
Project 2

Part 1a (8-bit 4-to-1 multiplexer)

I – Design:
Part 1a-a: (2-to-4 decoder)
Gates: 2 inverters, 4 two-input AND gates
Inputs: Bits S1 and S0

Output: Bits D0, D1, D2, and D3, where only the bit determined by S1S0 is set to 1

Part 1a-b: (4-to-2 ANDOR)
Gates: 4 two-input AND gates, 1 4-input OR gate
Inputs: Bits A0, A1, A2, A3, B0, B1, B2, and B3

Output: Bit Y, where Y =  A0B0 + A1B1 + A2B2 + A3B3



Part 1a: (8-bit 4-to-1 multiplexer)
Gates: 1 two-to-four decoder component (part 1a-a), 8 four-to-one ANDOR components (part 1a-b)
Inputs: 8-bit inputs I0, I1, I2, and I3, and 1-bit inputs S1 and S0

Output: 8-bit output Y, where Y = In (n determined by binary number S1S0)

II - Reasoning:
A usual multiplexer mainly consists of an encoder; the multiplexer's various input bits are AND-ed with 
the encoder's output and then logically OR-ed back together again. Following that logic, an eight-bit 
four-to-one multiplexer ought to be just the same as a normal four-to-one multiplexer, with the 
exception that there out to be eight times as ANDOR gates on the input (since each input consists of 



eight bits, not one). This circuit was designed with that philosophy in mind;  as such it has a high gate 
input cost and takes up plenty of space. The gates are fairly well distributed, though, which gives the 
design a gate delay of 50 ns. That's not too slow considering the amount of inputs the circuit has.

III - Verification:
The 2-to-4 decoder has four possible input combinations, shown in the truth table below. The 
component's waveform matches the truth table, which means it works as it should.

S1 S0 D0 D1 D2 D3

t1 0 0 1 0 0 0

t2 0 1 0 1 0 0

t3 1 0 0 0 1 0

t4 1 1 0 0 0 1

The 4-to-2 ANDOR component can be expressed 
logically as Y = A0B0 + A1B1 + A2B2 + A3B3. However, 
the 4-to-2 ANDOR is to be used in conjunction with the 
2-to-4 decoder, which means only one of the four A 
inputs can be set to 1 at any given time. Because of this, 
the 4-to-2 ANDOR's expression can be simplified to Y = 
Bn, where n corresponds to which of the 2-to-4 decoder's 
outputs Dn is set to 1. Therefore, the only input 
combinations that matter for the 4-to-2 ANDOR are the 
8 possible combinations shown in the table to the right. 
The waveform below matches the truth table, so this 
component works.

A3 A2 A1 A0 B3 B2 B1 B0 Y

n = 0
t1 0 0 0 1 X X X 0 0

t2 0 0 0 1 X X X 1 1

n = 1
t3 0 0 1 0 X X 0 X 0

t4 0 0 1 0 X X 1 X 1

n = 2
t5 0 1 0 0 X 0 X X 0

t6 0 1 0 0 X 1 X X 1

n = 3
t7 1 0 0 0 0 X X X 0

t8 1 0 0 0 1 X X X 1

If the 2-to-4 decoder and 4-to-2 ANDOR both work, and each 4-to-2 ANDOR in the multiplexer is 
hooked up to the outputs of a 2-to-4 decoder as well as to the kth bits of inputs I0, I1, I2, and I3, then the 
entire multiplexer can be expressed logically as Y = In, where n corresponds to which of the 2-to-4 
decoder's outputs Dn is set to 1. Since the output Dn in the 2-to-4 decoder is determined by S0 and S1, 
where n corresponds to the binary number S1S0, the multiplexer can also be expressed as Y = In, where 
n corresponds to the binary number S1S0. Coincidentally, that's the exact specification for an 8-bit 4-to-
1 multiplexer. It was proven earlier that the 2-to-4 decoder and 4-to-2 ANDOR components do indeed 
both work, which means that this design for an 8-bit 4-to-1 multiplexer also works. To err on the side of 
caution, here are is a truth table with a handful of input combination and their corresponding output, as 
well as a matching waveform. In case there was any doubt, yes, this component works.



S1 S0 I0 I1 I2 I3 S

t1 0 0 14 255 128 47 14

t2 0 1 14 255 128 47 255

t3 1 0 14 255 128 47 128

t4 1 1 14 255 128 47 47

Part 1b (8-bit adder)

I – Design:
Part 1b-a: (half adder)
Gates: 1 two-input XOR gate, 1 two-input AND gate
Inputs: Bits A and B
Outputs: Bits S and Cout, where the binary number CoutS is equal to A plus B

Part 1b-b: (full adder)
Gates: 1 two-input OR gate, 2 half adder components (part 1b-a)
Inputs: Bits A, B, and Cin

Outputs: Bits S and Cout, where the binary number CoutS is equal to A plus B plus Cin



Part 1b: (8-bit adder)
Gates: 2 expander components, 1 mergebits component, 8 full adder components (part 1b-b)
Inputs: 2 eight-bit inputs A and B, and 1 single-bit input Cin

Outputs: 1 eight-bit output S, and 2 single-bit outputs Cout and v, where the binary number
CoutS7S6S5S4S3S2S1S0 is equal to the sum of A, B, and Cin (Sn is the nth bit of S) and v indicates
if there was signed (2's complement) overflow

II - Reasoning:
This particular design gets the job done, but it isn't too efficient. Since carrying is implemented by 
daisy-chaining the full adders' carry-in/carry-out bits, each full adder has to wait for the previous one to 



output before it can do anything. Because of this timing irregularity, the circuit's output doesn't 
necessarily change all at once to reflect changes in input. Instead, it might fluctuate until all the full 
adders finish carrying. It's terribly slow and gives the circuit a gate delay ranging from 40 to 160 ns. 
The design's main advantage, however, is its simplicity; it doesn't use many components and is fairly 
easy to implement. Since the sum of two eight-bit numbers might exceed the possible values that eight 
bits can hold, an extra output bit (Cout) is provided. If the sum produced is greater than 255 (the highest 
value an unsigned eight-bit number can hold), the sum value will overflow and the extra output bit will 
be set to 1 (which indicates that the true sum is actually 256 more than what the output suggests). The 
circuit can also process signed numbers in 2's complement encoding, since adding numbers in 2's 
complement encoding is almost identical to adding unsigned numbers. If the input is signed, overflow 
is indicated by v. A carry-in input (Cin) is also provided, which allows for more complex calculations 
(such as incrementing the sum of A and B by one if a certain external condition is met). If such extra 
input isn't needed, Cin can just be set to zero and the circuit defaults to calculating A plus B.

III - Verification:
The half adder component has four possible input combinations, shown in the truth table below. The 
component's waveform matches the truth table, which means it works as it should.

A B Cout S

t1 0 0 0 0

t2 0 1 0 1

t3 1 0 0 1

t4 1 1 1 0

The the full adder component has eight possible input combinations, shown in the truth table below. 
The component's waveform matches the truth table, which means it works as it should.

A B Cin Cout S

t1 0 0 0 0 0

t2 0 0 1 0 1

t3 0 1 0 0 1

t4 0 1 1 1 0

t5 1 0 0 0 1

t6 1 0 1 1 0

t7 1 1 0 1 0

t8 1 1 1 1 1

The topmost full adder's Cin input bit is connected to the 8-bit adder's own Cin input bit, and its other 
two inputs are bits 0 of A and B. If the full adder works correctly, its output should be A0 plus B0 plus 
Cin. That full adder's Cout output bit is then fed into the next full adder's Cin, and its other two inputs are 
set to bits 1 of A and B. This means the second full adder computes A1 plus B1, plus the carry-out bit 
obtained from adding A0, B0, and Cin. The rest of the full adders follow this pattern as well, basing their 
own Cin off of the computations of the previous full adders. Because of all this daisy-chaining, the 
entire circuit's output S is determined by the expression S7 = A7 + B7 + the carry-out from computing 



(S6 = A6 + B6 + the carry-out from computing (S5 = A5 + B5 + the carry-out from computing (S4 = A4 + 
B4 + the carry-out from computing (S3 = A3 + B3 + the carry-out from computing (S2 = A2 + B2 + the 
carry-out from computing (S1 = A1 + B1 + the carry-out from computing (S0 = A0 + B0 + Cin))))))), and 
the entire circuit's Cout is the carry-out outputted from the last full adder (which is obtained from 
computing S7). This expression can be further simplified to Y = A + B + Cin, where Y is the 9-bit binary 
number CoutS7S6S5S4S3S2S1S0 . Output v is determined by XOR-ing the last two carry-bits in the 
operation. Since that is exactly how overflow is determined when adding 2's complement encoded 
numbers, that means v determines if there was signed 2's complement overflow when adding A and B. 
This proves that the circuit computes the sum of A, B, and Cin and accounts for signed 2's complement 
overflow. Since that's what the circuit is supposed to do, that means the circuit works as intended. Just 
to make certain, though, here are a few test cases showing the circuit's desired outputs versus its actual 
waveforms.

A B Cin Cout S v

t1 57 134 1 0 192 0

t2 14 28 0 0 42 0

t3 240 69 1 1 54 0

t4 118 176 0 1 38 0

The waveform matches the truth table, so the circuit works properly (albeit very slowly).



Part 2a (8-bit ALU)

I – Design:
Part 2a-a: (3-to-8 decoder)
Gates: 8 four-input AND gates, 3 inverters
Inputs: Bits S2, S1, S0, and enable
Output: Bits D0, D1, D2, D3, D4, D5, D6, and D7, where only the bit determined by S2S1S0 is set to 1

If enable is 0, all the outputs default to 0



Part 2a-b: (8-to-2 ANDOR)
Gates: 8 two-input AND gates, 2 four-input OR gates, 1 two-input OR gate
Inputs: Bits A0, A1, A2, A3, A4, A5, A6, A7, B0, B1, B2, B3, B4, B5, B6, and B7

Output: Bit Y, where Y =  A0B0 + A1B1 + A2B2 + A3B3 + A4B4 + A5B5 + A6B6 + A7B7



Part 2a-c: (8-to-1 multiplexer)
Gates: 1 3-to-8 decoder component (part 2a-a), 1 8-to-2 ANDOR component (part 2a-b)
Inputs: Bits S2, S1, S0, I0, I1, I2, I3, I4, IB, I6, and I7

Output: Bit Y, where Y = In (n determined by the binary number S2S1S0)
If enable is set to 0, Y defaults to 0



Part 2a-d: (8-bit 8-to-1 multiplexer)
Gates: 1 3-to-8 decoder component (part 2a-a), 8 8-to-2 ANDOR components (part 2a-b)
Inputs: 8-bit inputs I0, I1, I2, I3, I4, I5, I6, and I7, and 1-bit inputs S2, S1, S0, and enable
Output: 8-bit output M, where M = In (n determined by binary number S2S1S0)

If enable is set 0, M defaults to 00000000



Part 2a-e: (8-bit AND)
Gates: 8 two-input AND gates
Inputs: 8-bit inputs A and B
Output: 8-bit output A_AND_B, where A_AND_B is the logical-AND of A and B



Part 2a-f: (8-bit OR)
Gates: 8 two- input OR gates
Inputs: 8-bit inputs A and B
Output: 8-bit output A_or_B, where A_or_B is the logical-OR of A and B



Part 2a-g: (8-bit NOT)
Gates: 8 inverters
Inputs: 8-bit input X
Output: 8-bit output NOT_X, where NOT_X is the logical-NOT of X

Part 2a-h: (half-subtracter)
Gates: 1 2-input XOR gate, 1 two-input AND gate
Inputs: 1-bit inputs A and B
Output: 1-bit outputs A_minus_B and continue, where A_minus_B = A – B, and continue is set to 1

when A – B produces underflow



Part 2a-i: (8-bit XOR)
Gates: 8 two-input XOR gates
Inputs: 8-bit inputs A and B
Output: 8-bit output A_XOR_B, where A_XOR_B is the logical-XOR of A and B



Part 2a-j: (decrementer)
Gates: 8 half-subtracter components (part 2a-h)
Inputs: 1 8-bit input X, and 1-bit input subtract
Output: 1 eight-bit output X, and 2 single-bit outputs Cout and v, where the binary number

CoutX7X6X5X4X3X2X1X0 is equal to X - subtract (Xn is the nth bit of X) and v indicates if there
was signed (2's complement) overflow



Part 2a-k: (incrementer)
Gates: 8 half-adder components (part 1b-a)
Inputs: 1 8-bit input X, and 1-bit input add
Output: 1 eight-bit output X, and 2 single-bit outputs Cout and v, where the binary number

CoutX7X6X5X4X3X2X1X0 is equal to X plus subtract (Xn is the nth bit of X) and v indicates if
there was signed (2's complement) overflow



Part 2a: (8-bit ALU)
Gates: 1 8-bit adder component (part 1b), 2 8-to-1 multiplexer components (part 2a-c),

1 8-bit 8-to-1 multiplexer component (part 2a-d), 1 8-bit AND component (part 2a-e),
1 8-bit OR component (part 2a-f), 2 8-bit NOT components (part 2a-g),
1 8-bit XOR component (part 2a-i), 1 decrementer component (part 2a-j),
1 incrementer component (part 2a-k), 2 inverters, 2 two-input AND gates, 1 two-input OR gate

Inputs: 8-bit inputs A and B, 1-bit inputs c_in and enable, and 3-bit input alu_sel
Output: 8-bit output M, and 1-bit outputs m7, v, and out; outputs are determined as shown below

Name Description alu_sel action

alu_sel Chooses operation ALU performs 0 A OR B

enable Enables ALU 1 not(A)

M Result of operation performed 2 A + not(B) + c_in

m7 Sign bit if signed numbers 3 A + B + c_in

v Overflow assuming signed numbers 4 A XOR B

c_out Carry out 5 A AND B

6 A – 1 + c_in

7 A + c_in



II – Reasoning:
This design relies heavily on multiplexers, which seems adequate considering how the circuit's 
behavior depends entirely upon the value for alu_sel (if alu_sel is 0 compute A OR B, if alu_sel is 1 
compute not(A), etc). Each of the ALU's operations is handled individually in a separate component, 
and the result of each operation is fed into the multiplexer. This means that the circuit computes all 
eight operations at once, but only the result of the desired operation gets passed to the output.

The 8-to-1 multiplexer components that produce outputs v and c_out are connected to GND on inputs 
I0, I1, I4, and I5. This is because the operations performed by the ALU when alu_sel is set to 0, 1, 4, or 5 
are purely logical (OR, NOT, XOR, and AND, respectively), which means they don't produce any sort 
of overflow or perform any carrying. Due to that, v and c_out can be safely set to 0 for those values of 
alu_sel.

Notice the use of the decrementer and incrementer components to compute A - 1 + c_in and A + c_in, 
respectively. These components work very quickly, but they could have just as easily been replaced 
with 8-bit adders, where one of the adder's inputs was fixed (set to 0 to compute A + c_in, and set to -1 
– in 2's complement – to compute A - 1 + c_in). However, as described in the Reasoning section for 
part 1b (pg. 6), the 8-bit adder component is very slow. By using incrementer/decrementer components 
instead, A - 1 + c_in and A + c_in can be computed much faster.

The incrementer/decrementer components are designed using the same daisy-chaining philosophy as 
the full adder component (see pg. 6), where the carry bits from one half-adder/subtracter ripple into the 
next. The only difference between these components and the full adder is that the incrementer and 
decrementer components have one less input. That is, instead of computing A + B + c_in, the 
incrementer component only computes A + c_in. Likewise, the decrementer component only computes 
A – c_in. However, the half-subtracter doesn't work with carry-out bits like the half-adder did; it works 
with borrow-bits, which indicate whether a one needs to be borrowed from the next bit in order to 
complete the desired operation. In short, the carry-out bit means “add one to the next bit” whereas the 
borrow-bit means “subtract one from the next bit.”

In hindsight, these incrementer/decrementer components were unnecessary; the ALU will likely be 
used in a CPU in conjunction with a clock, which means that it will be treated as if each operation takes 
the same amount of time to complete. Since the ALU contains an 8-bit adder (used to compute A + 
not(B) + c_in and A + B + c_in), every computation will be assumed to be as slow as an 8-bit adder. 
This in turn negates any speed advantage obtained from using incrementer/decrementer components. 
However, if the ALU were used in a such a way that it's allowed to take three cycles to compute A + 
not(B) + c_in and A + B + c_in, and only one cycle for every other operation, then the use of the 
incrementer/decrementer components would make perfect sense. A multi-cycle CPU like that is far 
beyond the scope of this project, but it's good to know that the inclusion of such components can still 
make the ALU more efficient.



III – Verification:

enable S2 S1 S0 D0 D1 D2 D3 D4 D5 D6 D7

Since the 3-to-8 decoder's output defaults to 0 
whenever enable is set to 0, inputs S0, S1, and S2 

should only matter when enable is set to 1. This 
means that the only possible input combinations 
that matter are the nine combinations shown in 
the truth table to the left. The waveforms for 
those combinations matches the table, so the 
circuit works as intended.

t1 1 0 0 0 1 0 0 0 0 0 0 0

t2 1 0 0 1 0 1 0 0 0 0 0 0

t3 1 0 1 0 0 0 1 0 0 0 0 0

t4 1 0 1 1 0 0 0 1 0 0 0 0

t5 1 1 0 0 0 0 0 0 1 0 0 0

t6 1 1 0 1 0 0 0 0 0 1 0 0

t7 1 1 1 0 0 0 0 0 0 0 1 0

t8 1 1 1 1 0 0 0 0 0 0 0 1

t9 0 X X X 0 0 0 0 0 0 0 0

The 8-to-2 ANDOR component can be expressed as:
Y =  (A0B0 + A1B1 + A2B2 + A3B3) + (A4B4 + A5B5 + A6B6 + A7B7)

which is the same as: Y =  A0B0 + A1B1 + A2B2 + A3B3 + A4B4 + A5B5 + A6B6 + A7B7

This happens to be an exact description of the 8-to-2 ANDOR component's behavior, which means the 

A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7 Y component does exactly what it's 
supposed to. Just to make sure, here 
are a few test cases showing the 
component's desired outputs versus 
its actual waveform. The waveform 
matches the truth table, so the 
component works as it should.

t1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1

t2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

t3 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1

t4 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1



The outputs Dn of the 3-to-8 decoder component in the 8-to-1 multiplexer are fed into the inputs An of 
an 8-to-2 ANDOR, and that 8-to-2 ANDOR's inputs Bn are connected to inputs In. Because of this, the 
8-to-1 multiplexer can be expressed as:

Y = D0I0 + D1I1 + D2I2 + D3I3 + D4I4 + D5I5 + D6I6 + D7I7

Due to the behavior of the 3-to-8 decoder, only one of the D outputs is on at a given time – except 
when enable is 0, in which case all of it's outputs are 0 – and that output is determined by inputs S0, S1, 
and S2. Because of this, the expression simplifies to Y = In, where n is the binary number S2S1S0, but if 

enable S2 S1 S0 I0 I1 I2 I3 I4 I5 I6 I7 output enable is set to 0 then Y defaults to 0. This is the 
desired behavior for an 8-to-1 multiplexer, which 
means that this component works properly. Just 
to make sure, though, here are a few test cases 
showing the component's desired outputs versus 
its actual waveform. The waveform matches the 
truth table, so the component works as it should.

t1 0 0 1 1 1 1 1 0 0 0 1 0 0

t2 1 1 1 0 0 0 1 0 1 0 0 1 0

t3 1 1 0 1 0 0 1 1 1 0 1 1 0

t4 0 1 1 1 1 0 1 0 0 1 0 1 0

If the 3-to-8 decoder and 8-to-2 ANDOR components both work, and each 8-to-2 ANDOR components 
in the 8-bit 8-to-1 multiplexer is hooked up to the outputs of a 3-to-8 decoder as well as to the kth bits 
of inputs I0, I1, I2, I3, and I4, then the 8-bit 8-to-1 multiplexer can be expressed logically as M = In, 
where n corresponds to which of the 3-to-8 decoder's outputs Dn is set to 1. Since the output Dn in the 
3-to-8 decoder is determined by S0, S1, and S2, where n corresponds to the binary number S2S1S0, the 8-
bit 8-to-1 multiplexer can also be expressed as M = In, where n corresponds to the binary number 
S2S1S0. Since the outputs of the 3-to-8 decoder default to 0 if enable is set to 0, and since those outputs 
are used to determine which input to select, then output M of the 8-bit 8-to-1 multiplexer defaults to 
00000000 if enable is set to 0; otherwise M = In, where n corresponds to the binary number S2S1S0. 
Coincidentally, that's the exact specification for an 8-bit 8-to-1 multiplexer. It was proven earlier that 
the 3-to-8 decoder and 8-to-2 ANDOR components do indeed both work, which means that this design 
for an 8-bit 8-to-1 multiplexer also works. To err on the side of caution, here are is a truth table with a 
handful of input combination and their corresponding output, as well as a matching waveform. In case 
there was any doubt, yes, this component works.

enable S2 S1 S0 I0 I1 I2 I3 I4 I5 I6 I7 M

(waveform on next page)

t1 0 0 1 1 90 0 6 124 79 39 248 99 0

t2 1 1 0 1 101 1 15 125 84 40 253 104 40

t3 0 0 1 0 104 2 22 125 87 43 9 110 0

t4 1 1 1 1 108 4 25 126 92 50 11 115 115



The 8-bit AND component can be expressed algebraically as:
A_AND_B0 = A0B0,  A_AND_B1 = A1B1,  A_AND_B2 = A2B2,  A_AND_B3 = A3B3,
A_AND_B4 = A4B4,  A_AND_B5 = A5B5,  A_AND_B6 = A6B6,  A_AND_B7 = A7B7

This can be simplified to A_AND_Bn = AnBn (0 ≤ n ≤ 7), where n is the nth bit of a given number. 
Simplified even further, this yields A_AND_B = AB, where A, B, and A_AND_B are eight-bit 

A B A_AND_B numbers. This is exactly what the circuit is supposed to do 
(produce the logical AND of two eight-bit numbers), 
which means it works properly. Just to err on the safe side, 
though, here are a few test cases showing the component's 
desired outputs versus its actual waveform. The waveform 
matches the truth table, so the component works properly.

t1 11110111 00001100 00000100

t2 01110000 01011110 01010000

t3 01010110 01101111 01000110

t4 01000010 10010000 00000000

The 8-bit OR component can be expressed algebraically as:
A_or_B0 = A0 + B0,  A_or_B1 = A1 + B1,  A_or_B2 = A2 + B2,  A_or_B3 = A3 + B3,
A_or_B4 = A4 + B4,  A_or_B5 = A5 + B5,  A_or_B6 = A6 + B6,  A_or_B7 = A7 + B7

This can be simplified to A_or_Bn = An + Bn (0 ≤ n ≤ 7), where n is the nth bit of a given number. 
Simplified even further, this yields A_or_B = A + B, where A, B, and A_or_B are eight-bit numbers. 

A B A_or_B This is exactly what the circuit is supposed to do (produce 
the logical OR of two eight-bit numbers), which means it 
works properly. Just to err on the safe side, though, here 
are a few test cases showing the component's desired 
outputs versus its actual waveform. The waveform 
matches the truth table, so the component works properly.

t1 00111010 01111100 01111110

t2 11111001 00000001 11111001

t3 00100100 11111010 11111110

t4 01010111 10111111 11111111



The 8-bit NOT component can be expressed algebraically as:
NOT_X0 = X0,  NOT_X1 = X1,  NOT_X2 = X2,  NOT_X3 = X3,
NOT_X4 = X4,  NOT_X5 = X5,  NOT_X6 = X6,  NOT_X7 = X7

This can be simplified to NOT_Xn = Xn (0 ≤ n ≤ 7), where n is the nth bit of a given number. Simplified 
even further, this yields NOT_X = X, where X and NOT_X are eight-bit numbers. This is exactly what 
the circuit is supposed to do (produce the logical NOT of its input), which means it works properly. Just 

X NOT_X to err on the safe side, though, here are a few test cases showing the 
component's desired outputs versus its actual waveform. The waveform 
matches the truth table, so the component works properly.

t1 11110001 00001110

t2 01100001 10011110

t3 11111111 00000000

t4 01110101 10001010

A B A_minus_B continue The half-subtracter component has four possible input combinations, 
shown in the truth table to the left. The component's waveform 
matches the truth table, which means it works as it should.

t1 0 0 0 0

t2 0 1 1 1

t3 1 0 1 0

t4 1 1 0 0

The 8-bit XOR component can be expressed algebraically as:
A_XOR_B0 = A0  ⊕ B0,  A_XOR_B1 = A1  ⊕ B1,  A_XOR_B2 = A2  ⊕ B2,  A_XOR_B3 = A3  ⊕ B3,
A_XOR_B4 = A4  ⊕ B4,  A_XOR_B5 = A5  ⊕ B5,  A_XOR_B6 = A6  ⊕ B6,  A_XOR_B7 = A7  ⊕ B7

This can be simplified to A_XOR_Bn = An  ⊕ Bn (0 ≤ n ≤ 7), where n is the nth bit of a given number. 
Simplified even further, this yields A_XOR_B = A ⊕ B, where A, B, and A_AND_B are eight-bit 

A B A_XOR_B numbers. This is exactly what the circuit is supposed to do 
(produce the logical XOR of two eight-bit numbers), 
which means it works properly. Just to err on the safe side, 
though, here are a few test cases showing the component's 
desired outputs versus its actual waveform. The waveform 
matches the truth table, so the component works properly.

t1 01111100 00101010 00101010

t2 00110100 01100011 01010111

t3 11111011 00100001 11011010

t4 00001101 11000111 11001010

The decrementer's topmost half-subtracter has two inputs bits, one of which is connected to the 
decrementer's own input bit subtract, and the other of which is connected to bit 0 of input X. If the half-
subtracter works correctly, its output should be X0 minus subtract. That half-subtracter's continue 
output bit is then fed into the next half-subtracter's B input bit, and its other input, A, is set to bit 1 of X. 
This means the second half-subtracter computes X1 minus the borrow-bit (continue) bit obtained from 
computing X0 - subtract. The rest of the half-subtracters follow this pattern as well, basing their own B 
input off of the computations of the previous half-subtracters. Because of all this daisy-chaining, the 
entire decrementer's output M is determined by the expression M7 = X7 – the borrow-bit from 



computing (M6 = X6 – the borrow-bit from computing (M5 = X5 – the borrow-bit from computing (M4 = 
X4 – the borrow-bit from computing (M3 = X3 – the borrow-bit from computing (M2 = X2 – the borrow-
bit from computing (M1 = X1 – the borrow-bit from computing (M0 = X0 - subtract))))))), and the entire 
circuit's c_out is the borrow-bit outputted from the last half-subtracter (which is obtained from 
computing M7). This expression can be further simplified to Y = X - subtract, where Y is the 9-bit 
binary number c_outS7S6S5S4S3S2S1S0  (c_out is the sign bit, since the borrow-bit means “subtract one 
from the next bit”). Output v is determined by XOR-ing the last two borrow-bits in the operation. Since 
that is exactly how overflow is determined when subtracting 2's complement encoded numbers, that 
means v determines if there was signed 2's complement overflow when subtracting subtract from X. 

X subtract v c_out M This proves that the decrementer computes X – 
subtract and accounts for signed 2's complement 
overflow. Since that's what the decrementer is 
supposed to do, that means the component works as 
intended. Just to make certain, though, here are a 
few test cases showing the component's desired 
outputs versus its actual waveforms.

t1 01011001 0 0 0 01011001

t2 00000000 1 0 1 11111111

t3 10000000 0 0 0 100000000

t4 01000000 1 0 0 00111111

The incrementer's topmost half-adder has two inputs bits, one of which is connected to the 
incrementer's own input bit add, and the other of which is connected to bit 0 of input X. If the half-
adder works correctly, its output should be X0 plus add. That half-adder's Cout output bit is then fed into 
the next half-adder's A input bit, and its other input, B, is set to bit 1 of X. This means the second half-
adder computes X1 plus the carry-out bit (Cout) obtained from computing X0 + add. The rest of the half-
adders follow this pattern as well, basing their own A input off of the computations of the previous 
half-adders. Because of all this daisy-chaining, the entire incrementer's output M is determined by the 
expression M7 = X7 + the carry-out from computing (M6 = X6 + the carry-out from computing (M5 = X5 

+ the carry-out from computing (M4 = X4 + the carry-out from computing (M3 = X3 + the carry-out 
from computing (M2 = X2 + the carry-out from computing (M1 = X1 + the carry-out from computing 
(M0 = X0 + add))))))), and the entire circuit's c_out is the carry-out outputted from the last half-adder 
(which is obtained from computing M7). This expression can be further simplified to Y = X + add, 
where Y is the 9-bit binary number c_outS7S6S5S4S3S2S1S0 . Output v is determined by XOR-ing the last 
two carry-bits in the operation. Since that is exactly how overflow is determined when subtracting 2's 
complement encoded numbers, that means v determines if there was signed 2's complement overflow 
when adding X and add. This proves that the incrementer computes X + add and accounts for signed 2's 

X add v c_out M complement overflow. Since that's what the incrementer 
component is supposed to do, that means the component 
works as intended. Just to make certain, though, here 
are a few test cases showing the component's desired 
outputs versus its actual waveforms.

(waveform on next page)

t1 11111110 1 0 0 11111111

t2 00001001 0 0 0 00001001

t3 00010110 1 0 0 00010111

t4 001000011 1 0 0 00100100



The ALU's output m7 is supposed to indicate output M's sign bit if M is a signed number. If M were 
signed, that would mean that its most significant bit (M7) would be its sign bit. If the ALU produced 
overflow, however,  the sign bit would be the ALU's carry-out bit (when an operation results in 
overflow, the sign bit overflows into the carry-out bit). As such, m7 can be expressed as m7 = 
(overflow)M7 + (overflow)(carry-out bit) (M7 refers to bit 7 of output M). Overflow and carry-out 
correspond to outputs v and c_out, so this translates to m7 = vM7 + v(c_out). This is exactly how m7 is 
determined in the ALU circuit, which means that – assuming outputs M, v, and c_out work correctly – 
output m7 works as it should.

The ALU contains an 8-bit 8-to-1 multiplexer whose output is connected to the ALU's M output, and 
whose select bits S2, S1, and S0 are connected to bits 2, 1, and 0, respectively, of alu_sel. This means 
that whatever is connected to the 8-bit 8-to-1 multiplexer's input Ialu_sel will be outputted as M. 
additional input, enable, is connected to the 8-bit 8-to-1 multiplexer's enable input, so output M is equal 
to the input Ialu_sel of the 8-bit 8-to-1 multiplexer, except when enable is set to 0, in which case the 8-bit 
8-to-1 multiplexer's output defaults to 00000000, which would set M to 00000000. The ALU also 
contains two 8-to-1 multiplexers – one which outputs to v, and another which outputs to c_out – and 
these have their select select and enable inputs connected to the ALU's alu_sel and enable inputs the 
same way they were connected for the 8-bit 8-to-1 multiplexer. This in turn means that c_out and v are 
each determined by their 8-to-1 multiplexer's corresponding input Ialu_sel, and that both c_out and v 
default to 0 if enable is set to 0. Since m7 = vM7 + v(c_out), and since M, c_out, and v default to 0 
when enable is 0, then that means m7 defaults to 0 whenever enable is set to 0. Effectively, this means 
that all of the ALU's outputs default to 0 whenever enable is 0, which means that enable works properly

Inputs I0, I1, I4, and I5 on both of the single-bit 8-to-1 multiplexers are connected to GND, which means 
that v and c_out default to 0 when alu_sel is 0, 1, 4 or 5. This makes sense, since those values 
correspond to the ALU's logical operations, and logical operations aren't supposed to produce any 
overflow, carry-out, or sign values. Since m7 = vM7 + v(c_out), and v defaults to 0 in those cases, m7 
also defaults to 0 in those cases. This means that only the value of output M matters when alu_sel is set 
to 0, 1, 4, or 5.

Input D0 of the 8-bit 8-to-1 multiplexer is connected to the output of an 8-bit OR component that takes 
ALU's inputs A and B as its inputs. As such, D0 corresponds to the logical OR of inputs A and B. When 
enable is set to 1 and alu_sel is set to 0, the value on D0 gets passed on to output M, meaning that M 
would be equal to A OR B under those circumstances. Since this is the exact operation that is supposed 
to happen when alu_sel is set to 0, this proves that the ALU works for all cases where alu_sel is 0.

Input D1 of the 8-bit 8-to-1 multiplexer is connected to the output of an 8-bit NOT component that 
takes ALU's inputs A as its input. As such, D1 corresponds to the logical NOT of input A. When enable 
is set to 1 and alu_sel is set to 1, the value on D1 gets passed on to output M, meaning that M would be 
equal to not(A) under those circumstances. Since this is the exact operation that is supposed to happen 
when alu_sel is set to 1, this proves that the ALU works for all cases where alu_sel is 1.



The input D2 of each of the three multiplexers is connected to the outputs of an 8-bit adder component 
that takes as its inputs A, c_in, and the output of an 8-bit NOT component that takes B as its input. The 
8-bit NOT component's output corresponds to not(B). Since this is fed into the 8-bit adder, that means 
that the 8-bit adder calculates A + not(B) + c_in. The 8-bit adder outputs the results of this operation in 
the form of 8-bit outputs S (sum), v (overflow), and Cout (carry-out). S is fed into D2 of the 8-bit 8-to-1 
multiplexer, v is fed into D2 of output v's 8-to-1 multiplexer, and Cout is fed into D2 of c_out's 8-to-1 
multiplexer. When enable is set to 1 and alu_sel is set to 2, the value on D2 for each multiplexer get 
passed on to outputs M, v, and c_out meaning that under those circumstances M would be equal to the 
sum A + not(B) + c_in, v would be equal to the overflow produced when computing A + not(B) + c_in, 
and c_out would be equal to the carry-out for A + not(B) + c_in. Since this is the exact operation that is 
supposed to happen when alu_sel is set to 2, this proves that outputs M, v, and c_out work properly 
when alu_sel is set to 2. This in turn proves that m7 works as it should whenever alu_sel is set to 2, 
which means the entire ALU works for all cases where alu_sel is 2.

The input D3 of each of the three multiplexers is connected to the outputs of an 8-bit adder component 
that takes as its inputs A, B, and c_in. That means that the 8-bit adder calculates A + B + c_in. The 8-bit 
adder outputs the results of this operation in the form of 8-bit outputs S (sum), v (overflow), and Cout 

(carry-out). S is fed into D3 of the 8-bit 8-to-1 multiplexer, v is fed into D3 of output v's 8-to-1 
multiplexer, and Cout is fed into D3 of c_out's 8-to-1 multiplexer. When enable is set to 1 and alu_sel is 
set to 3, the value on D3 for each multiplexer get passed on to outputs M, v, and c_out meaning that 
under those circumstances M would be equal to the sum A + B + c_in, v would be equal to the 
overflow produced when computing A + B + c_in, and c_out would be equal to the carry-out for A + B 
+ c_in. Since this is the exact operation that is supposed to happen when alu_sel is set to 3, this proves 
that outputs M, v, and c_out work properly when alu_sel is set to 3. This in turn proves that m7 works 
as it should whenever alu_sel is set to 3, which means the entire ALU works for all cases where alu_sel 
is 3.

Input D4 of the 8-bit 8-to-1 multiplexer is connected to the output of an 8-bit XOR component that 
takes ALU's inputs A and B as its inputs. As such, D4 corresponds to the logical XOR of inputs A and 
B. When enable is set to 1 and alu_sel is set to 4, the value on D4 gets passed on to output M, meaning 
that M would be equal to A XOR B under those circumstances. Since this is the exact operation that is 
supposed to happen when alu_sel is set to 4, this proves that the ALU works for all cases where alu_sel 
is 4.

Input D5 of the 8-bit 8-to-1 multiplexer is connected to the output of an 8-bit AND component that 
takes ALU's inputs A and B as its inputs. As such, D5 corresponds to the logical AND of inputs A and 
B. When enable is set to 1 and alu_sel is set to 5, the value on D5 gets passed on to output M, meaning 
that M would be equal to A AND B under those circumstances. Since this is the exact operation that is 
supposed to happen when alu_sel is set to 0, this proves that the ALU works for all cases where alu_sel 
is 5.

The input D6 of each of the three multiplexers is connected to the outputs of a decrementer component 
that takes as its inputs A, and the output of an inverter whose input is c_in. The inverter outputs 
not(c_in), so that means the decrementer calculates A - not(c_in). The decrementer outputs the results 
of this operation in the form of 8-bit outputs M (sum), v (overflow), and c_out (carry-out). M is fed into 
D6 of the 8-bit 8-to-1 multiplexer, v is fed into D6 of output v's 8-to-1 multiplexer, and c_out is fed into 
D6 of c_out's 8-to-1 multiplexer. When enable is set to 1 and alu_sel is set to 6, the value on D6 for each 
multiplexer get passed on to outputs M, v, and c_out meaning that under those circumstances M would 
be equal to the sum A – not(c_in), v would be equal to the overflow produced when computing A – 



not(c_in), and c_out would be equal to the carry-out for A – not(c_in). The desired operation for when 
alu_sel is set to 6 is A – 1 + c_in. If c_in was set to 1 the operation would equate to A – 1 + 0 = A – 1. If 
c_in was set to 0, the operation would equate to A – 1 + 1 = A. When c is set to 0,  A – not(c_in) 
equates to A – not(0) = A – 1. When c is set to 1,  A – not(c_in) equates to A – not(1) = A. This shows 
that A – 1 + c_in and A – c_in are equivalent, which means that outputs M, v, and c_out work properly 
when alu_sel is set to 6. This in turn proves that m7 works as it should whenever alu_sel is set to 6, 
which means the entire ALU works for all cases where alu_sel is 6.

The input D7 of each of the three multiplexers is connected to the outputs of an incrementer component 
that takes A and c_in as its inputs. That means that the incrementer calculates A + c_in. The 
incrementer outputs the results of this operation in the form of 8-bit outputs M (sum), v (overflow), and 
c_out (carry-out). M is fed into D7 of the 8-bit 8-to-1 multiplexer, v is fed into D7 of output v's 8-to-1 
multiplexer, and c_out is fed into D7 of c_out's 8-to-1 multiplexer. When enable is set to 1 and alu_sel 
is set to 7, the value on D7 for each multiplexer get passed on to outputs M, v, and c_out meaning that 
under those circumstances M would be equal to the sum A + c_in, v would be equal to the overflow 
produced when computing A + c_in, and c_out would be equal to the carry-out for A + c_in. Since this 
is the exact operation that is supposed to happen when alu_sel is set to 3, this proves that outputs M, v, 
and c_out work properly when alu_sel is set to 3. This in turn proves that m7 works as it should 
whenever alu_sel is set to 7, which means the entire ALU works for all cases where alu_sel is 7.

The ALU performs the correct operations on A and B for all possible cases of alu_sel and enable, 
therefore the entire ALU circuit works correctly. Just to make certain, though, here are a few test cases 
showing the circuit's desired outputs versus its actual waveforms.

alu_sel c_in enable A B M v c_out m7

t1 1 0 0 1010000 11000011 00000000 0 0 0

t2 0 0 1 1010000 11000011 11100011 0 0 1

t3 1 0 1 1010000 11000011 01011111 0 0 0

t4 2 0 1 1010000 11000011 11111111 0 0 1

t5 3 0 1 1010000 11000011 01100011 1 1 1

t6 4 0 1 1010000 11000011 01100011 0 0 0

t7 5 0 1 1010000 11000011 10000000 0 0 1

t8 6 1 1 1010000 11000011 10100000 0 0 1

t9 7 1 1 1010000 11000011 10100001 0 0 1

The waveform matches the truth table, so the circuit works properly.


