color;
}

Diffuse lighting
 d = kD(N•L)

expressed as a shader

17

Shader sample –
Phong shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;

in vec4 v;
in vec3 n;

out vec3 position;
out vec3 normal;

void main() {
 normal = normalize(
 normalToWorld * n);
 position =
 (modelToWorld * v).xyz;
 gl_Position =
 modelToScreen * v;
}

#version 330

uniform vec3 eyePosition;
uniform vec3 lightPosition;

in vec3 position;
in vec3 normal;

out vec4 fragmentColor;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
 vec3 n = normalize(normal);
 vec3 l = normalize(lightPosition - position);
 vec3 e = normalize(position - eyePosition);
 vec3 r = reflect(l, n);

 float ambient = 0.2;
 float diffuse = 0.4 * clamp(0, dot(n, l), 1);
 float specular = 0.4 *
 pow(clamp(0, dot(e, r), 1), 2);

 fragmentColor = vec4(purple *
 (ambient + diffuse + specular), 1.0);
}

a = kA
d = kD(N•L)
s = kS(E•R)n

GLSL includes handy helper methods for
illumination such as reflect()--perfect for
specular highlights.

18

Shader sample – Gooch shading

Image source: “A
Non-Photorealistic
Lighting Model For
Automatic Technical
Illustration”, Gooch,
Gooch, Shirley and
Cohen (1998).
Compare the Gooch
shader, above, to the
Phong shader (right).

Gooch shading is an example of non-realistic
rendering. It was designed by Amy and Bruce
Gooch to replace photorealistic lighting with a
lighting model that highlights structural and
contextual data.
● They use the term of the conventional lighting

equation to choose a map between ‘cool’ and ‘warm’
colors.
○ This is in contrast to conventional illumination where

lighting simply scales the underlying surface color.
● This, combined with edge-highlighting through a

second renderer pass, creates models which look more
like engineering schematic diagrams.

19

Shader sample –
Gooch shading

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform mat4 modelToCamera;
uniform mat4 modelToScreen;
uniform mat3 normalToCamera;

vec3 LightPosition = vec3(0, 10, 4);

in vec4 vPosition;
in vec3 vNormal;

out float NdotL;
out vec3 ReflectVec;
out vec3 ViewVec;

void main()
{
 vec3 ecPos = vec3(modelToCamera * vPosition);
 vec3 tnorm = normalize(normalToCamera * vNormal);
 vec3 lightVec = normalize(LightPosition - ecPos);
 ReflectVec = normalize(reflect(-lightVec, tnorm));
 ViewVec = normalize(-ecPos);
 NdotL = (dot(lightVec, tnorm) + 1.0) * 0.5;
 gl_Position = modelToScreen * vPosition;
}

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform vec3 vColor;

float DiffuseCool = 0.3;
float DiffuseWarm = 0.3;
vec3 Cool = vec3(0, 0, 0.6);
vec3 Warm = vec3(0.6, 0, 0);

in float NdotL;
in vec3 ReflectVec;
in vec3 ViewVec;

out vec4 result;

void main()
{
 vec3 kcool = min(Cool + DiffuseCool * vColor, 1.0);
 vec3 kwarm = min(Warm + DiffuseWarm * vColor, 1.0);
 vec3 kfinal = mix(kcool, kwarm, NdotL);

 vec3 nRefl = normalize(ReflectVec);
 vec3 nview = normalize(ViewVec);
 float spec = pow(max(dot(nRefl, nview), 0.0), 32.0);

 if (gl_FrontFacing) {
 result = vec4(min(kfinal + spec, 1.0), 1.0);
 } else {
 result = vec4(0, 0, 0, 1);
 }
}

20

Shader sample – Gooch shading
In the vertex shader source, notice the use of the built-in ability to

distinguish front faces from back faces:
if (gl_FrontFacing) {...

This supports distinguishing front faces (which should be shaded
smoothly) from the edges of back faces (which will be drawn in heavy
black.)
In the fragment shader source, this is used to choose the weighted color
by clipping with the a component:

vec3 kfinal = mix(kcool, kwarm, NdotL);
Here mix() is a GLSL method which returns the linear interpolation
between kcool and kwarm. The weighting factor is NdotL, the
lighting value.

21

Shader sample – Gooch shading

22

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

 bool isOutsideFace =

 (length(position - CENTER) > 1);

 vec3 color = isOutsideFace ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

Procedural texturing in the
fragment shader

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

 bool isOutsideFace =

 (length(position - CENTER) > 1);

 bool isMouth =

 (length(position - CENTER) < 0.75)

 && (position.y <= -0.1);

 vec3 color = (isMouth || isOutsideFace)

 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

(Code truncated for brevity--again, check out
the source on github for how I did the curved
mouth and oval eyes.)

// ...

const vec3 CENTER = vec3(0, 0, 1);

const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);

const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);

// ...

void main() {

 bool isOutsideFace = (length(position - CENTER) >
1);

 bool isEye = (length(position - LEFT_EYE) < 0.1)

 || (length(position - RIGHT_EYE) < 0.1);

 bool isMouth = (length(position - CENTER) < 0.75)

 && (position.y <= -0.1);

 vec3 color = (isMouth || isEye || isOutsideFace)

 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

23

Advanced surface effects

● Specular highlighting
● Non-photorealistic

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the

shader
● ...much, much more!

24

Antialiasing on the GPU

Hardware antialiasing can dramatically
improve image quality.
● The naïve approach is to supersample the image
● This is easier in shaders than it is in standard

software
● But it really just postpones the problem.

Several GPU-based antialiasing solutions
have been found.
● Eric Chan published an elegant polygon-based

antialiasing approach in 2004 which uses the GPU
to prefilter the edges of a model and then blends
the filtered edges into the original polygonal
surface. (See figures at right.)

25

Antialiasing on the GPU

One clever form of antialiasing is adaptive analytic
prefiltering.
● The precision with which an edge is rendered to the screen is

dynamically refined based on the rate at which the function defining
the edge is changing with respect to the surrounding pixels on the
screen.

This is supported in the shader language by the methods
dFdx(F) and dFdy(F).
● These methods return the derivative with respect to X and Y of some

variable F.
● These are commonly used in choosing the filter width for antialiasing

procedural textures.

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost,
Addison Wesley, 2006. Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 26

Particle systems on the GPU

Shaders extend the use of texture memory
dramatically. Shaders can write to texture
memory, and textures are no longer limited
to being two-dimensional planes of
RGB(A).
● A particle systems can be represented

by storing a position and velocity for
every particle.

● A fragment shader can render a particle
system entirely in hardware by using
texture memory to store and evolve
particle data.

Image by Michael Short

27

Tessellation shaders

One use of tessellation is in rendering
geometry such as game models or terrain
with view-dependent Levels of Detail
(“LOD”).
Another is to do with geometry what

ray-tracing did with bump-mapping:
high-precision realtime geometric
deformation.

Tesselation is a new shader type
introduced in OpenGL 4.x. Tesselation
shaders generate new vertices within
patches, transforming a small number of
vertices describing triangles or quads
into a large number of vertices which
can be positioned individually.

jabtunes.com’s WebGL tessellation demo
Florian Boesch’s LOD terrain demo

http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

N
ot

e
ho

w
 tr

ia
ng

le
s a

re
 sm

al
l a

nd

de
ta

ile
d

cl
os

e
to

 th
e

ca
m

er
a,

 b
ut

be

co
m

e
ve

ry
 la

rg
e

an
d

co
ar

se
 in

th

e
di

st
an

ce
.

28

http://jabtunes.com/labs/3d/webgl_geometry_tessellation_exploding.html#Tessellation
http://jabtunes.com/labs/3d/webgl_geometry_tessellation_exploding.html#Tessellation
http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/
http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

Tessellation shaders

How it works:
● You tell OpenGL how many vertices a single

patch will have:
glPatchParameteri(GL_PATCH_VERTICES, 4);

● You tell OpenGL to render your patches:
glDrawArrays(GL_PATCHES, first, numVerts);

● The Tessellation Control Shader specifies output
parameters defining how a patch is split up:
gl_TessLevelOuter[] and
gl_TessLevelInner[].
These control the number of vertices per primitive
edge and the number of nested inner levels,
respectively.

Vertex shader

Tessellation Control Shader

Tessellation primitive generator

Tessellation Evaluation Shader

Geometry shader

Fragment shader

...

29

Tessellation shaders

● The tessellation primitive
generator generates new
vertices along the outer edge
and inside the patch, as
specified by
gl_TessLevelOuter[] and
gl_TessLevelInner[].

Each field is an array. Within the
array, each value sets the number of
intervals to generate during
subprimitive generation.
Triangles are indexed similarly, but

only use the first three Outer and
the first Inner array field.

gl_TessLevelOuter[3] = 5.0

gl_TessLevelOuter[1] = 3.0

gl_TessLevelInner[1] = 4.0

g
l
_
T
e
s
s
L
e
v
e
l
I
n
n
e
r
[
0
]

=

3
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
0
]

=

2
.
0

g
l
_
T
e
s
s
L
e
v
e
l
O
u
t
e
r
[
2
]

=

2
.
0

30

Tessellation shaders
● The generated vertices are

then passed to the
Tesselation Evaluation
Shader, which can update
vertex position, color,
normal, and all other
per-vertex data.

● Ultimately the complete
set of new vertices is
passed to the geometry
and fragment shaders.

Image credit: Philip Rideout
http://prideout.net/blog/?p=4831

http://prideout.net/blog/?p=48
http://prideout.net/blog/?p=48

CPU vs GPU – an object demonstration

“NVIDIA: Mythbusters - CPU vs GPU”
https://www.youtube.com/watch?v=-P28LKWTzrI

R
ed

ux
: h

ttp
://

w
w

w
.y

ou
tu

be
.c

om
/w

at
ch

?v
=f

K
K

93
3K

K
6G

g

32

https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI
http://www.youtube.com/watch?v=fKK933KK6Gg
http://www.youtube.com/watch?v=-P28LKWTzrI

Recommended reading
Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner
ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and
raycast scenes

33

https://github.com/AlexBenton/AdvancedGraphics
http://shadertoy.com

